Heidelberg – December 15th, 2008

Christoph Luhn (University of Southampton)

in collaboration with Pierre Ramond (University of Florida)

Anomaly-free discrete family symmetries

- arXiv:0805.1736 [JHEP 07 (2008) 085]

- arXiv:0807.1749 [accepted in PLB]

- motivation
- basic mathematical concepts
- gauge origin & anomalies
- embedding finite into continuous groups
- discrete indices
- discrete anomaly conditions

Fermionic mass structure

quarks

$$m_u : m_c : m_t \sim \lambda_c^8 : \lambda_c^4 : 1$$

$$m_d : m_s : m_b \sim \lambda_c^4 : \lambda_c^2 : 1$$

$$CKM \sim \begin{pmatrix} 1 & \lambda_c & \lambda_c^3 \\ \lambda_c & 1 & \lambda_c^2 \\ \lambda_c^3 & \lambda_c^2 & 1 \end{pmatrix}$$

 \Rightarrow quark masses and mixing are hierarchical

leptons

$$m_{e} : m_{\mu} : m_{\tau} \sim \lambda_{c}^{4 \text{ or } 5} : \lambda_{c}^{2} : 1$$

$$m_{\nu_{1}} : m_{\nu_{2}} : m_{\nu_{3}} \sim \begin{cases} \lambda_{c}^{\geq 1} : \lambda_{c} : 1 \\ 1 : 1 : \lambda_{c}^{\geq 1} \\ 1 : 1 : 1 \end{cases} \text{ MNSP } \sim \begin{pmatrix} 0.8 & 0.5 & < 0.2 \\ 0.4 & 0.6 & 0.7 \\ 0.4 & 0.6 & 0.7 \end{pmatrix}$$

 \Rightarrow neutrino sector is different

Tri-bimaximal mixing

MNSP
$$\approx U_{TB} \equiv \begin{pmatrix} \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}}\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

.

MNSP-angles	tri-bimax.	$3\sigma \exp$.
$\sin^2 \theta_{12}$:	0.33	0.24 - 0.40
$\sin^2 \theta_{23}$:	0.50	0.34 - 0.68
$\sin^2 heta_{13}:$	0	≤ 0.041

Effective neutrino mass matrix

• in basis where charged lepton mass matrix is diagonal

$$M_{\nu} \sim M_{TB} = \begin{pmatrix} \alpha & \beta & \beta \\ \beta & \gamma & \alpha + \beta - \gamma \\ \beta & \alpha + \beta - \gamma & \gamma \end{pmatrix}$$

• How can we obtain such relations between entries of mass matrix ?

- \rightarrow unify families into multiplets of a symmetry group \mathcal{G} (assignment)
- \rightarrow break \mathcal{G} spontaneously (vacuum alignment)
- \rightarrow construct invariants of ${\cal G}$ inserting vacuum structure

 $\mathcal{G} =$ non-Abelian finite group

Abelian finite groups: \mathcal{Z}_N

•
$$\mathcal{Z}_N = \{1 \ , \ e^{2\pi i \frac{1}{N}} \ , \ e^{2\pi i \frac{2}{N}} \ , \ \dots \ , \ e^{2\pi i \frac{N-1}{N}} \}$$

- N elements
- one generator $a \in \mathcal{Z}_N$ (e.g. $a = e^{2\pi i/N}$)
- group operation = multiplication of complex numbers
- only one-dimensional irreps

Non-Abelian finite groups, e.g. \mathcal{S}_3

group multiplication table:

	1	a_1	a_2	b_1	b_2	b_3
1	1	a_1	a_2	b_1	b_2	b_3
a_1	a_1	a_2	1	b_2	b_3	b_1
a_2	a_2	1	a_1	b_3	b_1	b_2
b_1	b_1	b_3	b_2	1	a_2	a_1
b_2	b_2	b_1	b_3	a_1	1	a_2
b_3	b_3	b_2	b_1	a_2	a_1	1

generators and the presentation:

choose generators $a \equiv a_1$ and $b \equiv b_1 \implies a_2 = a^2$, $b_2 = ab$, $b_3 = ba$ $\langle a, b \mid a^3 = b^2 = 1, bab^{-1} = a^{-1} \rangle$ defines the group uniquely

Anomaly-free discrete family symmetries

Irreducible representations

irreducible representations:

1:
$$a = 1, \quad b = 1$$

1': $a = 1, \quad b = -1$
2: $a = \begin{pmatrix} e^{2\pi i/3} & 0\\ 0 & e^{-2\pi i/3} \end{pmatrix}, \quad b = \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}$

conjugacy classes:

$$1 C_{1}(1) = \{g \, 1 \, g^{-1} \, | \, g \in S_{3}\} = \{1\}$$

$$2 C_{2}(a) = \{g \, a \, g^{-1} \, | \, g \in S_{3}\} = \{a, a^{2}\}$$

$$3 C_{3}(b) = \{g \, b \, g^{-1} \, | \, g \in S_{3}\} = \{b, ab, ba\}$$

number of classes = number of irreps number of elements = $\sum (\text{dimension of irrep})^2$

general formula:

$$\mathbf{r} \otimes \mathbf{s} = d(\mathbf{r}, \mathbf{s}, \mathbf{t}) \mathbf{t}$$
, $d(\mathbf{r}, \mathbf{s}, \mathbf{t}) = \frac{1}{N} \sum_{i} n_i \chi_i^{[\mathbf{r}]} \chi_i^{[\mathbf{s}]} \bar{\chi}_i^{[\mathbf{t}]}$

- N = number of group elements

- n_i = number of elements in conjugacy class C_i

- character χ = trace of the matrix representation of element g

Possible discrete family symmetries \mathcal{G}

- symmetry group: $\mathrm{SM} \times \mathcal{G}$
- three families
- $\bullet~\mathcal{G}$ should have two- or three-dimensional irreps
- $\bullet \ \mathcal{G}$ is a finite subgroup of either
 - $\circ SU(3) \quad \text{e.g. } \mathcal{PSL}_2(7), \ \mathcal{Z}_7 \rtimes \mathcal{Z}_3, \ \Delta(27), \ \Delta(3n^2), \ \Delta(54), \ \Delta(6n^2)$
 - \circ SO(3) e.g. \mathcal{S}_4 , \mathcal{A}_4 , \mathcal{S}_3 , \mathcal{D}_n
 - \circ SU(2) e.g. $\mathcal{T}', \mathcal{Q}_{2n}$

$$\begin{array}{ll} \underline{\text{example:}} & \mathcal{A}_4 \quad (\text{irreps } \mathbf{1}, \, \mathbf{1}', \, \overline{\mathbf{1}'}, \, \mathbf{3}) \\ & \\ & L \sim \mathbf{3} \,, \quad E^c \sim \mathbf{1} + \mathbf{1}' + \overline{\mathbf{1}'} \,, \quad N^c \sim \mathbf{3} \end{array}$$

Gauging discrete symmetries

- discrete symmetries violated by quantum gravity effects
- unless they are remnants of a gauge symmetry

 \longrightarrow "discrete gauge symmetry"

$$G_f \supset \mathcal{G}$$

gauge symmetry

discrete symmetry

ANOMALIES

Possible anomalies

 $SU(3)_C \times SU(2)_W \times U(1)_Y \times G_f$

• $G_f = U(1)$

 $SU(3)_C - SU(3)_C - U(1) \qquad U(1)_Y - U(1)_Y - U(1)$ $SU(2)_W - SU(2)_W - U(1) \qquad U(1)_Y - U(1) - U(1)$ Gravity - Gravity - U(1) U(1) - U(1) - U(1)

 \longrightarrow constraints on possible $\mathcal{Z}_N \subset U(1)$ symmetries

• $G_f = SU(3)$

SU(3) - SU(3) - SU(3) $SU(3) - SU(3) - U(1)_Y$ \longrightarrow What can we extract in this case?

Anomaly-free discrete family symmetries

Recap:
$$G_f = U(1)$$

• formulate anomaly equations for G_f in terms of U(1) charges z_i

structure :
$$\sum_{i} z_i = 0$$

• insert discrete charges q_i instead of U(1) charges $|z_i| = q_i \mod N$

$$\sum_i q_i = 0 \mod N$$

• separate light and heavy fermions (\mathcal{Z}_N invariant mass term)

$$\sum_{i=\text{light}} q_i + \sum_{\substack{i=\text{heavy}\\0 \mod N \text{ or } \frac{N}{2}}} q_i = 0 \mod N$$
$$\implies \sum_{i=\text{light}} q_i = 0 \mod N \text{ or } \frac{N}{2}$$

Anomaly-free discrete family symmetries

Cubic anomaly for $G_f = SU(3)$

• formulate cubic anomaly equation for G_f in terms of SU(3) irreps ρ

$$\sum_{\boldsymbol{\rho}} A(\boldsymbol{\rho}) = 0 \qquad \qquad A(\boldsymbol{\rho}) = \text{cubic Dynkin index}$$

• replace all SU(3) parameters: $\boldsymbol{\rho} \to \sum_i \mathbf{r_i}$ and $|A(\boldsymbol{\rho}) = \sum_i \widetilde{A}(\mathbf{r_i}) \mod N_A$

$$\sum_{i} \widetilde{A}(\mathbf{r}_{i}) = 0 \mod N_{A} \qquad \widetilde{A}(\mathbf{r}_{i}) = \text{discrete cubic index}$$

• separate light and heavy fermions (\mathcal{G} invariant mass term)

$$\sum_{i=\text{light}} \widetilde{A}(\mathbf{r}_{i}) + \sum_{i=\text{heavy}} \widetilde{A}(\mathbf{r}_{i}) = 0 \mod N_{A}$$
$$\implies \sum_{i=\text{light}} \widetilde{A}(\mathbf{r}_{i}) = 0 \mod N_{A}'$$

Mixed anomaly for $G_f = SU(3)$

• formulate mixed anomaly equation for G_f in terms of SU(3) irreps ρ

$$\sum_{\boldsymbol{\rho}} \ell(\boldsymbol{\rho}) \cdot Y(\boldsymbol{\rho}) = 0 \qquad \qquad \ell(\boldsymbol{\rho}) = \text{quadratic Dynkin index}$$

- replace all SU(3) parameters: $\boldsymbol{\rho} \to \sum_{i} \mathbf{r_i}$ and $\ell(\boldsymbol{\rho}) = \sum_{i} \tilde{\ell}(\mathbf{r_i}) \mod N_{\ell}$ $\sum_{i} \tilde{\ell}(\mathbf{r_i}) \cdot Y(\mathbf{r_i}) = 0 \mod N_{\ell}$ $\tilde{\ell}(\mathbf{r_i}) = \text{discrete quadratic index}$
- separate light and heavy fermions (\mathcal{G} invariant mass term)

$$\sum_{i=\text{light}} \widetilde{\ell}(\mathbf{r}_{i}) \cdot Y(\mathbf{r}_{i}) + \sum_{i=\text{heavy}} \widetilde{\ell}(\mathbf{r}_{i}) \cdot Y(\mathbf{r}_{i}) = 0 \mod N_{\ell}$$
$$\longrightarrow \sum_{i=\text{light}} \widetilde{\ell}(\mathbf{r}_{i}) \cdot Y(\mathbf{r}_{i}) = 0 \mod N_{\ell}'$$

In the following: $\mathcal{G} = \mathcal{Z}_7 \rtimes \mathcal{Z}_3$ (\mathcal{T}_7)

Embedding \mathcal{T}_7 into SU(3)

 $\frac{\text{irreps of } \mathcal{T}_{7}:}{\mathbf{3}, \ \overline{\mathbf{3}}, \ \mathbf{1}, \ \mathbf{1}', \ \overline{\mathbf{1}'}}$

some \mathcal{T}_7 Kronecker products: $\mathbf{3} \otimes \mathbf{3} = \mathbf{3} + \overline{\mathbf{3}} + \overline{\mathbf{3}}$ $\mathbf{3} \otimes \overline{\mathbf{3}} = \mathbf{1} + \mathbf{1}' + \overline{\mathbf{1}'} + \mathbf{3} + \overline{\mathbf{3}}$ in SU(3): $\mathbf{3} \otimes \mathbf{3} = \overline{\mathbf{3}} + \mathbf{6}$ $\mathbf{3} \otimes \overline{\mathbf{3}} = \mathbf{1} + \mathbf{8}$

$$SU(3) \supset \mathcal{T}_{7}$$

$$(10): 3 = 3$$

$$(01): \overline{3} = \overline{3}$$

$$(20): 6 = 3 + \overline{3}$$

$$(11): 8 = 1' + \overline{1'} + 3 + \overline{3}$$

$$(30): 10 = 1 + 3 + 2 \cdot \overline{3}$$

$$(21): 15 = 1 + 1' + \overline{1'} + 2 \cdot (3 + \overline{3})$$

$$(40): 15' = 1 + 1' + \overline{1'} + 2 \cdot (3 + \overline{3})$$

$$(05): 21 = 1 + 1' + \overline{1'} + 3 \cdot (3 + \overline{3})$$

$$(13): 24 = 1 + 1' + \overline{1'} + 3 \cdot 3 + 4 \cdot \overline{3}$$

$$(22): 27 = 1 + 1' + \overline{1'} + 4 \cdot (3 + \overline{3})$$

Irreps ρ of SU(3) and their indices

cubic index:
$$\operatorname{Tr}\left(\left\{T_a^{[\boldsymbol{\rho}]}, T_b^{[\boldsymbol{\rho}]}\right\} T_c^{[\boldsymbol{\rho}]}\right) = A(\boldsymbol{\rho}) \frac{d_{abc}}{2}$$

quadratic index:

$$\operatorname{Tr}\left(\left\{T_{a}^{[\boldsymbol{\rho}]}, T_{b}^{[\boldsymbol{\rho}]}\right\}\right) = \ell(\boldsymbol{\rho}) \,\delta_{ab}$$

Irreps $ ho$ of	f $SU(3)$	$A(\boldsymbol{\rho})$	$\ell(oldsymbol{ ho})$
(10):	3	1	1
(20):	6	7	5
(11):	8	0	6
(30):	10	27	15
(21):	15	14	20

Irreps r_i of \mathcal{T}_7 and their indices

• $\mathbf{r_i}$ can originate from different irreps $\boldsymbol{\rho}$ of SU(3)

$$oldsymbol{
ho} \; \longrightarrow \; \sum_i \mathrm{r_i}$$

• define discrete indices $\widetilde{A}(\mathbf{r_i}), \ \widetilde{\ell}(\mathbf{r_i})$ such that:

$$egin{array}{rl} A(oldsymbol{
ho}) &=& \sum_{oldsymbol{i}} \widetilde{A}(\mathbf{r_i}) \mod N_A \ &\ &\ell(oldsymbol{
ho}) &=& \sum_{oldsymbol{i}} \widetilde{\ell}(\mathbf{r_i}) \mod N_\ell \end{array}$$

for all irreps $\boldsymbol{\rho}$ of SU(3)

Discrete indices of \mathcal{T}_7

definition:	Irreps $\mathbf{r_i}$ of \mathcal{T}_7	$\widetilde{A}(\mathbf{r_i}) \\ (N_A = 7)$	$\widetilde{\ell}(\mathbf{r_i})$ $(N_{\ell} = 3)$
	$\frac{1'}{1'}$	x	<i>y</i>
	1' 3	-x1	1-y 1
	$\overline{3}$	-1	1

consistency:

ρ	$\sum_i {f r_i}$	$A(\boldsymbol{\rho})$	$\sum_i \widetilde{A}(\mathbf{r_i})$	$\ell(oldsymbol{ ho})$	$\sum_i \widetilde{\ell}(\mathbf{r_i})$
3	3	1	1	1	1
6	${f 3}+{f \overline 3}$	7	0	5	2
8	$1'+\overline{1'}+3+\overline{3}$	0	0	6	3
10	$1 + 3 + 2 \cdot \overline{3}$	27	-1	15	3
15	$1 + 1' + \overline{1'} + 2 \cdot (3 + \overline{3})$	14	0	20	5

Proving the assignment of discrete indices

- assign discrete indices to irreps $\mathbf{r_i}$ using the decomposition of the smallest irreps $\boldsymbol{\rho}$ of SU(3)
- proof by induction that this assignment is consistent for all higher irreps ρ
- make use of:

$$I(\boldsymbol{\rho}\otimes\boldsymbol{\sigma}) = d(\boldsymbol{\rho}) I(\boldsymbol{\sigma}) + I(\boldsymbol{\rho}) d(\boldsymbol{\sigma})$$

- $I = \text{Dynkin index } A \text{ or } \ell$
- d = dimension of irrep

Discrete anomaly conditions

family symmetry SU(3) particles live in irreps ρ [normalization: $Y(\rho) \in \mathbb{Z}$]

$$\sum_{\rho} A(\rho) = 0$$
 $\sum_{\rho} \ell(\rho) \cdot Y(\rho) = 0$

family symmetry \mathcal{T}_7

particles live in irreps $\mathbf{r_i}$

- some acquire masses (heavy)
- some don't (light)

$$\sum_{i=\text{light}} \widetilde{A}_i + \sum_{i=\text{heavy}} \widetilde{A}_i = 0 \mod N_A$$
$$\sum_{i=\text{light}} \widetilde{\ell}_i Y_i + \sum_{i=\text{heavy}} \widetilde{\ell}_i Y_i = 0 \mod N_\ell$$

Effect of heavy fermions

- \mathcal{T}_7 invariant mass terms: $\mathbf{1}'\otimes\overline{\mathbf{1}'}$, $\mathbf{3}\otimes\overline{\mathbf{3}}$
- with $\mathcal{G} = \mathcal{T}_7$: only Dirac particles can be massive
- contribution of heavy fermions to discrete anomalies:

$$\mathbf{3} \otimes \overline{\mathbf{3}} : \qquad \sum_{i=1}^{2} \widetilde{A}_{i} = 0 \qquad \sum_{i=1}^{2} \widetilde{\ell}_{i} \cdot Y_{i} = 0$$
$$\mathbf{1}' \otimes \overline{\mathbf{1}'} : \qquad \sum_{i=1}^{2} \widetilde{A}_{i} = 0 \qquad \sum_{i=1}^{2} \widetilde{\ell}_{i} \cdot Y_{i} = (2y-1) \cdot Y(\mathbf{1}') \stackrel{!}{=} 0 \mod 3$$

 \longrightarrow no contribution if $y = \frac{1}{2}$ or 2 (and integer hypercharge normalization)

\mathcal{T}_7 example: Luhn, Nasri, Ramond [PLB 652,27 (2007)]

- all hypercharges are integer
- hypercharge normalization $Y_Q = 1$

$$\sum_{i=\text{light}} \widetilde{A}_i = 0 \mod 7$$
$$\sum_{i=\text{light}} \widetilde{\ell}_i Y_i = 0 \mod 3$$

type of fermion	Q	U^c	D^c	L	E^{c}	N^c	
\mathcal{T}_7 irrep	3	3	3	3	3	3	$\widetilde{A}(3) = 1$
# of fermions	6	3	3	2	1	1	$\widetilde{\ell}(3) = 1$
hypercharge Y	1	-4	2	-3	6	0	

$$\sum_{i=\text{light}} \widetilde{A}_i = 6+3+3+2+1+1 = 16 \neq 0 \mod 7$$
$$\sum_{i=\text{light}} \widetilde{\ell}_i \cdot Y_i = 6\cdot 1+3\cdot (-4)+3\cdot 2+2\cdot (-3)+1\cdot 6+1\cdot 0 = 0$$

Conclusion

- \bullet neutrino mixing motivates non-Abelian discrete family symmetry ${\cal G}$
- \bullet many candidates for $\mathcal G$ many more models
- require gauge origin of $\mathcal{G} \subset G_f = SU(3), SO(3), SU(2)$
- discuss remnants of the high-energy anomaly conditions
- introduce discrete indices (individually for each group \mathcal{G})
- discrete anomaly conditions
- some models might be incomplete in their light particle content

Different embeddings

- some groups \mathcal{G} are subgroups of different continuous groups G_f
- e.g. $\mathcal{A}_4 \subset SU(3)$ or $\mathcal{A}_4 \subset SO(3)$
- Is it possible to define discrete indices independently from the embedding?

Embedding \mathcal{A}_4 into SU(3)

discrete indices of \mathcal{A}_4 :

Irreps $\mathbf{r_i}$ of \mathcal{A}_4	$\widetilde{\ell}(\mathbf{r_i})$ $(N_{\ell} = 12)$	$\widetilde{A}(\mathbf{r_i})$ $(N_A = 2)$
1	0	0
1 '	2	0
$\overline{1'}$	2	0
3	1	1

ρ	$\sum_i {f r_i}$	$\ell(oldsymbol{ ho})$	$\sum_i \widetilde{\ell}(\mathbf{r_i})$	$A(\boldsymbol{\rho})$	$\sum_i \widetilde{A}(\mathbf{r_i})$
3	3	1	1	1	1
6	$1+1'+\overline{1'}+3$	5	5	7	1
8	$1' + \overline{1'} + 2 \cdot 3$	6	6	0	2
10	$1 + 3 \cdot 3$	15	3	27	3
15	$1+1'+\overline{1'}+4\cdot 3$	20	8	14	4

Embedding \mathcal{A}_4 into SO(3)

discrete indices of \mathcal{A}_4 :

Irreps $\mathbf{r_i}$ of \mathcal{A}_4	$\widetilde{\ell}(\mathbf{r_i}) \\ (N_{\ell} = 12)$	
1	0	
1 '	2	
$\overline{1'}$	2	
3	1	

ρ	$\sum_i {f r_i}$	$\ell(oldsymbol{ ho})$	$\sum_i \widetilde{\ell}(\mathbf{r_i})$	
3	3	1	1	
5	$1' + \overline{1'} + 3$	5	5	
7	$1 + 2 \cdot 3$	14	2	
9	$1 + 1' + \overline{1'} + 2 \cdot 3$	30	6	
11	$1' + \overline{1'} + 3 \cdot 3$	55	7	