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All neutrino theorists are liars

Neutrino physics has a rich history of anomalies:
 solar anomaly, atmospheric anomaly

* 17keV neutrino, super-luminal, etc.

Solar and atmospheric neutrino oscillation a real, but
their anomalous nature was supported by theoretical
prejudice:

° neutrinos are massless
* neutrino mixing angles are small

Of course, I happen to be a neutrino theorist. . .
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The big question
Things the Standard Model does NOT explain

e Neutrino mass

» Dark matter

e Baryon asymmetry
e Dark energy

e Gravity

50 years of 1deas, most have been retired by flavor
physics and LHC results

Is there anything within our means we can find?
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Neutrinos are massive — so what?

Neutrinos in the Standard Model (SM) are strictly
massless < neutrino oscillation 1s BSM physics!

... yes, this 1s not SUSY, large extra dimensions or
anyone’s favorite BSM model, but it IS the only

laboratory-based proof for the incompleteness of the
SM.

It also makes them the fermion portal to the dark
sector

Alas, 1t 1s 1indirect evidence: no energy scale, no
symimetry, no new interaction, no new particles are
seen 1n the laboratory.
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The remainder of
this talk 1s all about
searching below the
lamp post.
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Evidence in favor

Or at least at odds with a simple 3-flavor framework

* LSND 7y, — v,
* MiniBooNE v, — 7, and v, — v,
e Galllum v, — v,

e Reactors v, — v,

P. Huber —- VT-CNP - n. 6



Reactor rate anomaly eV-scale sterile neutrino

5 MeV bump _, LSND & MiniBooNE

Nuclear & reactor physics | P Particle physics

These four topics are related but distinct!
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LSND and MiniBooNE

® Beam Excess

MiniBooNE best fit (0.918, 0.041 eV?)
(0.01, 0.4 eV?)

MiniBooNE 10 allowed band

v mode: 12.84 x 10 POT

v mode: 11.27 x 102 POT

LSND
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MiniBooNE 2018

LSND 1995

P(v, = v,) ~ 0.003
Statistically significant: 4 — 60
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Gallium anomaly

GALLEX
k Gl G2 S1 S2
source Sicr Sier Sler 37T Ar

0.10 0.084
0.953 +0.11 0.812+0.10 0.95 +0.12 0.791 + +0084

0.13 0.12 0.14 0.10
0.8470 13 0.71%011 0.84713 0.70 £ T 00

radius [m] 1.9

height [m] 5.0
source height [m]

25% deficit of v, from radioactive sources at short
distances

« Effect depends on nuclear matrix element

R 1s a calibration constant
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Nuclear matrix element update

. Reactors
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The reactor anomaly

Daya Bay
R=0.947 + 0.022

—e— Previous data
—s=— Daya Bay
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R = 0.943 +- 0.008 (exp.) [ZZ] 1-oFlux Unc.

10°
Distance (m)

Daya Bay, 2014

Mueller et al., 2011, 2012 — where have all the
neutrinos gone?
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Where we are

3 different flux mod-
els, data from 2 differ-
ent experiments

Daya Bay

PROSPECT 5 _ ==== " EXCept for U235:
- =L + the models agree

within error bars
+ the models agree with

neutrino data

U235 has smallest error
bars, not surprising that

discrepancies show up
first.

Berryman, PH, 2020
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Fuel evolution

GLoBESfit v1.0
7
4

Fuel Evolution

79235 # 1, there
are not enough

neutrinos from
235U.

Berryman, PH,
2020
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The SMeV bump

RENO 2016 (Nbdiﬁed AverageR = 1)
NEOS 2016 (Nbdified AverageR = 1)
: Daya Bay 2016 :

: Double Chooz IV - ND
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Double Chooz 2019
Contains only 0.5% of all neutrino events — not
important for sterile neutrinos

Yet, statistically more significant than the RAA!
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Latest data vs bump
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Daya Bay 2019, 2021

PROSPECT223(§18 Requires a bump
Disfavors “°°U as in 23U at4do

sole culprit at 2.1 o
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S

umpology

N-+0.052
W _0.054

1.2

Daya Bay,
RENO and
PROSPECT

as of 2019

Only no3s # 0
with any sig-
nificance

Berryman, PH,
2020
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Kill BILL?

moderator

(0,0)
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contained between Ni foils
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80 cm to the
| center of

| reacter core

| (Electron detector in focal plane: multi chamber proportional
SCHEMATIC VIEw OF THE TARGET SITE _ counter in transmission, rear mounted scintillator in coincidence)

Neutron flux calibration standards different for U235 and Pu239:
207Pb and 197Au respectively.

Combined with potential differences in neutron spectrum — room
for a 5% shift of U235 normalization?

A. Letourneau, A. Onillon, AAP 2018
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2021 beta measurement

Relative measurement of
U235 and Pu239 tar-
gets under 1dentical con-
ditions.

Beta detection with stil-
bene.

This slide and the following are based on V. Kopeikin, M.
Skorokhvatov, O. Titov (2021) and V. Kopeikin , Yu. Panin, A.
Sabelnikov (2020)
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2021 beta results

.5, O N
(pa/Pp)xr> (Pa/PRIILL
2.6

At relevant energies
the new measurement
1s about 5% below the
previous one

Systematics 1s diffi-
cult in these measure-
ments, but no obvious
1SSues.

6 7 8

Kinetic energy £g, MeV
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2021 beta impact

1. Experiment:
Daya Bay [24] 5.94+0.09 | 6.10+0.15 4.32 +0.25
RENO [23] - 6.15+0.19 | 4.18+0.26
2. Calculation:
10]

28]

[1 '-1] (3)

3. Conversion:
Huber—Mueller
Mueller
ILL—Vogel

4. Conversion with correction:
Huber—Mueller
Mueller

ILL—Vogel

Now the predicted and measured U235/Pu235 IBD
ratio agree well. I confirmed, no RAA!
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Why is this so complicated?

fission yield

s
0.004 0.008




p-branches
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Two ways to predict

Summation calculations Conversion calculations
Fission yields Cumulative beta spectra
Beta yields Zog Irom databases

Problem: single set of
cumulative beta spectra &
forbidden corrections have
to rely on databases

Problem: databases are in-
sufficient & difficulty of
assigning an error budget

In both approaches, one has to deal with:
Forbidden decays

Weak magnetism corrections
Non-equilibrium corrections

Structural materials in the reactor
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Conversion method

239U foil inside the High
Flux Reactor at ILL
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Electron  spectroscopy
with a magnetic spec-
trometer

Same method used for
239Py and %Py

For 2°%U recent measure-
ment by Haag et al., 2013

- 7 8 9 10
KINETIC ENERGY OF BETAS INM

Schreckenbach, ef al. 1985.
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Extraction of v-spectrum

We can measure the total F-spectrum

Ns(E.) Z/dEoNﬁ(Ee,Eo;Z)n(Eo)- (1)

with Z effective nuclear charge and
underlying distribution of endpoints

This 1s a so called Fredholm integral

first kind — mathematically 1ll-posed

try to “fit” the
’ U(EO) .

| equation of the
| I.e. solutions

tend to oscillate, needs regulator (ty;
average), however that will introduc

pically energy
¢ a bias.

This approach 1s know as “virtual branches™
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Virtual branches

Ex=8.09VeV, n=0.204 Ex=7.82MeV, n=0.122
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1 — fit an allowed (-spectrum with free normalization 7 and
endpoint energy F the last s data points

2 — delete the last s data points

3 — subtract the fitted spectrum from the data

4 — goto 1
Invert each virtual branch using energy conservation into a
neutrino spectrum and add them all.
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Summation method

S TR Take fission yields from
¢
— DBAM2018 database.

DB/SM-2017
DBH.M

Take beta decay informa-

 SM2018HM < tion from database.
SM2017H.M
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For the most crucial
isotopes use [-feeding
functions from total
absorption v spectroscopy.

Estienne et al., 2019
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Forbidden decays

e,/ final state can form
a singlet or triplet spin
state J=0 or J=1

Allowed:
s-wave emission ([ = 0)

Forbidden:
p-wave emission ([ = 1)
or/ > 1

Significant nuclear structure dependence in forbidden
decays— sizable uncertainties?
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Forbidden decays — shell model

Daya Bay
Microscopic  shell model

calculation of 36 forbidden
1sotopes.

Parameterization of  the
resulting shape factors for all

other branches.

o
S
(]
()]
C
©
e
O
©
s
o
O
(V)
Q.
w0

Increases the IBD rate
anomaly by 40%, but the
uncertainty increases by only
13% relative to HM

Prompt energy [MeV]

Hayen, et al. 2019
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NEOS and sterile neutrinos

(A my, sin” EHH'} =({2.37 eV, 0.09)

(A mj, sin® 26 ) = (0.69eV>,0.1)

RENO / NEOS

Ratio of observations,
independent of reactor
fluxes!

Ax? = 11.6 for oscil-
lations, the p-value 1s
however only 0.13.
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( m'J n>20,,) = (0.69eV, 0.1)

RENO /NEOS

Prediction from

Neutrino Energy (MeV)

2011.00896

This break down of Wilks’ theorem has been observed
by many authors: Agostini, Neumair, 2019; Silaeva, Sinev,
2020; Giunti, 2020] [PROSPECT+STEREO, 2020; Coloma, PH,
Schwetz, 2020
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Oscillations are everywhere

=t

&
I

Coloma, PH, Schwetz, 2020

Hypothetical two
baseline experiment

Maximum likelhood
estimate 1s biased and
not consistent.

Wilks® theorem does
not apply

The reason 1s that some oscillation with some
frequency always fits fluctuations better than no

oscillation
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Neutrino-4

Significance goes

from 3.20 down to
2.00

Here we assume that
all systematics has
been treated correctly.
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Coloma, PH, Schwetz, 2020

Giunti, L1, Ternes, Zhang, 2021 fOllOWing Danilov, Skrobova
2020 find that energy resolution modeling could

reduce this to 2.2 o and would shift sin? 20 — 1.
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Resolving high Am? oscillations

[ Commercial, > 10 m

[ Rese

B Research. > 10 m
KATRIN (95% C.L.)
B GLoBESfit

B Neutrino-4

Am? [eV?]

Berryman, Delgadillo, PH, 2021

* Green field study, optimized two-baseline setup,
S tons, 1 year

* Key i1s to get very close
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ENUBET - setup

. absorber

Short, narrow band focusing and
transfer line (8 GeV + 20%)

« provides a tagged v, beam

* provides an anti-tagged v, beam (from pion
decay mostly)

 precise normalization ~ 1%

We propose a 1 kton LArTPC at a baseline of 1 km.
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ENUBET - results

v, disappearance v,, disappearance

@ BestfitlceCube
#Best fit Neutrino-4 ==== |ceCube 99% CL

* BestfitRAA === MINOS 99% CL
ENUBET 99% CL Syr ENUBET 99% CL Syr

L=1km 1% signal ====L=1km 1% signal

Delgadillo, PH, 2020
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Ve Status 2019

GLoBES 2019

Ab Initio F{at‘es (95)%) -1 2 .
HKSS Rates (95%) 3 JAN X — 13.8 evidence

for oscillation, flux

model-independent,
driven by NEOS and
DANSS

Spectra eneeacvosl Consistent with Gallium
(1o, 20, PROSPECT (30)
anomaly.

Berryman, PH, 2019
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v, Status 2021
A’ =62 Ax? =118 AXQ — 99

(By Albert Zhou in collab. w/ (By Albert Zhou in collab. w/
J. Berryman, P. Coloma, P. Huber & T. Schwetz) J. Berryman, P. Coloma, P. Huber & T. Schwetz)

I Combined B Combined
I STEREO N EEE STEREO

el Ncutrino-4 not

s 1= inconsistent

B Solar | BN Solar

Still consistent
with Gallium
anomaly

But  overall
significance?
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LSND & MiniBooNE

® Beam Excess

—— MiniBooNE best fit (0.918, 0.041 eV?)
- (0.01, 0.4 eV?)
MiniBooNE 10 allowed band
v mode: 12.84 x 10 POT
v mode: 11.27 x 102 POT
LSND
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LSND 1995

P(v, = v,) >~ 0.003

v, — V. requires that the sterile neutrino mixes with
both v, and v, so there must be an etfect in v/,

dl S appearance . P. Huber — VT-CNP — p. 38



Disappearance data

99.73% CL

sin? Wy = 4!U64Uu4’2

Appearance

( wj/o DiF)

— with 1 — P, o< |Ugy|?
I and 1 — P, oc |Uyy]?

Dentler, et al., 2018

There 1s (and has been for decades) a strong tension
between appearance and disappearance data.

Decaying sterile neutrinos?
e.g., 1910.13456, 1911.01427, 1911.01447
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Finding a sterile neutrino

All pieces of evidence have in common that they are
less than 5 o effects:

N sterile neutrinos are the simplest explanation

* Tension with null results 1in disappearance
remains

Reactor rate and spectrum anomalies likely are due to
nuclear physics, but this does not impact reactor
sterile results much = need to understand integral
beta spectrum measurements.
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