Utility of a Special Second Scalar Doublet

Ernest Ma Physics and Astronomy Department University of California Riverside, CA 92521, USA

Contents

- Introduction
- Dark Scalar Doublet
- Neutrino Mass: Six Generic Mechanisms
- Seesaw Neutrino Mass with a Second Scalar Doublet
- Supersymmetric SU(5) Completion
- Supersymmetric $E_6/U(1)_N$ Model
- Conclusion

Introduction

The Minimal Standard Model (SM) has only one Higgs doublet $\Phi = (\phi^+, \phi^0)$. A second doublet is not necessary, but if it is added, there can be CP violation and flavor-changing interactions, etc. Furthermore, in a supersymmetric extension, two Higgs superfields are necessary: (ϕ_1^0, ϕ_1^-) for \mathcal{M}_d and \mathcal{M}_e and (ϕ_2^+, ϕ_2^0) for \mathcal{M}_u . To accommodate the conservation of baryon and lepton numbers, R parity, i.e. $(-)^{3B+L+2j}$, is imposed, resulting in the Minimal Supersymmetric Standard Model (MSSM).

In the MSSM, the lightest neutral particle having odd Rparity is absolutely stable and a candidate for dark matter (DM). It is usually assumed to be a fermion, i.e. the lightest neutralino. The lightest neutral boson, presumably a scalar neutrino, is excluded by direct search experiments because the elastic cross section for $\tilde{\nu}q \rightarrow \tilde{\nu}q$ via Z exchange is too big by 8 to 9 orders of magnitude. If all we want is DM, a very simple way is to add a second scalar doublet (η^+, η^0) which is odd under Z_2 with all SM particles even. This means that $\langle \eta^0 \rangle$ must also be zero, so this is a special second scalar doublet.

 (η^+, η^0) differs from the scalar MSSM $(\tilde{\nu}, \tilde{l})$ doublet, because η_R^0 and η_I^0 are split in mass by the Z_2 conserving term $(\lambda_5/2)(\Phi^\dagger \eta)^2 + H.c.$ which is absent in the MSSM.

Since $(\eta^0)^* \partial_\mu \eta^0 - \eta^0 \partial_\mu (\eta^0)^* = i(\eta^0_R \partial_\mu \eta^0_I - \eta^0_I \partial_\mu \eta^0_R)$, the interaction $\eta^0_R q \to \eta^0_I q$ via Z exchange is forbidden by phase space if η^0_I is heavier than η^0_R by about 1 MeV.

The elastic interaction $\eta^0_R q \rightarrow \eta^0_R q$ via SM Higgs exchange exists at about 2 orders of magnitude below present bounds, but is within reach of future direct search experiments.

Dark Scalar Doublet

Deshpande/Ma(1978): Add to the SM a second scalar doublet (η^+, η^0) which is odd under a new exactly conserved Z_2 discrete symmetry, then η_R^0 or η_I^0 is absolutely stable. [Ma/Pakvasa/Tuan(1977): This doublet may even have a new conserved U(1) quantum number, i.e. η^0 is one particle.] This simple idea lay dormant for almost thirty years until [Ma, Phys. Rev. D 73, 077301 (2006)]. It was then studied seriously as DM in Barbieri et al., Phys. Rev. D 74, 015007 (2006) and Lopez Honorez et al., JCAP 0702, 028 (2007).

Generically, the dark scalar doublet has the gauge interactions $\eta^+\eta^0_B W^-$, $\eta^+\eta^0_I W^-$, $\eta^+\eta^- Z$, $\eta^+\eta^-\gamma$, $\eta^0_B \eta^0_I Z$, and the scalar interactions $h(\eta_R^0)^2$, $h(\eta_I^0)^2$, $h\eta^+\eta^-$, $h^2(\eta_R^0)^2$, $h^2(\eta_I^0)^2$, $h^2\eta^+\eta^-$, $(\eta^\dagger\eta)^2$. They are easily pair produced at the LHC through $q\bar{q} \rightarrow W^{\pm}, Z, \gamma$. The decays $\eta^+ \rightarrow W^+ \eta^0_R$ and $\eta^0_I \rightarrow Z \eta^0_R$ will carry distinct signatures. [Cao/Ma/Rajasekaran, Phys. Rev. D 76, 095011 (2007). The astrophysical signature $\eta^0_B \eta^0_B \to \gamma \gamma$ has also been studied by Gustaffson et al., Phys. Rev. Lett. 99, 041301 (2007).

Figure 1: Contours of the $\eta_I^0 \eta_R^0$ (= $A^0 H^0$) production cross section at the LHC in fb units.

Figure 1: (Normalized) kinematic distributions of the $\eta_I^0 \eta_R^0$ production at the LHC for $(m_R, m_I, m_+) = (50, 60, 170)$ GeV. Red (green) curve is the WW (ZZ) background. Blue line is the optimal cut.

Signal = $H^0 A^0 \rightarrow l^+ l^-$ + missing energy. Background comes from WW and ZZ production. Basic cuts: $p_T^l > 15$ GeV, $|\eta^l| < 3.0$. Optimal cuts: $p_T^l < 40$ GeV, missing $E_T < 60$ GeV, $\cos \theta_{ll} > 0.9$, $\cos \phi_{ll} > 0.9$.

Mass window cut: $0 < m_{ll} < 10$ GeV.

events	basic cut	optimal	$m_{ll} < 10 { m GeV}$
signal	117	37	37
background	1.3×10^5	113	62
S/B	9×10^{-4}	0.33	0.60
S/\sqrt{B}	0.32	3.48	4.70

Figure 1: Higgs decay branching fractions in the (a) SM, and (b) DSDM for $(m_R, m_I, m_+) = (50, 60, 170)$ GeV.

Neutrino Mass: Six Generic Mechanisms

Weinberg(1979):

Unique dimension-five operator for Majorana neutrino mass in SM:

$$rac{f_{lphaeta}}{2\Lambda}(
u_{lpha}\phi^0-l_{lpha}\phi^+)(
u_{eta}\phi^0-l_{eta}\phi^+).$$

Ma(1998):

Three tree-level realizations: (I) N, (II) $(\xi^{++}, \xi^{+}, \xi^{0})$, (III) $(\Sigma^{+}, \Sigma^{0}, \Sigma^{-})$; and three generic one-loop realizations: (IV), (V), (VI).

Seesaw Neutrino Mass with a Second Scalar Doublet

In the SM with $N_{1,2,3}$, the allowed terms $f_{ik}(\nu_i\phi^0 - l_i\phi^+)N_k + (1/2)M_kN_kN_k + H.c.$

$$\Rightarrow (\mathcal{M}_{\nu})_{ij} = \frac{-f_{ik}f_{jk}}{M_k} \langle \phi^0 \rangle^2.$$

Ma(2001): Add (η^+, η^0) and assign it L = -1 with L = 0 for $N_{1,2,3}$, then L conservation requires Φ to be replaced by η in the seesaw formula. To obtain $\langle \eta^0 \rangle \neq 0$,

L must be violated. Add $\mu^2 \Phi^{\dagger} \eta + H.c.$, then

$$\langle \eta^0 \rangle \simeq \frac{-\mu^2 \langle \phi^0 \rangle}{m_\eta^2} << \langle \phi^0 \rangle.$$

Radiative mechanisms: (IV) [Zee(1980)] $\omega = (\nu, l), \omega^c = l^c, \ \chi = \chi^+, \eta = (\phi_{1,2}^+, \phi_{1,2}^0), \langle \phi_{1,2}^0 \rangle \neq 0.$ (V) [Ma(2006)] $\omega = \omega^c = N, \ \chi = \eta = (\eta^+, \eta^0), \langle \eta^0 \rangle = 0.$ Note: N interacts with ν , but they are not Dirac mass partners. This is enforced by an exactly conserved Z_2 symmetry, under which N and (η^+, η^0) are odd, and all SM particles are even.

Figure 1: One-loop generation of neutrino mass with \mathbb{Z}_2 dark matter.

$$(\mathcal{M}_{\nu})_{\alpha\beta} = \sum_{i} \frac{h_{\alpha i} h_{\beta i} M_{i}}{16\pi^{2}} [f(M_{i}^{2}/m_{R}^{2}) - f(M_{i}^{2}/m_{I}^{2})],$$

where $f(x) = -\ln x / (1 - x)$.

Let $m_R^2 - m_I^2 = 2\lambda_5 v^2 << m_0^2 = (m_R^2 + m_I^2)/2$, then

$$(\mathcal{M}_{\nu})_{lphaeta} = \sum_{i} rac{h_{lpha i} h_{eta i}}{M_{i}} I(M_{i}^{2}/m_{0}^{2}),$$

$$I(x) = \frac{\lambda_5 v^2}{8\pi^2} \left(\frac{x}{1-x}\right) \left[1 + \frac{x \ln x}{1-x}\right]$$

٠

For $x_i >> 1$, i.e. N_i very heavy,

$$(\mathcal{M}_{\nu})_{\alpha\beta} = \frac{\lambda_5 v^2}{8\pi^2} \sum_i \frac{h_{\alpha i} h_{\beta i}}{M_i} [\ln x_i - 1]$$

instead of the canonical seesaw $v^2 \sum_i h_{\alpha i} h_{\beta i}/M_i$. In leptogenesis, the lightest M_i may then be much below the Davidson-Ibarra bound of about 10^9 GeV, thus avoiding a potential conflict of gravitino overproduction and thermal leptogenesis. In this scenario, η_R^0 or η_I^0 is dark matter. If η_R^0 or η_I^0 is dark matter, then its mass is 45 to 75 GeV. If N is dark matter, then all masses are of order 350 GeV or less [Kubo/Ma/Suematsu(2006)]; however flavor changing radiative decays such as $\mu \rightarrow e\gamma$ are too big without some rather delicate fine tuning. Babu/Ma(2007): Add real scalar singlet χ , then the new interaction

$$NN \to \chi \to hh$$

will allow the correct DM relic abundance without endangering $\mu \rightarrow e\gamma$. The singlet χ could also change the SM Higgs potential to allow for electroweak baryogenesis.

Supersymmetric SU(5) Completion

Ma(2006): The dark scalar doublet model was extended to include supersymmetry by the addition of a singlet superfield which is even under the imposed Z_2 , together with the conventional R parity. At least two out of the following three particles are then dark-matter candidates: (1) the usual lightest neutralino of the MSSM with $(R,Z_2) = (-,+), (2)$ the lightest exotic neutral particle with (+,-), and (3) that with (-,-). The dark matter of the Universe may not be all the same, as most people have taken for granted!

Ma(2008): Add a pair of SU(5) $\underline{5}$ and $\underline{5}^*$ superfields and impose exact $Z'_2 \times Z_2$ symmetry:

Figure 1: One-loop radiative contributions to neutrino mass.

The imposition of Z'_2 parity implies the usual R parity with B = 1/3 and $(-)^L = -1$ for h.

Let $m_n, m_h < \text{TeV}$, then the gauge-coupling unification of the MSSM remains undisturbed. Conventionally, the color triplets h, h^c are dangerous because they could mediate rapid proton decay. Here they are harmless because of the Z_2 symmetry, i.e. dark matter and baryon number conservation have the same origin. From the couplings hd^cN and $L\eta_2N$, the decay of h is into either $de^-\eta_2^+$ or $de^+\eta_2^-$. Thus *hh* production will result in same-sign dileptons plus quark jets plus missing energy.

Supersymmetric $E_6/U(1)_N$ Model

 $\begin{aligned} &\mathsf{Ma}(1996): \text{ Under } \underline{E_6} \rightarrow SU(3)_C \times SU(3)_L \times SU(3)_R, \\ &Q_N = 6Y_L + T_{3R} - 9Y_R \text{ defines } U(1)_N: \end{aligned}$

superfield	SU(5)	Q_N	
$(u,d), u^c, e^c$	10	1	
$d^c, (u, e)$	5^*	2	
h , (E^c,N^c_E)	5	-2	
h^{c} , (u_{E},E)	5^*	-3	
S	1	5	
N^c	1	0	

Ma/Sarkar(2007): Impose exact $Z_2 \times Z_2$ symmetry:

superfield		N
$(u,d), u^c, d^c$		+
$(u,e),e^c$		+
h,h^c	_	+
$[(u_E, E), (E^c, N^c_E), S]_1$		+
$[(u_E, E), (E^c, N^c_E), S]_{2,3}$		
N^c		

M parity implies the usual R parity with B = 1/3 and L = 1 for h.

The only terms involving N^c are the allowed Majorana mass terms $N^c N^c$ and the Yukawa terms $[\nu(N^c_E)_{2,3} - e(E^c)_{2,3}]N^c$, i.e. exactly as required for the seesaw mechanism.

However, N parity forbids m_{ν} at tree level, and the necessary λ_5 quartic scalar term for a one-loop mass, i.e. $[(\tilde{N}_E^c)_{2,3}^{\dagger}(\tilde{N}_E^c)_1]^2$, is not available in exact supersymmetry.

Fortunately, as the supersymmetry is broken by soft terms, an effective λ_5 term itself can be generated in one loop. Thus m_{ν} is a two-loop effect in this model.

Conclusion

- A special second scalar doublet with zero vacuum expectation value is useful for the implementation of dark matter, as well as radiative neutrino mass.
- In the context of supersymmetry, it opens up the possibility of multipartite dark matter.
- If it is part of a grand unified theory, then there will be other accompanying particles which may become observable at the LHC.