

Seminar @ MPIK

## Pseudo NG bosons from finite modular symmetry and radiative stabilization

## Junichiro Kawamura

#### Institute for Basic Science, CTPU

based on arXiv: 2402.02071 [JHEP] and 2405.03996

in collaboration with

T.Higaki (Keio U.), T.H.Jung (IBS), T.Kobayashi (Hokkaido U.)

# Before physics...

Junichiro Kawamura

- '12-'17: Waseda U. (Ph.D) '17-'18: U. of Tokyo '18-'18: Keio university
- '18-'20: Ohio State U.
- ~ Columbus, USA

~ Tokyo, Japan

20-25: IBS-CTPU ~ Daejeon, Korea (140 km from Seoul)

Research area: BSM phenomenology

**model building**, LHC, **DM**, **neutrino**, flavor violation/hierarchy, **cosmology**...





# Pseudo Nambu-Goldstone [NG] boson

"pseudo" NG boson

Goldstone theorem :

massless NG boson appears when continuous symmetry is broken

but if a symmetry is not exact...

- pseudo NG boson is not exactly massless, but light
- mass is induced by symmetry breaking effects

### > Examples

|          | pion $\pi$    | axion <i>a</i>                 | majoron J           |
|----------|---------------|--------------------------------|---------------------|
| symmetry | chiral $U(1)$ | global $U(1)_{PQ}$             | global $U(1)_{B-L}$ |
| breaking | quark mass    | QCD + ?                        | gravity?            |
|          | in SM         | maybe dark mater [DM], this ta |                     |

## Axion

### strong CP problem

$$\tilde{F}^{\mu\nu} = \epsilon^{\mu\nu\rho\sigma} F_{\rho\sigma}$$

 $\mathcal{L}_{QCD} \ni \theta F_{\mu\nu} \widetilde{F}^{\mu\nu}$ 

is not forbidden by sym., so  $\theta \sim \mathcal{O}(1)$ but neutron EDM limit is  $\theta < 10^{-10}$ 

### Why is $\theta$ so small ?

 $\blacktriangleright$  Axion solution ...if global  $U(1)_{PQ}$  has mixed anomaly with QCD

$$\left(\theta + \frac{a}{f_a}\right) F_{\mu\nu} \tilde{F}^{\mu\nu}, \text{ where } a \text{ is axion as pNG of } U(1)_{Po}$$

$$V(a) = \Lambda_{QCD}^4 \left[1 - \cos\left(\theta + \frac{a}{f_a}\right)\right] \text{ by QCD effect}$$



axion is stabilized at 
$$\left< \theta + \frac{a}{f_a} \right> = 0$$
, thus no EDM

# $U(1)_{PQ}$ symmetry ??

 $U(1)_{PQ}$  has mixed QCD anomaly, so it is broken by QCD

- > PQ (axion) quality
  - if QCD breaks  $U(1)_{PQ}$ , why not others ?
  - in general, global symmetry will be broken by gravity

$$V(a) = \Lambda_{QCD}^4 \left[ 1 - \cos\left(\theta + \frac{a}{f_a}\right) \right] + [PQ \text{ violating terms}]$$

PQV effects should be so small that  $\langle \theta + a/f_a \rangle < 10^{-10}$ 



This talk ... use finite modular symmetry  $\Gamma_N$  to realize pNG

Finite modular axion and strong CP problem

- residual  $Z_N^T$  symmetry of  $\Gamma_N$  realizes accidental  $U(1)_{PQ}$
- in KSVZ-like scenario, modulus is **stabilized by 1-loop potential**
- PQ quality is ensured by the  $Z_N^T$  symmetry
- Finite modular majoron and cosmology
  - residual  $Z_N^T$  symmetry of  $\Gamma_N$  realizes accidental  $U(1)_{B-L}$
  - in type-I seesaw model, modulus is **stabilized by 1-loop potential**
  - majoron mass is given by explicit  $U(1)_{B-L}$  breaking effects
  - majoron may contribute to both DM and dark radiation

### Outline

- 1. Introduction
- **2.** Brief review of finite modular symmetry  $\Gamma_N$
- 3. Finite modular axion and radiative stabilization
- 4. Finite modular majoron and its cosmology
- 5. Summary

# Modular group

> modular group  $\Gamma \Leftrightarrow$  special linear group SL(2,Z)

$$\Gamma \coloneqq SL(2,\mathbb{Z}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| a, b, c, d \in \mathbb{Z}, ad - bc = 1 \right\}$$

generators

$$S = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad R = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$S^2 = R$$
,  $(ST)^3 = R^2 = 1$ ,  $TR = RT$ 

 $\succ$  action to modulus  $\tau$  : complex scalar with Im  $\tau > 0$ 

$$\boldsymbol{\tau} \xrightarrow{\Gamma} \frac{a\boldsymbol{\tau} + b}{c\boldsymbol{\tau} + d} \qquad \boldsymbol{\tau} \xrightarrow{S} - 1/\boldsymbol{\tau} \qquad \boldsymbol{\tau} \xrightarrow{T} \boldsymbol{\tau} + 1 \qquad \boldsymbol{\tau} \xrightarrow{R} \boldsymbol{\tau}$$

We often consider  $\overline{\Gamma} := \Gamma/Z_2^R = PSL(2,\mathbb{Z})$ 

# Finite modular group $\Gamma_N$

Solution Congruence group  $\Gamma(N)$  level  $N \in \mathbb{N}$ 

$$\overline{\Gamma}(N) \coloneqq \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \overline{\Gamma} \coloneqq PSL(2, \mathbb{Z}) \mid \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \mod N \right\}$$

ex) 
$$T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \rightarrow T^N = \begin{pmatrix} 1 & N \\ 0 & 1 \end{pmatrix} \in \Gamma(N)$$

> Finite modular group  $\Gamma_N \coloneqq \overline{\Gamma}/\overline{\Gamma}(N)$ 

$$(ST)^3 = S^2 = 1, \qquad T^N = 1$$



isomorphic to non-Abelian discrete symmetries for  $N \leq 5$ 

$$\Gamma_2 \simeq S_3$$
,  $\Gamma_3 \simeq A_4$ ,  $\Gamma_4 \simeq S_4$ ,  $\Gamma_5 \simeq A_5$ 

# Modular form of $\Gamma_N$

is a **holomorphic function of** au transforms as

$$Y_r^{(k)} = Y_r^{(k)}(\tau) \to (c\tau + d)^k \rho(r) Y_r^{(k)}(\tau) \qquad \text{modulus } \tau \xrightarrow{\Gamma} \frac{a\tau + b}{c\tau + d}$$

 $\rho(r)$ : representation matrix of r under e.g.  $A_4 \simeq \Gamma_3$ 

k : modular weight, positive integer valued

> What if Yukawa couplings are modular forms ?

Feruglio, "Are neutrino mass modular form ?" 17'

- Yukawa's are holomorphic functions, easily implemented in SUSY
- may couple to multiple flavors , so more predictive
- only one modulus, less than non-modular flavor symmetries w/ flavons

## Form of modular forms of $\Gamma_{N=3}$

For 
$$r = 3$$
,  $k = 2$   
rep. weight  $c_{ij} = \frac{i}{2\pi} \begin{pmatrix} 1 & 1 & 1 & 1 \\ -2 & -2w^2 & -2w \\ -2 & -2w & -2w^2 \end{pmatrix} w = \exp\left(\frac{2\pi i}{3}\right)$   
 $Y_3^{(2)}(\tau) = \begin{pmatrix} Y_1 \\ Y_2 \\ Y_3 \end{pmatrix}$   $Y_i(\tau) = \sum_{j=0}^2 c_{ij} \frac{\eta'((\tau+j)/3)}{\eta((\tau+j)/3)} - 27 \,\delta_{1i} \frac{\eta'(3\tau)}{\eta(3\tau)}$   
with Dedekind Eta function  $\eta(\tau) := q^{\frac{1}{24}} \prod_{n=1}^{\infty} (1-q^n)$ 

 $\succ$  q-expansion  $q:=e^{2\pi i\tau}$ 

$$\begin{pmatrix} Y_1 \\ Y_2 \\ Y_3 \end{pmatrix} = \begin{pmatrix} 1 + 12q + 36q^2 + \cdots \\ -6q^{1/3}(1 + 7q + \cdots) \\ -18q^{2/3}(1 + 2q + \cdots) \end{pmatrix} \qquad * |q| \ll 1 \text{ for } \mathrm{Im}\tau \gg 1$$

**Residual**  $\mathbb{Z}_{N}^{T}$  **symmetry**   $(ST)^{3} = S^{2} = 1, \quad T^{N} = 1$   $\succ$  At  $\tau \sim i\infty$  $\tau$  is insensitive to  $\tau \xrightarrow{T} \tau + 1 \longrightarrow \mathbb{Z}_{N}^{T}$  symmetry is unbroken

 $\succ$  Modular forms at Im $au \gg 1$ 

$$Y_3^{(2)}(\tau) \sim \begin{pmatrix} 1 \\ -6 \ q^{1/3} \\ -18 q^{2/3} \end{pmatrix} \begin{pmatrix} \mathbb{Z}_3^T \text{-charge} \\ 0 \\ 1 \\ 2 \end{pmatrix}$$

powers of  $q^{1/3} \ll 1$  is controlled by  $\mathbb{Z}_3^T$  charge



**Froggatt-Nielsen mechanism** 

$$\left(\frac{\langle \phi \rangle}{\Lambda}\right)^n \Leftrightarrow q^{n/3}$$

#### $\Gamma_N$ for quark and lepton hierarchies

Y.Abe, JK, T.Higaki, T.Kobayashi, 2301.07439, 2302.11183, 2307.01419 Tanimoto, Petkov '22 , S.Kikuchi, T.Kobayashi, K.Nasu et.al. '23, +

# Summary of $\Gamma_N$

 $\succ$  Finite modular symmetry  $\Gamma_N$ 

- is the quotient group  $\overline{\Gamma}/\overline{\Gamma}(N)$
- modular form transforms as

### $Y = Y(\tau) \to (c\tau + d)^k \rho(r) Y(\tau)$

• is found in string models

T.Kobayashi, S.Nagamoto et.al. '17 '18 '20 J.Lauer, J.Mas, H.P.Nilless '89, '91, S.Ferrara, D.Lust, S.Theisen, '89 A.Baur, H.P.Nilles, A.Trautner, PKS.Vaudrevange S.Ramos-Sanches, '19, '20

- Applications for particle physics
  - quark/lepton Yukawa couplings (masses) are modular forms
  - residual symmetry can explain flavor hierarchies
  - value of modulus  $\tau$  plays crucial role in those models

### Outline

- 1. Introduction
- 2. Brief review of finite modular symmetry  $\Gamma_N$
- 3. Finite modular axion and radiative stabilization
- 4. Finite modular majoron and its cosmology
- 5. Summary

### KSVZ axion model

PQ-charge: +1 - 1

'79 J.E.Kim, '80 M.A.Shifman, A.I.Vainshtein, V.I.Zakharov

- complex scalar  $P \propto e^{ia/f_a}$
- vector-like pair of non-SM quarks  $(Q, \overline{Q})$
- PQ symmetry and QCD anomaly

 $\mathcal{L} = y P \overline{Q} Q$ 

PQ transformation:  $a \rightarrow a + f_a \alpha$ ,  $Q\overline{Q} \rightarrow e^{-i\alpha}Q\overline{Q}$ ,  $\alpha \in \mathcal{R}$ 



 $\rightarrow \left(\theta + \frac{a}{f_a}\right) F_{\mu\nu} \tilde{F}^{\mu\nu} \text{ with decay constant } f_a \sim \langle P \rangle \gg \text{EW scale}$ 

Finite modular axion

2402.02071 T.Higaki, JK, T.Kobayashi

c.f. KSVZ axion  

$$\mathcal{L} = \Lambda_Q Y_r^{(k)}(\tau) \overline{Q} Q \qquad \longleftrightarrow \qquad \mathcal{L} = y P \overline{Q} Q$$

scalar  $P \ni$  axion is replaced by a modular form  $Y_r^{(k)}(\tau)$ 

 $> \text{Accidental } U(1)_{PQ} \quad \text{assume } r = 1_t \text{ where } t \text{ is a charge of } Z_N^T \subset \Gamma_N$   $Y_{1_t}^{(k)}(\tau)\overline{Q}Q \sim \exp\left(\frac{2\pi i t \tau}{N}\right)(1+\cdots)Q\overline{Q} \quad \text{at } \operatorname{Im}\tau \gg 1$ 

has discrete sym.  $Z_N^T : \tau \to \tau + 1, Q\overline{Q} \to \exp\left(-\frac{2\pi i t}{N}\right) Q\overline{Q}$ 

 $\begin{array}{c} \rightarrow \quad \operatorname{accidental} \\ \operatorname{continuous} \quad U(1)_{PQ} \colon \tau \to \tau + \alpha, \, Q \, \overline{Q} \to \exp\left(-\frac{2\pi i t}{N} \, \alpha\right) Q \, \overline{Q} \\ \alpha \in \mathcal{R} \end{array}$ 

### A model for FM axion

For concreteness,  $\Gamma_3 \simeq A_4$  which has residual  $Z_3^T$ 

 $\succ$  A<sub>4</sub> anomaly-free model with supersymmetry (SUSY)

$$W = \Lambda_{Q_1} \boldsymbol{Y}_{\boldsymbol{1}_1}^{(\boldsymbol{k})}(\boldsymbol{\tau}) \overline{Q}_1 Q_1 + \Lambda_{Q_2} \boldsymbol{Y}_{\boldsymbol{1}_2}^{(\boldsymbol{k})}(\boldsymbol{\tau}) \overline{Q}_2 Q_2$$

discrete anomaly  $\mathcal{A}_{A_4-SU(3)^2} = 1+2 \equiv 0 \mod 3$ 

> QCD  $\theta$ -angle

$$\overline{\theta} = \theta_0 + \operatorname{Arg}\left(Y_{1_1}^{(k)}Y_{1_2}^{(k)}\right) \sim \theta_0 + \phi + \mathcal{O}(|q|)$$
bare

effective QCD angle depends on  $\phi = 2\pi \text{Re}\tau$ , KSVZ-like axion

### PQ quality

$$\mathbf{Y}_{\mathbf{1}_{t}}^{(k)}(\tau)\overline{Q}_{t}Q_{t} \sim \mathbf{e}^{-i\frac{t}{3}\phi}\overline{Q}_{t}Q_{t} \qquad Z_{3}^{T}$$
 (=PQ)-charge = t = 1,2

non-linear realization of  $U(1)_{PQ}$ , accidentally by  $Z_3^T$ 

#### PQ-violation

 $q = \exp(2\pi i \tau)$  is invariant under  $Z_3^T: \tau \to \tau + 1$ ,

but not invariant under  $U(1)_{P0}$ :  $\tau \rightarrow \tau + \alpha$ ,  $\alpha \in \mathbb{R}$ 



PQ violation is accompanied with  $|q| = e^{-2\pi \text{Im}\tau}$ 

 $V = V_0 + V_1 |q| + V_2 |q|^2 + \cdots$ PQ-invariant PQ-violation

PQV is small if  ${
m Im} au$  is large and  $|q|=e^{-2\pi{
m Im} au}\ll 1$ 

## Moduli stabilization

### Where is the value of modulus au ?

#### fundamental domain



2006.03058, P.Novichkov, J.Penedo, S.Petcov

- $\tau$  is stabilized at the min. of potential
- somewhere in the fundamental dom.

### Radiative stabilization

2402.02071 T.Higaki, JK, T.Kobayashi

We do not need to extend the model,  $W = \Lambda_{Q_t} Y_{\mathbf{1}_t}^{(k)}(\tau) \overline{Q}_t Q_t$  generates modulus potential

#### Coleman-Weinberg potential

$$V \sim \left(m_0^2 + m_Q^2(\tau)\right)^2 \left(\log \frac{m_0^2 + m_Q^2(\tau)}{\mu^2} - \frac{3}{2}\right) - \left(m_Q^2(\tau)\right)^2 \left(\log \frac{m_Q^2(\tau)}{\mu^2} - \frac{3}{2}\right)$$
  
from scalar quarks  
where VLQ mass  $m_Q^2(\tau) = \Lambda_Q^2 (2\mathrm{Im}\tau)^k \left|Y_{1_t}^{(k)}(\tau)\right|^2$ 

 $m_0^2$ : soft SUSY breaking for squark, assumed to be  $\tau$ -independent  $\mu$ : renormalization scale in  $\overline{MS}$ 

### Minimum of the potential

2402.02071 T.Higaki, JK, T.Kobayashi

For Im $\tau \gg 1$   $t: Z_N^T$ -charge of modular form Y $Y_{1_t}^{(k)}(\tau) \sim q^{t/3}(c_0 + c_1q + c_2q^2 + \cdots)$   $q = \exp(2\pi i \tau)$ 

> Derivative along  $x = 2 \text{Im} \tau$ 

$$\frac{\partial V}{\partial x} = \frac{c_0^2 m_0^2 \Lambda_Q^2}{16\pi^2} x^{k-1} e^{-2\pi t x/3} \left( k - \frac{2\pi t x}{3} \right) \left( \log \frac{c_0^2 \Lambda_Q^2}{e\mu^2} + k \log x - \frac{2\pi t x}{3} \right)$$

$$\max \operatorname{maximum} \qquad \operatorname{minimum}$$

$$\min = \frac{3k}{2\pi t} \mathcal{W} \left( -\frac{2\pi t}{3k} \left( \frac{\mu}{c_0 \Lambda_Q} \right)^{2/k} \right) > 1$$

$$\min \operatorname{minimum} \operatorname{exists} \text{ for } t > 0$$

$$\Leftrightarrow \operatorname{non-trivial singlet under} \Gamma_{W}$$

\* Lambert fct.  $\mathcal{W}(z)e^{\mathcal{W}(z)} = z$ 

 $\chi_n$ 

## Potential shape 2402.02071 T.Higaki, JK, T.Kobayashi

$$W = \Lambda_Q Y_{1_1}^{(12)} \overline{Q} Q$$
 under  $\Gamma_3 \simeq A_4$ 



#### $m_0^2/M_Q^2 = 10^{-8}$ , $\mu/\Lambda_Q = 0.01$

- potential has global minimum at  $Im\tau \sim 13 \gg 1$
- this minimum exists only for **non-trivial** singlet
- potential is almost flat for *Reτ* around minimum

 $\Delta \theta \sim 10^{-10} \times \sin \theta_0 \left(\frac{m_0}{10^7 \text{GeV}}\right)^2 \left(\frac{\Lambda_Q}{10^{18} \text{GeV}}\right)^2 \left(\frac{\text{Im}\tau_0}{14}\right)^{12} \left(\frac{|q|^{1/3}}{10^{-12}}\right)^7$ 

• consistent with neutron EDM limit for  $|q|^{1/3} < O(10^{-12})$ 

• can solve the strong CP problem for  ${\rm Im} au_0 \gtrsim 14$ 

### Modulus and vector-like quark masses



#### $14 \lesssim \mathrm{Im}\tau \lesssim 15$

Axion quality  $\Delta \theta < 10^{-10}$ 

 $Q_2$  heavier than TeV modulus (saxion) heavier than 10 TeV

## Summery of finite modular axion

### Summary

- accidental  $U(1)_{PQ}$  is realized from residual  $Z_N^T$  in  $\Gamma_N$
- modulus can be stabilized by CW in KSVZ-type model
- PQ quality is ensured by  $\text{Im } \tau \gg 1$
- vector-like quark and modulus are at O(TeV) scale

### Discussions

- other applications to accidental U(1)
- cosmological implications, especially DM and modulus ?



### Outline

- 1. Introduction
- 2. Brief review of finite modular symmetry  $\Gamma_N$
- 3. Finite modular axion and radiative stabilization
- 4. Finite modular majoron and its cosmology
- 5. Summary

Type-I seesaw

$$\mathcal{L} = \frac{1}{2}m_N NN + H_u L^c Y_d N$$

$$\blacktriangleright \qquad m_{\nu} \sim \frac{v_H^2 y_D^2}{m_N} \sim 0.1 \text{ eV} \times \left(\frac{10^{14} \text{ GeV}}{m_N}\right) \left(\frac{y_D v_H}{100 \text{ GeV}}\right)^2$$

### $\succ U(1)_{B-L}$ symmetry

- is the anomaly-free symmetry in the SM + RH neutrinos
- **forbids Majorana mass**, since *N* has lepton number 1



Majorana mass  $m_N$  should be related to B-L breaking

$$m_N \sim v_{BL}$$

## Majoron

'81 Y.Chikashige, R.N.Mohapatra, R.D.Peccei; '81 G.B,Gelmini, M.Ronacadelli

If B-L symmetry is global (not gauged),



there exists a pseudo NG boson, named majoron J

### Majoron DM

If majoron only couples to RH-neutrinos via  $e^{iJ/f_J}m_N NN$ 

- decay width  $\Gamma_J \sim m_{\nu}^2 m_J / f_J^2$  is small enough to be DM
- but it is a **decaying DM** particle

we may see neutrino flux from the DM decay

'17 C.Garcia-Cely, J.Heeck, '23 K.Akita, M.Niibo

### **B-L quality**?

majoron is a pseudo-NG boson of  $U(1)_{B-L}$  symmetry

 $\longrightarrow$  majoron gets its mass from explicit  $U(1)_{B-L}$  breaking

Ex) 
$$\mathcal{L}_{BLV} \sim \frac{\phi^n}{M_p^{n-4}} + h.c. \sim \frac{f_J^n}{M_p^{n-4}} \cos\left(n\frac{J}{f_J}\right)$$

 $\succ$  Question: How  $U(1)_{B-L}$  is broken ?

need a mass term, while do not need interaction e.g. Jee



 $\rightarrow$   $U(1)_{B-L}$  should be broken in a proper way to be DM

**B-L quality** may matter, as for the PQ quality of axion

### Finite modular majoron

'24 JK and T.H.Jung

Finite modular symmetry can be used for the accidental  $U(1)_{B-L}$ 

Model
C.f. FM axion  $\mathcal{L} = \Lambda_N Y_r^{(k)}(\tau) NN \qquad \Longleftrightarrow \quad \mathcal{L} = \Lambda_Q Y_r^{(k)}(\tau) \overline{Q} Q$ 

residual symmetry  $Z_N^T : \tau \to \tau + 1, NN \to \exp\left(-\frac{2\pi t}{N}\right)NN$ 

$$\begin{array}{c} \bullet \quad \begin{array}{l} \text{accidental} \\ \text{continuous} \end{array} \quad U(1)_{B-L} : \tau \to \tau + \alpha, NN \to \exp\left(-\frac{2\pi t}{N}\alpha\right) NN \\ \alpha \in \mathcal{R} \end{array}$$

 $J \sim \operatorname{Re} \tau$  is pNGB of B-L, so it is *finite modular majoron* 

### **Radiative stabilization**

the same CW stabilization works for the majoron

Potential

$$V \sim \left(m_0^2 + M_N^2(\tau)\right)^2 \left(\log \frac{m_0^2 + M_N^2(\tau)}{\mu^2} - \frac{3}{2}\right) - \left(M_N^2(\tau)\right)^2 \left(\log \frac{M_N^2(\tau)}{\mu^2} - \frac{3}{2}\right)$$
  
where  $M_N^2(\tau) = \Lambda_N^2 (2\mathrm{Im}\tau)^k \left|Y_{1_t}^{(k)}(\tau)\right|^2$ 

 $\succ$  Modulus  $X \sim \text{Im } \tau$ 

mass  $m_X \sim \frac{m_0 m_N}{4\pi M_p} \sim 10 \text{ TeV} \times \left(\frac{m_0}{10^{10} \text{ GeV}}\right) \left(\frac{m_N}{10^{14} \text{ GeV}}\right)$ decay  $\Gamma_X \sim \Gamma(X \to JJ) \sim (20 \text{ s})^{-1} \times \left(\frac{m_\phi}{20 \text{ TeV}}\right)^3$  via Kähler potential

both majoron and modulus are important for cosmology  $\sim \operatorname{Re} \tau \qquad \sim \operatorname{Im} \tau$ 

### Majoron as dark matter



### Majoron as dark radiation [DR]

Modulus decay

modulus decays  $X \rightarrow JJ$  after BBN [Big Bang Nucleosynthesis]



produced majorons are relativistic, so contribute to DR

 $\succ \text{ Effective number of neutrinos, } N_{\text{eff}} \sim 3 + \Delta N_{\text{eff}}$  $\Delta N_{\text{eff}} \sim 0.6 \times \left(\frac{\rho_X / \rho_{rad}}{10^{-3}}\right) \left(\frac{T_R}{10 \text{ MeV}}\right) \left(\frac{10 \text{ TeV}}{m_X}\right)^3$ 

- assuming MD by another particle  $\chi$ , reheating at  $T_R$
- modulus energy per radiation energy should be small for  $\Delta N_{
  m eff} \sim \mathcal{O}(0.1)$
- limit from CMB is < 0.3, but Hubble tension may prefer  $\Delta N_{eff} \sim 0.4$ '18 Planck J.L.Bernal et.al, 1607.05617, S.Vagnozzi, 1907.07569

## Moduli dynamics and energy density

#### if no additional energy, modulus will overshoot



However, with the MD field  $\chi$ , Hubble friction stops too fast rolling EOM:  $\ddot{X} + 3H\dot{X} + V_X = 0$ 

- then, modulus starts to oscillate around the minimum
- effective amplitude is small, so that  $\rho_X / \rho_{rad} \sim \mathcal{O}(10^{-4})$

## Moduli dynamics, numerically



- no overshoot, if it starts from the exponential slope
- behavior of oscillation looks the same for various cases

### Modulus energy density



Values of  $\xi \coloneqq \rho_X / \overline{\rho_\chi = \rho_X / \rho_{rad} (T_R)}$ 

#### Analytical formula

$$\xi \sim \frac{3}{2e^2} \left( k - \frac{4\pi t}{N} \operatorname{Im} \tau_{min} \right)^{-2}$$

$$\sim 10^{-4}$$
 for  ${\rm Im} au_{min} \sim 0$ 

- energy ratio is  $10^{-4}$  independent of initial position
- true for long slopes, and it can be larger for shorter slopes

### Masses when $\Delta N_{\rm eff} = 0.3$



- RH neutrino is  $10^{10 \sim 14}$  GeV, soft mass is  $10^{8 \sim 10}$  GeV
- modulus mass is 10 TeV for  $\Delta N_{\rm eff} \sim 0.3$
- majoron mass can be in a wide range  $m_I \in [10^{-30}, 1.]$  GeV

## Summary of finite modular majoron

### Summary

- accidental  $U(1)_{B-L}$  is realized from residual  $Z_N^T$  in  $\Gamma_N$
- modulus can be **stabilized by CW** in type-I seesaw
- modulus dost not overshoot because of Hubble friction
- majoron contributes to both DM and DR

#### Discussions

- can we probe majoron with keV-GeV mass and  $f_I \sim 10^{16}$  GeV ?
- application to **flavor models** ?
- relation to other cosmology, e.g. baryogenesis/inflation ?

### Summary

1. accidental U(1) can be realized by finite modular symmetry

→ finite modular pseudo NG boson appears

2. modulus can be stabilized by Coleman-Weinberg potential



no need to extend a model

Thank you !!

## backups

### Majoron limits '23 K.Akita, N.Michiru



Figure 3: Lower bounds on the energy scale of the spontaneous lepton number symmetry breaking f in NH case, as a function of the majoron DM mass. The black region corresponds to the cosmological constraint on the DM lifetime comes from CMB+BAO analysis as  $\leq 250$  Gyr [58–62]. The other colored regions with solid curves describe the current constraints from Borexino [53] (yellow), KamLAND [54] (green), Super-Kamiokande [31–33,55,56] (red, blue, pink, light-blue), IceCube [35,36] (light-green, purple), and ANTARES [38,57], and the dashed curves describe the expected sensitivities of future neutrino detectors, JUNO [40] (blue), HK [39] (orange) and P-ONE [38,44] (green).

### Known mechanisms for stabilization

SL(2,Z) invariant '91 M.Cvetic, A.Font, L.E.Ibanez, D.Lust, F.Quevedo 2006.03058, P.Novichkov, J.Penedo, S.Petcov

$$W \sim (j(\tau) - 1728)^{\frac{m}{2}} j(\tau)^{\frac{n}{3}} \mathcal{P}(j(\tau))$$
  
 $j(\tau)$ : Klein function

#### non-perturbative effects

 $\succ$   $\Gamma_N$  invariant potential 1909.05139, 1910.11553 T.Kobayashi, Y.Shimizu, K.Takagi, M.Tanimoto, T.Tatsuishi, H.Uchida

X has non-zero weight, additional field

3-form flux potential 2011.09154, 2206.04313 K.Ishiguro H.Okada, T.Kobayashi, H.Otsuka

$$W \sim \sum_{n=0}^{3} c_n \, \tau^n$$

 $W \sim X_1^{(k_X)} \left(Y_1^{(k_Y)}\right)^p$ 

Polynomial of  $\tau$ , coefficients transform under SL(2,Z)

# **Canonical normalization**

> Modular invariant kinetic term

kinetic term 
$$\frac{QQ}{(-i\tau + i\overline{\tau})^{k_q}} \rightarrow \overline{Q}Q$$
 canonical basis  
Yukawa coup.  $Y^{(k_Y)}(\tau) \rightarrow (2Im\tau)^{k_Y/2} Y^{(k_Y)}$ 

> When  $\epsilon(\tau) \ll 1$ 

 $\epsilon(\tau) \sim 0.05 \quad \longrightarrow \quad t \coloneqq 2 \operatorname{Im} \tau \sim 5 \text{ gives additional structure}$ 

another FN-like mechanism controlled by modular weights

Axion decay constant

$$K = -h \log(-i\tau + i\tau^*) \longrightarrow \mathcal{L}_{kin} = \frac{h M_p^2}{(2Im\tau)^2} \partial_\mu \tau^* \partial^\mu \tau$$

 $M_p \simeq 2 \times 10^{18}$  GeV : reduced Planck mass

> After canonical normalization,

$$f_{\phi} = \frac{\sqrt{h}M_p}{4\pi \text{Im}\tau} \sim 2 \times 10^{16} \text{ GeV} \times \left(\frac{h}{3}\right)^{\frac{1}{2}} \left(\frac{14}{\text{Im}\tau}\right)$$

need entropy production maybe by saxion X and/or fine-tuned initial condition

$$m_X = \frac{c_0 m_0 M_Q}{2\sqrt{2h}\pi M_p^2} (2\mathrm{Im}\tau)^k e^{-\frac{2\pi\mathrm{Im}\tau}{3}} \left| k - \frac{4\pi\mathrm{Im}\tau}{3} \right|$$

## Modular forms of A4

$$Y_{1_1}^{(12)}(\tau) = (Y_1^2 + 2 Y_2 Y_3)^2 (Y_3^2 + 2 Y_1 Y_2)$$
$$Y_{1_2}^{(12)}(\tau) = (Y_1^2 + 2 Y_2 Y_3) (Y_3^2 + 2 Y_1 Y_2)^2$$

#### where

$$Y_{1}(\tau) = \frac{i}{2\pi} \left[ \frac{\eta'(\tau/3)}{\eta(\tau/3)} + \frac{\eta'((\tau+1)/3)}{\eta((\tau+1)/3)} + \frac{\eta'((\tau+2)/3)}{\eta((\tau+2)/3)} - 27\frac{\eta'(3\tau)}{\eta(3\tau)} \right],$$
  

$$Y_{2}(\tau) = \frac{-i}{\pi} \left[ \frac{\eta'(\tau/3)}{\eta(\tau/3)} + w^{2} \frac{\eta'((\tau+1)/3)}{\eta((\tau+1)/3)} + w \frac{\eta'((\tau+2)/3)}{\eta((\tau+2)/3)} \right],$$
  

$$Y_{3}(\tau) = \frac{-i}{\pi} \left[ \frac{\eta'(\tau/3)}{\eta(\tau/3)} + w \frac{\eta'((\tau+1)/3)}{\eta((\tau+1)/3)} + w^{2} \frac{\eta'((\tau+2)/3)}{\eta((\tau+2)/3)} \right],$$

#### ➢ q-expansion

$$Y_{1_{1}}^{(12)} = -12q^{1/3}\left(1 + 472q + \mathcal{O}\left(q^{2}\right)\right), \quad Y_{1_{2}}^{(12)} = 144q^{2/3}\left(1 + 224q + \mathcal{O}\left(q^{2}\right)\right).$$

PQ quality in the model

$$V_{1_t}^{(k)}(\tau)\overline{Q}_t Q_t \sim e^{-\frac{t}{3}\phi}\overline{Q}_t Q_t \qquad Z_3^T \text{ (=PQ)-charge = } t = 1,2$$

non-linear realization of  $U(1)_{PQ}$ , accidentally by  $Z_3^T$ 

PQ-violation  $q^{\frac{t}{3}} = \exp\left(\frac{2\pi i t \tau}{3}\right) \text{ is invariant under } Z_3^T: \tau \to \tau + 3,$ but not invariant under  $U(1)_{PQ}: \tau \to \tau + \alpha, \ \alpha \in \mathbb{R}$   $\frac{V}{m_0^2 M_0^2} \sim |q|^{\frac{4}{3}} |c_0 + c_1 q| \sim const + 2c_0 c_1 x_{min}^k |q|^{\frac{7}{3}} cos\phi$