The cosmic balance: weighing neutrinos with precision cosmology

Yvonne Y. Y. Wong Max-Planck-Institut für Physik, München

Particle and astroparticle theory seminar, MPI-K Heidelberg, December 3, 2007

Neutrino dark matter...

Massive neutrinos ($m_v > 1 \text{ meV}$) are **dark matter**: •

Cowsik & McClelland, 1972

• From lab experiments:

Small but not negligible! min $\sum m_{\nu} \simeq 0.05 \,\text{eV}$ (Neutrino oscillations) max $\sum m_{\nu} \simeq 6 \,\text{eV}$ (Tritium β decay) $\Omega_{\rm v} \sim 0.1\% \rightarrow 12\%$ Pin down with precision Neutrino dark matter is **hot**. cosmological data?

Probe 1: Cosmic microwave background...

Mather et al., 1994

 FIRAS on COBE measured Planck spectrum, with temperature:

 $T_{\rm CMB} = 2.725 \pm 0.001 \,\rm K$

- T_{CMB} fixes:
 - Photon energy density.
 - Relic neutrino number density per flavour:

$$n_v = 112 \, \mathrm{cm}^{-3}$$

• Temperature fluctuations from acoustic oscillations of the photon-baryon fluid frozen on the last scattering surface.

Probe 2: Large-scale structure...

Matter distribution (luminous and dark) Virgo collaboration, 1996

300 h⁻¹ Mpc

Galaxy clustering

Cluster abundance

Gravitational lensing

Intergalactic hydrogen clumps; Lyman-α

1 h⁻¹ Mpc

Probe 3: Standard candles...

Type la supernova (SNIa).

• Hubble diagram of **SNIa** provided the first evidence for a negative pressure fluid, the "**dark energy**".

The concordance model...

- The simplest model consistent with present data:
- \rightarrow Flat geometry.
- → 6 free parameters: $\Omega_m h^2$, $\Omega_b h^2$, h, n_s , A_s , τ
- \rightarrow Dark matter is cold.
- → Does not require neutrino dark matter: $\Delta \chi^2 \sim -2$ or less.

Present cosmological neutrino mass bounds...

Reference	95% C.L.	Model	Data
Spergel et al. 2006	< 0.7 eV	m	WMAP3, LSS, SN, HST
Tegmark et al. 2006	< 0.94 eV	m	WMAP3, SDSS
Goobar et al. 2006	< 0.6 eV	X	WMAP3, LSS, SN, BAO, HST
Seljak et al. 2006	< 0.17 eV	m	WMAP3, LSS, SN, BAO, Lya, HST
Ichikawa et al. 2006	< 2.0 eV	m	WMAP3 only
Kristiansen et al. 2006	< 1.43 eV	m	WMAP3, Cluster mass function
Zunckel & Ferreira 2007	< 2.2 eV	X	WMAP3, LSS
Hannestad et al. 2007	< 0.65 eV	X	WMAP3, LSS, SN, BAO
and probably more.			m=minimal; x=extended

Future cosmological probes...

- Weak gravitational lensing
 - Of galaxies (tomography).
 - Of the CMB.
- High redshift galaxy surveys.
- Cluster abundance.
- CMB/galaxy cross-correlation (ISW effect).

Coming up in the lab...

• Tritium β decay:

Sensitivity to $\Sigma m_v \sim 0.6 \text{ eV}$

• Neutrinoless ββ decay:

Sensitivity to $\Sigma m_v \sim 0.05 \text{ eV}$ (SuperNEMO) Majorana neutrinos only

Plan...

• What we can do **now**.

• What we can do in the future.

• What are the **challenges**.

1. What we can do now...

The idea...

- Massive neutrinos are hot dark matter.
 - 1 eV neutrino becomes nonrelativistic at $z_{nr} \sim 2000$.
 - Structure formation begins at $z_{eq} \sim 3000$.
- Free-streaming from z_{eq} to z_{nr} suppresses formation of structures on small scales.

N-body simulation, Ma 1996

In practice...

- Measurement of Σm_{v} is limited by our knowledge of the **total matter** density Ω_m , because:
 - Suppression is most sensitive to $f_v = \Omega_v / \Omega_m$.
 - (Approximate) degeneracy between f., and Ω_m in P(k).

Ignoring

• The net effect on the Σm_v measurement:

It's two-way traffic...

De La Macorra, Melchiorri, Serra & Bean, 2006

- If, in the future...
 - **KATRIN** finds $m_{\beta} \sim 0.28 \text{ eV}$
 - **GERDA** finds $m_{\beta\beta} \sim 0.18 \text{ eV}$
- Then...
 - Present cosmological data+KATRIN+GERDA give

Hannestad, 2007

Spectrum normalisation...

Spectrum normalisation...

Galaxy bias...

• Assumption: galaxy distribution traces that of the underlying matter up to a normalisation factor:

Current galaxy formation theories cannot accurately predict bias factor.
 → Use shape information only in fits.

 Reality: Galaxy bias is scale-dependent!

- Reality: Galaxy bias is scale-dependent!
- Correction models:

Hamann, Hannestad & Y³W, in prep.

A word about Lyman- α ...

• Seljak, McDonald & Slosar, 2006 reported:

$$\sum m_{\nu} < 0.17 \text{ eV}$$

• Lya sensitive to fluctuation amplitude σ_8 and slope n_s of power spectrum:

WMAP3+Lya: WMAP3 only: $\sigma_8 = 0.86 \pm 0.03, \quad n_s = 0.96 \pm 0.02$ $\sigma_8 = 0.76 \pm 0.05, \quad n_s = 0.96 \pm 0.02$

McDonald et al., 2005

cf. another analysis WMAP3+Lya: $\sigma_8 = 0.80 \pm 0.04$, $n_s = 0.96 \pm 0.01$ Viel & Haehnelt, 2006

The bottom line...

• Conservative upper limit on Σm_v is about 1 eV (95% C.L.).

 Neutrino mass and the apparent dark energy EOS are degenerate parameters:

- → Breaking this degeneracy will improve the sensitivity to the neutrino mass.
- Precise knowledge of spectrum normalisation at small scales would be extremely useful.

2. What we can do in the future...

Julien Lesgourgues (LAPTH, Annecy, France)

CMB probe

Spectroscopic surveys @ high z

Photometric surveys with lensing capacity

Large Synoptic Survey Telescope

- 3 reasons to go high z...
 - 1. Spectrum evolution.

2. Growth of fluctuations.

3. Baryon wiggles.

Probes:

- Weak gravitational lensing
 - of galaxies (tomography)
 - of the CMB
- High-z galaxy clustering
- Cluster abundance
- CMB/galaxy cross-correlation (ISW effect)

- 3 reasons to go high z...
 - 1. Spectrum evolution.

2. Growth of fluctuations.

3. Baryon wiggles.

Probes:

- Weak gravitational lensing
 - of galaxies (tomography)
 - of the CMB
- High-z galaxy clustering
- Cluster abundance
- CMB/galaxy cross-correlation (ISW effect)

- 1. Spectrum evolution...
 - In the presence of neutrino DM, the shape of P(k) changes with time.
 - Not so if DM is entirely cold!

 Spectrum evolution is a unique and robust signature of neutrino DM.

1. Spectrum evolution...

Best probes: High-z galaxy clustering Lensing tomography

- In the presence of neutrino DM, the shape of P(k) changes with time.
 - Not so if DM is entirely cold!

 Spectrum evolution is a unique and robust signature of neutrino DM.

1. Spectrum evolution...

Best probes: High-z galaxy clustering Lensing tomography

- In the presence of neutrino DM, the shape of P(k) changes with time.
 - Not so if DM is entirely cold!

 Spectrum evolution is a unique and robust signature of neutrino DM.

Consider two galaxy clustering surveys:

Sensitivity to Σm_{ν} (95% C.L.)

- **G1 only**: 0.13 eV
- **G2 only**: 0.14 eV
- G1+G2: 0.08 eV
 Same survey volume
 G1x1.5: 0.12 eV

Combination of high and low z surveys = excellent probe of spectrum evolution.

- 3 reasons to go high z...
 - 1. Spectrum evolution.

2. Growth of fluctuations.

3. Baryon wiggles.

Probes:

- Weak gravitational lensing
 - of galaxies (tomography)
 - of the CMB
- High-z galaxy clustering
- Cluster abundance
- CMB/galaxy cross-correlation (ISW effect)

2. Growth of fluctuations...

Best probes: Lensing tomography Cluster abundance

z=0,...,4

Density fluctuations grow ulletwith time:

$$P(k, z) = D^{2}(k, z) P(k, 0)$$

• D(z) depends on the background expansion:

2. Growth of fluctuations...

•

Best probes: Lensing tomography Cluster abundance

Redshift, z

 Weak gravitational lensing/Cosmic shear: Distortion (magnification or stretching) of distant galaxy images by foreground matter.

Unlensed

Lensed

Shear power spectrum of redshift bin i

- **Tomography** = bin source galaxies by redshift; can probe:
 - → Growth of fluctuations + spectrum evolution.
 - → Distance-redshift relation.

• What can lensing tomography do for neutrino masses?

Sensitivity to Σm_{ν} (95% C.L.)

0.96 eV 0.50 eV - Planck only 0.30eV 0.16 eV Planck+LSST* no tomography Planck+LSST 5 redshift bins 0.086 eV 0.074 eV Unconstrained w Assuming DE = Cosmological constant * LSST = Large Synoptic Survey Telescope Ground-based, full-sky lensing survey Looking out to $z \sim 3$, first light 2012. Σm_v -w degeneracy broken by tomography! Hannestad, Tu & Y³W, 2006

• Large-scale structures **lense the CMB** too!

→ An extra "tomography bin" at z~1000 when combined with cosmic shear.

- Lensing exatraction on **Planck's agenda**:
 - Adding Planck lensing to cosmic shear with LSST does not improve sensitivity to Σm_{v} .

Planck lensing alone: Sensitivity to Σm_v is 0.22 eV (95% C.L.).

Song & Knox , 2004 Lesgourgues, Perotto, Pastor & Piat, 2006 Perotto, Lesgourgues, Hannestad, Tu & Y³W, 2006

Lensed

• Other probes of the growth function/spectrum evolution:

- Cluster abundance.

• Cluster mass function: number density of collapsed objects of mass M at redshift z.

Wang, Haiman, Hu, Khoury & May, 2005

Other probes of the growth function/spectrum evolution: •

- Cluster abundance.
 - Cluster mass function: number density of collapsed objects of mass M at redshift z.

Wang, Haiman, Hu, Khoury & May, 2005

CMB/galaxy cross-correlation (ISW effect).

Lesgourgues, Valkenburg & Gaztanaga, 2007

- 3 reasons to go high z...
 - 1. Spectrum evolution.

2. Growth of fluctuations.

3. Baryon wiggles.

Probes:

- Weak gravitational lensing
 - of galaxies (tomography)
 - of the CMB
- High-z galaxy clustering
- Cluster abundance
- CMB/galaxy cross-correlation (ISW effect)

3. Baryon wiggles...

Best probes: High-z galaxy clustering (spectroscopic)

• Acoustic oscillations of coupled photon-baryon fluid at recombination (cf CMB anisotropies).

• BAO as a standard ruler:

$$r_{\perp} = r_{\parallel} = s_{\text{peak}} \sim 150 \ h^{-1} \,\text{Mpc}$$

- BAO has been detected
 @ z ~ 0.35.
- Planned/proposed spectroscopic surveys, (WFMOS, HETDEX, etc.) will observe @ 2 < z < 4.

Eisenstein et al. (SDSS), 2005

• What can future BAO do for neutrino masses?

- Adding BAO to broad-band probes of P(k) will eliminate any remaining degeneracy between Σm_v and the dark energy EOS.

Our preliminary estimate of the Σm_v sensitivity for Planck + Cosmic shear tomography + BAO is ~ 0.05 eV (95% C.L.).

Hannestad & Y³W, in prep.

3. The challenges...

Nonlinearities...

- Linear perturbation theory fails at $k > 0.2 h \text{ Mpc}^{-1}$ today.
- Nonlinearities can affect:
 - Spectrum shape.
 - Location of BAO peak.
- Remedies:
 - Brute-force method: N-body simulations.
 - Semi-analytical halo models? Peacock & Smith, 2000; Seljak, 2000; Ma & Fry, 2000
 - Higher order perturbation theory? Renormalisation group?

Crocce & Scoccimarro, 2005; 2007 Matarrese & Pietroni, 2007

Spectrum evolution Growth function Baryon wiggles

High-z galaxy clustering	Yes	No	Yes
Weak lensing			
of galaxies (tomography)	Yes	Yes	No
of the CMB	Yes	Yes	No
Cluster abundance	Yes	Yes	No
CMB/galaxy cross- correlation (ISW effect)	Yes	Yes	No

Spectrum evolution + Growth function + Baryon wiggles

Great prospects for probing the neutrino mass down to the 0.05 eV level (95% C.L.) in the next decade!