Model building and phenomenology with leptoquarks

Admir Greljo

06.02.2023, MPIK, Heidelberg

Leptoquarks at the TeV scale?

Doršner, Fajfer, AG, Kamenik, Košnik; 1603.04993 (Physics Reports Review)

Wanted:

• A LQ with a TeV-scale mass and (some) $\mathcal{O}(1)$ couplings

Leptoquarks at the TeV scale?

Doršner, Fajfer, AG, Kamenik, Košnik; <u>1603.04993</u> (Physics Reports Review)

Wanted:

• A LQ with a TeV-scale mass and (some) $\mathcal{O}(1)$ couplings

Why?

<u>Phenomenology</u>

• Rich collider and flavor pheno?

<u>Theory</u>

• Quark-lepton unification!

Pati-Salam, SU(5), SO(10) GUT predict LQs but generically not in this mass-coupling range. New model building directions...

Outline

<u>Theory</u>

• A model building direction: Gauged flavour

PART II

<u>Phenomenology</u>

• Interpretation of $b \to s\ell\ell$ anomalies after the recent LHCb update

Phenomenology

• Future colliders: FCC-hh versus Muon Collider

Accidental Symmetries in the SM

$$q_i, \ell_i, U_i, D_i, E_i$$
 flavour $i = 1, 2, 3$

 \mathscr{L}_{SM} sans Yukawa: $U(3)_q \times U(3)_\ell \times U(3)_U \times U(3)_D \times U(3)_E$

 $-\mathscr{L}_{\text{Yuk}} = \bar{q}V^{\dagger}\hat{Y}_{u}\tilde{H}U + \bar{q}\hat{Y}_{d}HD + \bar{\ell}\hat{Y}_{e}HE$

 $[U(3)^5$ transformation and a singular value decomposition theorem]

$$\mathcal{L}_{\rm SM}: \qquad U(1)_B \times U(1)_e \times U(1)_\mu \times U(1)_\tau$$

- B L and $L_i L_j$ are exact
- B + L is anomalous: non-perturbative dynamics implies a selection rule $\Delta B = \Delta L = 0 \pmod{3}$

TeV-scale BSM?

- A viable model at the TeV-scale should not (*excessively*) violate the accidental symmetries.
- Not a generic case!

Example: Leptoquarks

• Generic TeV-scale LQs are dead!

Gauged U(1)_X \longrightarrow $\stackrel{e}{\checkmark}$ $\stackrel{\mu}{\checkmark}$ $\stackrel{\tau}{\checkmark}$ + leptoquarks

<u>The storyline</u>

- Selection rules for a TeV-scale leptoquark
- Neutrino masses
- Proton stability
- Unification

A $U(1)_X$ model

The initial model $U(1)_{B-3L_{\mu}}$ AG, Stangl, Thomsen; 2103.13991

The generalisation

$$X = 3m(B - L) - n(2L_{\mu} - L_e - L_{\tau}) ,$$

gcd(m,n) = 1

Davighi, AG, Thomsen; <u>2202.05275</u>

A $U(1)_X$ model

The initial model $U(1)_{B-3L_{\mu}}$ AG, Stangl, Thomsen; 2103.13991

The generalisation

$$X = 3m(B - L) - n(2L_{\mu} - L_e - L_{\tau}) ,$$

gcd(m,n) = 1

Davighi, AG, Thomsen; 2202.05275

		Fields	$U(1)_X$
	Quarks	q_i,u_i,d_i	m
	Electrons and taus	$\ell_{1,3},e_{1,3},\nu_{1,3}$	n-3m
	Muons	ℓ_2,e_2,ν_2	-2n-3m
	Higgs	Н	0
$(\mathbf{\bar{3}}, 3/1)_{1/3}$ –	– Leptoquarks	S_3,S_1	2m+2n
	Scalars	$\phi_{e au}$	6m-2n
	(SIM singlets)	ϕ_{μ}	6m+n

Gauge symmetry selection rules:

Selection rules

Gauge symmetry selection rules:

Selection rules

Neutrino Masses

- The PMNS is full of $\mathcal{O}(1)$ elements.
- The correct neutrino masses and mixings dictate the $U(1)_X$ breaking.
- A dense Majorana mass matrix needs two SM-singlet scalar fields with charges 6m 2n and 6m + n to get a VEV

- More general than two-zero minor structure type D_1^R Asai; 1907.04042
- This is enough to accommodate for:
 - Neutrino oscillations data,
 - The Planck limit on the sum of neutrino masses,
 - The absence of neutrinoless double beta decay.

Neutrino Masses

Neutrino Masses

In the $U(1)_X$ broken phase one can **naively** write renormalisable terms qqS^* and $q_i \ell_j S$ that violate $U(1)_B \times U(1)_e \times U(1)_\mu \times U(1)_\tau$

- What happens?
- Is there proton decay? cLFV?

$\phi_{e au}$	6m-2n
ϕ_{μ}	6m+n

• Fixed by neutrinos

$\phi_{e au}$	6m-2n
ϕ_{μ}	6m+n

• Fixed by neutrinos

 $k = \gcd([\phi_{e\tau}]_X, \, [\phi_{\mu}]_X)$

$$e^{i\frac{2\pi}{k}[\phi]_X}\phi=\phi$$

- The scalars $\phi_{e au}$ and ϕ_{μ} are Γ singlets
- An unbroken discrete subgroup $\Gamma \subset U(1)_X$ acting on matter in the IR

$\phi_{e au}$	6m-2n
ϕ_{μ}	6m+n

• Fixed by neutrinos

$$k = \gcd([\phi_{e\tau}]_X, \ [\phi_{\mu}]_X)$$

$$e^{i\frac{2\pi}{k}[\phi]_X}\phi=\phi$$

- The scalars $\phi_{e au}$ and ϕ_{μ} are Γ singlets
- An unbroken discrete subgroup $\Gamma \subset U(1)_X$ acting on matter in the IR
- The diquark operators qqS^* are banned by Γ when:

 $(m, n) = (3a + r, 9b + 3r), \text{ for } r \in \{1, 2\}, \\ (a, b) \in \mathbb{Z}^2, \text{ and } \gcd(3a + r, b - a) = 1. \end{cases} \qquad \Gamma \cong \begin{cases} \mathbb{Z}_9, & \text{for } b + r \in 2\mathbb{Z} + 1\\ \mathbb{Z}_{18}, & \text{for } b + r \in 2\mathbb{Z} \end{cases}$

$\phi_{e au}$	6m-2n
ϕ_{μ}	6m+n

Fixed by neutrinos

 $k = \gcd([\phi_{e\tau}]_X, \, [\phi_\mu]_X)$

$$e^{i\frac{2\pi}{k}[\phi]_X}\phi=\phi$$

- The scalars $\phi_{e au}$ and ϕ_{μ} are Γ singlets
- An unbroken discrete subgroup $\Gamma \subset U(1)_X$ acting on matter in the IR
- The diquark operators qqS^* are banned by Γ when:

 $(m, n) = (3a + r, 9b + 3r), \quad \text{for} \quad r \in \{1, 2\}, \\ (a, b) \in \mathbb{Z}^2, \text{ and } \gcd(3a + r, b - a) = 1.$ $\Gamma \cong \begin{cases} \mathbb{Z}_9, & \text{for } b + r \in 2\mathbb{Z} + 1\\ \mathbb{Z}_{18}, & \text{for } b + r \in 2\mathbb{Z} \end{cases}$

- No proton decay!
- Both B L and the lepton-flavoured factor required! $X = 3m(B L) n(2L_{\mu} L_e L_{\tau})$

$b + r \pmod{2}$	Γ	l	q	S	$qS\ell$	qS^*q
0	\mathbb{Z}_{18}	9(b-a)	3a+r	6a + 8r	0	12r
1	\mathbb{Z}_9	0	3a + r	6a + 8r	0	3r

Charges under the remnant discrete symmetry $\boldsymbol{\Gamma}$

$b+r \pmod{2}$	Γ	ℓ	q	S	$qS\ell$	qS^*q
0	\mathbb{Z}_{18}	9(b-a)	3a+r	6a + 8r	0	12r
1	\mathbb{Z}_9	0	3a + r	6a + 8r	0	3r

Charges under the remnant discrete symmetry $\boldsymbol{\Gamma}$

• The Γ protection goes beyond just banning the diquark operators. Integrate out S. Selection rule:

$$\Delta B = 0 \pmod{3}$$

Exact proton stability to all orders in the SMEFT!

$b+r \pmod{2}$	Γ	ℓ	q	S	$qS\ell$	qS^*q
0	\mathbb{Z}_{18}	9(b-a)	3a+r	6a + 8r	0	12r
1	\mathbb{Z}_9	0	3a + r	6a + 8r	0	3r

Charges under the remnant discrete symmetry $\boldsymbol{\Gamma}$

• The Γ protection goes beyond just banning the diquark operators. Integrate out S. Selection rule:

$$\Delta B = 0 \pmod{3}$$

Exact proton stability to all orders in the SMEFT!

- Neutron—antineutron oscillations also forbidden
- $\Delta B = 3$ processes are allowed, in analogy to sphalerons.

What about cLFV?

- Γ is lepton flavour universal, otherwise no PMNS.
- cLFV through higher-dim. operators in the $U(1)_X$ -invariant effective theory:

$$\frac{1}{\Lambda^2} \phi_{e\tau} \phi_{\mu}^* \, q S_{1/3} \ell_{1,3} \qquad \frac{1}{\Lambda^2} \phi_{e\tau} \phi_{\mu}^* \, u S_1 e_{1,3}$$

• A modest scale separation is sufficient to suppress cLFV processes to a level compatible with current bounds.

Deeper into the UV: Unification

Tentative gauge-flavour unification scenario.

Comments on $R_{K^{(*)}}$

<u>The storyline</u>

- Interpretation of $b \to s\ell\ell$ anomalies after the recent LHCb update

Drell-Yan versus B-decays

The status of $b \rightarrow s\ell\ell$ anomalies

• Anomalies in $b \rightarrow s \mu \mu$

cf. Renato Quagliani, CERN seminar 20.12.2022.

 $b \rightarrow s \mu^+ \mu^-$ differential decay rates

 $b \rightarrow s\mu^+\mu^-$ angular analyses

- \blacklozenge Intriguing coherent and consistent pattern
 - ▶ However, *charm-loops* can mimic shift in C_9

• But Lepton Flavor Universality ratios are SM-like

LHCb, 2212.09153

The EFT fit

AG, Salko, Smolkovic, Stangl; 2212.10497

LFU models for $b \rightarrow s\ell\ell$

Tree-level models

• LFU Z'

 $U(1)_{B-L}$ $U(1)_{3B_3-L}$

• LFU LQ *Single LQ \Rightarrow cLFV

> Mass/Coupling degeneracy Gauged flavour (Part I) ?

S

The EFT fit

AG. Salko. Smolkovic. Stangl: 2212.10497

LFU models: Z'

+

• The bounds from

are constraining

LFU models: Z'

LFU leptoquark

Future Colliders

<u>The storyline</u>

- New physics in $b \rightarrow s \mu \mu$: FCC-hh versus a Muon Collider

Motivation

- Short-distance $bs\mu\mu$ contact interaction at the level of $\mathcal{O}(10^{-5})G_F$
 - \Longrightarrow the violation of perturbative unitarity $\,\,\lesssim\,100\,TeV$

\implies Future Colliders

Competitors

Collider	C.o.m. Energy	Luminosity	Label
LHC Run-2	$13 { m TeV}$	$140 { m ~fb^{-1}}$	LHC
HL-LHC	$14 { m TeV}$	6 ab^{-1}	HL-LHC
FCC-hh	$100 { m TeV}$	30 ab^{-1}	FCC-hh
Muon Collider	3 TeV	$1 {\rm ~ab^{-1}}$	MuC3
Muon Collider	$10 { m TeV}$	$10 {\rm ~ab^{-1}}$	MuC10
Muon Collider	$14 { m TeV}$	20 ab^{-1}	MuC14

The scope

New Physics benchmarks:

I. Semileptonic 4F interactions

2. Z'

[See backup slides]

The Muon Beam

- Collinear radiation: Spreads the muon energy to lower values and generates different initial states \implies Parton Distribution Functions
- We cross-check and numerically solve the DGLAP equations from (Han et al, 2007.14300, 2103.09844) with appropriate initial conditions at the LL accuracy
- Selected PDFs at Q = 3 TeV:

Х

The Muon Beam

Parton luminosities

$$\mathcal{L}_{ij}(\tau) = \int_{\tau}^{1} \frac{dx}{x} f_i(x,m) f_j\left(\frac{\tau}{x},m\right)$$

$$m^2 = (p_i + p_j)^2$$
$$\tau = m^2/s_0$$

Azatov, Garosi, AG, Marzocca, Salko, Trifinopoulos; 2205.13552

The signatures at MuC

$$m_X < \sqrt{s_0}$$

$$m_X > \sqrt{s_0}$$

- Kinematical features at $m_{\mu\mu} \sim m_X$ e.g. a resonance peak
- Corrections to the bins $m_{\mu\mu} \approx \sqrt{s_0}$ ''fifth force searches''

- Monotonously decreasing luminosities in proton colliders • Corrections to the bins $m_{\mu\mu} \approx \sqrt{s_0}$ ''EFT searches''

Admir Greljo | Model building and phenomenology with leptoquarks

Scalar Leptoquark

$$S_{3} \sim (\bar{\mathbf{3}}, \mathbf{3}, 1/3) \qquad \mathcal{L}_{S_{3}}^{\text{int}} = \lambda_{i\mu} \,\overline{Q_{L}^{ic}} \,\epsilon \,\sigma^{I} L_{L}^{2} S_{3}^{I} + \text{h.c.} ,$$

$$= -\lambda_{i\mu} S_{3}^{(1/3)} (V_{ji}^{*} \overline{u_{L}^{jc}} \mu_{L} + \overline{d_{L}^{ic}} \nu_{\mu}) + \sqrt{2} \lambda_{i\mu} \left(V_{ji}^{*} S_{3}^{(-2/3)} \overline{u_{L}^{jc}} \nu_{\mu} - S_{3}^{(4/3)} \overline{d_{L}^{ic}} \mu_{L} \right) + \text{h.c.}$$

Figure 13. The 5σ discovery prospects at future colliders for the S_3 leptoquark assuming the $U(2)^3$ quark flavour symmetry and the exclusive leptoquark coupling to muons (see Section 6.1).

Scalar Leptoquark

$$bs\mu\mu: \quad \lambda_{b\mu}\lambda_{s\mu} = -8.4 \times 10^{-4} \left(\frac{M_{S_3}}{\text{TeV}}\right)^2$$

Resonant Leptoquark production

From the lepton PDF inside the proton

Buonocore, Haisch, Nason, Tramontano, Zanderighi; 2005.06475 AG, Selimovic; 2012.02092 Haisch, Polesello; 2012.11474

35

• NLO QCD + QED matched to parton shower: POWHEG + HERWIG implementation Buonocore, AG, Krack, Nason, Selimovic, Tramontano, Zanderighi; 2209.02599

Conclusions

- Gauged lepton flavour \implies Selection rules for TeV-scale Leptoquarks
- A mechanism to render the proton *exactly* stable to all orders in EFT: Spontaneously broken lepton-flavoured gauged *U*(1) in the UV to generate neutrino masses, leaving a discrete symmetry in the IR
- Complementarity between high-mass Drell-Yan tails and B decays
- Status of $b \to s\ell\ell$ anomalies after the $R_{K^{(*)}}$ update
- A 3 TeV MuC ~ FCC-hh if NP shows up in $b \rightarrow s\mu\mu$

The $U(1)_X$ atlas

- 18 chiral fermions
 - $Q_i \sim (\mathbf{3}, \mathbf{2}, \frac{1}{6}, X_{Q_i}), \qquad U_i \sim (\mathbf{3}, \mathbf{1}, \frac{2}{3}, X_{U_i}), \qquad D_i \sim (\mathbf{3}, \mathbf{1}, -\frac{1}{3}, X_{D_i}), \\ L_i \sim (\mathbf{1}, \mathbf{2}, -\frac{1}{2}, X_{L_i}), \qquad E_i \sim (\mathbf{1}, \mathbf{1}, -1, X_{E_i}), \qquad N_i \sim (\mathbf{1}, \mathbf{1}, 0, X_{N_i}).$
- Six anomaly cancelation conditions:

$$\begin{split} &\mathrm{SU}(3)_{C}^{2} \times \mathrm{U}(1)_{X}: \ \sum_{i=1}^{3} (2X_{Q_{i}} - X_{U_{i}} - X_{D_{i}}) = 0 \ , \\ &\mathrm{SU}(2)_{L}^{2} \times \mathrm{U}(1)_{X}: \ \sum_{i=1}^{3} (3X_{Q_{i}} + X_{L_{i}}) = 0 \ , \\ &\mathrm{U}(1)_{Y}^{2} \times \mathrm{U}(1)_{X}: \ \sum_{i=1}^{3} (X_{Q_{i}} + 3X_{L_{i}} - 8X_{U_{i}} - 2X_{D_{i}} - 6X_{E_{i}}) = 0 \ , \\ &\mathrm{Gravity}^{2} \times \mathrm{U}(1)_{X}: \ \sum_{i=1}^{3} (6X_{Q_{i}} + 2X_{L_{i}} - 3X_{U_{i}} - 3X_{D_{i}} - X_{E_{i}} - X_{N_{i}}) = 0 \ , \\ &\mathrm{U}(1)_{Y} \times \mathrm{U}(1)_{X}^{2}: \ \sum_{i=1}^{3} (X_{Q_{i}}^{2} - X_{L_{i}}^{2} - 2X_{U_{i}}^{2} + X_{D_{i}}^{2} + X_{E_{i}}^{2}) = 0 \ , \\ &\mathrm{U}(1)_{X}^{3}: \ \sum_{i=1}^{3} (6X_{Q_{i}}^{3} + 2X_{L_{i}}^{3} - 3X_{U_{i}}^{3} - 3X_{D_{i}}^{3} - X_{E_{i}}^{3} - X_{N_{i}}^{3}) = 0 \end{split}$$

• Integer charges: $-10 \le X_{F_i} \le 10$ Allanach, Davighi, Melville; 1812.04602 21'546'920 inequivalent solutions (up to flavour permutation, etc)

Lepton-flavoured catalog

Quark flavour universal class

- $-10 \le X_{F_i} \le 10$ [276 inequivalent solutions]
- $Y_{u,d}$ are allowed => $X_{Q_i} = X_{U_j} = X_{D_k}$ $(X_H = 0)$
- Muoquark requirement eg. $S_3 LQ: X_{L_2} \neq \{X_{L_{1,3}}, -3X_q\}$ [273 inequivalent solutions]
- Further classification:

 Y_e allowed => vector category : $X_{L_i} = X_{E_i}$ [252 inequivalent solutions] chiral category : the rest. [21 inequivalent solutions]

Contact interactions

Figure 7. Sensitivity reach (95%CL) for the $(\bar{s}_L \gamma_\alpha b_L)(\bar{\mu}_L \gamma^\alpha \mu_L)$ contact interaction as function of the upper cut on the final-state invariant mass, compared to the value required to fit $bs\mu\mu$ anomalies (dashed orange line).

Contact interactions

Figure 8. Sensitivity reach (95%CL) for the $(\bar{b}_L \gamma_\alpha b_L)(\bar{\mu}_L \gamma^\alpha \mu_L)$ contact interaction as function of the upper cut on the final-state invariant mass. Solid (dashed) lines represent the limit for positive (negative) values of $C_{bb\mu\mu}$. The orange dotted and dashed lines shows reference values in relation to the $bs\mu\mu$ anomalies fit, with or without a $1/V_{ts}$ enhancement of the bb operator compared to the bs one, respectively.

$$\begin{aligned} \mathbf{Z}^{2} \text{ models: } B_{3} - L_{\mu} \\ \mathcal{L}_{Z'_{B_{3}-L_{\mu}}}^{\text{int}} &= -g_{Z'}Z'_{\alpha} \left[\frac{1}{3} \bar{Q}_{L}^{3} \gamma^{\alpha} Q_{L}^{3} + \frac{1}{3} \bar{b}_{R} \gamma^{\alpha} b_{R} + \frac{1}{3} \bar{t}_{R} \gamma^{\alpha} t_{R} - \bar{L}_{L}^{2} \gamma^{\alpha} L_{L}^{2} - \bar{\mu}_{R} \gamma^{\alpha} \mu_{R} + \left(\frac{1}{3} \epsilon_{sb} \bar{Q}_{L}^{2} \gamma^{\alpha} Q_{L}^{3} + \text{h.c.} \right) + \mathcal{O}(\epsilon_{sb}^{2}) \right] \end{aligned}$$

Figure 9. Discovery reach at 5σ for the $B_3 - L_{\mu}$ model with $\epsilon_{sb} = 0$, for different final states at each collider (as indicated by the labels). The region excluded at 95% CL by LHC [111] is above the black line while in the dark gray region the Z' has a large width, signaling a loss of perturbativity.

Z' models: $B_3 - L_{\mu}$

$$bs\mu\mu: \ \epsilon_{sb} = -1.7 \times 10^{-3} \left(\frac{M_{Z'}}{g_{Z'} \text{TeV}}\right)^2$$

Z' models: $L_{\mu} - L_{\tau}$

 $\mathcal{L}_{Z'_{L\mu-L\tau}}^{\text{int}} = -g_{Z'}Z'_{\alpha} \left[\bar{L}_{L}^{2}\gamma^{\alpha}L_{L}^{2} + \bar{\mu}_{R}\gamma^{\alpha}\mu_{R} - \bar{L}_{L}^{3}\gamma^{\alpha}L_{L}^{3} - \bar{\tau}_{R}\gamma^{\alpha}\tau_{R} + |\epsilon_{b}|^{2}\bar{Q}_{L}^{2}\gamma^{\alpha}Q_{L}^{3} + |\epsilon_{s}|^{2}\bar{Q}_{L}^{2}\gamma^{\alpha}Q_{L}^{2} + (\epsilon_{b}\epsilon_{s}^{*}\bar{Q}_{L}^{2}\gamma^{\alpha}Q_{L}^{3} + \text{h.c.}) + \dots \right]$

Figure 11. Discovery reach at 5σ for the $L_{\mu} - L_{\tau}$ model with $\epsilon_s = \epsilon_b = 0$ in Eq. (5.6). In the dark gray region the Z' has a large width, signaling a loss of perturbativity.

Z' models: $L_{\mu} - L_{\tau}$

$$bs\mu\mu: \epsilon_b\epsilon_s^* = -5.7 \times 10^{-4} \left(\frac{M_{Z'}}{g_{Z'}\text{TeV}}\right)^2$$

0.5

1

5 10

50

Vector Leptoquark

Vector Leptoquark

$$bs\mu\mu: \quad \lambda_{b\mu}\lambda_{s\mu} = -8.4 \times 10^{-4} \left(\frac{M_{U_1}}{\text{TeV}}\right)^2$$

