The landscape of baryon number violation

Julian Heeck

MPIK, Heidelberg

10/14/2024

Advancing The Commonwealth

4

Elementary particles

Elementary particles

Assign U(1)_B charge 1/3, rest uncharged. (Proton & neutron then have B = 1.)

global symmetry of SM Lagrangian!

Why baryon number violation?

• Tests prediction/symmetry of Standard Model:

- Testable signatures in many extensions (GUTs, SUSY,...).
- Needed for spontaneous generation of matter asymmetry.

BNV is special: *most sensitive* probe of new physics because it probes decay of stable [*sic*] matter!

(LNV & LFV have to use unstable particles.)

Best example: proton decay

- First suggested in grand unified theories, predict lifetimes $\tau_{\rm p} \sim {\rm m}_{\rm X}^4/{\rm m}_{\rm p}^5$ [Pati & Salam '73; Georgi & Glashow, '74]
- Huge improvement in limits over ~50 yrs.

- Current best: Super-KamiokaNDE.
 - 50k tons of water in deep underground tank.
 - 13k photomultipliers to search for Cherenkov radiation.
 - Running for two decades, observing 10³⁵ protons.

 $au_{
m p}({
m p}
ightarrow{
m e}^{+}\pi^{0})>10^{34}\,{
m yr}.$ [Super-K, 2010.16098]

– Implies $m_X > 10^{15}\,\text{GeV!}$ [Fileviez Pérez, Pocar, JH et al, 2208.00010]

Super-Kamiokande

Photomultipliers

Super-Kamiokande

Photomultipliers

Super-Kamiokande

Photomultipliers

Best example: proton decay

- Super-Kamiokande: $au_p(p
 ightarrow e^+ \pi^0) > 10^{34} \, yr.$ $m_X > 10^{15} \, GeV!$
- Makes proton the most stable massive particle we know, lifetime exceeds age of universe by 10²⁴, a million billion billion!
- Indirect probe of mass scales up to $10^{11} \times E_{LHC}!$

Sensitivity of BNV also allows to probe other models, initial states, final states, $\Delta B > 1$, ...

р

u

u

[Fileviez Pérez, Pocar, JH et al, 2208.00010]

Tank is not pure hydrogen!

Х

d

 e^+

Underground detectors

	Super-K	JUNO	Hyper-K	DUNE
Location	Japan	China	Japan	USA
Geometry	Cylinder	Sphere	Cylinder	Cuboid (4 modules)
	42m height \times 39m diameter	35.4m diameter	60m height \times 74m diameter	$58.2\mathrm{m}$ \times 14.0m \times 12.0m
Detector Material	Water	LABs	Water	Liquid Argon
Working Principle	Cherenkov	Scintillation	Cherenkov	Scintillation
Fiducial Mass	22.5kt	20kt	$187 \mathrm{kt}$	$40 \mathrm{kt}$
# protons	$8 imes 10^{33}$	7×10^{33}	6×10^{34}	1×10^{34}
# neutrons	$6 imes 10^{33}$	5×10^{33}	5×10^{34}	1×10^{34}
Approx. Start Year	1996	2024	2027	2028

[adapted from Dreiner ++, 2403.18502]

- Hyper-K has generically the best sensitivity, will probe up to $au_{\rm p}({\rm p}
 ightarrow {\rm e}^+ \pi^0) \sim 10^{35}\,{
 m yr}.$ [Hyper-K, 2203.02029]
- JUNO & DUNE could be useful for modes without Cherenkov radiation. [JH, Shoemaker, D. Sokhashvili, in progress]

Standard Model Effective Field Theory

- d_{\min} \geq \frac{9}{2} |\Delta B| + \frac{3}{2} |\Delta L| . [Kobach '16; Helset, Kobach, '19]
- BNV sensitive to d >> 6, unlike any other experiment.
- ΔB dominated by d = 6, unless forbidden by symmetry!
 [Weinberg, '80]
- Some symmetry/hierarchy has to exist, otherwise $\Lambda\sim \langle H\rangle^2/M_\nu\sim 10^{14} GeV ~~ Fast ~~ Fast ~~ proton~~ decay!$

MPIK '24

Example for Weinberg's selection rules:

Impose $U(1)_{3B-L}$ on SMEFT, then the lowest BNV operators have $\Delta B = \Delta L/3 = 1$ and arise at d = 9.

MPIK '24

Probing the landscape point by point?

MPIK '24

$\Delta B = \Delta L = 1$

• 546 d=6 operators:

[Weinberg, '79 & '80; Wilczek & Zee '79]

$$y_{abcd}^{1} \epsilon^{\alpha\beta\gamma} (\overline{d}_{a,\alpha}^{C} u_{b,\beta}) (\overline{Q}_{i,c,\gamma}^{C} \epsilon_{ij} L_{j,d}) + y_{abcd}^{2} \epsilon^{\alpha\beta\gamma} (\overline{Q}_{i,a,\alpha}^{C} \epsilon_{ij} Q_{j,b,\beta}) (\overline{u}_{c,\gamma}^{C} \ell_{d}) + y_{abcd}^{3} \epsilon^{\alpha\beta\gamma} \epsilon_{il} \epsilon_{jk} (\overline{Q}_{i,a,\alpha}^{C} Q_{j,b,\beta}) (\overline{Q}_{k,c,\gamma}^{C} L_{l,d}) + y_{abcd}^{4} \epsilon^{\alpha\beta\gamma} (\overline{d}_{a,\alpha}^{C} u_{b,\beta}) (\overline{u}_{c,\gamma}^{C} \ell_{d}) + \text{h.c.}$$

• All induce 2-body nucleon decays, even those with c,b,t,τ.

[Marciano, NPB '95; Hou, Nagashima, Soddu, PRD '05; Gargalionis, Herrero-García, Schmidt, 2401.04768; Gisbert++, 2409.00218]

 d=6 BNV "covered" via simple two-body searches.
 [JH, Takhistov, PRD '20]

Two-body nucleon decays (38)

Channel	$ \Delta(B-L) $	Γ^{-1}			
		10 ³⁰ yr	$n \rightarrow e^- + \pi^+$	2	65 79 (5300^* 73)
$p \to e^+ + \gamma$	0	41000 72	$n \rightarrow e^- + \rho^+$	2	62 79 (217 [*] 65)
$p \to e^+ + \pi^0$	0	16000 24	$n \to e^- + K^+$	2	32 62
$p \to e^+ + \eta$	0	10000 73	$n \to e^- + K^{*,+}$	2	
$p \to e^+ + \rho^0$	0	720 73	$n \rightarrow e^+ + \pi^-$	0	5300 73
$p \to e^+ + \omega$	0	1600 <mark>73</mark>	$n \to e^+ + \rho^-$	0	217 65
$p \to e^+ + K^0$	0	1000 74	$n \to e^+ + K^-$	0	17 65
$p \to e^+ + K^{*,0}$	0	84 65	$n \to e^+ + K^{*,-}$	0	
$p \to \mu^+ + \gamma$	0	21000 72	$n \rightarrow \mu^- + \pi^+$	2	49 79 (3500* 73)
$p \to \mu^+ + \pi^0$	0	7700 24	$n \to \mu^- + \rho^+$	2	$7 79 (228^* 65)$
$p \to \mu^+ + \eta$	0	4700 73	$n \to \mu^- + K^+$	2	57 <mark>62</mark>
$p \to \mu^+ + \rho^0$	0	570 <mark>73</mark>	$n \rightarrow \mu^+ + \pi^-$	0	3500 <mark>73</mark>
$p \to \mu^+ + \omega$	0	2800 73	$n \to \mu^+ + \rho^-$	0	228 65
$p \to \mu^+ + K^0$	0	1600 75	$n \to \mu^+ + K^-$	0	26 <mark>65</mark>
$p \rightarrow \nu + \pi^+$	0,2	390 76	$n \rightarrow \nu + \gamma$	$_{0,2}$	550 <mark>28</mark>
$p \rightarrow \nu + \rho^+$	0,2	162 <u>65</u>	$n \rightarrow \nu + \pi^0$	$_{0,2}$	1100 76
$p \rightarrow \nu + K^+$	0,2	5900 77	$n \rightarrow \nu + \eta$	$_{0,2}$	158 <mark>65</mark>
$p \rightarrow \nu + K^{*,+}$	0,2	130 78	$n \rightarrow \nu + \rho^0$	$_{0,2}$	19 <mark>79</mark>
			$n \rightarrow \nu + \omega$	0,2	108 65

Many of these limits are 25 years old (IMB).

MPIK '24

Julian Heeck

 $n \rightarrow \nu + K^0$

 $n \to \nu + K^{*,0}$

0,2

0,2

 $130 \ 74$

78 65

Subdominant two-body decays

- Heavier fermions induce multi-body decays, e.g. tau: $\frac{y^{1}}{\Lambda^{2}}duQL_{\tau} + \frac{y^{2}}{\Lambda^{2}}QQQL_{\tau} + \frac{y^{3}}{\Lambda^{2}}QQu\ell_{\tau} + \frac{y^{4}}{\Lambda^{2}}duu\ell_{\tau}$
- Set $y^1 = y^2 = 0$ and $y^3 = y^4$, then dominant tree-level decay

• Similar for heavy quarks, multi-body decays could beat loop-induced two-body decays.

[related: Beneke, Finauri, Petrov, 2404.09642]

Only few multi-body limits from Super-K

$\Delta B = \Delta L = 1$ covered?

MPIK '24

 $\mathsf{U}(1)_{\mathsf{B}} \times \mathsf{U}(1)_{\mathsf{L}} \times \mathsf{U}(1)_{\mathsf{L}_{\mu}-\mathsf{L}_{\tau}} \times \mathsf{U}(1)_{\mathsf{L}_{\mu}+\mathsf{L}_{\tau}-2\mathsf{L}_{\mathsf{e}}}.$

MPIK '24

Proton decay = lepton flavor violation

Proton decay = lepton flavor violation

Proton decay = lepton flavor violation

 $\Delta B = \Delta L = 1$

Currently being probed: Old results:

Doable:

 $\Delta B = \Delta L = 1$

Currently being probed: Old results: Doable:

[**JH** & Watkins, 2405.18478] $\Delta(L_{\mu}-L_{\tau})$ Better: $\mathbf{p} \rightarrow \ell^+ \ell'^\pm \pi^\mp \nu_\tau$ τ^+ $\rightarrow \overline{p}\mu^+\mu^+$ $\rightarrow \overline{p}\mu^{+}e^{+}$ au^+ $\mu^+\mu^+e^$ p - τ^+ $\mu^+\pi^0$ $\rightarrow \overline{p}e^+$ *p* - $p \rightarrow e^+ \pi^0$ $\Delta(L_{\mu} + L_{\tau} - 2L_e)$ $aarbox \overline{p}\mu^+e^$ au $p \rightarrow e^+ e^+ \mu^ \tau
ightarrow \overline{p} \pi^0$ $\tau \rightarrow \overline{p}e^+\mu^$ $pe^+ \rightarrow \tau^+ \tau^+$ $\tau \rightarrow \overline{p}e^+e^+\mu^-\mu^$ $p\mu^+ \to \tau^+ \tau^+$ Better: $p \rightarrow \pi^+ \bar{\nu}_{\tau}$ [Marciano, NPB '95]

 $\Delta B = \Delta L = 1$

Full BNV coverage possible?

- Cannot to go through all $\Delta B > 0$ decays:
 - 38 two-body ΔB = 1 modes: N → AB. 36 limits.
 - 76 three-body Δ B = 1 modes: N → ABC. 33 limits.
 - 300 four-body ΔB = 1 modes: N → ABCD. 0 limits.
 - 118 two-body ΔB = 2 modes: NN → AB. 18 limits.
 - 500 three-body ΔB = 2 modes: NN → ABC. 0 limits.
 - •••
- *Exclusive* searches can reach $t \sim 10^{34}$ yr in Super-K.

Inclusive searches to the rescue!

Inclusive searches

Current limits:

 $\Gamma^{-1}(N \rightarrow e + anything) > 0.6 \times 10^{30} \text{ yr}, \text{ [Learned, Reines, Soni, '79]}$ $\Gamma^{-1}(N \rightarrow \mu + \text{anything}) > 12 \times 10^{30} \text{ yr.}$ [Cherry, Deakyne, Lande, Lee,

• 45 years old, improve with new tech!

Steinberg, Cleveland, '81]

• $p \rightarrow e^+$ + anything in SK could reach 10³² yr, judging by

 $\Gamma^{-1}(p \to e^+ \nu \nu) > 1.7 \times 10^{32} \text{ yr.}$ [Super-K, PRL '14]

- Do inclusive searches for $N \rightarrow \ell/\text{meson} + \text{anything}$.
- Also probes $\Delta B > 1$, light new physics, and dark matter!

[JH, Takhistov, PRD '20]

Invisible neutron decay

• Special case of inclusive searches:

$$\begin{split} & \Gamma^{-1}(n \rightarrow neutrinos) > 0.58 \times 10^{30} \, \text{yr}, \\ & \Gamma^{-1}(nn \rightarrow neutrinos) > 1.4 \times 10^{30} \, \text{yr}, \\ & \Gamma^{-1}(nnn \rightarrow neutrinos) > 1.8 \times 10^{23} \, \text{yr}, \\ & \Gamma^{-1}(nnnn \rightarrow neutrinos) > 1.4 \times 10^{23} \, \text{yr}. \end{split}$$
 [KamLAND, PRL '06; see also SNO+, PRD '19]
(Hazama, Ejiri, Fushimi, Ohsumi, PRC '94]

- Only signature is de-excitation of daughter nucleus. [Ejiri, '93]
- Every $\Delta B = k$ operator gives rise to k neutrons \rightarrow neutrinos.
- Neutrinos carry away arbitrary lepton number & flavor!
- Also probes light new physics and dark matter.
- JUNO can improve KamLAND limit. [JUNO, 2405.17792]

[JH, Takhistov, PRD '20]

Beyond SMEFT

- So far: SMEFT + " $U(1)_B \times U(1)_L \times U(1)_{L_{\mu}-L_{\tau}} \times U(1)_{L_{\mu}+L_{\tau}-2L_e}$ " to identify potentially dominant BNV.
- Now, find UV completions for BNV operators:
 - Generates a *physically motivated* operator basis;
 - Could have interesting *accidental symmetries*;
 - Useful to have in case of a BNV observation.
- Analogous to UV completions of ΔL=2 Weinberg operator.
 [too many to cite; exhaustive up to d=11: Gargalionis & Volkas, 2009.13537]
- UV completions for all SMEFT operators exist up to d = 8.
 [Li ++, 2309.15933]

Opening up d=6 operators

Leptoquark	spin	representation	Leptoquark	spin	representation
\mathcal{S}_1	0	$(ar{3},1,1/3)$	\mathcal{S}_3	0	$(ar{3},3,1/3)$
$ ilde{\mathcal{S}}_1$	0	$(ar{3},1,4/3)$	\mathcal{V}_2	1	$(ar{f 3}, {f 2}, 5/6)$
$-ar{\mathcal{S}}_1$	0	$(ar{{f 3}},{f 1},-2/3)$	$\tilde{\mathcal{V}}_2$	1	$(ar{{f 3}},{f 2},-1/6)$

duQL	$\mathcal{S}_1,\mathcal{V}_2,\widetilde{\mathcal{V}}_2$
$QQu\ell$	$\mathcal{S}_1,\mathcal{V}_2$
QQQL	$\mathcal{S}_1,\mathcal{S}_3$
$duu\ell$	$\mathcal{S}_1, ilde{\mathcal{S}}_1$

IJ

[Buchmuller, Ruckl, Weyler, '87; Dorsner++, 1603.04993]

• For example:

$$\mathcal{L}_{\tilde{\mathcal{S}}_{1}} \supset -m_{\tilde{\mathcal{S}}_{1}}^{2} |\tilde{\mathcal{S}}_{1}|^{2} + \left(\tilde{y}_{1\,ab}^{RR} \, \bar{d}_{R\,a}^{c} \tilde{\mathcal{S}}_{1} e_{Rb} + \tilde{z}_{1\,ab}^{RR} \, \bar{u}_{R\,a}^{c} \tilde{\mathcal{S}}_{1}^{*} u_{Rb} + \text{h.c.} \right)$$

$$\rightarrow \frac{2 \, \tilde{y}_{1\,ad}^{RR} \, \tilde{z}_{1\,bc}^{RR}}{m_{\tilde{\mathcal{S}}_{1}}^{2}} \epsilon^{\alpha\beta\gamma} (\overline{d}_{a,\alpha}^{C} u_{b,\beta}) (\overline{u}_{c,\gamma}^{C} \ell_{d}) + \text{h.c.}$$

• $\tilde{z}_{1\,ab}^{RR}$ is antisymmetric \rightarrow charm or top quark BNV!

[Dong++, 1107.3805; Dorsner, Fajfer, Kosnik, 1204.0674]

UV completions shed different light on BNV

C

- Collect all ν_RSMEFT BNV operators, trivial with Sym2Int. [Renato M. Fonseca, 1703.05221 & 1907.12584]
- Exponential growth of "operators" (~field strings):

- Generate all irreducible tree-level topologies.
- Exponential growth:

- For each operator, pick topology and distribute fields.
- Multiply group representations using GroupMath.
- E.g. ddLQHH:

[Renato M. Fonseca, 2011.01764]

- For each operator, pick topology and distribute fields.
- Multiply group representations using GroupMath.
- E.g. ddLQHH:

[Renato M. Fonseca, 2011.01764]

[**JH**, D. Sokhashvili, Thapa, to appear]

- Also include global $SU(2)_{left} \times SU(2)_{right}$ for spin.
- Then permute external particles over topology and repeat...

MPIK '24

- Code fast enough to reach $d \sim 15$.
- Similar code developed for $\Delta L=2$ operators. [Gargalionis & Volkas, '21]
- Already revealed some mistakes in literature.
- Can be used to open up **any** (non-derivative) EFT operator.

- Code fast enough to reach $d \sim 15$.
- Similar code developed for $\Delta L=2$ operators. [Gargalionis & Volkas, '21]
- Already revealed some mistakes in literature.
- Can be used to open up **any** (non-derivative) EFT operator.
- Find accidentally protected operators.
- E.g. add Dirac fermion (3,3,2/3) and vector LQ (3,3,-1/3).
 - Only generates BNV operator QQdeHH (d=8, B=L=1).
 - Could be dominant but *not* protected by symmetry.
 - Gives genuine loop realization of d=6 BNV operator.
- Find these at d = 7, 8, 9, but not d > 9 (preliminary).

[JH, D. Sokhashvili, Thapa, to appear]

Protected operators

- d > 6 operators could dominate either because we impose a B/L symmetry à la Weinberg or due to UV structure.
- Gives *manageable* set of interesting BNV operators.
- (Most of them contain v_{R} .)
- Explore pheno & tree vs loop next.

[**JH**, D. Sokhashvili, in progress]

Derivative operators

- So far only BNV operators without derivatives. Why?
- More complicated, not always tree-level completion.
- Generically sub-dominant at tree-level:

- Same UV completions, dominant only through finetuning.
- Exception: operators with $HD_{\mu}H$ that vanish without D_{μ} . [Gargalionis & Volkas, 2009.13537]

Beyond SMEFT II

- BNV induced by heavy particles gives hundreds of potentially dominant testable SMEFT operators.
 - Great limits from *exclusive* searches.
 - Moderate global coverage by *inclusive* searches.
- What if new particles are light?
 - $n \rightarrow \pi^0 \chi$ or $p \rightarrow e^+ \chi$, followed by χ decays?
 - New signatures, new model building!

[recent work: Císcar-Monsalvatje, Ibarra, Vandecasteele, 2307.02592; Fridell, Hati, Takhistov, 2312.13740; Domingo, Dreiner, Köhler, Nangia, Shah, 2403.18502; ...]

Sterile neutron: fermion with B=1

• Effective Lagrangian:

$$\mathcal{L}_{\chi} = \bar{\chi}(\mathrm{i}\partial \!\!\!/ - m_{\chi})\chi + \left(\frac{u_i d_j d_k \chi_L^c}{\Lambda_{ijk}^2} + \frac{Q_i Q_j d_k \chi_L^c}{\tilde{\Lambda}_{ijk}^2} + \mathrm{h.c.}\right)$$

- For $m_{\chi} \leq m_{n}$, one has search channels

 - The latter probe $\Lambda_{udd} < 10^{15}$ GeV if $m_{\chi} \sim 0$.
 - All couplings Λ_{iik} lead to these channels at loop level!
- Notice that χ is stable here and thus (asymmetric) DM.

Sterile neutron: fermion with B=1

• For $m_{y} > m_{n}$, no more proton/neutron decays!

Summary

- BNV nuclear decays probe
 - high scales (10¹⁵ GeV) or
 - high multiplicities (N \rightarrow 15 particles) or
 - high operator dimensions (d~15)! <
- Oodles of testable SMEFT operators.
- Embarrassment of riches, BNV landscape much more difficult to map than e.g. $\Delta L = 2$ operators.
 - Inclusive searches + few theory-motivated exclusives?
- Still more:
 - Light new physics ($p \rightarrow \ell^+ + X, X \rightarrow SM$?).
 - Dark matter induced $\Delta B \& \Delta L$.

SK/HK,

DUNE,

JUNO,

Ονββ exp.?

Backup

$\Delta B = -\Delta L_{\tau} = 1$ operators

- d=7 operator: dssH $\bar{L}_{\tau} \propto \bar{\tau} \Xi^- + \dots$
- No neutrinos, two s quarks.
- Two-body tau decays but five-body nucleon decays!
- Off-shell τ and K, double suppression by G_F:

$$\tau(\mathbf{p} \to \mathbf{K}^+ \mu^+ \nu_\mu \pi^- \nu_\tau) \simeq \mathcal{O}(10^{28}) \operatorname{yr} \left(\frac{10^{-8}}{\mathrm{BR}(\tau \to \Xi\pi)} \right)$$

[**JH** & Watkins, 2405.18478]

• ΔB tau decays most competitive in hyperon channels.

New channels for Super-K & Belle II

 \blacktriangleright N π

Symmetries of the Standard Model

• Rephasing lepton and quark fields:

$$\begin{split} & \mathsf{U}(1)_\mathsf{B} \times \mathsf{U}(1)_{\mathsf{L}_\mathsf{e}} \times \mathsf{U}(1)_{\mathsf{L}_\mu} \times \mathsf{U}(1)_{\mathsf{L}_\tau} \\ &= \mathsf{U}(1)_{\mathsf{B}+\mathsf{L}} \times \mathsf{U}(1)_{\mathsf{B}-\mathsf{L}} \times \mathsf{U}(1)_{\mathsf{L}_\mu-\mathsf{L}_\tau} \times \mathsf{U}(1)_{\mathsf{L}_\mu+\mathsf{L}_\tau-2\mathsf{L}_\mathsf{e}} \,. \end{split}$$

• $U(1)_{B+L}$ broken non-perturbatively to \mathbb{Z}_3 ,

$$\Delta B = 3 \quad \wedge \quad \Delta L_e = \Delta L_\mu = \Delta L_ au = 1 \,,$$

but unobservable at low temperatures. ['t Hooft, PRL '76]

• True accidental global symmetry:

$$\mathbb{Z}_3^{(\mathsf{B}+\mathsf{L})/2} \times \mathsf{U}(1)_{\mathsf{B}-\mathsf{L}} \times \mathsf{U}(1)_{\mathsf{L}_\mu-\mathsf{L}_\tau} \times \mathsf{U}(1)_{\mathsf{L}_\mu+\mathsf{L}_\tau-2\mathsf{L}_e}.$$

$\Delta L = 2$

• Neutrinoless double β decay: (A,Z) \rightarrow (A,Z+2) + 2 e⁻

Half-life $T_{0 \ \nu\beta\beta}(^{76}\text{Ge})$ in yr

in β stable isotopes.

- Current limits ~ 10^{26} yr.
- $0\nu 2\beta \Leftrightarrow Majorana \nu$.

$\Delta L = 4$

- $\Delta L = 4$ in rare decays? (A,Z) \rightarrow (A,Z+4) + 4 e⁻!
- 3 candidates: ⁹⁶Zr, ¹³⁶Xe, ¹⁵⁰Nd.
 [JH, Rodejohann, EPL '13]
- First limit: $au_{0
 u4\beta}(^{150}\text{Nd}) > 10^{21}\text{yr}.$ [NEMO-3, PRL '17]
- Hard to find testable models. [Fonseca, Hirsch, PRD '18; see however Dasgupta, Kang, Popov, PRD '19]
- Could still explain matterantimatter asymmetry.
 [JH, PRD '13]

$p \rightarrow \mu^+ \mu^+ e^-$

- Minimal leptoquark example: $\phi_1 \sim ({f 3},{f 3},-2/3)\,,\,\phi_2 \sim ({f 3},{f 2},7/3)\,.$
- $L_{\mu}+2L_{e}-3L_{\tau}$ ensures simple structure $y_{j}\overline{L}_{\mu}\phi_{1}Q_{j}^{c}+f_{j}\overline{u}_{j}\phi_{2}L_{e}+\lambda\phi_{1}^{2}\phi_{2}H$.
- Final $\Delta B=1$ operator: $\frac{1}{\Lambda^6}QQuL_{\mu}L_{\mu}\overline{L}_{e}H$.
- Lattice QCD input: $\langle 0|uud|p \rangle$.

$$\Gamma(\mathbf{p} \rightarrow \mu^{+}\mu^{+}\mathbf{e}^{-}) \simeq \frac{\langle \mathbf{H} \rangle^{2} \beta^{2} \mathbf{m}_{\mathbf{p}}^{5}}{6144\pi^{3} \Lambda^{12}} \simeq \frac{(100 \text{TeV}/\Lambda)^{12}}{10^{33} \text{yr}}$$

[Hambye, **JH**, PRL '18]

Two-body nucleon decays

Channel	$ \Delta(B-L) $	$\frac{\Gamma^{-1}}{10^{30} \text{ yr}}$			
$p \rightarrow e^+ + \gamma$	0	41000 72	$n \to e^- + \pi^+$	2	65 79 (5300* 73)
$p \rightarrow e^+ + \pi^0$	0	16000 24	$n \to e^- + \rho^+$	2	62 79 $(217^*$ 65)
$p \to e^+ + \eta$	0	10000 73	$n \to e^- + K^+$	2	32 <mark>62</mark>
$p \rightarrow e^+ + \rho^0$	0	720 73	$n \to e^- + K^{*,+}$	2	
$p \to e^+ + \omega$	0	1600 <mark>73</mark>	$n \to e^+ + \pi^-$	0	5300 <mark>73</mark>
$p \to e^+ + K^0$	0	1000 74	$n \rightarrow e^+ + \rho^-$	0	217 <mark>65</mark>
$p \to e^+ + K^{*,0}$	0	84 65	$n \to e^+ + K^-$	0	17 <mark>65</mark>
$p \to \mu^+ + \gamma$	0	21000 72	$n \to e^+ + K^{*,-}$	0	
$p \to \mu^+ + \pi^0$	0	7700 24	$n \rightarrow \mu^- + \pi^+$	2	49 79 (3500^* 73)
$p \to \mu^+ + \eta$	0	4700 73	$n \to \mu^- + \rho^+$	2	$7 \ \underline{79} \ (228^* \ \underline{65})$
$p \to \mu^+ + \rho^0$	0	570 <mark>73</mark>	$n \to \mu^- + K^+$	2	57 <mark>62</mark>
$p \to \mu^+ + \omega$	0	2800 73	$n \to \mu^+ + \pi^-$	0	3500 <mark>73</mark>
$p \to \mu^+ + K^0$	0	1600 75	$n \to \mu^+ + \rho^-$	0	228 <u>65</u>
$p \rightarrow \nu + \pi^+$	0,2	390 <mark>76</mark>	$n \to \mu^+ + K^-$	0	26 <u>65</u>
$p \rightarrow \nu + \rho^+$	0,2	162 65	$n \rightarrow \nu + \gamma$	0,2	550 <mark>28</mark>
$p \rightarrow \nu + K^+$	0,2	5900 77	$n \rightarrow \nu + \pi^0$	0,2	1100 <u>76</u>
$p \to \nu + K^{*,+}$	0,2	130 78	$n \rightarrow \nu + \eta$	0,2	158 <mark>65</mark>
			$n \rightarrow \nu + \rho^0$	0,2	19 <mark>79</mark>
			$n \rightarrow \nu + \omega$	0,2	108 <mark>65</mark>
			$n \rightarrow \nu + K^0$	0,2	130 74
[14 Takhis	toy DDD '20	11	$n \to \nu + K^{*,0}$	0,2	78 65

[JH, Takhistov, PRD '20]

Three-body nucleon decays

Channel	$ \Delta(B-L) $	$\frac{1}{10^{30} \text{ yr}}$
$p \rightarrow e^- + e^+ + e^+$	0	793 65
$p \rightarrow e^- + e^+ + \mu^+$	0	529 <mark>65</mark>
$p \rightarrow e^+ + e^+ + \mu^-$	0	529 [*] 65
$p \rightarrow e^- + \mu^+ + \mu^+$	0	6 64 (359 [*] 65)
$p \rightarrow e^+ + \mu^- + \mu^+$	0	359 65
$p \rightarrow \mu^- + \mu^+ + \mu^+$	0	675 <mark>65</mark>
$p \rightarrow e^+ + 2\nu$	0,2	170 81
$p \rightarrow \mu^+ + 2\nu$	0,2	220 81
$p \rightarrow e^- + 2\pi^+$	2	30 62 (82* 65)
$p \rightarrow e^- + \pi^+ + \rho^+$	2	
$p \rightarrow e^- + K^+ + \pi^+$	2	75 65
$p \rightarrow e^+ + 2\gamma$	0	100 82 (793* 65)
$p \rightarrow e^+ + \pi^- + \pi^+$	0	82 65
$p \rightarrow e^+ + \rho^- + \pi^+$	0	
$p \rightarrow e^+ + K^- + \pi^+$	0	75* 65
$p \rightarrow e^+ + \pi^- + \rho^+$	0	
$p \rightarrow e^+ + \pi^- + K^+$	0	75* 65
$p \rightarrow e^+ + 2\pi^0$	0	147 65
$p \rightarrow e^+ + \pi^0 + \eta$	0	
$p \rightarrow e^+ + \pi^0 + \rho^0$	0	
$p \rightarrow e^+ + \pi^0 + \omega$	0	
$p \rightarrow e^+ + \pi^0 + K^0$	0	
$p \rightarrow \mu^- + 2\pi^+$	2	17 62 (133 [*] 65)
$p \rightarrow \mu^- + K^+ + \pi^+$	2	245 65
$p \rightarrow \mu^+ + 2\gamma$	0	529 [*] 65
$p \rightarrow \mu^+ + \pi^- + \pi^+$	0	133 65
$p \rightarrow \mu^+ + K^- + \pi^+$	0	245* 65
$p \rightarrow \mu^+ + \pi^- + K^+$	0	245 [*] 65
$p \rightarrow \mu^+ + 2\pi^0$	0	101 65
$p \rightarrow \mu^+ + \pi^0 + \eta$	0	
$p \rightarrow \mu^+ + \pi^0 + K^0$	0	
$p \rightarrow \nu + \pi^+ + \pi^0$	0,2	
$p \rightarrow \nu + \pi^+ + \eta$	0,2	
$p \rightarrow \nu + \pi^+ + \rho^0$	0,2	
$p \rightarrow \nu + \pi^+ + \omega$	0,2	
$p \rightarrow \nu + \pi^+ + K^0$	0,2	
$p \rightarrow \nu + \rho^+ + \pi^0$	0,2	
$p \rightarrow \nu + K^+ + \pi^0$	0.2	

Channel	$ \Delta(B-L) $	$\frac{\Gamma^{-1}}{10^{30} \text{ yr}}$
$n \rightarrow \nu + e^- + e^+$	0,2	257 <mark>65</mark>
$n \rightarrow \nu + e^- + \mu^+$	0,2	83 <mark>65</mark>
$n \rightarrow \nu + e^+ + \mu^-$	0,2	83* <mark>65</mark>
$n \rightarrow \nu + \mu^- + \mu^+$	0,2	79 65
$n \rightarrow 3\nu$	0,2,4	0.58 83
$n \rightarrow e^- + \pi^+ + \pi^0$	2	29 62 (52^* 65)
$n \to e^- + \pi^+ + \eta$	2	
$n \rightarrow e^- + \pi^+ + \rho^0$	2	
$n \to e^- + \pi^+ + \omega$	2	
$n \rightarrow e^- + \pi^+ + K^0$	2	
$n \rightarrow e^- + \rho^+ + \pi^0$	2	
$n \rightarrow e^- + K^+ + \pi^0$	2	
$n \rightarrow e^+ + \pi^- + \pi^0$	0	52 65
$n \rightarrow e^+ + \pi^- + \eta$	0	
$n \rightarrow e^+ + \pi^- + \rho^0$	0	
$n \rightarrow e^+ + \pi^- + \omega$	0	
$n \rightarrow e^+ + \pi^- + K^0$	0	18 82
$n \rightarrow e^+ + \rho^- + \pi^0$	0	
$n \rightarrow e^+ + K^- + \pi^0$	0	
$n \rightarrow \mu^- + \pi^+ + \pi^0$	2	34 62 (74* 65)
$n \rightarrow \mu^- + \pi^+ + \eta$	2	
$n \rightarrow \mu^- + \pi^+ + K^0$	2	
$n \rightarrow \mu^- + K^+ + \pi^0$	2	
$n \rightarrow \mu^+ + \pi^- + \pi^0$	0	74 65
$n \rightarrow \mu^+ + \pi^- + \eta$	0	
$n \rightarrow \mu^+ + \pi^- + K^0$	0	
$n \rightarrow \mu^+ + K^- + \pi^0$	0	
$n \rightarrow \nu + 2\gamma$	0,2	219 <mark>65</mark>
$n \rightarrow \nu + \pi^- + \pi^+$	0,2	
$n \rightarrow \nu + \rho^- + \pi^+$	0,2	
$n \rightarrow \nu + K^- + \pi^+$	0,2	
$n \rightarrow \nu + \pi^- + \rho^+$	0,2	
$n \rightarrow \nu + \pi^- + K^+$	0,2	
$n \rightarrow \nu + 2\pi^0$	0,2	
$n \rightarrow \nu + \pi^0 + \eta$	0,2	
$n \rightarrow \nu + \pi^0 + \rho^0$	0,2	
$n \rightarrow \nu + \pi^0 + \omega$	0,2	
$n \rightarrow \nu + \pi^0 + K^0$	0,2	
	-	

[JH, Takhistov, PRD '20] Does not include SK's 2020 limits on $p \rightarrow \ell \ell \ell$.

Two-body di-nucleon decays

Channel	$ \Delta(B-L) $	$\frac{\Gamma^{-1}}{10^{30} \text{ yr}}$
$pp \rightarrow e^+ + e^+$	0	4200 72
$pp \rightarrow \mu^+ + \mu^+$	0	4400 72
$pp \rightarrow e^+ + \mu^+$	0	4400 72
$pp \rightarrow e^+ + \tau^+$	0	
$pp \to \pi^+ + \pi^+$	2	72 115
$pp \to \pi^+ + \rho^+$	2	
$pp \to \pi^+ + K^+$	2	
$pp \to \pi^+ + K^{*,+}$	2	
$pp \to \rho^+ + \rho^+$	2	
$pp \to \rho^+ + K^+$	2	
$pp \to \rho^+ + K^{*,+}$	2	
$pp \to K^+ + K^+$	2	170 116
$pp \rightarrow K^+ + K^{*,+}$	2	
$pp \rightarrow K^{*,+} + K^{*,+}$	2	

$nn \rightarrow e^+ + e^-$	2	4200 72
$nn \rightarrow e^+ + \mu^-$	2	4400 72
$nn \to \mu^+ + e^-$	2	4400 72
$nn \rightarrow \mu^+ + \mu^-$	2	4400 72
$nn \rightarrow e^+ + \tau^-$	2	
$nn \rightarrow \tau^+ + e^-$	2	
$nn \rightarrow 2\nu$	0,2,4	1.4 83
$nn \rightarrow 2\gamma$	2	4100 72
$nn \to \gamma + \pi^0$	2	
$nn \to \gamma + \eta$	2	
$nn \to \gamma + \rho^0$	2	
$nn \to \gamma + \omega$	2	
$nn \to \gamma + \eta'$	2	
$nn \rightarrow \gamma + K^0$	2	
$nn \to \gamma + K^{*,0}$	2	
$nn \to \gamma + D^0$	2	
$nn \to \gamma + \phi$	2	
$nn \to \pi^- + \pi^+$	2	$0.7 \ \boxed{62} \ (72^* \ \boxed{115})$
$nn \rightarrow \pi^+ + \rho^-$	2	
$nn \rightarrow K^- + \pi^+$	2	
$nn \to K^{*,-} + \pi^+$	2	
$nn \rightarrow \pi^- + \rho^+$	2	
$nn \rightarrow K^+ + \pi^-$	2	
$nn \to K^{*,+} + \pi^-$	2	
$nn \rightarrow 2\pi^0$	2	404 115
$nn \rightarrow \eta + \pi^0$	2	
$nn \rightarrow \pi^0 + \rho^0$	2	
$nn \rightarrow \pi^0 + \omega$	2	
$nn \to \eta' + \pi^0$	2	
$nn \to K^0 + \pi^0$	2	
$nn \to K^{*,0} + \pi^0$	2	

Channel	$ \Delta(B-L) $	$\frac{\Gamma^{-1}}{10^{30} \text{ yr}}$
$nn \rightarrow \pi^0 + \phi$	2	
$nn \rightarrow 2\eta$	2	
$nn \rightarrow \eta + \rho^0$	2	
$nn \rightarrow \eta + \omega$	2	
$nn \rightarrow \eta + \eta'$	2	
$nn \rightarrow \eta + K^0$	2	
$nn \rightarrow \eta + K^{*,0}$	2	
$nn \rightarrow \eta + \phi$	2	
$nn \rightarrow 2\rho^0$	2	
$nn \rightarrow \rho^0 + \omega$	2	
$nn \rightarrow \eta' + \rho^0$	2	
$nn \rightarrow K^0 + \rho^0$	2	
$nn \rightarrow K^{*,0} + \rho^0$	2	
$nn \rightarrow \rho^0 + \phi$	2	
$nn \rightarrow \rho^- + \rho^+$	2	
$nn \rightarrow K^+ + \rho^-$	2	
$nn \rightarrow K^{*,+} + \rho^-$	2	
$nn \rightarrow K^- + \rho^+$	2	
$nn \rightarrow K^{*,-} + \rho^+$	2	
$nn \rightarrow 2\omega$	2	
$nn \rightarrow \eta' + \omega$	2	
$nn \rightarrow K^0 + \omega$	2	
$nn \rightarrow K^{*,0} + \omega$	2	
$nn \rightarrow \omega + \phi$	2	
$nn \rightarrow \eta' + K^0$	2	
$nn \rightarrow \eta' + K^{*,0}$	2	
$nn \rightarrow K^- + K^+$	2	170* 116
$nn \rightarrow K^+ + K^{*,-}$	2	
$nn \rightarrow K^- + K^{*,+}$	2	
$nn \rightarrow 2K^0$	2	
$nn \rightarrow K^{*,0} + K^0$	2	
$nn \rightarrow K^0 + \phi$	2	
$nn \rightarrow 2K^{*,0}$	2	
$nn \rightarrow K^{*,-} + K^{*,+}$	2	
WW / R R	4	

Channel	$ \Delta(B-L) $	$\frac{\Gamma^{-1}}{10^{30} \text{ yr}}$
$pn \rightarrow e^+ + \nu$	0,2	260 28
$pn \rightarrow \mu^+ + \nu$	0,2	200 28
$pn \rightarrow \tau^+ + \nu$	0,2	29 28
$pn \rightarrow \gamma + \pi^+$	2	
$pn \rightarrow \gamma + \rho^+$	2	
$pn \to \gamma + K^+$	2	
$pn \to \gamma + K^{*,+}$	2	
$pn \rightarrow \gamma + D^+$	2	
$pn \to \pi^+ + \pi^0$	2	$170 \ 115$
$pn \rightarrow \eta + \pi^+$	2	
$pn \to \pi^+ + \rho^0$	2	
$pn \to \pi^+ + \omega$	2	
$pn \rightarrow \eta' + \pi^+$	2	
$pn \rightarrow K^0 + \pi^+$	2	
$pn \rightarrow K^{*,0} + \pi^+$	2	
$pn \rightarrow \pi^+ + \phi$	2	
$pn \rightarrow \pi^0 + \rho^+$	2	
$pn \rightarrow K^+ + \pi^0$	2	
$pn \rightarrow K^{*,+} + \pi^0$	2	
$pn \rightarrow \eta + \rho^+$	2	
$pn \rightarrow \eta + K^+$	2	
$pn \rightarrow \eta + K^{*,+}$	2	
$pn \rightarrow \rho^+ + \rho^0$	2	
$pn \to K^+ + \rho^0$	2	
$pn \to K^{*,+} + \rho^0$	2	
$pn \rightarrow \rho^+ + \omega$	2	
$pn \to \eta' + \rho^+$	2	
$pn \rightarrow K^0 + \rho^+$	2	
$pn \rightarrow K^{*,0} + \rho^+$	2	
$pn \rightarrow \rho^+ + \phi$	2	
$pn \rightarrow K^+ + \omega$	2	
$pn \to K^{*,+} + \omega$	2	
$pn \to \eta' + K^+$	2	
$pn \to \eta' + K^{*,+}$	2	
$pn \to K^+ + K^0$	2	
$pn \to K^+ + K^{*,0}$	2	
$pn \to K^+ + \phi$	2	
$pn \to K^{*,+} + K^0$	2	
$pn \rightarrow K^{*,+} + K^{*,0}$	2	

[JH, Takhistov, PRD '20]

MPIK '24

$ppp \ \rightarrow \ e^{+}\pi^{+}\pi^{+}$

 e^{c} ν^{c} u^{c} d^{c} l Q H Symmetry Z_6 3 6 5 5 1 2 1 $\mathbb{Z}_6 \subset \mathsf{U}(1)_{2\mathsf{Y}-\mathsf{B}+3\mathsf{L}}$ [Babu, Gogoladze, Wang, '03] allows for d = 15 $\Delta B = 3\Delta L = 3$ operators $\frac{1}{\Lambda^{11}}Q^5d^4\ell, \ldots$ • ppp $\rightarrow e^+\pi^+\pi^+$, ppn $\rightarrow e^+\pi^+$, pnn $\rightarrow e^+\pi^0$, nn $\rightarrow \overline{n}\overline{\nu}, \ldots$ ⁷⁶Ge • $\tau(\text{pnn} \rightarrow \text{e}^+\pi^0) \simeq 3 \times 10^{33} \text{ yr } \left(\frac{\Lambda}{100 \text{ GeV}}\right)^{22}$. • Limits: 2pn $\tau(^{73}\text{Ge}(\text{pnn}) \rightarrow ^{70}\text{Gae}^+\pi^0) > 7 \times 10^{23} \text{ yr},$ 2np τ (⁷⁶Ge(ppn) \rightarrow ⁷³Zn e⁺ π ⁺) > 5 × 10²⁵ yr, $\tau(^{76}\text{Ge}(\text{ppp}) \rightarrow ^{73}\text{Cue}^+\pi^+\pi^+) > 5 \times 10^{25} \text{ yr}, \dots$ Q. 4290 [Majorana Demonstrator, PRD '19; see also EXO-200, '18] 0.499 s 1/2- 4 66

SK, JUNO, DUNE, HK?

$ppp \ \rightarrow \ e^{+}\pi^{+}\pi^{+}$

 e^{c} ν^{c} u^{c} d^{c} l Q H Symmetry Z_6 3 6 5 5 1 2 1 $\mathbb{Z}_6 \subset \mathsf{U}(1)_{2\mathsf{Y}-\mathsf{B}+3\mathsf{L}}$ [Babu, Gogoladze, Wang, '03] allows for d = 15 $\Delta B = 3\Delta L = 3$ operators $\frac{1}{\Lambda^{11}}Q^{5}d^{4}\ell, \ldots$ • ppp $\rightarrow e^+\pi^+\pi^+$, ppn $\rightarrow e^+\pi^+$, pnn $\rightarrow e^+\pi^0$, nn $\rightarrow \overline{n}\overline{\nu}$, ... ⁷⁶Ge • $\tau(\text{pnn} \rightarrow \text{e}^+\pi^0) \simeq 3 \times 10^{33} \text{ yr } \left(\frac{\Lambda}{100 \text{ GeV}}\right)^{22}$. 3p • Limits: 2pn $\tau(^{73}\text{Ge}(\text{pnn}) \rightarrow ^{70}\text{Gae}^+\pi^0) > 7 \times 10^{23} \text{ yr},$ 2np τ (⁷⁶Ge(ppn) \rightarrow ⁷³Zn e⁺ π ⁺) > 5 × 10²⁵ yr, $\tau(^{76}\text{Ge}(\text{ppp}) \rightarrow ^{73}\text{Cue}^+\pi^+\pi^+) > 5 \times 10^{25} \text{ vr}, \dots$ Q. 4290 [Majorana Demonstrator, PRD '19; see also EXO-200, '18]

SK, JUNO, DUNE, HK?

0.499 s 1/2- 4 66