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Introduction: flavour symmetries
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Smallness of neutrino masses and high scales
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This is the framework we consider
The results can be extended to other set-ups



Flavour symmetries

G flavour group acting on “”, £ invariant
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he content of this talk



Q1: can a flavour symmetry acting on the low-scale
effective lagrangian (light neutrino Majorana masses)
provide an approximate description of lepton flavour in
the symmetric limit (neglecting SB effects)?

A1: yes, but only If neutrinos are inverted hierarchical or
unconstrained (anarchical). If NH is confirmed, the
symmetric limit cannot provide an understanding of
lepton mixing (LO role of symmetry breaking effects)




Q2: the Weinberg operator originates from high-scale
physics. |s studying the flavour symmetry at low-scale
equivalent to studying it at high-scale?

A2: not necessarily. Necessary and sufficient conditions
INn the case of see-saw |



Q3: can a flavour symmetry constraining a see-saw
lagrangian provide an approximate description of lepton
flavour in the symmetric limit”?

A3: yes, and neutrinos can be normally hierarchical if the
high-scale and low-scale actions of the flavour symmetry
are not equivalent




Definition of the problem, and Q1
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Flavour group

G flavour group
any: discrete/continuous, abelian/non-abelian, global/gauge, etc
iIncludes all “hidden” factors

unitary representation, commuting with Poincaré and Gswm

Flavour representation
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Invariant lagrangian, <¢> = 0O (low-scale)
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Symmetric limit
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The symmetric limit provides an approximate description of lepton flavour
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The LO pattern of lepton flavour is determined by symmetry breaking
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The symmetric limit provides an approximate description of lepton flavour

 ~

1
me=0and my =0 mE:m%w—mE
0 1
m, =\m, |+ m,,
approximate \
description of lepton
observables
Neutrino masses Charged lepton masses PMNS matrix
NH/IH (a00) (0aa) (A0 O0) X X 0 X X X
X X X]or | X X X
NH (aaa) (@ab0) (ABO) X X X X X X
or
IH (@bb) (abc) (A B C) (X = O generic)
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Gt Ul Ue leading, in the symmetric limit, to lepton
masses and mixings in the above form

- A complete and concise classification is possible, as the predictions in the
symmetric limit only depend on the structure of the decomposition of the
representations in irreducible components (irreps) and in particular on their

- Type (real, pseudoreal, complex)

- Dimension

- Equivalence

- Notation
- “n’: dimension n complex or pseudoreal irrep
- “n” dimension n real irrep
“n, n’, n””: dimension n inequivalent irreps
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Gt Ul Ue leading, in the symmetric limit, to lepton
masses and mixings in the above form

Ui, U irreps masses | v hierarchy | PMNS zeros
1 i 211 ((igg)) NH or IH none

% i 5 117 T ((6132)) IH none (13)

1 1 i 21 <é§c(;) NH or TH none
| w
i 1 1 <?a€g) NH or IH none

% % z <Eé(l)lja0)) [H 13,23,33

Only 6 cases
Only d = 1 (abelian) irreps
No pseudoreal irreps (d = 2)

Neutrinos are either
unconstrained (anarchical) or
inverted hierarchical

If NH confirmed, lepton

flavour at low-scale can only
be accounted for by SB
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T+1+1

- “1" =real one-dimensional: f— +f
1+1+1: U(Q)ij = = 1j
- any my is trivially invariant
* neutrino masses and mixing completely unconstrained

- (anarchy)
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SU(D) and SO(10)

SU(B): assume Us = Uy and U1o = Ueg, require (Vekm)o= 1 or Vi
only unconstrained (anarchical) neutrinos are allowed
SO(10): assume Ui = Ugc = U1p

Nno solutions
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Proof - in 2 steps: masses first, then mixings
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Step 1: precise formulation of the problem

Neutrino masses

Charged lepton masses

NH/IH

NH

or
IH

(@0 0)
(aaa)

(a b b)

(0 a a)
(@b 0)

(@abc)

(A 00)

(A B 0)

(ABC)

Given each of the previous 3x6=18 mass patterns, find all Gr, U s.t.

v invariant mg, my the mass eigenvalues are in that form

3 invariant mg, my with mass eigenvalues in that form and generic
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Step 1: results

charged lepton entries of the same order

lepton masses

decompositions of U; and U,e

(00A) (aaa) B _ HONE

(004)  (aab) % 7%211,1 1 i;}li,l 1 72~7é2

(004)  (aa0) % ;/2 if %: :211,1 % izll,l i :zli % 72“#2
(004) (00a) 1 izlilj % ilz if 1 f,%;gli % i;§11,1 1 ?25
(004) (cba) | | 71“/2 i .o i;ﬁl{,y " 71“211 i 7{211

(004)  (0ba) | i/;_s v 1 71:;_5 LT izll 1 71"21171
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Step 1: results

hierarchies allowed

lepton masses decompositions of U; and U,
(0BA) (aaa) none
1 1 1 1 1 1
(0BA) (aad) | 7 1 | 44 1 1 r#£1
11 1 1 1 1 1 1 1 111
(0B4)  (aa0) 1 1 r#1 1 1 r#1 11 r#1 1 1 r#1
1 1 1 1 1 1 1 1 1 1 1 1
(0BA) (o) | 4 3 27 T T rz1 101 r£1 T 1 r#l
1 1 17 1 1 1 7 1 1 1 1 1
OBA) - (eba) | 4 v paqr 1 1 gy 11 r A1 11 r£d
1 1 1 1 1 1 1 1 1 1 1 1
OBA) (Oba) | 4 vy T 1T r£1 101 r 4T T 1 r£1
(CBA) (aaa) none
(CBA) (aab)| | T ]
1 1 1 1 1 1
(CBA) (aa0) 17 1 i1 1
1 1 1 1 1 1
(CBA) (00a) 1 I T 1 1 1
1 1 17 1 1 1 1 1 1
(CBA) - (eba) | 1 yr 11 1 11 1
1 1 1 1 1 1
(CBA) (0ba) L1 111
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Comments

3 degenerate neutrinos in the symmetric limit cannot be obtained
no d = 3 irreps

d = 2 irreps can only appear if me = my = 0 In the symmetric limit
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Sketch of the proof of step 1

subspaces in flavour space associated to (zero or non-zero) degenerate
MEe Masses are invariant under both Uy and Uec

the U and Uec Sub-representations corresponding to non-zero degenerate
charged lepton masses are conjugated to each other and irreducible.

the U and Uec Sub-representations corresponding to zero masses, nor any
of their irreducible components, are not conjugated to each other

each set of degenerate non-zero neutrino masses corresponds to either a
real irrep or to a pair of conjugated complex irreps

none of the remaining irreps (correspond to vanishing neutrino masses)
should be real, nor any of them should be conjugated to any other
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Step 2: select the cases also leading, in the symmetric limit,
to a PMNS matrix close to what observed

Definition of “close to what observed”: PMNS matrix

0.232 — 0.520 0.445 — 0.697 0.617 — 0.789
0.249 — 0.529 0.462 — 0.708 0.597 — 0.773

0.798 — 0.843 0.517 — 0.584 0.137 — 0.158
U3 = 0.16 U| =

|U21|, |Us1| can be as small as 0.25

all other entries larger than 0.45

X X 0 X X X
X X X)]or | X X X | withsmall correction or small accident
X X X X X X
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Master formula for the PMNS matrix

U=HgPpVD 'P;tH
V commutes with U (makes me diagonal, my diagonal or Dirac blocks)
D maximal rotation, if U, contains conjugated complex irreps (Dirac blocks)

P permutations possibly needed to bring mass eigenvalues in standard
ordering

H rotations up to which U is defined in the symmetric limit
(...) Hy = H*y(...) for generic neutrino mass pattern (...)

(...) He = He (...) for generic charged lepton mass pattern (...)

No need to write down any mass matrix, texture explicitly
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Example

- U=1+1+1° Uec=1"+r21,1°
- Charged lepton masses: (A 0 0)
- Neutrino masses: (0 a a)
+InU=HgPgVD ‘P H
* V= Va3
- D=D12
- P not needed
+ He = (He)2 Hv = (Rv)12 (equivalent to phase redefinition)

- No zeros or an (approximate) zero in 13 if (He)12 is (approximate) identity

29



Q2: is studying the flavour symmetry at low-scale
equivalent to studying it at high-scale?

[to appear]
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Origin of lepton masses (high-scale)

Liow-scale = )\5 fl h™ + CX lzljhh from

Flavour representation

([, — U] (9)23 L } ,
; low scale version
high scale (¢ e; — U (g)'L] 6
\ Vic — UV (g)w V

Equivalent, at least in the symmetric limit”?
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Equivalence of high and low-scale representations
(in the symmetric limit)

- By definition, when for each invariant my there exists invariant mn
and M such that my = - mn™ M1 mn (converse is always true)

- Given a low-scale representation does an equivalent high-scale
version always exists”? YES

- Is the low-scale version of a representation always equivalent to the
high-scale version”? NO

- Necessary and sufficient conditions for LS to be equivalent to HS:

1 U, vectorlike real, or pairs of complex conjugated,
' or pairs of equivalent pseudoreal

2. The vectorlike part of U is contained in Uyc
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1. Uyc Is not vectorlike

Uv¢ not vectorlike & M forced to be singular in the symmetric limit:

the see-saw formula does not apply

Example: low-scale

U =1+1+1 Mei = (A 0 Q)

Ue® = 1+1+1 mvi = (@ 0 0)

U = 1+ real U — (; ;( )‘f)
X X 0

high-scale
Mej = (A O O)
mvi = (@ 0 0)
X X 7
U=1X X X
X X X

|
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) ey

single RH neutrino
dominance 33



2. Uye is vectorlike but the vectorlike part of U, is
not contained in Uyc

Example: low-scale high-scale
U =1+1+1 Mei = (A O 0) Mei = (A O 0)
UeC = 1+1+1 mvi = (a b 0) mvi=(a 0 0)
_ X 7 7 70?7 X X X 7
Ue =1+1+1 v=[? X X|o |[X X ? V=X X X
0 X X X X 0 X X X
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Q3: can a flavour symmetry acting on a see-saw
lagrangian provide an approximate description of lepton
flavour in the symmetric limit”?
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If Uve vectorlike and the vectorlike part of Uy is
contained in Uye: yes, at the same conditions as in the
low-scale analysis

If instead the low- and high-scale analyses are not
equivalent, predictive (non-unconstrained) cases
corresponding to NH can e found

- The complete list of solutions can be again found
based only on the structure of the irrep decompositions

36



Conclusions

The complete set of lepton flavour predictions of any flavour group and representation
in the symmetric limit has been found, both at low scale (Weinberg operator) and high
scale (see-saw). The predictions only depend on the type, dimension, and equivalence of
the irrep decompositions.

In the low-scale case: the symmetric limit is close to what observed only if neutrinos are
unconstrained (anarchical) or inverted hierarchical.

If the present hint for normal hierarchy was confirmed, we would conclude that symmetry
breaking plays a leading order role in constraining lepton flavour observables at low scale.

In the high-scale case: the results do not change, except when the low- and high-scale
analyses are not equivalent. The conditions for equivalence have been found.

The complete set of additional predictions in the symmetric limit that can obtained at high-
scale has been found. A normal hierarchy for the neutrinos can be obtained.

If the present hint for normal hierarchy was confirmed, a predictive symmetric limit
could be close to what observed only because the low- and high-scale actions of
the flavour symmetry are not equivalent. Otherwise, symmetry breaking effects
necessary play a leading order role in determining lepton flavour observables.
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