Leptogenesis and the Flavour Structure of the Seesaw

based on: hep-ph/0609038 (JCAP 0611 (2006) 011) with S.F. King, A. Riotto hep-ph/0611232 (JCAP 0702 (2007) 024) with A.M. Teixeira arXiv:0704.1591 (Phys. Rev. D76 (2007) 023512)

Seminar @ MPIK, January 28, 2008

Problem in Cosmology: The baryon asymmetry of the universe

How was the observed baryon asymmety of the universe (BAU) generated?

Problem in Particle Physics: Origin of neutrino masses

LSND:

if correct, not

(MiniBooNE)

from v-oscillations

• Strong evidence for neutrino oscillations:

Summary: Present knowledge on neutrino masses & mixing

	Best-fit value	Range	C.L.
$ heta_{12} \left[\begin{array}{c} \circ \end{array} ight]$	33.2	29.3 - 39.2	$99\%~(3\sigma)$
$ heta_{23}$ [°]	45.0	35.7 - 55.6	$99\%~(3\sigma)$
$ heta_{13} \ [\ ^\circ]$	-	0.0 - 11.5	$99\%~(3\sigma)$
$\Delta m^2_{21}~[{\rm eV^2}]$	$7.9\cdot 10^{-5}$	$7.1\cdot 10^{-5} - 8.9\cdot 10^{-5}$	$99\%~(3\sigma)$
$ \Delta m^2_{31} ~[{\rm eV^2}]$	$2.6\cdot 10^{-3}$	$2.0\cdot 10^{-3} - 3.2\cdot 10^{-3}$	$99\%~(3\sigma)$

- Two mixing angles large (θ₂₃ close to maximal)
- Constraints from 0vββ-decay, Tritium β-decay & cosmology:
 m_v below about 0.5 eV
- Open questions: CP violation, mass scale & ordering, θ₁₃, ...

A possible solution to both problems: Type I & II seesaw mechanism

Type I Seesaw

$$m_{\rm LL}^{\rm I} \approx -\frac{v_u^2}{2} Y_\nu^T M_{\rm RR}^{-1} Y_\nu$$

P. Minkowski (1977), Gell-Mann, Glashow, Mohapatra, Ramond, Senjanovic, Slanski, Yanagida (1979/1980) Type I + Triplet Seesaw
 Type II Seesaw

Lazarides, Magg, Mohapatra, Schechter, Senjanovic, Shafi, Valle, Wetterich (1981)

The 6x6 neutrino mass matrix and the seesaw

$$\mathscr{L}_{M_{\nu}} = -\frac{1}{2} \left(\frac{\overline{\nu_{\mathrm{L}}^{f}}}{\overline{\nu_{\mathrm{R}}^{\mathrm{C}i}}} \right)^{T} \left(\begin{array}{cc} (m_{\mathrm{LL}}^{\mathrm{II}})_{fg} & (m_{\mathrm{LR}})_{fj} \\ (m_{\mathrm{LR}}^{T})_{ig} & (M_{\mathrm{RR}})_{ij} \end{array} \right) \left(\begin{array}{c} \nu_{\mathrm{L}}^{\mathrm{C}g} \\ \nu_{\mathrm{R}}^{j} \end{array} \right) + \mathrm{h.c.}$$

(3 left-handed and 3 right-handed neutrinos)

Approximate block-diagonalization for heavy right-handed neutrinos:

Effective mass matrix of the light neutrinos

Leptogenesis: The mechanism

Out-of-equilibrium decay of heavy RH
 neutrinos in the early universe
 \Rightarrow lepton asymmetries ΔL_{α} Fukugita, Yanagida ('86)

 Sphaleron processes (conserve B - L) within SM (MSSM) partly convert lepton asymmetries into baryon asymmetry ΔB

Motivation

- Leptogenesis is an attractive mechanism, intensively studied ...
- New aspect got attention (~ 2 years ago): Flavour-dependence!
- Consequence: Several issues have to be revisited:
 - Bounds on $\varepsilon_{1,\alpha}$, M_{R1} , T_{RH} , v-mass scale (?)
 - How does the seesaw flavour structure affect thermal leptogenesis?
 - How does leptogenesis in type I seesaw compare to leptogenesis in type II?
- Typically people consider leptogenesis in the context of the SM ...
- However: Leptogenesis operates at very high energies >> M_{EW} \rightarrow hierarchy problem (new physics @ leptogenesis scale(s) scales)
- Possible solution: low energy supersymmetry
- Question: Flavour-dependent leptogenesis in MSSM ↔ SM?

Outline

- <u>Part 1</u>: Computation of the baryon asymmetry via leptogenesis: *Restrictions:* thermal leptogenesis via v_{R1}-decay; M_{R1} << M_{R2}, M_{R3}, M_Δ *Include:* type I and type II seesaw; flavour-dependent treatment; MSSM & SM; effects of reheating temperature
 - Flavour-dependent decay asymmetries $\varepsilon_{1,\alpha}$
 - Flavour-dependent Boltzmann equations \rightarrow efficiency factor η_{α}
- ⇒ Part 2: General Bounds ($\epsilon_{1,\alpha}$, M_{R1} , T_{RH} , m_{ν} (?))
- Part 3: Impact of the flavour structure of the (type I) seesaw on the producede BAU from thermal leptogenesis
 - Classes of models: 'Sequential RH neutrino Dominance (SD)'
 - Fully general, model independent (R-matrix parametersation)
- Summary & Conclusions

When does flavour matter ... ?

- If flavour matters depends on whether the charged lepton Yukawa interactions are in/out of thermal equilibrium.
- Sor which T is y_α in thermal equillibrium? Compare Γ_{yα} ≈ 5 x 10⁻³ y_α² T with H(T) ∝ T²
- Flavour-independent approximation (considered in most studies until recently) only appropriate for T > 10¹² GeV !

Barbieri et al ('99), Abada et al ('06), Nardi et al ('06)

When does flavour matter ... ?

In the SM:

- below $\approx 10^{12}$ GeV, interaction mediated by y₁ in thermal eqilibrium
- below $\approx 10^9$ GeV, interaction mediated by $y_{\tau} \& y_{\mu}$ in thermal equilibrium
- As we will see: last case in conflict with bounds on M_{R1}
 SM: 1 or 2 independent flavours

Barbieri et al ('99), Abada et al ('06), Nardi et al ('06)

When flavour matters: MSSM

- Important difference in the MSSM: for e, μ, τ y^{MSSM} = ySM (1+tan²β)^{1/2} Consequence: relevant T by changes by x (1+tan²β) !
- In the MSSM: (e.g. $\tan \beta = 30$)
 - below $\approx 10^{15}$ GeV, interaction mediated by y_{τ} in th. eq.
 - below $\approx 10^{12}$ GeV, interaction mediated by $y_{\tau} \& y_{\mu}$ in th. eq.
- In the many interesting cases in the MSSM (T_{RH} constraints),
 3 independent flavours !

S.A., S.F. King, A. Riotto ('06)

Flavour-dependent Boltzmann equations

Differential equations for the number densities of the lightest RH neutrino (Y_{N1}) and for the <u>independent</u> B/3 – L_a asymmetries (Y_{Aa})

> $A_{\alpha\beta}$: induces a coupling between the diff. Eqs. for the asymmetries $Y_{\Delta\alpha}$

 $\gamma_{\rm p}$: production and decay of RH neutrinos

 $(z = M_1 / T)$

$$\frac{\mathrm{d}Y_{N_1}}{\mathrm{d}z} = \frac{-z}{sH(M_1)} (\gamma_D + \gamma_{\mathrm{S},\Delta L=1}) \left(\frac{Y_{N_1}}{Y_{N_1}^{\mathrm{eq}}} - 1\right),$$

$$\frac{\mathrm{d}Y_{\Delta_{\alpha}}}{\mathrm{d}z} = \frac{-z}{sH(M_1)} \left[\varepsilon_{1,\alpha} (\gamma_D + \gamma_{\mathrm{S},\Delta L=1}) \left(\frac{Y_{N_1}}{Y_{N_1}^{\mathrm{eq}}} - 1\right) - \left(\frac{\gamma_D^{\alpha}}{2} + \gamma_{\mathrm{W},\Delta L=1}^{\alpha}\right) \frac{\sum_{\beta} A_{\alpha\beta} Y_{\Delta_{\beta}}}{Y_{\ell}^{\mathrm{eq}}} \right]$$

 $\epsilon_{L\alpha}$: decay asymmetries (into L_a + H)

$$Y_B^{\rm SM} = \frac{12}{37} \sum_{\alpha} Y_{\Delta_{\alpha}}^{\rm SM}$$

 γ_{D}^{α} : inverse decays and scattering processes which 'wash out' asymmetries in flavour α , but are also essential for their generation

SM: Barbieri et al ('99), Abada et al ('06), Nardi et al ('06) MSSM: S.A., S.F. King, A. Riotto ('06)

The produced BAU (SM)

Two ingredients:

- the decay asymmetries $\varepsilon_{1,\alpha}$ for the independent flavours
- the 'efficiency factor' η_{α} with which the asymmetries $Y_{\Delta\alpha}$ are generated (numerically, from flavour-dependent Boltzmann equations)

The produced BAU (SUSY case)

Note: The above ansatz uses already $\varepsilon_{1,\alpha}^{\text{MSSM}} = \varepsilon_{1,\tilde{\alpha}}^{\text{MSSM}} = \varepsilon_{\tilde{1},\alpha}^{\text{MSSM}} = \varepsilon_{\tilde{1},\tilde{\alpha}}^{\text{MSSM}}$, where:

$$\varepsilon_{1,\alpha} = \frac{\Gamma_{N_{1}\ell_{\alpha}} - \Gamma_{N_{1}\overline{\ell}_{\alpha}}}{\sum_{\alpha} (\Gamma_{N_{1}\ell_{\alpha}} + \Gamma_{N_{1}\overline{\ell}_{\alpha}})}, \quad \varepsilon_{1,\widetilde{\alpha}} = \frac{\Gamma_{N_{1}\widetilde{\ell}_{\alpha}} - \Gamma_{N_{1}\widetilde{\ell}_{\alpha}}}{\sum_{\alpha} (\Gamma_{N_{1}\widetilde{\ell}_{\alpha}} - \Gamma_{\widetilde{N}_{1}\overline{\ell}_{\alpha}})},$$
$$\varepsilon_{\widetilde{1},\alpha} = \frac{\Gamma_{\widetilde{N}_{1}\ell_{\alpha}} - \Gamma_{\widetilde{N}_{1}\overline{\ell}_{\alpha}}}{\sum_{\alpha} (\Gamma_{\widetilde{N}_{1}\ell_{\alpha}} + \Gamma_{\widetilde{N}_{1}\overline{\ell}_{\alpha}})}, \quad \varepsilon_{\widetilde{1},\widetilde{\alpha}} = \frac{\Gamma_{\widetilde{N}_{1}\widetilde{\ell}_{\alpha}} - \Gamma_{\widetilde{N}_{1}^{*}\widetilde{\ell}_{\alpha}^{*}}}{\sum_{\alpha} (\Gamma_{\widetilde{N}_{1}^{*}\ell_{\alpha}} + \Gamma_{\widetilde{N}_{1}^{*}\overline{\ell}_{\alpha}})},$$

Step 1: Decay asymmetries

⇒ Decay of the lightest RH neutrino $(v_R^1 \rightarrow L^f H_{\mu})$: Tree-level \leftrightarrow 1-loop

Type I: L. Covi, E. Roulet, F. Vissani ('96) Type II: S.A., S.F. King ('04)

Step 1: Decay asymmetries

⇒ Results: in the limit $M_{R1} << M_{R2} << M_{R3}$ and $M_{R1} << M_{\Delta}$

in the SM: (Y_e diagonal)

$$\varepsilon_{1,f}^{\rm SM} = \frac{3}{16\pi} \underbrace{M_{\rm R1}}_{v_{\rm u}^2} \underbrace{\sum_{fg} \operatorname{Im} \left[(Y_{\nu}^*)_{f1} (Y_{\nu}^*)_{g1} (m_{\rm LL}^{\rm I} + m_{\rm LL}^{\rm II})_{fg} \right]}_{(Y_{\nu}^{\dagger} Y_{\nu})_{11}}$$

• in the MSSM: (Y diagonal)

$$\varepsilon_{1,f}^{\text{MSSM}} = \frac{3}{8\pi} \frac{M_{\text{R1}}}{v_{\text{u}}^2} \sum_{fg} \text{Im} \left[(Y_{\nu}^*)_{f1} (Y_{\nu}^*)_{g1} (m_{\text{LL}}^{\text{I}} + m_{\text{LL}}^{\text{II}})_{fg} \right]$$

link to the (type I + type II) neutrino mass matrix

proportional to the mass of v_{R1}

dependence on the Yukawa couplings to v_{R1}

Main difference: Flavour-dependent vs. flavour-independent treatment

Correct flavour-dependent:

 $\sum \left(\varepsilon_{1,\alpha} \eta \right)_{\alpha}$

Flavour-independent approximation:

$$(\sum_{\alpha} \varepsilon_{1,\alpha}) \times \eta^{\text{ind}} (\sum_{\beta} \widetilde{m}_{1,\beta})$$

Flavour-dep. $\varepsilon_{1\alpha}$ weighted by flavour-dep. efficiency η_{α} !

This affects the produced BAU from thermal leptogenesis with a given seesaw flavour structure ...

Example: Flavour-dependent vs. flavour independent

S.A., S.F. King, A. Riotto ('06)

Correct flavour-dependent treatment:

Flavour-independent approximation:

 $Y_{B} \propto (\sum_{\alpha} \varepsilon_{1,\alpha}) \times \eta^{\text{ind}} (\sum_{\beta} \widetilde{m}_{1,-\beta})$

٧S.

$$Y_B \propto \sum_{\alpha} \varepsilon_{1,\alpha} \eta_{\alpha}$$

Constraints on T_{RH}

⇒ <u>The role of</u> T_{RH} for leptogenesis:

- ... for thermal leptogenesis high temperatures are required in order to produce RH neutrinos in the thermal bath (naively T ~ M_{R1})
- ... realised after inflation ($\rightarrow T_{RH}$)
- <u>Typical problems of high</u> T_{RH}: (thermal prod. of long lived particles)
 - i) BBN gravitino problem: \Rightarrow constraints on reheating T_{RH}, depending on gravitino mass m_{3/2}! Here: m_{3/2} free parameter \rightarrow heavy

Note: stable gravitinos \rightarrow problems with long lived NL-SPs; possible solutions if e.g. R-parity violated, ...

example in SUGA model (maybe not fully up-to-date):

Constraints on T_{RH}

Typical problems of high T_{RH}:

• ii) Gravitino decay \Rightarrow LSP (R-parity assumed, neutralino LSP) LSPs produced non-thermally from gravitino decays. From $\Delta\Omega_{LSP} < \Omega_{m}$ \Rightarrow constraints on reheating T_{RH}

$$\rightarrow$$
 T_{RH} \leq 2 x 10¹⁰ GeV
for neutralino mass 100 ...150 GeV

$$\Delta\Omega_{\rm LSP}h^2 \simeq 0.054 \times \left(\frac{m_{\chi_1^0}}{100 \text{ GeV}}\right) \left(\frac{T_{\rm R}}{10^{10} \text{ GeV}}\right)$$

Consequence: constraints on leptogenesis (→ flavour structure)

example in SUGA model (maybe not fully up-to-date):

Leptogenesis efficiency and T_{RH}

Assuming that the decays of the inflaton reheat only MSSM particles (Note: non-th. v_{R1} -prod. (gravitino prod.) can improve η_{α} (lower T_{RH}^{max})):

General considerations: Bounds on the decay asymmetries

Type II seesaw:

no supression for quasi-degenerate neutrino masses \rightarrow leptogenesis more efficient if m_v \uparrow

Observation: For m, 1, type I bound stronger (below ~ 0.5 eV, for optimal efficiency/washout) whereas type II bound relaxed!

General considerations: Bounds on the decay asymmetries

• Using the bounds on $\varepsilon_{1,\alpha}$, $\hat{Y}_{\Delta_{\alpha}}^{\text{MSSM}} = \eta_{\alpha}^{\text{MSSM}} \varepsilon_{1,\alpha}^{\text{MSSM}} \left[Y_{N_{1}}^{\text{eq}}(z \ll 1) + Y_{\widetilde{N}_{1}}^{\text{eq}}(z \ll 1) \right]$ and results for η_{α} , we obtain a bound for $M_{\text{R1}}!$

Note: for hierarchical neutrinos, almost unchanged compared to flavour-independent approximation; changes for $m_{\rm e}$ \uparrow

Constraints on T_{RH} and on m_{v}

- 3.A. (07)
- Type II Seesaw: $m_{min}^{v} \uparrow \Rightarrow T_{RH}^{min} ↓$

⇒ Type I Seesaw: $m_{\min}^{\nu} \uparrow \Rightarrow T_{RH}^{\min} \uparrow$

MSSM, tan β = 30

Sequential RH neutrino dominance

Mass matrix of RH neutrinos (diagonal) (Note: within type I seesaw !)

$$M_{\rm RR} = \begin{pmatrix} M_A & 0 & 0\\ 0 & M_B & 0\\ 0 & 0 & M_C \end{pmatrix}$$

Neutrino Yukawa matrix (Y_e diagonal,LR conv.)
 Note: permuations A \leftrightarrow B \leftrightarrow C possible!

$$\mathbf{Y}_{\mathbf{v}} = \left(\overrightarrow{A} \quad \overrightarrow{B} \quad \overrightarrow{C} \right)$$

Low energy: neutrino mass operator ('Seesaw formula')

$$\mathcal{L}_{eff}^{\nu} = \frac{(\nu_i^T A_i)(A_j^T \nu_j)}{M_A} + \frac{(\nu_i^T B_i)(B_j^T \nu_j)}{M_B} + \frac{(\nu_i^T C_i)(C_j^T \nu_j)}{M_C}$$

Sequential dominance condition:

S.F. King ('98,'02)

'subsubdominant RH neutrino' (mass M_c) gives smallest contribution (hierarchical v-masses, $\leftrightarrow m_{y1}$)

Leading contribution to m_v from 'dominant RH neutrino' (mass M_{a})

Sub-leading contribution to m_{y} from (subdominant RH neutrino' (mass M_{B})

SD and neutrino masses and mixing angles

Yukawa couplings of dominant RH neutrino Yukawa couplings of subdominant RH neutrino

- $A_{\alpha} = |A_{\alpha}|e^{i\phi_{A_{1}}}, B_{\alpha} = |B_{\alpha}|e^{i\phi_{B_{1}}}, C_{\alpha} = |C_{\alpha}|e^{i\phi_{C_{1}}}$ Defining \bigcirc
- MNS mixing angles \bigcirc

Neutri

 \bigcirc

$$\begin{split} \tilde{\phi}_2 &\equiv \phi_{B_2} - \phi_{B_1} - \tilde{\phi} + \delta , \\ \tilde{\phi}_3 &\equiv \phi_{B_3} - \phi_{B_1} + \phi_{A_2} - \phi_{A_3} - \tilde{\phi} + \delta \end{split}$$

Decay asymmetries and washout factors in SD (3 classes of models)

Type of SD	$arepsilon_{1,lpha}$	$\widetilde{m}_{1,lpha}$
$M_1 = M_A$	$\left -\frac{3M_1}{16\pi} \left\{ \frac{\operatorname{Im}\left[A_{\alpha}^* B_{\alpha}(A^{\dagger}B)\right]}{M_B\left(A^{\dagger}A\right)} + \frac{\operatorname{Im}\left[A_{\alpha}^* C_{\alpha}(A^{\dagger}C)\right]}{M_C\left(A^{\dagger}A\right)} \right\} \right.$	$\frac{ A_{\alpha} ^2 v_{\rm u}^2}{M_1}$
$M_1 = M_B$	$\left -\frac{3M_1}{16\pi} \left\{ \frac{\operatorname{Im} \left[B^*_{\alpha} A_{\alpha}(B^{\dagger} A) \right]}{M_A \left(B^{\dagger} B \right)} + \frac{\operatorname{Im} \left[B^*_{\alpha} C_{\alpha}(B^{\dagger} C) \right]}{M_C \left(B^{\dagger} B \right)} \right\} \right.$	$\frac{ B_{\alpha} ^2 v_{\rm u}^2}{M_1}$
$M_1 = M_C$	$-\frac{3M_1}{16\pi} \left\{ \frac{\operatorname{Im}\left[C^*_{\alpha}A_{\alpha}(C^{\dagger}A)\right]}{M_A(C^{\dagger}C)} + \frac{\operatorname{Im}\left[C^*_{\alpha}B_{\alpha}(C^{\dagger}B)\right]}{M_B(C^{\dagger}C)} \right\}$	$\frac{ C_{\alpha} ^2 v_{\rm u}^2}{M_1}$

M₁: lightest RH neutrino

leading contribution

subleading (suppressed) contribution

Ideal conditions for leptognesis?

Decay asymmetries:

S.A., S.F. King, A. Riotto ('06)

Type of SD	relation for $\varepsilon_{1,e}$	relation for $\varepsilon_{1,\mu}$	relation for $\varepsilon_{1,\tau}$
$M_1 = M_A$	$\ll \mathcal{O}(\frac{m_2}{m_3})\varepsilon^{\max}$	$\lesssim \mathcal{O}(rac{m_2}{m_2})arepsilon^{ ext{max}}$	$\lesssim \mathcal{O}(rac{m_2}{m_3})arepsilon^{ ext{max}}$
$M_1 = M_B$	$\ll \varepsilon^{\max}$	$\lesssim \varepsilon^{\max}$	$\lesssim \varepsilon^{\max}$
$M_1 = M_C$	$\lesssim \mathcal{O}(rac{m_2}{m_3})arepsilon^{ ext{max}}$	$\lesssim \varepsilon^{\max}$	$\lesssim \varepsilon^{\max}$

Can in general be optimal, but potential cancellation in $\varepsilon_{1,\alpha}$ if θ_{12} close to tri-bimaximal via A = (0,-1,1), B = (1,1,1)!

Washout parameters:

Type of SD	washout by $\widetilde{m}_{1,e}$	washout by $\widetilde{m}_{1,\mu}$	washout by $\widetilde{m}_{1,\tau}$
$M_1 = M_A$	weak/optimal	strong, $\widetilde{m}_{1,\mu} \approx \frac{1}{2}m_3$	strong, $\widetilde{m}_{1,\tau} \approx \frac{1}{2}m_3$
$M_1 = M_B$	optimal, $\widetilde{m}_{1,e} \approx s_{12}^2 m_2$	$\lesssim \mathcal{O}(m_2)^*$	$\lesssim \mathcal{O}(m_2)^*$
$M_1 = M_C$	weak/optimal	weak/optimal	weak/optimal

*(At least) one of them is $O(m_2)$; optimal washout possible ...

MNS CP phase δ and leptogenesis

S.A., S.F. King, A. Riotto ('06)

- 3 characteristic cases:
 - $M_1 = M_A$ and 2 texture zeros: \Rightarrow strong δ MNS \leftrightarrow leptogenesis link!

$$Y_{\nu} = \begin{pmatrix} 0 & B_{1} & C_{1} \\ A_{2} & B_{2} & C_{2} \\ A_{3} & 0 & C_{3} \end{pmatrix} \qquad Y_{\nu} = \begin{pmatrix} 0 & B_{1} & C_{1} \\ A_{2} & 0 & C_{2} \\ A_{3} & B_{3} & C_{3} \end{pmatrix}$$
$$Y_{B} \propto -\sin(\delta) \qquad Y_{B} \propto \sin(\delta)$$

• $M_1 = M_B$ and 2 texture zeros: \Rightarrow strong δ MNS \leftrightarrow leptogenesis link!

$$Y_{\nu} = \begin{pmatrix} B_{1} & 0 & C_{1} \\ B_{2} & A_{2} & C_{2} \\ 0 & A_{3} & C_{3} \end{pmatrix} \qquad Y_{\nu} = \begin{pmatrix} B_{1} & 0 & C_{1} \\ 0 & A_{2} & C_{2} \\ B_{3} & A_{3} & C_{3} \end{pmatrix}$$
$$Y_{B} \propto \sin(\delta) \qquad \qquad Y_{B} \propto -\sin(\delta)$$

• $M_1 = M_c : \Rightarrow no MNS \leftrightarrow leptogenesis link!$

R-matrix parameterisation of the seesaw degrees of freedom

Completely model-independent:

• Start with seesaw equation:
$$m_{\nu} = -v_{\rm u}^2 Y_{\nu} M_{\rm RR}^{-1} Y_{\nu}^T$$
 (basis: $Y_{\rm e} = Y_{\rm e}^{\rm diag}$)
(Note: here type I !) low energy: 12 parameters 21 parameters
• Strategy: find $m_{\rm D} = v_{\rm u} Y_{\nu}$ with $(M_{\rm RR})_{ij} = (M_{\rm RR})_{ij}^{\rm diag}$

Solution can be expressed in terms of complex orthogonal matrix R

$$m_{\rm D}^{T} = i\sqrt{M_{\rm RR}^{\rm diag}} R \sqrt{m_{\nu}^{\rm diag}} U_{\rm MNS}^{\dagger} \qquad R = R^{T} \quad (\text{R orthogonal, complex})$$

$$R = \begin{pmatrix} c_{2}c_{3} & -c_{1}s_{3} - s_{1}s_{2}c_{3} & s_{1}s_{3} - c_{1}s_{2}c_{3} \\ c_{2}s_{3} & c_{1}c_{3} - s_{1}s_{2}s_{3} & -s_{1}c_{3} - c_{1}s_{2}s_{3} \\ s_{2} & s_{1}c_{2} & c_{1}c_{2} \end{pmatrix}$$

$$c_{\rm asas, \, lbarra ('01)}$$

$$c_{i} = \cos \theta_{i} , s_{i} = \sin \theta_{i} , \theta_{1,2,3} \text{ complex}$$

R-matrix vs. Sequential Dominance

- \rightarrow M₁ = M_A:
 - $Y_v = (A,B,C)$ \leftrightarrow $(\theta_1,\theta_2,\theta_3) \approx (\pi/2,0,\pi/2)$
 - $Y_{v} = (A,C,B)$ \leftrightarrow $(\theta_{1},\theta_{2},\theta_{3}) \approx (\pi/2,\pi/2,0)$
- \Rightarrow M₁ = M_B:
 - $Y_{v} = (B,A,C)$ \leftrightarrow
 - $Y_{v} = (B,C,A)$ \leftrightarrow
- $(\theta_1, \theta_2, \theta_3) \approx (0, 0, \pi/2)$ $(\theta_1, \theta_2, \theta_3) \approx (\pi/2, \pi/2, \pi/2)$

 $(\theta_1, \theta_2, \theta_3) \approx (\pi/2, 0, 0)$

- \Rightarrow M₁ = M_c:
 - $Y_{v} = (C,A,B) \leftrightarrow$
 - $Y_v = (C,B,A)$ \leftrightarrow $(\theta_1,\theta_2,\theta_3) \approx (0,0,0)$
- Other angles interpolate between SD cases!

Decay asymmetries and washout factors in R-matrix parameterisation

Decay asymmetries

$$\varepsilon_{1,\alpha} = -\frac{3m_{N_1}}{8\pi v_2^2} \frac{\mathrm{Im} \left[\sum_{\beta\rho} m_{\nu_{\beta}}^{1/2} m_{\nu_{\rho}}^{3/2} (U_{\mathrm{MNS}})^*_{\alpha\beta} (U_{\mathrm{MNS}})_{\alpha\rho} R_{1\beta} R_{1\rho}\right]}{\sum_{\delta} m_{\nu_{\delta}} |R_{1\delta}|^2}$$

Washout parameters

$$\widetilde{m}_{1,\alpha} = \left| \sum_{\beta} \sqrt{m_{\nu_{\beta}}} R_{1\beta} (U_{\text{MNS}}^{\dagger})_{\beta \alpha} \right|^2$$

dependence on R-matrix angles and RH v-masses

dependence on m_{vi} and U_{MNS}

Leptogenesis bounds on T_{RH} and M_{R1}

• In type I seesaw (using the upper bound for $\varepsilon_{1\alpha}$ (& $\Sigma \varepsilon_{1\alpha}$) and optimal η_{α}):

→ maximally possible BAU (type I seesaw)

Here and in the following: MSSM case, tan β = 30, type I seesaw, normal v-mass hierarchy $m_{v1} = 10^{-3} \text{ eV}$

Colour code:

grey: WMAP x [1/5,1/2] green: WMAP x [1/2,1] dark blue: WMAP range light blue: ~ WMAP x [1,2] red: >~ WMAP x 2

S.A., A. Teixeira ('06)

• Next: Flavour structure compatible with $T_{RH}^{max} = 2 \times 10^{10} \text{ GeV}$

• Constraints on R matrix angles θ_2 and θ_3

S.A., A. Teixeira ('06)

• The role of the R matrix angle θ_1

Note: 'interpolates' between $Y_{y} = (C,A,B) \leftrightarrow Y_{y} = (C,B,A)$

• The case of real R matrix: CP violation only from δ_{MNS} ?

Real R matrix case: CP violation from Majorana phases ?

New allowed regions due to flavour-dependent effects (large complex $\theta_2, \theta_3) \leftrightarrow$ in SD: within/ interpolation between classes $M_1 = M_B \& M_1 = M_A!$

Which region of SUSY Seesaw parameters is most favoured?

• Most favoured by thermal leptogenesis: small and complex θ_2 (and θ_3)

• Sequential Dominance: correspond to $M_1 = M_c$

Summary and Conclusions (I)

- Flavour-dependent effects have important impact on the produced baryon asymmetry Main difference to flavour-in. approx.: $\Sigma \varepsilon_{1,\alpha} \eta_{\alpha}(\tilde{m}_{1,\alpha}) \leftrightarrow (\Sigma \varepsilon_{1,\alpha}) \times \eta_{ind}(\Sigma \tilde{m}_{1,\alpha})$ (correct, fl. dep.) (flavour-ind.)
- Temperature where flavour-effects are relevant differs in SM and MSSM (MSSM: typically 3 or 2 independent flavours, SM: only 2 or 1)

Summary and Conclusions (II)

Leptogenesis in SUSY: constrained but *not* ruled out. Quite robust bound (local SUSY) T_{RH}^{max} = 2 x 10¹⁰ GeV

To analyse T_{RH}-constraints on thermal leptogenesis: Flavour-dependent efficiency factor (incl. T_{RH}) public → S.A., A. Teixeira ('06)

Produced baryon asymmetry from thermal leptogenesis depends strongly on the flavour structure of the seesaw! (best: LG via *e* and/or μ flavours; R-matrix \rightarrow small θ_2, θ_3 ; SD $\rightarrow M_1 = M_C$)

