Probing Lepton Number Violation in Double Beta Decay and at the LHC

Frank Deppisch
f.deppisch@ucl.ac.uk
University College London
in collaboration with
J.A. Aguilar-Saavedra, S.P. Das, O. Kittel, J.W.F Valle

MPIK Theorie Seminar
MPIK Heidelberg, 21 January 2013
Overview

- Neutrinos
 - Oscillations
 - Absolute Mass

- Neutrinoless Double Beta Decay
 - Light Neutrino Exchange
 - New Physics Mechanisms

- Neutrino Mass Models
 - Effective Mass and Seesaw
 - Minimal Left-Right Symmetry

- LFV and LNV at the LHC

- Conclusion
Neutrino Oscillations

- Neutrino interaction states different from mass eigenstates
 Neutrino flavour can change through propagation

\[\nu_i = \sum_\alpha U_{i\alpha} \nu_\alpha, \quad \nu_i(t) = e^{-i(E,t-p,x)} \nu_i \]
\[\Rightarrow P_{\alpha \rightarrow \beta} = \sin^2(2 \theta) \sin^2 \left(1.27 \frac{\Delta m^2}{eV^2} \frac{L}{km} \frac{E}{GeV} \right) \]

- Solar neutrino oscillations
 Large mixing

- Atmospheric oscillations
 \(\delta \) Maximal mixing

- Reactor and accelerator neutrinos

\[\sin^2(2 \theta_{13}) = 0.092 \pm 0.021 \]

- Experimental unknowns and anomalies
 CP violation? Sign of \(\Delta m_{23} \)? Sterile Neutrinos?
Absolute Neutrino Mass

- **Energy endpoint in Beta decay**

 \[m_{\beta}^2 = \sum_i |U_{ei}|^2 m_i^2 < (2.2 \text{eV})^2 \]

 Katrin: \(m_{\beta} \approx 0.2 \text{ eV} \)

- **Impact on Large Scale Structure**

 \[\Sigma = \sum_i m_i < 0.4 - 1 \text{ eV} \]

- **Neutrinoless Double Beta Decay**

 \[m_{\beta\beta} = \left| \sum_i U_{ei}^2 m_{\nu_i} \right| < 0.2 - 2.0 \text{ eV} \]

 Future Experiments:
 \(m_{\beta\beta} \approx 0.01 \text{ eV} \)
Neutrinoless Double Beta Decay

Process: \((A, Z)^{23}_{11} \rightarrow (A, Z+2) + 2e^-\)

Uncontroversial detection of 0νββ of utmost importance
- Prove lepton number to be broken
- Prove neutrinos to be Majorana particles (Schechter, Valle '82)

Which mechanism triggers the decay?

- **Light Neutrino Exchange** (LH Current, Mass Mechanism)
 \[
 T_{1/2}^{-1} \propto \sum_i U_{ei}^2 m_{\nu_i}
 \]

- **General Effective Operator**
 \[
 \delta m_{\nu} \approx \frac{1}{(16\pi^2)^4} \frac{\text{MeV}^5}{M_W^4} \approx 10^{-23} \text{ eV}
 \]

\[
\begin{align*}
T_{1/2}^{-1} &\approx 10^{25} \text{ y} \\
M &\approx 1 \text{ TeV}
\end{align*}
\]
Light Neutrino Exchange

- **Standard Mass Mechanism**
- **Decay Rate**
 \[\Gamma = T_{1/2}^{-1} = \frac{m_{\beta\beta}^2}{m_e^2} G^{0\nu} |M^{0\nu}|^2 \]
- **Effective Mass**
 \[m_{\beta\beta} = \left| \sum_i U_{ei}^2 m_{\nu_i} \right| \equiv (m_{\nu})_{ee} \]

Heidelberg-Moscow
\[T_{1/2}^{76\text{Ge}} \approx 1.9 \times 10^{25} \text{y} \]
\[\Delta m_{\nu} \approx 0.3 - 0.6 \text{eV} \]

Lindner, Merle, Rodejohann (2005)
Experimental Situation

\[\langle m_{\beta\beta} \rangle \text{[meV]} \]

\[m_{\text{lightest}} \text{[meV]} \]

Detwiler (2012)

KamLAND-Zen (arXiv:1211.3863)

Disfavored by $0\nu\beta\beta$

Normal

Inverted

Disfavored by cosmology:
New Physics Contributions to $0\nu\beta\beta$

Plethora of New Physics Scenarios

New Physics

\[\Gamma = T_{1/2}^{-1} = e_{NP}^2 G^{0\nu}_NP \left| M^{0\nu}_{NP} \right|^2 \]

\[T_{1/2} = \frac{1}{e_{NP}^2 G^{0\nu}_NP \left| M^{0\nu}_{NP} \right|^2} \]

- Left-Right Symmetry
- Extra Dimensions
- Majorons
- R-Parity Violating
- SUSY
- Leptoquarks

...
Effective Mass and Seesaw Mechanism

- **Effective operator for Majorana neutrino mass**

\[
L = \frac{1}{2} \frac{h_{ij}}{\Lambda_{\text{LNV}}} (\bar{L}^c_i \cdot \tilde{H}) (\tilde{H}^T \cdot L_j) \rightarrow \frac{1}{2} (m_\nu)_{ij} \bar{\nu}_i^c \nu_j
\]

Unique dim-5 Operator

- **Seesaw Mechanism**

Add right-handed neutrinos to the Standard Model particle content, \(M \approx \frac{5}{8} \times 10^{14} \text{ GeV} \)

\[
L = L_{\text{SM}} - \frac{1}{2} \bar{\nu}_R^c M \nu_R + \bar{\nu}_R Y_\nu L \cdot H_u
\]

- **Light neutrino mass matrix at low energies**

\[
m_\nu = m_D^T M^{-1} m_D \quad \text{for} \quad m_D \ll M_R \quad m_\nu \approx 0.1\text{eV} \left(\frac{m_D}{100 \text{ GeV}} \right)^2 \left(\frac{M}{10^{14} \text{ GeV}} \right)^{-1}
\]
Problems of Seesaw Mechanism

- Introduces high energy scale
- **Right-handed neutrinos are singlets**
 Couple only via small mixture with active neutrinos
- **Mechanism not testable with low energy observables**
Problems of Seesaw Mechanism

- Introduces high energy scale
- **Right-handed neutrinos are singlets**

 Couple only via small mixture with active neutrinos
- **Mechanism not testable with low energy observables**

Possible Solutions

- **SUSY Seesaw**

 Testable LFV effects from sleptons
Problems of Seesaw Mechanism

- Introduces high energy scale
- Right-handed neutrinos are singlets
 Couple only via small mixture with active neutrinos
- Mechanism not testable with low energy observables

Possible Solutions

- SUSY Seesaw
 Testable LFV effects from sleptons
- “Bent” Seesaw mechanisms
 LNV at low scale allows low mass of right-handed neutrinos
Problems of Seesaw Mechanism

- Introduces high energy scale
- Right-handed neutrinos are singlets
 Couple only via small mixture with active neutrinos
- Mechanism not testable with low energy observables

Possible Solutions

- SUSY Seesaw
 Testable LFV effects from sleptons
- “Bent” Seesaw mechanisms
 LNV at low scale allows low mass of right-handed neutrinos
- Left-Right symmetric models
 Right-handed neutrinos couple with gauge strength to charged leptons
Based on

\[SU(3) \times SU(2)_L \times SU(2)_R \times U(1)_{B-L} \]

Pati & Salam '74
Mohapatra & Senjanovic '75

Higgs Sector:
Bidoublet (EW Breaking) + Left-handed Triplet + Right-handed Triplet (Breaking Lepton Number + Parity + SU(2)_R)

Generate \(N_i + W_R + Z_R \) masses

\[M_{N_i} \approx M_{W_R} \approx M_{Z_R} \approx <\Delta_R> \approx 0.5 - 5 \text{ TeV} \]

General Seesaw II Mechanism

\[M_\nu = \begin{pmatrix} M_L & M_D \\ M_D^T & M_R \end{pmatrix}, \]

Neglect any Left-Right mixing

Charged current weak interactions

\[
\begin{align*}
J_{W_1}^{\mu} & = \frac{g_L}{\sqrt{2}} \left(\bar{\ell}_i U_{Li}^{LL} + \bar{N}_i U_{Li}^{LR} \right) \gamma^\mu \ell_L + \frac{g_R}{\sqrt{2}} \sin \zeta_W \left(\bar{\ell}_i U_{Li}^{RL} + \bar{N}_i U_{Li}^{RR} \right) \gamma^\mu \ell_R, \\
J_{W_2}^{\mu} & = -\frac{g_L}{\sqrt{2}} \sin \zeta_W \left(\bar{\ell}_i U_{Li}^{LL} + \bar{N}_i U_{Li}^{LR} \right) \gamma^\mu \ell_L + \frac{g_R}{\sqrt{2}} \left(\bar{N}_i U_{Li}^{RR} + \bar{\ell}_i U_{Li}^{RL} \right) \gamma^\mu \ell_R,
\end{align*}
\]

\[
\begin{align*}
J_{W_L}^{\mu} & \approx \frac{g_L}{\sqrt{2}} U_{ei} \bar{\nu}_i \gamma^\mu \ell_L, \\
J_{W_R}^{\mu} & \approx \frac{g_R}{\sqrt{2}} V_{ei} \bar{N}_i \gamma^\mu \ell_R,
\end{align*}
\]
Neutrinoless Double Beta Decay in the LRSM

\[\sum_i (U_{ei}^{LL})^2 \frac{m_{\nu_i}}{m_e} = \langle m_{\nu} \rangle / m_e \]

\[\left(\frac{M_{W_L}}{M_{W_R}} \right)^2 \sum_i U_{ei}^{LL} U_{ei}^{LR} \]

\[\frac{M_{W_L}^4}{M_{W_R}^4} \frac{m_p}{M_{\Delta_R}^2} \sum_i (U_{ei}^{RR})^2 M_{N_i} \]

\[\frac{M_{W_L}^4}{M_{W_R}^4} \sum_i \left(\frac{U_{ei}^{RR}}{M_{N_i}} \right)^2 \]

\[\sin^2 \zeta \sum_i U_{ei}^{LL} U_{ei}^{LR} \]
Charged Lepton Flavour Violation

- Lepton flavour practically conserved in the Standard Model

\[
Br(\mu \to e \gamma) = \frac{3\alpha}{32\pi} \left| \sum_i U^*_{\mu i} U_{e i} \frac{\Delta m^2_{1i}}{m_W^2} \right|^2 \approx 10^{-54}
\]

LFV is clear sign for BSM physics

- Flavour violation in quark and neutrino sector
 Strong case to look for charged LFV

- LFV can shed light on
 - Grand Unification models
 - Flavour symmetries
 - Origin of flavour
Rare LFV Processes

Mediated by right-handed neutrinos and doubly charged Higgs bosons

\[
\text{BR}(\mu \rightarrow e\gamma) \approx 2 \times 10^{-9} \sin^2(2\phi) \left(\frac{\Delta m_{12}^2}{m_{W_R}^2} \right)^2 \left(\frac{2 \text{ TeV}}{m_{W_R}} \right)^4 ,
\]

\(\mu\)-\(e\) conversion in nuclei enhanced via box diagrams

\[
R(\mu \rightarrow e) \approx \text{Br}(\mu \rightarrow e\gamma)
\]

\(\mu\rightarrow eee\) strongly enhanced due to tree level contribution

\[
\text{Br}(\mu \rightarrow eee) \approx 10^2 \times R(\mu \rightarrow e)
\]

BSM Flavour Problem
Small mixing and / or mass differences required
Right-handed Neutrino Production at the LHC

- Diagram showing the production of right-handed neutrinos at the LHC.
- Diagram illustrating the interaction of quarks and leptons with right-handed gauge bosons.
- Left-handed quark currents interacting with right-handed gauge bosons.
- Triangle diagrams depicting the production of a right-handed neutrino N_i.
- Quark-W_R and lepton-W_R interactions.

21/01/2013
Frank Deppisch
Probing LNV in DBD and at the LHC
Single Neutrino Production
Sensitivity Reach

- Monte Carlo Simulation (PROTOS)
- Background ttbar, Z + jets (Pythia, Alpgen)
- Fast Detector Simulation (AcerDET)
- Selection Criteria

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>number of jets</td>
<td>$N_j \geq 2$</td>
</tr>
<tr>
<td>number of isolated leptons</td>
<td>$N_\ell = 2$</td>
</tr>
<tr>
<td>invariant dilepton mass</td>
<td>$m_{\ell\ell} > 300$ GeV</td>
</tr>
<tr>
<td>total invariant mass</td>
<td>$m_{\ell\ell\ell\ell} > 1.5$ TeV</td>
</tr>
</tbody>
</table>

ATLAS exclusion @ 2.1 fb$^{-1}$

Opposite Sign + Same Sign Leptons
LHC reach @ 14 TeV, 30 fb$^{-1}$
Single Neutrino Production
Sensitivity Reach

- **Reconstruction of** W_R and N

 $$m_{W_R} = 2 \text{ TeV}$$

 m_{W_R} vs m_{ijl} [TeV]

 $$m_N = 0.5 \text{ TeV}$$

 m_N vs m_{ijl_2} [TeV]

 ATLAS exclusion @ 2.1 fb$^{-1}$

 Opposite Sign + Same Sign Leptons
 LHC reach @ 14 TeV, 30 fb$^{-1}$
Single Neutrino Production
General e-\(\mu\) Mixing

\[
\begin{pmatrix}
 l_{jL} & e_R & \mu_R & \tau_R \\
 U_{PMNS} & 0 & 0 & 0 \\
 0 & V_{Ne} & V_{N\mu} & 0 \\
 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 \\
\end{pmatrix}
\]

\[V_{Ne}^2 + V_{N\mu}^2 \leq 1 \]

\[V_{Ne}^2 + V_{N\mu}^2 = 1 \]

\[(V_{Ne}^2)_{min} = 0.5 \]

\[m_W = 2.5 \text{ TeV}, m_N = 0.5 \text{ TeV} \]

LHC reach @ 14 TeV, 30 fb\(^{-1}\)
Two Neutrino Oscillations

Maximal Lepton Flavour Violation

- Two neutrinos exchanged with maximal mixing and 1% mass splitting

\[
U_{\text{PMNS}} = \begin{pmatrix}
0 & 0 & 0 \\
0 & \cos \phi & \sin \phi & 0 \\
0 & -\sin \phi & \cos \phi & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}
\]

\[\phi = \pi / 4\]

- Correlation with low energy LFV processes

LHC reach @ 14 TeV, 30 fb\(^{-1}\)
Two Neutrino Oscillations
Maximal Lepton Flavour Violation

- Two neutrinos exchanged with maximal mixing and 1% mass splitting

\[
U_{\text{PMNS}} = \begin{pmatrix}
l_{jL} & e_R & \mu_R & \tau_R \\
0 & 0 & 0 & 0 \\
0 & \cos \phi & \sin \phi & 0 & N_1 \\
0 & -\sin \phi & \cos \phi & 0 & N_2 \\
0 & 0 & 0 & 0 & N_3
\end{pmatrix} \nu_i
\]

\[\phi = \pi / 4\]

- Correlation with low energy LFV processes

LHC reach @ 14 TeV, 30 fb\(^{-1}\)
Two Neutrino Oscillations
Maximal Lepton Flavour Violation

- Two neutrinos exchanged with maximal mixing and 1% mass splitting

\[
U_{\text{PMNS}} = \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & \cos \phi & \sin \phi & 0 \\
0 & -\sin \phi & \cos \phi & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}
\]

\[\phi = \pi/4\]

- Correlation with low energy LFV processes

LHC reach @ 14 TeV, 30 fb\(^{-1}\)
Two Neutrino Oscillations
Mixing Angle and Mass Difference

- Two neutrinos exchanged with mixing angle ϕ and mass diff. Δm_N

$$l_{jL} = \begin{pmatrix} e_R & \mu_R & \tau_R \\ 0 & 0 & 0 \\ 0 & \cos \phi & \sin \phi \\ 0 & -\sin \phi & \cos \phi \\ 0 & 0 & 0 \end{pmatrix} U_{PMNS} \begin{pmatrix} \nu_i \\ N_1 \\ N_2 \\ N_3 \end{pmatrix}$$

suppressed as

$$\Delta m_N^2 / (m_N \Gamma_N)$$

- Correlation with low energy LFV processes

suppressed as

$$\Delta m_N^2 / m_{W_R}^2$$

- LHC reach @ 14 TeV, 30 fb$^{-1}$

$$m_{W_R} = 2.5 \text{ TeV}, m_N = 0.5 \text{ TeV}$$
Single Neutrino Production
Unitary $e-\mu-\tau$ Mixing

- Including coupling to taus

\[
U_{PMNS} = \begin{pmatrix}
l_j & e_R & \mu_R & \tau_R \\
0 & V_{Ne} & V_{N\mu} & V_{N\tau} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{pmatrix}
\]

- Tau reconstruction efficiency reduced by

\[
Br(\tau \rightarrow e(\mu) \bar{\nu} \bar{\nu}) \approx 1/3
\]

- Highly boosted secondary leptons
- No cut on missing p_T
Consider contributions to $0\nu\beta\beta$ from triplet Higgs

$$\frac{M_{W_L}^4}{M_{W_R}^4} \frac{m_p}{M_{\Delta_r}^2} \sum_i (U_{ei}^{RR})^2 M_{N_i}$$

and heavy neutrinos

$$\frac{M_{W_L}^4}{M_{W_R}^4} \sum_i \frac{(U_{ei}^{RR})^2}{M_{N_i}}$$

LHC reach @ 14 TeV, 30 fb$^{-1}$
Conclusion

- Neutrinos much lighter than other fermions
 Strong experimental program to probe absolute mass
Conclusion

- **Neutrinos much lighter than other fermions**
 Strong experimental program to probe absolute mass

- **Neutrinos are the only neutral fermions**
 Dirac or Majorana? Lepton Number Violation?
Neutrinos much lighter than other fermions
Strong experimental program to probe absolute mass

Neutrinos are the only neutral fermions
Dirac or Majorana? Lepton Number Violation?

$0\nu\beta\beta$ is crucial probe for BSM physics

- *Hope for the best*
 New LNV physics at the EW scale

- *Prepared for the worst*
 Only 5-dim operator from LNV at the GUT scale
Conclusion

- Neutrinos much lighter than other fermions
 Strong experimental program to probe absolute mass

- Neutrinos are the only neutral fermions
 Dirac or Majorana? Lepton Number Violation?

- $0\nu\beta\beta$ is crucial probe for BSM physics
 - *Hope for the best*
 New LNV physics at the EW scale
 - *Prepared for the worst*
 Only 5-dim operator from LNV at the GUT scale

- Rich phenomenology in models of neutrino mass generation
 - Charged lepton flavour violation
 - LFV and LNV processes at the LHC
 - Connection to Leptogenesis?