Determining Properties of Dark Matter Particles with Direct Detection Experiments as Model Independently as Possible

Chung-Lin Shan

Department of Physics, National Cheng Kung University

Max-Planck-Institut für Kernphysik, Heidelberg
February 15, 2010

in collaboration with M. Drees, M. Kakizaki and Y. T. Chou
Introduction
 Direct Dark Matter detection

Model-independent data analyses
 Reconstruction of the WIMP velocity distribution
 Determination of the WIMP mass
 Estimation of the SI WIMP-nucleon coupling
 Determinations of ratios of WIMP-nucleon cross sections

Effects of residue background events
 Measured recoil spectrum
 On the determination of the WIMP mass
 On the reconstruction of the WIMP velocity distribution

AMIDAS code and website

Summary
Direct Dark Matter detection
Direct Dark Matter detection

DM should have small, but non-zero interactions with ordinary matter.
Direct Dark Matter detection: elastic WIMP-nucleus scattering

- WIMPs could scatter elastically off target nuclei and produce nuclear recoils which deposit energy in the detector.

- The event rate depends on the WIMP density near the Earth, the WIMP-nucleus cross section, the WIMP mass and the velocity distribution of incident WIMPs.

- In typical SUSY models with neutralino WIMPs, the WIMP-nucleus cross section is about $10^{-1} \sim 10^{-6}$ pb, the optimistic expected event rate is then $\sim 10^{-3}$ events/kg-day, but could be < 1 event/ton-yr.

- The recoil energy spectrum is approximately exponential and most events would be with energies less than 50 keV.

- Typical background events due to cosmic rays and ambient radioactivity is much larger.
Direct Dark Matter detection: elastic WIMP-nucleus scattering

- Differential event rate for elastic WIMP-nucleus scattering

\[
\frac{dR}{dQ} = AF^2(Q) \int_{v_{\text{min}}}^{v_{\text{max}}} \left[\frac{f_1(v)}{v} \right] dv
\]

Here

\[v_{\text{min}} = \alpha \sqrt{Q}\]

is the minimal incoming velocity of incident WIMPs that can deposit the recoil energy \(Q\) in the detector.

\[\mathcal{A} \equiv \frac{\rho_0 \sigma_0}{2m_\chi m_{N}}\]

\[\alpha \equiv \sqrt{\frac{m_N}{2m_{r,N}^2}}\]

\[m_{r,N} = \frac{m_\chi m_N}{m_\chi + m_N}\]

\(\rho_0\): WIMP density near the Earth

\(\sigma_0\): total cross section ignoring the form factor suppression

\(F(Q)\): elastic nuclear form factor

\(f_1(v)\): one-dimensional velocity distribution of halo WIMPs
Direct Dark Matter detection: elastic WIMP-nucleus scattering

- Differential event rate for elastic WIMP-nucleus scattering

\[
\frac{dR}{dQ} = A F^2(Q) \int_{v_{\text{min}}}^{v_{\text{max}}} f_1(v) \frac{v}{v} dv
\]

Here

\[v_{\text{min}} = \alpha \sqrt{Q} \]

is the minimal incoming velocity of incident WIMPs that can deposit the recoil energy \(Q \) in the detector.

\[A \equiv \frac{\rho_0 \sigma_0}{2 m_\chi m_r^2} \quad \quad \alpha \equiv \sqrt{\frac{m_N}{2 m_r^2}} \quad \quad m_{r,N} = \frac{m_\chi m_N}{m_\chi + m_N} \]

\(\rho_0 \): WIMP density near the Earth
\(\sigma_0 \): total cross section ignoring the form factor suppression
\(F(Q) \): elastic nuclear form factor
\(f_1(v) \): one-dimensional velocity distribution of halo WIMPs
Direct Dark Matter detection: elastic WIMP-nucleus scattering

- **Spin-independent (SI) WIMP-nucleus cross section**

\[
\begin{align*}
\sigma_0^{SI} &= \left(\frac{4}{\pi} \right) m_r N \left[Z f_p + (A - Z) f_n \right]^2 \\
\sigma_{\chi p}^{SI} &= \left(\frac{4}{\pi} \right) m_{\chi p} |f_p|^2
\end{align*}
\]

- Exclusion limits on the (predicted) SI WIMP-nucleon cross section

\[\text{http://dmtools.berkeley.edu/limitplots/}\]
Direct Dark Matter detection: elastic WIMP-nucleus scattering

- **Spin-dependent (SD) WIMP-nucleus cross section**

\[
\sigma_{SD}^0 = \left(\frac{32}{\pi} \right) G_F^2 m_r N \left(\frac{J+1}{J} \right) \left[\langle S_p \rangle_{ap} + \langle S_n \rangle_{an} \right]^2
\]

\[
\sigma_{SD}^{\chi p/n} = \left(\frac{32}{\pi} \right) G_F^2 m_r \langle \frac{a_p}{a_n} \rangle^2
\]

- **Exclusion limits on the SD WIMP-proton cross section**

[C. L. Shan, NCKU Physics MPIK Heidelberg, Feb 15, 2010]
Direct Dark Matter detection: elastic WIMP-nucleus scattering

- **Spin-dependent (SD) WIMP-nucleus cross section**

\[
\sigma_{0}^{SD} = \left(\frac{32}{\pi} \right) G_F^2 m_r^2 \left(\frac{J + 1}{J} \right) \left[\langle S_p \rangle a_p + \langle S_n \rangle a_n \right]^2
\]

\[
\sigma_{\chi p/n}^{SD} = \left(\frac{32}{\pi} \right) G_F^2 m_r^{2} \left(\frac{3}{4} \right) a_p^2 / n
\]

- Total nuclear spin, expectation values of the proton/neutron group spin
 - \(a_p, a_n\): SD effective WIMP-proton/neutron couplings

- **Exclusion limits on the SD WIMP-neutron cross section**

[http://dmtools.berkeley.edu/limitplots/]
Direct Dark Matter detection: elastic WIMP-nucleus scattering

- Spin-dependent (SD) WIMP-nucleus cross section
 \[\sigma_{0,SD}^{SD} = \left(\frac{32}{\pi} \right) G_F^2 m_r N \left(\frac{J+1}{J} \right) \left[\langle S_p \rangle a_p + \langle S_n \rangle a_n \right]^2 \]
 \[\sigma_{\chi p/n,SD}^{SD} = \left(\frac{32}{\pi} \right) G_F^2 m_r p/n \cdot \left(\frac{3}{4} \right) a_p^2/p/n \]

 \(J, \langle S_p \rangle, \langle S_n \rangle\): total nuclear spin, expectation values of the proton/neutron group spin
 \(a_p, a_n\): SD effective WIMP-proton/neutron couplings

- Exclusion limits on the \(a_p\) and \(a_n\) couplings

[V. N. Lebedenko et al., PRL 103, 151302 (2009)]
Model-independent data analyses
Motivation

- Differential event rate for elastic WIMP-nucleus scattering

\[\frac{dR}{dQ} = AF^2(Q) \int_{v_{\text{min}}}^{v_{\text{max}}} \left[\frac{f_1(v)}{v} \right] dv \]

Here

\[v_{\text{min}} = \alpha \sqrt{Q} \]

is the minimal incoming velocity of incident WIMPs that can deposit the recoil energy \(Q \) in the detector.

\[A \equiv \frac{\rho_0 \sigma_0}{2m_\chi m_{r,N}^2} \quad \alpha \equiv \sqrt{\frac{m_N}{2m_{r,N}^2}} \quad m_{r,N} = \frac{m_\chi m_N}{m_\chi + m_N} \]

- \(\rho_0 \): WIMP density near the Earth
- \(\sigma_0 \): total cross section ignoring the form factor suppression
- \(F(Q) \): elastic nuclear form factor
- \(f_1(v) \): one-dimensional velocity distribution of halo WIMPs
Reconstruction of the WIMP velocity distribution

- Normalized one-dimensional WIMP velocity distribution function

\[
f_1(v) = N \left\{-2Q \cdot \frac{d}{dQ} \left[\frac{1}{F^2(Q)} \left(\frac{dR}{dQ} \right) \right] \right\}_{Q = v^2/\alpha^2}
\]

\[
N = \frac{2}{\alpha} \left\{ \int_0^\infty \frac{1}{\sqrt{Q}} \left[\frac{1}{F^2(Q)} \left(\frac{dR}{dQ} \right) \right] dQ \right\}^{-1}
\]

- Moments of the velocity distribution function

\[
\langle v^n \rangle = N(Q_{\text{thre}}) \left(\frac{\alpha^{n+1}}{2} \right) \left[\frac{2Q_{\text{thre}}^{(n+1)/2}}{F^2(Q_{\text{thre}})} \left(\frac{dR}{dQ} \right) \right]_{Q = Q_{\text{thre}}} + (n + 1) I_n(Q_{\text{thre}})
\]

\[
N(Q_{\text{thre}}) = \frac{2}{\alpha} \left[\frac{2Q_{\text{thre}}^{1/2}}{F^2(Q_{\text{thre}})} \left(\frac{dR}{dQ} \right)_{Q = Q_{\text{thre}}} + I_0(Q_{\text{thre}}) \right]^{-1}
\]

\[
I_n(Q_{\text{thre}}) = \int_{Q_{\text{thre}}}^\infty Q^{(n-1)/2} \left[\frac{1}{F^2(Q)} \left(\frac{dR}{dQ} \right) \right] dQ
\]

[M. Drees and CLS, JCAP 0706, 011]
Reconstruction of the WIMP velocity distribution

- **Ansatz:** reconstructing the measured recoil spectrum in the \(n \)th \(Q \)-bin

\[
\left(\frac{dR}{dQ} \right)_\text{expt, } Q \approx Q_n \equiv r_n e^{k_n(Q - Q_{s,n})}
\]

- Logarithmic slope and shifted point in the \(n \)th \(Q \)-bin

\[
Q - Q_n \bigg|_n \equiv \frac{1}{N_n} \sum_{i=1}^{N_n} (Q_{n,i} - Q_n) = \left(\frac{b_n}{2} \right) \coth \left(\frac{k_n b_n}{2} \right) - \frac{1}{k_n}
\]

\[
Q_{s,n} = Q_n + \frac{1}{k_n} \ln \left[\frac{\sinh(k_n b_n/2)}{k_n b_n/2} \right]
\]

- Reconstructing the one-dimensional WIMP velocity distribution

\[
f_1(v_{s,n}) = \mathcal{N} \left[\frac{2 Q_{s,n} r_n}{F^2(Q_{s,n})} \right] \left[\frac{d}{dQ} \ln F^2(Q) \bigg|_{Q = Q_{s,n}} - k_n \right]
\]

\[
\mathcal{N} = \frac{2}{\alpha} \left[\sum_a \frac{1}{\sqrt{Q_a} F^2(Q_a)} \right]^{-1}
\]

\[
v_{s,n} = \alpha \sqrt{Q_{s,n}}
\]

\[\text{[M. Drees and CLS, JCAP 0706, 011]}\]
Reconstruction of the WIMP velocity distribution

- Reconstructed $f_{1,\text{rec}}(v_s, n)$
 - ^{76}Ge, 500 events, 5 bins, up to 3 bins per window

\[\chi^2/\text{dof} = 0.73 \]

[M. Drees and CLS, JCAP 0706, 011]
Determining the WIMP mass

- Estimating the moments of the WIMP velocity distribution

$$\langle v^n \rangle = \alpha^n \left[\frac{2Q_{\min}^{1/2}r_{\min}}{F^2(Q_{\min})} + l_0 \right]^{-1} \left[\frac{2Q_{\min}^{(n+1)/2}r_{\min}}{F^2(Q_{\min})} + (n+1)l_n \right]$$

$$l_n = \sum_a \frac{Q_a^{(n-1)/2}}{F^2(Q_a)}$$

$$r_{\min} = \left(\frac{dR}{dQ} \right)_{\text{expt}, Q=Q_{\min}} = r_1 e^{k_1(Q_{\min} - Q_s, 1)}$$

- Determining the WIMP mass

$$m_\chi \left| \langle v^n \rangle \right| = \frac{\sqrt{m_\chi m_Y} - m_\chi \mathcal{R}_n}{\mathcal{R}_n - \sqrt{m_\chi / m_Y}}$$

$$\mathcal{R}_n = \left[\frac{2Q_{\min,X}^{(n+1)/2}r_{\min,X}/F_X^2(Q_{\min,X}) + (n+1)l_n,X}{2Q_{\min,X}^{1/2}r_{\min,X}/F_X^2(Q_{\min,X}) + l_0,X} \right]^{1/n} \begin{pmatrix} X \rightarrow Y \end{pmatrix}^{-1} (n \neq 0)$$

- With the assumption of a dominant SI WIMP-nucleus interaction

$$m_\chi \left| \sigma \right| = \frac{(m_\chi / m_Y)^{5/2} m_Y - m_\chi \mathcal{R}_\sigma}{\mathcal{R}_\sigma - (m_\chi / m_Y)^{5/2}}$$

$$\mathcal{R}_\sigma = \frac{\mathcal{E}_Y}{\mathcal{E}_X} \left[\frac{2Q_{\min,X}^{1/2}r_{\min,X}/F_X^2(Q_{\min,X}) + l_0,X}{2Q_{\min,Y}^{1/2}r_{\min,Y}/F_Y^2(Q_{\min,Y}) + l_0,Y} \right]$$

[CLS and M. Drees, arXiv:0710.4296]
Determining Properties of DM Particles with Direct Detection Experiments as Model Independently as Possible

Model-independent data analyses

Determination of the WIMP mass

- χ^2-fitting

$$\chi^2(m_\chi) = \sum_{i,j} (f_{i,X} - f_{i,Y}) C_{ij}^{-1} (f_{j,X} - f_{j,Y})$$

where

$$f_{i,X} = \alpha_X^i \left[\frac{2 Q_{\text{min},X}^{(i+1)/2} r_{\text{min},X} / F_X^2 (Q_{\text{min},X}) + (i + 1) l_{i,X}}{2 Q_{\text{min},X}^{1/2} r_{\text{min},X} / F_X^2 (Q_{\text{min},X}) + l_{0,X}} \right] \left(\frac{1}{300 \text{ km/s}} \right)^i$$

$$f_{n_{\text{max}}+1,X} = \mathcal{E}_X \left[\frac{A_X^2}{2 Q_{\text{min},X}^{1/2} r_{\text{min},X} / F_X^2 (Q_{\text{min},X}) + l_{0,X}} \right] \left(\frac{\sqrt{m_X}}{m_X + m_\chi} \right)$$

$$C_{ij} = \text{cov} (f_{i,X}, f_{j,X}) + \text{cov} (f_{i,Y}, f_{j,Y})$$

- Algorithmic Q_{max} matching

$$Q_{\text{max},Y} = \left(\frac{\alpha_X}{\alpha_Y} \right)^2 Q_{\text{max},X} \quad \left(\nu_{\text{cut}} = \alpha \sqrt{Q_{\text{max}}} \right)$$

[M. Drees and CLS, JCAP 0806, 012]
Determining Properties of DM Particles with Direct Detection Experiments as Model Independently as Possible

- Model-independent data analyses
- Determination of the WIMP mass

Determining of the WIMP mass

- Reconstructed $m_{\chi, \text{rec}}$
 \[(^{28}\text{Si} + ^{76}\text{Ge}, \ Q_{\text{max}} < 100 \text{ keV}, \ 2 \times 50 \text{ events}) \]

![Graph showing the relationship between $m_{\chi, \text{rec}}$ and $m_{\chi, \text{in}}$.](attachment:graph.png)

[M. Drees and CLS, JCAP 0806, 012]
Determining Properties of DM Particles with Direct Detection Experiments as Model Independently as Possible

- Model-independent data analyses
- Estimation of the SI WIMP-nucleon coupling

Estimation of the SI WIMP-nucleon coupling

1. **Estimating the SI WIMP-nucleon coupling**

 $$ |f_p|^2 = \frac{1}{\rho_0} \left[\frac{\pi}{4\sqrt{2}} \left(\frac{1}{E_Z A_Z^2 \sqrt{m_Z}} \right) \right] \left[\frac{2 Q_{\text{min},Z}^{1/2} r_{\text{min},Z}}{F_Z^2(Q_{\text{min},Z})} + l_0, Z \right] (m_\chi + m_Z) $$

2. **$|f_p|^2_{\text{rec}} (^{76}\text{Ge} (+^{28}\text{Si} + ^{76}\text{Ge}), Q_{\text{max}} < 100 \text{ keV, } \sigma^{\text{SI}}_{\chi p} = 10^{-8} \text{ pb, } 1(3) \times 50 \text{ events})$**

 [M. Drees and CLS, in progress]
Determining Properties of DM Particles with Direct Detection Experiments as Model Independently as Possible

- Model-independent data analyses

Estimation of the SI WIMP-nucleon coupling

- Estimating the SI WIMP-nucleon coupling

\[
|f_p|^2 = \frac{1}{\rho_0} \left[\frac{\pi}{4\sqrt{2}} \left(\frac{1}{\epsilon_Z A_Z^2 \sqrt{m_Z}} \right) \right] \left[\frac{2Q_{\text{min},Z}^{1/2} r_{\text{min},Z}}{F_Z^2(Q_{\text{min},Z})} + l_{0,Z} \right] (m_\chi + m_Z)
\]

- \(|f_p|^2 \) vs. \(m_\chi, \) recoiling \(^{76}\text{Ge} (^{28}\text{Si} + ^{76}\text{Ge}) \), \(Q_{\text{max}} < 100 \text{ keV} \), \(\sigma_{\chi p}^{\text{SI}} = 10^{-8} \text{ pb} \), 1(3) \times 50 \text{ events}]

[M. Drees and CLS, in progress]

C. L. Shan, NCKU Physics

MPIK Heidelberg, Feb 15, 2010
Determining Properties of DM Particles with Direct Detection Experiments as Model Independently as Possible

Model-independent data analyses

Determinations of ratios of WIMP-nucleon cross sections

- Determining the ratio of two SD WIMP-nucleon couplings
 \[
 \left(\frac{a_n}{a_p} \right)_{SD, \pm, n} = - \frac{\langle S_p \rangle_X \pm \langle S_p \rangle_Y R_{J,n}}{\langle S_n \rangle_X \pm \langle S_n \rangle_Y R_{J,n}}
 \]

 \[R_{J,n} \equiv \left[\left(\frac{J_X}{J_X + 1} \right) \left(\frac{J_Y + 1}{J_Y} \right) \frac{R_{\sigma}}{R_n} \right]^{1/2} \quad (n \neq 0) \]

 [M. Drees and CLS, arXiv:0903.3300]

- \(\left(\frac{a_n}{a_p} \right)_{SD, \text{rec}, n} \) (5 – 100 keV, \(^{73}\text{Ge} + ^{37}\text{Cl} \), 2 \times 50 events, \(m_\chi = 100 \text{ GeV} \) or \(a_n/a_p = 0.7 \))

[M. Drees and CLS, arXiv:0903.3300; in progress]
Determinations of ratios of WIMP-nucleon cross sections

○ Differential rate for the combination of the SI and SD cross sections

\[
\left(\frac{dR}{dQ} \right)_{\text{expt}, Q=Q_{\text{min}}} = \mathcal{E} \left(\frac{\rho_0 \sigma_0^{\text{SI}}}{2m_\chi m_{r,N}} \right) F_{\text{SI}}^{r^2} (Q_{\text{min}}) \cdot \frac{1}{\alpha} \left[\frac{2r_{\text{min}} / F_{\text{SI}}^{r^2} (Q_{\text{min}})}{2Q_{\text{min}}^{1/2} r_{\text{min}} / F_{\text{SI}}^{r^2} (Q_{\text{min}}) + l_0} \right]
\]

\[F_{\text{SI}}^{r^2} (Q) = F_{\text{SI}}^2 (Q) + \left(\frac{\sigma_{\chi p}^{\text{SD}}}{\sigma_{\chi p}^{\text{SI}}} \right) C_p F_{\text{SD}}^2 (Q) \quad C_p = \frac{4}{3} \left(\frac{J + 1}{J} \right) \left[\langle S_p \rangle + \frac{a_n / a_p}{A} \langle S_n \rangle \right]^2 \]

○ Determining the ratio of two WIMP-proton cross sections

\[
\frac{\sigma_{\chi p}^{\text{SD}}}{\sigma_{\chi p}^{\text{SI}}} = \frac{F_{\text{SI}, Y}^2 (Q_{\text{min}}, Y) \mathcal{R}_{m,XY} - F_{\text{SI}, X}^2 (Q_{\text{min}}, X)}{C_p, X F_{\text{SD}, X}^2 (Q_{\text{min}}, X) - C_p, Y F_{\text{SD}, Y}^2 (Q_{\text{min}}, Y) \mathcal{R}_{m,XY}}
\]

\[\mathcal{R}_{m,XY} = \left(\frac{r_{\text{min}} X}{\mathcal{E}_X} \right) \left(\frac{\mathcal{E}_Y}{r_{\text{min}}, Y} \right) \left(\frac{m_Y}{m_X} \right) ^2 \]

○ Determining the ratio of two SD WIMP-nucleon couplings

\[
\left(\frac{a_n}{a_p} \right)^{\text{SI+SD}} = \left(c_p, X s_{n/p, X} - c_p, Y s_{n/p, Y} \right) \pm \sqrt{c_p, X c_p, Y} \left[s_{n/p, X} - s_{n/p, Y} \right] \frac{c_p, X s_{n/p, X}^2 - c_p, Y s_{n/p, Y}^2}{c_p, X s_{n/p, X}^2 - c_p, Y s_{n/p, Y}^2}
\]

\[c_p, X = \frac{4}{3} \left(\frac{J_X + 1}{J_X} \right) \left[\frac{\langle S_p \rangle X}{A_X} \right] ^2 \left[F_{\text{SI}, Z}^2 (Q_{\text{min}}, Z) \mathcal{R}_{m,YZ} - F_{\text{SI}, Y}^2 (Q_{\text{min}}, Y) \right] F_{\text{SD}, X}^2 (Q_{\text{min}}, X) \]

[M. Drees and CLS, arXiv:0903.3300]
Determinations of ratios of WIMP-nucleon cross sections

Reconstructed \((a_n/a_p)_{rec}^{SI+SD}\) vs \((a_n/a_p)_{rec,1}^{SD}\)

\((^{19}F + ^{127}I + ^{28}Si, Q_{min} > 5 \text{ keV}, Q_{max} < 100 \text{ keV}, 3 \times 50 \text{ events}, \sigma_{\chi p}^{SI} = 10^{-8} / 10^{-10} \text{ pb}, a_p = 0.1, m_\chi = 100 \text{ GeV})\)

[Reconstructed plots showing the ratio of cross sections for different nuclei]
Determinations of ratios of WIMP-nucleon cross sections

Reconstructed \(\left(\frac{\sigma_{SD}^{\chi p}}{\sigma_{SI}^{\chi p}} \right)_{rec} \) and \(\left(\frac{\sigma_{SD}^{\chi n}}{\sigma_{SI}^{\chi p}} \right)_{rec} \)

\(^{19}\text{F} + ^{127}\text{I} + ^{28}\text{Si} \text{ vs. } ^{76}\text{Ge} + ^{23}\text{Na}/^{131}\text{Xe}, Q_{\text{min}} > 5 \text{ keV}, Q_{\text{max}} < 100 \text{ keV}, \sigma_{\chi p}^{SI} = 10^{-8} \text{ pb}, a_p = 0.1, m_{\chi} = 100 \text{ GeV}, 3/2 \times 50 \text{ events} \)

\[[\text{M. Drees, M. Kakizaki and CLS, in progress}] \]
Effects of residue background events
Measured recoil spectrum

- Background spectrum
 - Target-dependent exponential background spectrum
 \[\left(\frac{dR}{dQ} \right)_{bg,ex} = \exp \left(- \frac{Q}{A^{0.6}} \right) \]
 - Constant background spectrum

- Background window
 - Entire experimental possible energy range (0 – 100 keV)
 - Low energy range (0 – 50 keV)
 - High energy range (50 – 100 keV)

- (Naively) simulate
 - only a few residue background events
 - induced by two or more different sources
Measured recoil spectrum

- Measured recoil spectrum

\((^{76}\text{Ge}, 0 – 100 \text{ keV}, \text{exponential bg } 0 – 100 \text{ keV}, 500 \text{ events}, 20\% \text{ bg}, m_\chi = 10 \text{ GeV})\)

Measured recoil spectrum

- Measured recoil spectrum

\[
\text{\(^{76}\text{Ge}, 0 - 100 \text{ keV, exponential bg 0 - 100 keV, 500 events, 20\% bg, } m_{\chi} = 25 \text{ GeV}}\]

Measured recoil spectrum

- Measured recoil spectrum

\[^{76}\text{Ge}, \, 0 \, – \, 100 \, \text{keV}, \, \text{exponential bg} \, 0 \, – \, 100 \, \text{keV}, \, 500 \, \text{events}, \, 20\% \, \text{bg}, \, m_\chi = 50 \, \text{GeV}\]

\[\text{[Y. T. Chou and CLS, arXiv:1003.xxxx]}\]
Measured recoil spectrum

- Measured recoil spectrum

\((^{76}\text{Ge}, \, 0 – 100 \, \text{keV}, \, \text{exponential bg} \, 0 – 100 \, \text{keV}, \, 500 \, \text{events}, \, 20\% \, \text{bg}, \, m_\chi = 100 \, \text{GeV})\)

Measured recoil spectrum

- Measured recoil spectrum

\((^{76}\text{Ge}, 0 – 100 \text{ keV, exponential bg 0 – 100 keV, 500 events, 20% bg, } m_\chi = 250 \text{ GeV})\)

Measured recoil spectrum

- Measured recoil spectrum

\((^{76}\text{Ge}, 0-100 \text{ keV}, \text{exponential bg } 0-100 \text{ keV}, 500 \text{ events}, 20\% \text{ bg}, m_\chi = 500 \text{ GeV})\)

On the determination of the WIMP mass

- **Reconstructed** $m_{\chi,\text{rec}}$

 \((^{28}\text{Si} + ^{76}\text{Ge}, 0 – 100 \text{ keV}, \text{exponential bg } 0 – 100 \text{ keV}, 2 \times 50 \text{ events})\)

![Graph showing the determination of the WIMP mass](image)

On the determination of the WIMP mass

- Reconstructed $m_{\chi, \text{rec}}$

$(^{28}\text{Si} + ^{76}\text{Ge}, \text{0} - \text{100 keV}, \text{exponential bg 0} - \text{100 keV}, 2 \times 500 \text{ events})$

On the reconstruction of the WIMP velocity distribution

- Kinematic maximal cut-off of the recoil energy

\[Q_{\text{max,kin}} = \frac{v_{\text{esc}}^2}{\alpha^2} \]

- Reconstruction of the one-dimensional WIMP velocity distribution

\[
\begin{align*}
 f_1(v_{s,n}) &= \mathcal{N} \left[\frac{2Q_{s,n}r_n}{F^2(Q_{s,n})} \right] \left[\frac{d}{dQ} \ln F^2(Q) \right]_{Q=Q_{s,n}} - k_n \\
 \mathcal{N} &= \frac{2}{\alpha} \left[\sum_a \frac{1}{\sqrt{Q_a F^2(Q_a)}} \right]^{-1} \\
 v_{s,n} &= \alpha \sqrt{Q_{s,n}} \\
 Q_{s,n} &= Q_n + \frac{1}{k_n} \ln \left[\frac{\sinh(k_n b_n/2)}{k_n b_n/2} \right] \\
 \alpha &\equiv \sqrt{\frac{m_N}{2m_{r,N}^2}} = \frac{1}{\sqrt{2m_N}} \left(1 + \frac{m_N}{m_\chi} \right)
\end{align*}
\]

[M. Drees and CLS, JCAP 0706, 011]
On the reconstruction of the WIMP velocity distribution

- Reconstructed $f_{1,\text{rec}}(v_s, n)$

^{76}Ge, $0 - 100$ keV, exponential bg $0 - 100$ keV, 500 events, $m_\chi = 10$ GeV

[Cite: arXiv:1003.xxxx]

C. L. Shan, NCKU Physics

MPIK Heidelberg, Feb 15, 2010
On the reconstruction of the WIMP velocity distribution

- Reconstructed $f_{1,\text{rec}}(v_s,n)$

(76Ge, 0 – 100 keV, exponential bg 0 – 100 keV, 500 events, $m_\chi = 25$ GeV)

[CLS, arXiv:1003.xxxx]
Determining Properties of DM Particles with Direct Detection Experiments as Model Independently as Possible

Effects of residue background events

On the reconstruction of the WIMP velocity distribution

Reconstructed $f_{1,\text{rec}}(v_s, n)$

$(^{76}\text{Ge}, 0 – 100 \text{ keV}, \text{exponential bg } 0 – 100 \text{ keV}, 500 \text{ events}, m_\chi = 50 \text{ GeV})$

On the reconstruction of the WIMP velocity distribution

[CLS, arXiv:1003.xxxx]
On the reconstruction of the WIMP velocity distribution

- Reconstructed $f_{1,\text{rec}}(v_s,n)$

 $(^{76}\text{Ge}, 0 - 100\text{ keV}, \text{exponential bg } 0 - 100\text{ keV}, 500\text{ events}, m_\chi = 100\text{ GeV})$

[CLS, arXiv:1003.xxxx]
On the reconstruction of the WIMP velocity distribution

- Reconstructed $f_{1,\text{rec}}(v, n)$

\((^{76}\text{Ge}, 0 - 100 \text{ keV}, \text{exponential bg } 0 - 100 \text{ keV}, 500 \text{ events, } m_\chi = 250 \text{ GeV})\)
On the reconstruction of the WIMP velocity distribution

○ Reconstructed $f_{1,\text{rec}}(v_s, n)$

$(^{76}\text{Ge}, 0 – 100 \text{ keV}, \text{exponential bg } 0 – 100 \text{ keV, 500 events, } m_\chi = 500 \text{ GeV})$
On the reconstruction of the WIMP velocity distribution

- Reconstructed $f_{1,\text{rec}}(v_s,n)$ with reconstructed $m_{\chi,\text{rec}}$

$(^{76}\text{Ge} + ^{28}\text{Si} + ^{76}\text{Ge}, 0-100 \text{ keV}, \text{exponential bg}, 3 \times 500 \text{ events}, m_\chi = 10 \text{ GeV})$
On the reconstruction of the WIMP velocity distribution

Reconstructed $f_{1,\text{rec}}(v_{s,n})$ with reconstructed $m_{\chi,\text{rec}}$

($^{76}\text{Ge} + ^{28}\text{Si} + ^{76}\text{Ge}$, 0 – 100 keV, exponential bg, 3 × 500 events, $m_\chi = 25$ GeV)

[CLS, arXiv:1003.xxxx]
On the reconstruction of the WIMP velocity distribution

- Reconstructed $f_{1,\text{rec}}(v_s,n)$ with reconstructed $m_{\chi,\text{rec}}$

$^{76}\text{Ge} + ^{28}\text{Si} + ^{76}\text{Ge}$, $0 - 100$ keV, exponential bg, 3×500 events, $m_\chi = 50$ GeV

[CLS, arXiv:1003.xxxx]
On the reconstruction of the WIMP velocity distribution

- Reconstructed $f_{1,\text{rec}}(v_s,n)$ with reconstructed $m_{\chi,\text{rec}}$

($^{76}\text{Ge} + ^{28}\text{Si} + ^{76}\text{Ge}, 0 – 100$ keV, exponential bg, 3×500 events, $m_\chi = 100$ GeV)

[CLS, arXiv:1003.xxxx]
On the reconstruction of the WIMP velocity distribution

- Reconstructed $f_{1,\text{rec}}(\nu_s,n)$ with reconstructed $m_{\chi,\text{rec}}$

$^{76}\text{Ge} + ^{28}\text{Si} + ^{76}\text{Ge}, 0 - 100$ keV, exponential bg, 3×500 events, $m_\chi = 250$ GeV

[CLS, arXiv:1003.xxxx]
On the reconstruction of the WIMP velocity distribution

- Reconstructed $f_{1,\text{rec}}(v_s, n)$ with reconstructed $m_{\chi,\text{rec}}$

($^{76}\text{Ge} + ^{28}\text{Si} + ^{76}\text{Ge}, 0 - 100 \text{ keV}, \text{exponential bg}, 3 \times 500 \text{ events}, m_{\chi} = 500 \text{ GeV}$)

[CLS, arXiv:1003.xxxx]
Determining Properties of DM Particles with Direct Detection Experiments as Model Independently as Possible

AMIDAS code and website

AMIDAS code and website
AMIDAS code and website

- A Model-Independent Data Analysis System for direct Dark Matter detection experiments
 - DAMNED Dark Matter Web Tool (ILIAS Project)
 - http://pisrv0.pit.physik.uni-tuebingen.de/darkmatter/amidas/
 - [CLS, arXiv:0909.1459, 0910.1971]
 - Online interactive simulation/data analysis system
 - Full Monte Carlo simulations
 - Theoretical estimations
 - Real/user-uploaded data analyses

Further improvements/ideas

- More well-motivated velocity distributions and form factors
- More options for target materials
- Users’ personal setup uploading, storing and reloading
- Generating events with directional information
Summary
Once two or more experiments with different target nuclei observe positive WIMP signals, we could estimate

- WIMP mass m_χ
- SI WIMP-proton coupling $|f_p|^2$
- ratio between the SD WIMP-nucleon couplings, a_n/a_p
- ratios between the SD and SI WIMP-nucleon cross sections, $\sigma_{SD\chi p}/n/\sigma_{SI\chi p}$

These analyses are independent of the velocity distribution, the local density, and the mass/couplings on nucleons of halo WIMPs (none of them is yet known).

For a WIMP mass of 100 GeV, these quantities could be estimated with statistical errors of $10 - 40\%$ with only $O(50)$ events from one experiment.
Summary

❖ These information will help us to
 ➢ constrain the parameter space
 ➢ distinguish the (neutralino) LSP from the (first KK hypercharge) LKP
 [G. Bertone et al., PRL 99, 151301 (2007); V. Barger et al., PRD 78, 056007 (2008); G. Belanger et al., PRD 79, 015008 (2009); R. C. Cotta et al., NJP 11, 105026 (2009)]
 ➢ identify the particle produced at colliders to be indeed halo WIMP
 ➢ predict the WIMP annihilation cross section $\langle \sigma_{\text{anni}} \nu \rangle$
 ➢

❖ Furthermore, we could
 ➢ determine the local WIMP density ρ_0
 ➢ predict the indirect detection event rate $d\Phi/dE$
 ➢ test our understanding of the early Universe
 ➢
Summary

With an exponential-like residue background spectrum:

- The reconstructed WIMP mass could be over-/underestimated, if WIMPs are lighter/heavier than $\sim 50/200$ GeV.

- Data sets with $\sim 10\% - 20\%$ residue background events could still be used for determining the WIMP mass.

- Background contribution in high/low energy ranges would shift the reconstructed WIMP velocity distribution to higher/lower velocities.

- Over-/underestimated WIMP mass (more strongly) would shift the reconstructed WIMP velocity distribution to lower/higher velocities.

- Data sets with $\sim 5\% - 10\%$ residue background events could still be used for reconstructing the WIMP velocity distribution.
Summary

Studies of effects of residue background events on the estimation of SI WIMP-nucleon coupling and on the determinations of ratios of WIMP-nucleon cross sections are currently under investigation.

Thank you very much for your attention

[http://myweb.ncku.edu.tw/~clshan/Publications/Talks/]