Low energy calibration of liquid xenon detectors

Teresa Marrodán Undagoitia
marrodan@mpi-hd.mpg.de

Kaffeepalaver, MPIK Heidelberg, May 2013
Outline

1. Introduction
2. Scattering of dark matter particles off nuclei...
3. ... and off electrons
Motivation

After Planck: 26.8% of the Universe is made of Dark Matter

→ Astronomical evidences:
 Star rotation curves,
 Gravitational lensing, Galaxy clusters ...

Most general theoretical approach:

WIMP
(Weakly Interacting Massive Particle)

A different possibility:

Light DM particle
(such that it scatters off electrons)
Direct dark matter detection

Light DM particle

WIMP

Detection via elastic scattering off

nuclei → nuclear recoils

electrons → electronic recoils
Detector response and discrimination
Two phase xenon TPC

- Scintillation signal (S1)
- Proportional signal (S2)

Electronic/nuclear recoil discrimination

- Energy scales for NR and ER based on S1!
- Quenching processes are different for NR and ER
The XENON100 experiment

- International collaboration
- 30 cm length and 30 cm ∅
- 161 kg LXe (30 – 50 kg fiducial mass)
- Selected very low radioactivity materials

Located at LNGS underground lab (Italy)
XENON100: discrimination

- **Electronic recoil band**: defined with ^{60}Co and ^{232}Th sources
- **Nuclear recoil band**: defined with AmBe neutron source

S1: number of photoelectrons detected by the photosensors (corrected for spatial light collection variations)

keV$_{nr}$: derived energy scale
Introduction

L_{eff} direct measurements

Nuclear recoil energy (E_{nr}):

$$E_{nr} = \frac{S_1}{L_y L_{\text{eff}}} \times \frac{S_e}{S_r}$$

- S_1: measured signal in p.e.
- L_y: LY for 122 keV γ in PE/keV
- S_e/S_r: quenching for 122 keV γ/NR due to drift field

$L_{\text{eff}} = q_{\text{nucl}} \times q_{\text{el}} \times q_{\text{esc}}$

![Graph with data points and lines representing L_{eff} vs. Energy [keVnr]](image-url)
Results from 225 live days data (2012)

Science data

- Background expectation in the benchmark region:
 \((1.0 \pm 0.2)\) events

\[\rightarrow \] Exclusion limit derived using profile likelihood method
Result of a direct DM detection experiment

→ Statistical significance of signal over expected background?

- **Positive signal**
 - Region in σ_χ versus m_χ

- **Zero signal**
 - Exclusion of a parameter region
 - Low WIMP masses: detector threshold matters
 - Minimum of the curve: depends on target nuclei
 - High WIMP masses: exposure matters
 \[\epsilon = m \times t \]
Results from XENON100

Spin-independent:
\[2 \times 10^{-45} \text{ cm}^2 \text{ at } 55 \text{ GeV/c}^2\]
WIMP mass

Spin-dependent:
\[3.5 \times 10^{-40} \text{ cm}^2 \text{ at } 45 \text{ GeV/c}^2\]
WIMP mass

\[XENON100, \text{ arXiv:1301.6620}\]
Verification of nuclear recoil energy scale

Monte Carlo simulation of neutron source
XENON100, arXiv:1304.1427 (work of M. Weber (MPIK))

- Input AmBe spectrum (ISO 8529-1 standard). Analysis robust against variations of this spectrum
- Source strength measured at the German Metrology Institute (PTB) 160 ± 4 n/s
- Complete Monte Carlo description of the detector including detector shield (water, lead, polyethylene and copper)
- E_{dep} is converted to $S1$ and $S2$ including thresholds, resolutions and acceptances from data
MC simulation of neutron source

- Step 1: Using L_{eff} from direct measurements, reproduce S2 spectrum \rightarrow obtain optimum Q_y

- Step 2: Using the obtained Q_y, reproduce S1 spectrum \rightarrow obtain a new L_{eff}

Best fit of source strength: 159 n/s
MC simulation of neutron source

- Poor agreement below 2 PE due to unknown efficiencies below threshold
- Good overall agreement. Best fit L_{eff} matches previous measurements

→ Results of XENON100 remain unchanged using this L_{eff}
Recent results from CDMS

CDMS Si results from April 15th
140 kg-day exposure
3 events detected (0.7 expected)

Likelihood analysis: 0.19% probability that the known-background-only hypothesis

- Best fit at 1.9×10^{-41} cm2 at 8.6 GeV/c2 WIMP mass

CDMS, arXiv: 1304.4279
How would CDMS signal look in XENON100?

Event distribution that XENON100 would observe for \(\sigma = 1.9 \times 10^{-41} \text{ cm}^2 \) and 8.6 GeV/c\(^2\) WIMP mass.
A different signature of dark matter

DAMA annual modulation

- Ultra radio-pure NaI crystals
- Annual modulation of the background rate in the energy region \((2 - 5)\, \text{keV}\)
- What if the DM particle scatters off electrons?

Calibration data in XENON100

Electronic recoil region:
energy calibration necessary

Nuclear recoil calibration
provides inelastic mono-energetic
lines and metastable states: 40, 80, 164 and 236 keV
Calibration using 83mKr

83mKr calibration source:
- EC decay-product of 83Rb
- Lines at 9.4 and 32.1 keV
- Uniform distribution

83mKr (9.4 keV) 32 keV line 6 pe/keV, $^{9.4}$ keV line 20% $^{6.35}$ pe/keV,

Target mass: \sim 0.1 kg LXe
Volume: 3 cm drift length and 3.5 cm diameter
Two R9869 PMTs
6 pe/keV in double phase
→ at University of Zürich

A. Manalasay et al., Rev. Sci. Instr. 81, 073303 (2010), 0908.0616
Compton measurement: low energy electron recoils

Determination of LXe light yield at small scattering angles → electron energies down to ~ 1.5 keV

Setup:
- γ-rays from a 137Cs source
- Energies < 9.4 keV → $< 8.5^\circ$ scattering angle
- Goniometer 0.25° ticks
- γ's collimated at the source and after LXe scattering
- Coincidence detector: NaI 3" crystal
Data selection

- Selection of full absorption peak (green)
 - asymmetric in energy to reduce multiple scatters
 - asymmetric in ToF to account for early events (few PE pulses in LXe)

- Background estimation from side bands (accidental triggers, blue)
Monte Carlo simulation

• Broad raw energy spectrum
• Asymmetric spectra: E_{er} quadratic in θ for small θ
• MC data converted into scintillation signal

→ Complete setup simulated with Geant4
 • Multiple scatters: 1.6%
 • Scatters off detector materials: 5.8%
MC/data fitting

- LY is allowed to have a slope in the region fitted
- Systematic uncertainties
 - Scattering angle
 - Variation fit range
 - LY dependence on source strength
 - PMT coincidence requirement
 - LY variations during the measurement
Light yield decreases at 0-field below 40 keV (reduced electron-ion recombination)

Field quenching $\sim 75\%$ at low energies

arXiv:1303.6891
Implications for dark matter search

| Experiment | $|\vec{E}|$ (V/cm) | $S_{1_{\text{thr}}}$ (PE) | $LY_{\text{Co}}(\frac{PE}{\text{keV}})$ | E_{thr} (keV) |
|--------------|------------------|---------------------------|---------------------------------------|----------------------|
| ZEPLIN-III | 3400 | 2.6 | 1.3 | 2.4$^{+0.5}_{-0.4}$ |
| XENON10 | 730 | 4.4 | 3.0 | 1.8$^{+0.4}_{-0.3}$ |
| XENON100 | 530 | 3.0 | 2.3 | 1.7$^{+0.4}_{-0.3}$ |
| XMASS | 0 | 4.0 | 14.7 | 1.1$^{+0.4}_{-0.2}$ |

→ DAMA signal can be tested in XENON100!

Analysis of time variations of ER rate currently ongoing
Summary

- Scattering of WIMPs off nuclei
 - XENON100 excludes the current indications of DM
 - Energy threshold (L_{eff}) verified with MC/data comparison of an AmBe neutron source

- Scattering of light dark matter particles off electrons
 - Compton experiment to determine the energy threshold for electronic recoils
 - XENON100 threshold is at $\sim 2\text{ keV}$
 - sensitive to DAMA annual modulation energy region
 - XENON100 analysis of time variations of the background rate ongoing
Noble gas scintillation process

Nuclear recoil

Excitation: R^*

$R^* + R \rightarrow R_2^*$

$R^*_2 \rightarrow 2R + \text{hv}$

Ionization: R^+ and e^-

$R^+ + R \rightarrow R_2^+$

$R_2^+ + e^- \rightarrow R^{**} + R$

$R^{**} \rightarrow R^* + \text{heat}$

$R^* + R \rightarrow R_2^*$

$R^*_2 \rightarrow 2R + \text{hv}$

singlet

triplet

19 ns

5 ns

3 ns

15 µs

1.6 µs

Neon

Argon

Xenon