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Running Neutrino Masses and Flavor Symmetries

Abstract

The flavor structure of neutral fermion masses is completely different from charged fermion masses.
The cascade seesaw framework allows to implement a cancellation mechanism, which leads to a
weak hierarchy of neutrinos despite the large hierarchy in the charged fermion masses. We present
one realization by the gauge group E6 and two in the framework of SO(10) based on discrete flavor
symmetries T7 and Σ(81). Higher-dimensional operators as well as the flavon potential are discussed.
Furthermore, since renormalization group (RG) effects can become very important in neutrino
physics, especially in view of upcoming precision experiments, we have investigated several models.
The Lµ − Lτ flavor symmetry in the standard seesaw scenario leads to quasi-degenerate neutrinos
and therefore to large RG corrections. The quantum corrections to quark-lepton-complementarity
(QLC) relations are extensively discussed. In the minimal supersymmetric standard model (MSSM),
the effect is almost always positive. In the standard model (SM), there are sizable RG corrections
due to the threshold effects which are either positive for ∆ϕ ≈ 0◦ or negative for ∆ϕ ≈ 180◦.
They have been studied in the leading log (LL) approximation and mainly lead to a rescaling of
right-handed (RH) neutrino masses. The results are generalized beyond LL and the conditions
for the applicability are derived. Finally, the results are applied to the cascade seesaw mechanism
and the cancellation mechanism. The RG equations of the mixing parameters in the triplet seesaw
are derived in terms of basis-independent quantities. The main results are the independence of
Majorana phases and the proportionality to the mass squared difference in the strongly hierarchical
case which differs from the standard seesaw mechanism.

Kurzfassung

Die Familienstruktur der neutralen Fermionen unterscheidet sich völlig von den geladenen Fermion-
massen. Das kaskadierte Seesaw Szenario erlaubt die Konstruktion eines Auslöschungsmechanismus,
der zu einer schwachen Hierarchie der Neutrinos führt trotz der starken Hierarchie der geladenen
Fermionen. Wir präsentieren eine Realisierung durch die Eichgruppe E6 und zwei im Kontext von
SO(10), die auf einer diskreten Familiensymmetrie T7 bzw. Σ(81) basieren. Höher-dimensionale
Operatoren und das Flavonpotential werden diskutiert. Da Renormierungsgruppen(RG)-Effekte in
der Neutrinophysik sehr wichtig werden können, insbesondere im Blick auf die kommenden Präzis-
sionsexperimente, wurden mehrere Modelle untersucht. Die Lµ−Lτ Symmetrie im Standard Seesaw
Modell führt zu quasi-degenerierten Neutrinos und somit zu großen RG Effekten. Die Quantenko-
rrekturen zu den Quark-Lepton Komplementarität Relationen werden ausführlich diskutiert. Im
Minimalen Supersymmetrischen Modell (MSSM) sind die Korrekturen fast immer positiv. Im Stan-
dard Modell (SM), gibt es größere RG Korrekturen aufgrund von Schwelleneffekten, die positiv für
∆ϕ ≈ 0◦ bzw. negativ für ∆ϕ ≈ 180◦ sind. Sie werden in der führenden Logarithmus Näherung be-
sprochen und führen hauptsächlich zu einer Reskalierung der rechtshändigen (RH) Neutrinomassen.
Die Ergebnisse werden über die LL Näherung hinaus verallgemeinert und Bedingungen der An-
wendbarkeit werden hergeleitet. Schließlich werden die Ergebnisse beim kaskadierten Seesaw Mech-
anismus und dem Auslöschungsmechanismus angewandt. Die RG Gleichungen der Mischungspa-
rameter im Triplett Seesaw Mechanismus werden hergeleitet und basisunabhängig ausgedrückt. Die
Hauptergebnisse sind die Unabhängigkeit von den Majoranaphasen und die Proportionalität der
Massenquadratdifferenzen im stark hierarchischen Fall im Gegensatz zum Standard Seesaw Mech-
anismus.
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Chapter 1

Introduction

The quantization of charge and the unification of the gauge couplings of all three forces in the
minimal supersymmetric standard model (MSSM) at ΛGUT = 2·1016 GeV strongly suggest a further
unification of all forces into a (supersymmetric (SUSY)) grand unified (GU) gauge group [1, 2].
Especially, models which unify all SM particles in one irreducible representation like SO(10) [3, 4]
and E6 [5–9] are appealing.
The flavor sector also shows regularities: (i) All charged fermion masses show a strong normal
hierarchy. (ii) The mixing angles in the quark sector are small and in the lepton sector, there is
maximal 2-3 mixing and possibly vanishing 1-3 mixing. (iii) The neutrino mass matrix is compatible
with the exchange of the second and third row/column which suggests a µ− τ exchange symmetry.
Furthermore, there are some peculiar relations: (i) The light quark masses are related to the Cabibbo
angle

tanϑ12 ≈
√
md

ms
(1.1)

which is known as Gatto-Sartori-Tonin (GST) relation1 [11]. (ii) The quark mixing angles ϑij
and the lepton mixing angles θij , which parameterize the Cabibbo-Kobayashi-Maskawa (CKM) and
Maki-Nakagawa-Sakata (MNS) mixing matrix, respectively, add up to maximal mixing

θ12 + ϑ12 ≈
π

4
, θ23 + ϑ23 ≈

π

4
. (1.2)

They are known as quark lepton complementarity (QLC) relations [12–14] because of the com-
plementarity of θij and ϑij to maximal mixing. They suggest a further unification of quarks and
leptons. Therefore the QLC relations are presumably due to a symmetry close to the unification
scale. (iii) Moreover, to a very high precision (10−5), the charged lepton masses fulfill

me +mµ +mτ =
2
3
(√
me +

√
mµ +

√
mτ

)2
, (1.3)

which was found by Koide [15]. It indicates that the first generation is as important as the third
one, which is in contradiction to the approach to generate the masses of the third generation at
tree level and the light generations by non-renormalizable operators. Here, all flavors should be
considered as equally important.
All these structures and relations of the experimental data indicate, that the masses and mixing
angles are not accidental but determined by a flavor symmetry. There already exist several attempts
to explain theses patterns by continuous (e.g. Abelian [16–24] and non-Abelian [25–29]) or discrete

1It can be explained by a symmetric mass matrix with vanishing 1-1 element [10], e.g. within SO(10).
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2 CHAPTER 1. INTRODUCTION

(e.g. A4 [30]) symmetries. However, the study of flavor symmetries has revealed, that they have to
be broken, explicitly or spontaneously, above the electroweak scale since the low-energy data does
not allow for an exact symmetry.
In view of these hints towards a GU theory (GUT) as well as a flavor symmetry, it is tempting to
combine a GU gauge group and a flavor symmetry. However, this involves some difficulties, since
the mass hierarchies in the charged and in the neutral fermions are completely different. In addition,
it is not obvious how large mixing angles in the lepton sector can be reconciled with small mixing
angles in the quark sector. This is taken into account in many low-energy models by assigning
different representations to different particle species. But, this is not possible in GUTs which unify
all SM particles within one representation. Some models aim to combine a flavor symmetry with a
GUT [31–33], which use the standard seesaw mechanism [34–38]

mν ∝ −Y T
ν M

−1
NNYν ,

where RH neutrinos N with mass MNN are integrated out (or a variant thereof [39–43]) to explain
the difference between charged Dirac fermion mass matrices and the light Majorana neutrino mass
matrix mν . However, in GUTs like SO(10) and E6, the neutrino Yukawa couplings Yν are related
to the up-type quark Yukawa couplings Yu, which leads to a squared hierarchy in the light neutrino
mass matrix. Therefore, it is essential to cancel this hierarchy. This can be achieved in the double
seesaw (DS) framework [44, 45], where the effective light neutrino mass matrix is obtained by the
successive application of the standard seesaw formula

mν ∝ Y T
ν Y

−1
SNMSSY

T −1
SN Yν .

When the Yukawa couplings of the additional singlets Si to the RH neutrinos YSN are proportional
to Yν , the hierarchy automatically drops out [46,47]. Furthermore, the effective light neutrino mass
matrix is mainly given by the Majorana mass matrix MSS of the additional singlets which is not
related to the usual Yukawa couplings and, hence, can have a weaker hierarchy. Therefore, a special
neutrino symmetry can be implemented, e.g. the µ− τ symmetry [48–51].
Moreover, as GU gauge symmetries are generally broken at a high energy scale, they predict masses
and mixing angles at this scale. However, gauge couplings as well as masses and mixing angles are
not constant, but depend on the energy scale of the considered process through quantum correc-
tions to the tree-level (classical) theory. This can be understood by thinking of the vacuum as a
polarizable medium2, e.g. the electric charge is screened by the dipoles in the polarizable medium
which effectively reduces its strength at low energies. At high energies or short distances, the charge
is probed closer to the center, which leads to a less screened, hence larger charge. This energy scale
dependence is described by the renormalization group (RG). Thus, in order to compare predictions
of GUTs which are valid at a high energy scale with the low-energy experimental data, RG correc-
tions have to be considered. It turns out, that they can be sizable in the neutrino sector. They
are especially large for quasi-degenerate neutrinos in the MSSM with large tanβ [52–59] as well as
above and between the seesaw scales due to large Yν [52,60–69]. The running between mass thresh-
olds is crucial in non-SUSY theories, because there are several contributions to the neutrino mass
matrix which are renormalized differently. This generally leads to large corrections to the mixing
parameters. But even small corrections are important, since the precision of neutrino masses and
mixing angles has been increased by several neutrino oscillation experiments [70–76] and will be
improved further. In the next-generation experiments, the mixing parameters will be measured on
a 10 % level [77], θ12 will be known even more precisely, i.e. RG effects become comparable to the

2The Heisenberg uncertainty allows the creation of particle-antiparticle pairs which can be considered as dipoles.
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precision of the experiment even for a hierarchical spectrum [69]. Moreover, the above mentioned
low-energy relations Eqs. (1.1, 1.2, 1.3) are subject to quantum corrections, since it turns out that
none of them is RG invariant. Especially the QLC relations are subject to potentially large correc-
tions due to the strong running of θ12. The Koide and the GST relation are expected to receive only
small corrections, because masses usually show a flavor-independent rescaling. Large corrections
to a low-energy relation disfavor an explanation by a symmetry and leave it as a mere numerical
coincidence.
This thesis is structured in the following way. The basic concepts of the RG and effective field
theories (EFTs) are introduced in Chapter 2. In Chapter 3, several aspects of model building are
outlined. At first, the experimental status of neutrino mixing parameters is presented as well as
different variants of the seesaw mechanism. GUTs and flavor symmetries are introduced and the
QLC relations are discussed. In Chapter 4, a cancellation mechanism within the cascade seesaw
mechanism is presented and realizations by a GUT symmetry as well as flavor symmetries are
discussed. As thresholds can lead to large effects, we study the corrections due to mass thresholds
in the standard seesaw framework in Chapter 5. The RG effects in the Lµ−Lτ symmetric model as
well as the phenomenologically motivated QLC scenario are discussed in terms of mixing parameters
in Chapter 6. Furthermore, RG equations of the mixing parameters are derived in the triplet seesaw
scenario. Finally, we conclude in Chapter 7.
Our conventions are shown in App. A. Technical details of GUTs and flavor symmetries are sum-
marized in App. B. Lastly, the necessary RG formulas are collected in App. C. Part of this thesis
has been already published in [78–81] or will be published [82].
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Chapter 2

Renormalization Group

This chapter summarizes basic knowledge about the RG, EFTs and the decoupling of particles.
In Sec. 2.1 the Wilsonian approach to the RG is presented using the example of φ4-theory. The
Callan-Symanzik equation which underlies all RG calculation techniques is derived in Sec. 2.2. As
decoupling of particles is not automatic in mass-independent renormalization schemes, EFTs are
outlined in Sec. 2.3. We discuss the decoupling of particles in Sec. 2.4.

2.1 Basic Picture – Wilson Renormalization Group

Before we derive specific results using RG techniques, we want to summarize the most important
facts about RG evolution which we need in the following discussion.
The renormalization group can be understand most easily in the picture of Wilson (See e.g. [83].)
with a momentum cutoff as regulator of the theory. However, it can be extended to other regu-
larization techniques like dimensional regularization [84–86]. The starting point is the Euclidean
Feynman path integral 1

Z[J ] =
∫
Dφ e−

R
[L +Jφ] =

∏
k

∫
dφ(k) e−

R
[L +Jφ] . (2.1)

A sharp 2 UV cutoff Λ can be imposed by restricting the integration variables φ(k) by |k| ≤ Λ and
setting φ(k) = 0 for k > Λ. This immediately leads to the question how the quantum fluctuations
at very short distances or very large momenta influence the path integral and therefore the physical
observables, more precisely, what is the dependence of the path integral on the cutoff Λ. In order
to analyze this dependence, we first integrate out all momentum modes bΛ < |k| ≤ Λ

Z[J ] =
∫

[Dφ]Λ e−
R

[L (φ)+Jφ]

=
∫

[Dφ]bΛ

∫
[Dφ̂][bΛ,Λ] e

−
R
[L (φbΛ+φ̂)+J(φbΛ+φ̂)]

=
∫

[Dφ]bΛ e−
R

[L (φbΛ)+JφbΛ]

∫
[Dφ̂][bΛ,Λ] e

−
R
[L (φbΛ+φ̂)−L (φbΛ)+Jφ̂]

(2.2)

1Since the metric is not positive semi-definite in Minkowskian space, it is difficult to impose a cutoff on momenta.
2In the exact RG, which is a generalization of the simple picture by Wilson, the cutoff is a smooth functional

F [φ(k)].
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6 CHAPTER 2. RENORMALIZATION GROUP

where we used the notation

φΛ(k) = φ(k)Θ(Λ− |k|) (2.3a)

φ̂(k) = φ(k)Θ(Λ− |k|)Θ(|k| − Λ′) (2.3b)

[Dφ][bΛ,Λ] =
∏

bΛ<|k|≤Λ

dφ(k) (2.3c)

[Dφ]Λ = [Dφ][0,Λ] . (2.3d)

This leads to an effective Lagrangian Leff in

Z[J ] =
∫

[Dφ′]Λ′e−
R

[Leff(φΛ′ )+JφΛ′ ] . (2.4)

This effective Lagrangian Leff can be related to the full Lagrangian L by rescaling all momenta
and distances by

k → k′ = k/b , x→ x′ = bx , ∂µ → ∂′µ = ∂µ/b . (2.5)

In order to be more explicit, we consider the φ4 theory

L =
1
2

(∂µφ)2 − m2

2
φ2 − λ

4!
φ4 (2.6)

which results in the effective Lagrangian

Leff =
1
2

(1 + δZφ) (∂µφ)2 − m2 + δm2

2
φ2 − λ+ δλ

4!
φ4 +

∑
N,M

CN,M
(
∂Mµ φ

N
)

(2.7)

after a functional integration over the high momentum degrees of freedom bΛ < k ≤ Λ has been
performed. This can be done be calculating the relevant Feynman diagrams. Note, that new local
operators with N fields and M derivatives show up. The rescaling of the action results in

∫
ddx′ b−d

1
2

(1 + δZφ) b2 (∂µφ)2 − m2 + δm2

2
φ2 − λ+ δλ

4!
φ4 +

∑
N,M

CN,Mb
M
(
∂Mµ φ

N
) (2.8)

which can be related to the original action by rescaling the fields φ:

φ′ =
[
b2−d (1 + δZφ)

]1/2
φ (2.9a)

m′ 2 =
(
m2 + δm2

)
(1 + δZφ)−1 bd−2 (2.9b)

λ′ = (λ+ δλ) (1 + δZφ)−1 bd−4 . (2.9c)

Hence, the integration over the high momentum degrees of freedom leads to a rescaling of the cou-
plings and defines a flow (one parameter curve in parameter space) of the couplings or equivalently
a flow of the Lagrangian. The successive integration over high momentum degrees of freedom is
sometimes denoted as summing up large logarithms, since the corrections δλ,. . . become large for
decreasing b.
The different operators of the Lagrangian can be classified by their behavior close to a fixed point
of the flow (φ′ = φ, m′ 2 = m2, . . . ). There are three different classes of operators:

• relevant operators grow, when they are approaching the fixed point;
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• irrelevant ones decrease by approaching the fixed point;

• the behavior of marginal operators depends on higher order corrections.

The free theory

L0 =
1
2

(∂µφ)2 (2.10)

is a fixed point, since at leading order

λ′ = λbd−4 , m′ 2 = m2bd−2 (2.11)

Thereforem2 is relevant in d = 4 dimensions and λ is marginal. The next-to-leading order correction
to λ in d = 4

λ′ = λ− 3λ2

16π2
ln

1
b

(2.12)

leads to a decrease of λ while the high momentum degrees of freedom are integrated out step by
step. Conversely, since

λ
Λ→∞−−−−→∞ , (2.13)

φ4-theory does not exist for λ 6= 0 when the cutoff is removed, which is denoted as triviality. In
general, an operator with N fields and M derivatives close to the free field fixed point transforms
as

C ′N,M = bd−N(d/2−1)+MCN,M . (2.14)

Hence, operators are relevant if
d ≤ N (d/2− 1) +M . (2.15)

2.2 Callan-Symanzik Equation

The Wilsonian approach to the RG which has been discussed in the previous section is based on a
rescaling of all momenta. In this section, we describe the derivation of the Callan-Symanzik equation
which originates from the rescaling of all mass parameters. Since the RG scale µ in dimensional
regularization or the cutoff scale Λ in a momentum cutoff scheme are auxiliary variables and physical
results of a theory are independent of the regularization and renormalization procedure used, this
independence can be used to derive a partial differential equation (PDE) which all Greens functions
must satisfy. In the following derivation we restrict ourselves to dimensional regularization. A
theory is uniquely described by its bare Greens functions

G
(n)
B ({xi}, λj) = 〈Ω|T φB(x1) . . . φB(xn)|Ω〉 (2.16)

and it it independent of the used renormalization scheme. Therefore, we require the bare Greens
functions to be independent of the renormalization scale µ.

µ
d

dµ
G

(n)
B = 0 . (2.17)

Hence, the renormalized Greens functions

G(n)({xi}, λi) = Z−n/2G
(n)
B ({xi}, λi) (2.18)
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obey

0 =
[
µ

d
dµ

+
n

2
µ

d lnZ
dµ

]
G(n)({xi}, λj) =

[
µ
∂

∂µ
+ µ

∂λk
∂µ

∂

∂λk
+
n

2
µ

d lnZ
dµ

]
G(n)({xi}, λj) . (2.19)

This equation is called Callan-Symanzik equation [87,88] which is usually shown in the form

0 =
[
µ
∂

∂µ
+ βk

∂

∂λk
+
n

2
γ

]
G(n)({xi}, λj) . (2.20)

It is a quasi linear PDE which can be solved by the method of characteristic curves. This transforms
the PDE into a system of ordinary differential equations

βk(µ) ≡ µ∂λk
∂µ

, γ(µ) ≡ µd lnZ
dµ

, (2.21)

which are called β-functions in the case of βk and anomalous dimensions in the case of γ. Note
that the β-functions and the anomalous dimension γ are independent of {xi}, i.e. they are inde-
pendent of the Greens functions G(n). The β-function of any operator Q can be derived similarly
by requiring the independence of the renormalization scale µ of the bare operator QB. A formula
for the resulting β-function can be found in [89–91]. The RG evolution of couplings has been ex-
perimentally shown. The electromagnetic fine-structure constant αem = e2

4π has been measured in
the OPAL experiment [92] at an energy of 181.94 GeV and at very low energies in quantum Hall
experiments [93]

α−1
em (181.94 GeV) = 126.2+3.5

−3.2 , α−1
em (0 GeV) = 137.035999679(94) . (2.22)

Another evidence for RG evolution is the strong coupling constant which becomes non-perturbative
at the QCD scale ΛQCD ∼ 300 MeV and evolves asymptotically to zero at higher energies which was
first shown by Gross, Politzer and Wilczek [94]. The β-function of a gauge coupling in an arbitrary
Yang-Mills theory with gauge group G, gauge coupling g and an arbitrary number of representations
(reps) is at 1 loop order

β1loop
g = − g3

16π2

11
3
l(Ad)− 2

3

∑
F∈{Weyl reps}

l(F )− 1
6

∑
S∈{real scalar reps}

l(S)

 , (2.23)

where l(R) denotes the Dynkin index of representation R and Ad is the adjoint representation,
which summarizes the contribution of gauge vector bosons. In a supersymmetric theory, the gauge
coupling β-function in terms of superfields is given by

β1loop
g = − g3

16π2

3 l(Ad)− 4
3

∑
C∈{chiral superfield}

l(C)

 . (2.24)

2.3 Effective Field Theories

As we have already pointed out, all couplings or equivalently the effective action depend on the
external momenta of the process. As mass-independent schemes do not implicitly decouple particles,
since the renormalization scale does not know about particle masses, the decoupling has to be done
by hand, i.e. at each mass threshold, particles are integrated out which leads to an EFT. EFTs are a
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powerful tool to extract the relevant physical degrees of freedom at a given energy scale from a theory.
The dominant contribution to processes at a given energy scale is due to particles which can become
on-shell, especially those particles whose mass is close to the relevant energy scale. Particles, which
cannot become on-shell, are treated effectively. They are integrated out. This can be understood in
various equivalent ways. In Feynman diagrams, it results in deleting all propagator lines of heavy
particles. In the Feynman path integral it amounts to integrating over the heavy degrees of freedom
which cannot become on-shell. Finally, on the level of the action, these heavy particles fulfill their
classical equation of motion and can be removed from the action by inserting the equation of motion
into the action. Hence, in the EFT, we neglect all quantum fluctuations of the heavy particle and
treat it classically. The full theory is expanded in a dimensionful parameter Λ−1 up to some power
Λ−N

Leff =
N∑
n=0

L (n) , N ≥ 0 (2.25)

where L (n+1) is suppressed compared to L (n) by Λ−1. Hence an EFT can be arbitrarily precise by
the inclusion of sufficiently many inverse powers of Λ. This systematic expansion is controlled by
the “Power Counting” in Λ−1 of the effective theory.
EFTs are especially useful in calculations of the effective potential with many mass scales. For sim-
plicity consider a theory of two massive particles with massesm1 andm2. Since in mass-independent
renormalization schemes like MS combined with dimensional regularization, large logarithms of the
mass ratio m1

m2
show up. They indicate that the loop expansion does not work properly, because

powers of the same logarithm show up at higher loop orders, e.g. the logarithm ln m1
m2

at 1 loop

order appears at 2 loop order as
(

ln m1
m2

)2
. In an EFT, all particles which cannot become on-shell

are already decoupled and particles which are much lighter than the renormalization scale can be
treated as massless which essentially leaves only one mass scale in the effective potential. Therefore,
the renormalization scale can be chosen such that all logarithms are small [95, 96]. In principle,
there can be many mass scales, as it is shown in Fig. 2.1. At each mass threshold, the particle
is integrated out and the effective theory is matched to the underlying theory. Concluding, we
summarize the procedure to calculate the effective action at a given energy scale using an EFT:

• Identify the relevant degrees of freedom.

• Integrate out particles which cannot become on-shell.

• Identify the expansion parameter, like the mass of the RH neutrino in the standard seesaw
mechanism.

• Match the couplings of the effective theory to the underlying theory at n loop order3.

• Evolve all couplings at n+ 1 loop order to the next mass threshold and integrate out the next
particle.

• . . . as long as the relevant energy scale is reached.

3If the RG running is calculated at n + 1 loop order, the matching has to be done at n loop order, since the
logarithm of the running compensates for the suppression factor from the loop integral.
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〈Hu〉 M1 M2 M3 Λ
µ

(0) (1) (2) (3)

Figure 2.1: The thresholds due to masses Mi of RH neutrinos and the intervals of RG running. 〈Hu〉 denotes the
VEV of the electroweak Higgs doublet coupling to neutrinos.

2.4 Decoupling

The power counting of the EFT ensures that Greens functions of both theories are equal at least up
to the order O(

( p
Λ

)N ) where N denotes the maximal order in Λ−1 taken into account in the EFT
and p is the largest external momentum of the process. Therefore, heavy particles are unobservable
until close to their threshold where they have been integrated out. The couplings of the EFT have no
a-priori value, but they have to be matched to the underlying theory if it is known or to experimental
data. Symanzik [97] and later Appelquist and Carazzone [98] showed that particles with a large
massM decouple from the low-energy effective theory in the limitM →∞ and the resulting EFT is
renormalizable. However, there are some exceptions to the decoupling theorem. The most prominent
one is 4-Fermi theory which describes weak interactions at low energies. In the renormalizable part
of the theory β-decay is forbidden by symmetries in contrast to the experimentally visible decays.
It is still a good EFT, since there is power counting. However, dimension 6 (D6) operators are
essential and therefore it is non-renormalizable. In general, an EFT has more symmetries than
the full theory. Another example is the effective theory of Majorana neutrinos where ratios of the
neutrino mass matrix elements are invariant under rescaling of the neutrino mass matrix [99]. A
further exception are chiral theories where the mass is generated by the Higgs mechanism, e.g. the
top quark in the SM is the heaviest particle and at low energies it can be integrated out. However,
after electroweak symmetry breaking, the top Yukawa coupling yt is proportional to the top mass.
Hence in the limit mt →∞, the top Yukawa coupling diverges and the top strongly couples. Thus
it does not decouple from the low-energy effective theory. The gauge hierarchy problem can also be
understood as non-decoupling of heavy degrees of freedom. It is summarized in the two questions
why are there large hierarchies and why are they stable with respect to the RG. Fundamental scalars,
like the SM Higgs boson receive quadratic corrections from all other particles in the theory which
they couple to. Hence, when the SM is embedded into a GUT, there are also corrections which are
proportional to Λ2

GUT from GUT scale particles. Therefore heavy particles do not decouple from
a theory which involves fundamental scalars as long as the RG corrections are not cancelled like
quadratic divergences in SUSY theories where scalar masses receive only logarithmic corrections
like fermions.



Chapter 3

Aspects of Model Building

In Sec. 3.1 the experimental data of neutrino experiments is presented and different mechanisms
to generate neutrino masses are outlined. The discussion is focused on variants of the seesaw
mechanism which show up in unified models. Some aspects of unified models are presented in Sec.
3.2. Sec. 3.3 outlines several flavor symmetries which aim to explain neutrino masses as well as
leptonic mixing parameters. Finally, we discuss the QLC relations in Sec. 3.4.

3.1 Neutrino Masses

3.1.1 Experimental Data

After the first evidence of atmospheric neutrino oscillations in 1998 by SuperKamiokande [70] which
was independently confirmed by K2K [73], there have been numerous successful experiments which
increased the precision of neutrino masses and leptonic mixing parameters. SNO [72] proved that
the neutrino deficit of solar neutrinos measured in the Homestake experiment [100] is due to neu-
trino oscillations. KamLand [74] independently confirmed the solar parameters by measuring the
flux of anti-neutrinos coming from nuclear reactors. Recently, MINOS [75] improved the precision
on the atmospheric mixing parameters and KamLand [101] on the solar parameters. Last year,
MiniBoone [102] ruled out the explanation of a sterile neutrino for the LSND measurement [103].
So far, there is only an upper bound on the third mixing angle θ13 by the CHOOZ experiment [71].
In the next-generation experiments, the mixing parameters will be measured on a 10 % level [77]
or even better in the case of θ12. The current best fit values of neutrino masses and leptonic mixing
angles are summarized in Tab. 3.1 in the standard parameterization. They will be further im-
proved in the coming years by Borexino which measured for the first time the Berilium–7 line of the
solar neutrino spectrum [76], SuperKamiokande, Double CHOOZ, T2K, NoVa, MINOS and other
experiments. There exist upper bounds on the absolute neutrino mass from

• the MAINZ [104] experiment which has set a model-independent upper bound on the neutrino

mass m(νe) =
√∑

i |Uei|2m2
i ≤ 2.3 eV(@ 95%C.L.) by measuring the end point of the tritium

β-spectrum, which determines the neutrino mass kinematically;

• the Heidelberg-Moscow experiment [105] which searched for neutrinoless double beta (0ν2β)
decay in Germanium detectors. It sets the current upper limit on 〈mee〉 ≤ 0.35 eV(@ 90%C.L.).
Part of the group [106] claims the discovery of 0ν2β with an effective neutrino mass scale of
〈mee〉 = 0.11− 0.56 eV(@95%C.L.);

11
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parameter ∆m2
21[10−5 eV2] ∆m2

31[10−3 eV2] sin2 θ12 sin2 θ13 sin2 θ23

best fit 7.6 2.4 0.32 0.007 0.50
3σ 7.1− 8.3 2.0− 2.8 0.26− 0.40 ≤ 0.050 0.34− 0.67

Table 3.1: Current measured neutrino mass squared differences ∆m2
ij = m2

i − m2
j and leptonic mixing angles in

standard parameterization [112]. Note that the current best fit value of the 1-3 mixing is non-zero. However, it is
still compatible with a vanishing 1-3 mixing.

• astrophysical observations on the sum of neutrino masses by measuring the energy den-
sity of relativistic particles in the universe. The WMAP [107] data alone places an up-
per limit

∑
imi < 1.3 eV(@ 95%C.L.). The inclusion of distance measuring information

of baryon acoustic oscillations and supernova data further improves the upper bound to∑
imi < 0.61 eV(@95%C.L.), since neutrino-like particles erase structures on small scales.

In the coming years there will be a number of experiments to address the unsolved issues. To name
a few

• Double CHOOZ [108] will set a bound on the 1-3 mixing angle sin 2θ13 ≤ 0.02−0.03(@90%C.L.);

• KATRIN [109] is going to improve the upper bound on m(νe) ≤ 0.35 eV;

• GERDA [110] and other experiments are searching for 0ν2β decay and are going to place
a bound on mee. GERDA aims to have a sensitivity on 〈mee〉 of 0.09 − 0.29 in 2009. The
discovery of 0ν2β decays would show that lepton flavor violating processes exist. This implies
that neutrinos are Majorana particles;

• the PLANCK satellite [111] and weak lensing experiments will decrease the astrophysical
bound on the sum of neutrino masses to

∑
imi . O(0.2) eV.

The standard parameterization of the MNS (leptonic mixing) matrix is presented in App. A.1.
Since the solar mass squared difference is much smaller than the atmospheric one, it is sometimes
useful to expand in the ratio

ζ =
∆m2

21

∆m2
32

, (3.1)

where ∆m2
ij = m2

i −m2
j . Finally, we present two special cases of the MNS matrix.

Bimaximal Mixing

Bimaximal mixing is produced by the mass matrix [113–117]

mbimax
ν =

 D − C B −B
. D C
. . D

 (3.2)

in flavor basis, i.e. where the charged lepton Yukawa couplings are diagonal. B,C,D are arbitrary
parameters which are related to the masses by

B =
m2 −m1

2
√

2
, C = −m1

4
− m2

4
+
m3

2
, D =

m1

4
+
m2

4
+
m3

2
. (3.3)
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It is diagonalized by two maximal rotations Uij(π/4) in the i− j plane

Ubm = U23(π/4)U12(π/4) =
1
2


√

2
√

2 0
−1 1

√
2

1 −1
√

2

 . (3.4)

Although bimaximal mixing is excluded at low energies by solar neutrino oscillation experiments,
it is still a viable mass texture at high energies, since the RG running can drive bimaximal mixing
to the LMA solution [64,69,81] which is shown in Sec. 6.4.4.

Tri-bimaximal Mixing

The tri-bimaximal mixing texture was proposed by Harrison, Perkins and Scott (HPS) [118–121].
It is inspired by the experimental data which suggest Ue3 = 0, |Uµ3|2 = 1/2 and |Ue2|2 = 1/3. This
leads to the MNS matrix

UMNS =


√

2
3

1√
3

0
− 1√

6
1√
3

1√
2

− 1√
6

1√
3
− 1√

2

 =
1√
6

 1 1 1
1 ω2 ω
1 ω ω2

 1 0 0
. 1 −1
. . 1

 , (3.5)

where ω = ei2π/3 which leads to 1 + ω + ω2 = 0. The resulting mass matrix in flavor basis is

mtbm
ν =

 C +D −B B B
. D C
. . D

 , (3.6)

where B,C,D are arbitrary parameters which are related to the masses by

B =
m2 −m1

3
, C =

m1

6
+
m2

3
− m3

2
, D =

m1

6
+
m2

3
+
m3

2
. (3.7)

The mass matrix can also be written in the suggestive form

mtbm
ν =

m3

2

 0 0 0
. 1 −1
. . 1

+
m2

3

 1 1 1
. 1 1
. . 1

+
m1

6

 4 −2 −2
. 1 1
. . 1

 . (3.8)

3.1.2 Neutrino Mass Models

In this section, we summarize the most important facts about neutrino masses and possibilities to
generate small neutrino masses with the focus on the different variants of the seesaw mechanism,
which are used in the following chapters. As the nature of neutrino masses is not known yet, Dirac as
well as Majorana neutrinos are possible. Indeed, there are several models which explain the smallness
of Dirac neutrino masses by a suppression with respect to the GUT scale or other extra heavy degrees
of freedom, e.g. [122, 123]. In models with extra dimensions, the smallness can be explained by a
small overlap of the corresponding zero-mode profiles along extra dimensions (See, e.g., [124]) or in
the case of large extra dimensions by the volume suppression factor, if the RH neutrino is chosen to
propagate in the bulk. Another possibility are mechanisms which generate small neutrino masses
radiatively, which ensures that there is a suppression factor of 1/(8π)2 coming from the loop and
small couplings on the other side. Two examples for radiative generation of neutrino masses are the
Zee model [125] which generates the mass term at 1 loop level and the Babu model [126]. There,
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the neutrino mass is generated at the 2 loop level. Even gravitational interactions can generate
neutrino masses [127], although they can only lead to a subdominant contribution, since they are
suppressed by the Planck scale. In the following, we restrict ourselves to the seesaw mechanism and
just refer to [47, 128, 129] for recent overviews of alternatives. The seesaw mechanism naturally
shows up in GUTs since there are heavy particles which couple to neutrinos. There are essentially
three different variants, the standard (type I) [34–38], triplet (type II) [39–41] and the fermionic
triplet (type III) [42, 43] seesaw mechanism. The cascade seesaw mechanism can be viewed as a
special case of the standard seesaw mechanism with more additional singlets (RH neutrinos) and a
special structure of the neutral fermion mass matrix. Since in the following chapters, we concentrate
on the standard, cascade and triplet seesaw mechanism, we give some more details on them and just
note about the fermionic triplet seesaw mechanism, that it leads to the same decoupling formula
(up to a group theoretical factor) as in the standard seesaw case.

Effective Theory

At low energies the Majorana neutrino mass can be described by an effective dimension 5 (D5)
operator which is, in fact, the only D5 operator compatible with SU(3)C ×SU(2)L×U(1)Y and the
SM field content [130]. The concrete term in the Lagrangian is

−Lκ =
1
4
κfg`

f
LaεabH

b
u(`gLc)

C
εcdH

d
u , (3.9)

where `L denotes the lepton doublet and C is the charge conjugation matrix with respect to the
Lorentz group. After the SM Higgs field Hu acquires its VEV, the D5 operator leads to a neutrino
mass term

`fLa
`gLc

φb φdκ
φ→〈φ〉+φ′−−−−−−→

νfL
νgL

v v
κ

−1
4
κfg`

f
LaεabH

b
u · (`

g
Lc)
C
εcdH

d
u

φ→〈φ〉+φ′−−−−−−→ −v
2

4
κfgν

f
L(νgL)C .

(3.10)

Standard (Type I) Seesaw

The standard (type I) seesaw mechanism [34–38] provides a natural explanation of the smallness
of neutrino mass. It can also be the origin of the difference of the quark and lepton mixings. The
smallness of neutrino masses is explained by the introduction of RH neutrinos N which lead to
additional Yukawa couplings Yν and mass terms MNN in the Lagrangian

−LN = (Yν)fgN
f
`gLHu

C +
1
2

(MNN )fgN
f TCNg + h.c. . (3.11)

The corresponding mass matrix of uncharged particles is

M =
(

0 mT
D

mD MNN

)
, (3.12)

where mD = Yν 〈Hu〉 denotes the Dirac neutrino mass matrix and MNN is the Majorana mass
matrix of the RH neutrinos. The Majorana mass scale is assumed to be much larger than the
Dirac mass scale, since the RH neutrinos are total singlets which are not constrained by any gauge
symmetry. At low energies, the RH neutrinos are decoupled and physics is described by an effective
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theory, where the neutrino mass matrix of the light neutrinos is given by the D5 operator. The
effective D5 operator is determined by matching the full theory and the effective theory.

Nh

`fLa Hu
b

Hu
d `gLc

+
Nh

Hu
d

`fLa

`gLc

Hu
b

q2�M2
k−−−−−→ κ

Hu
d `gLc

`fLa Hu
b

(3.13)

In terms of formulas, we have[
−i
(
Y T
ν

)
fh
εabPL

] i�q + iMh

q2 −M2
h + iε

[
−i (Yν)hg

(
εT
)
dc
PL
]

+
[
−i
(
Y T
ν

)
fh
εadPL

] i�q + iMh

q2 −M2
h + iε

[
−i (Yν)hg

(
εT
)
bc
PL
]

q2�M2
h−−−−−→ i

(
Y T
ν

)
fh
M−1
h (Yν)hg (εabεcd + εadεcb)PL , (3.14)

whereMk denotes the Majorana mass of the RH neutrino Nk. Thus the matching condition is given
by

κEFT = κ+ 2Y T
ν M

−1
NNYν (3.15)

To be more precise, the RH neutrinos are in general non-degenerate in mass and they are integrated
out one after the other, such that there are different effective theories as shown in Fig. 2.1.

Cascade Seesaw

The cascade seesaw scenario is similar to the standard seesaw scenario. The main difference is that
there are more SM singlets. It can be motivated from string theory, since some string theory models
predict many (O(100)) singlets (See e.g. [131]).

−L = (Yν)fgN
f `
g
Hu + (YSN )fg S

f
Ng∆ + (YSν)fg S

f
`g∆′ +

1
2

(MSS)fg S
f TCSg . (3.16)

In the SM, ∆ is a Higgs singlet and ∆′ a electroweak Higgs doublet. In SO(10), ∆ and ∆′ are 16
Higgs representations. However, some singlets do not have a direct mass term which results in the
following mass matrix of uncharged particles

M =

 0 mT
D mT

Sν

mD 0 MT
SN

mSν MSN MSS

 (3.17)

in the basis
(
ν N S

)T , where mSν = YSν 〈∆′〉 and MSN = YSN 〈∆〉 originate from the Yukawa
couplings of the additional singlets. For definiteness, the SM singlets without direct Majorana mass
term are denoted RH neutrinos N and the massive SM singlets are called additional singlets S. The
decoupling of the additional singlets leads to the effective mass matrix(

−mT
SνM

−1
SSmSν mT

D −mT
SνM

−1
SSMSN

. −MT
SNM

−1
SSMSN

)
. (3.18)

Hence the RH neutrino masses are given by the standard seesaw formula

MNN ≈ −MT
SNM

−1
SSMSN . (3.19)



16 CHAPTER 3. ASPECTS OF MODEL BUILDING

The decoupling of the RH neutrinos leads to the effective neutrino mass matrix at low energies

mν ≈ mDS
ν +mLS

ν , (3.20)

which consists of two contributions. They are called DS contribution [44,45]

mDS
ν = mT

D

(
M−1
SNMSSM

−1T
SN

)
mD (3.21)

and linear seesaw (LS) contribution [132]

mLS
ν = −

[
mT
D

(
M−1
SNmSν

)
+
(
M−1
SNmSν

)T
mD

]
. (3.22)

The standard seesaw contribution mT1
ν which shows up in the 1-1 element of Eq. (3.18) exactly

vanishes. Note, that the DS contribution is proportional to the direct mass term of the additional
singlets in contrast to the standard seesaw mechanism. There are two common setups. Either the
additional singlet masses are very large, such that the suppression of the neutrino mass scale comes
from the ratio (mD/MSN )2. In this scenario, it is usually assumed, that the singlets are related to
Planck scale physics and the scaleMSN is related to the GUT scale, which nicely leads to a neutrino
mass scale of the right order of magnitude. In the other approach, the direct singlet mass term is
assumed to be very small, since the vanishing of MSS enhances the symmetry of the Lagrangian.
In the limit MSS → 0, lepton number becomes a symmetry of the theory. Therefore, small singlet
masses are natural by ’t Hoofts argument [133], which states that a parameter can be naturally
small, if its vanishing increases the symmetry. In this setup, a low scale seesaw mechanism is
discussed, i.e. the scale MSN ∼ O(10− 100 TeV) and MSS ∼ O( keV). The LS term is independent
of the direct mass term and it is usually discussed in the GUT context at large energy scales.

Triplet (Type II) Seesaw

In the triplet (type II) seesaw mechanism [39–41], the SM is extended by a charged Higgs triplet
∆ ∼ (3, 1)SU(2)×U(1):

∆ =
σi√

2
∆i =

(
∆+/
√

2 ∆++

∆0 −∆+/
√

2

)
(3.23)

in contrast to the standard seesaw mechanism where fermions are added. The SM Lagrangian is
extended by additional Yukawa couplings as well as Higgs couplings

L∆ =tr
[
(Dµ∆)†Dµ∆

]
−M2

∆tr
(

∆†∆
)
− Λ1

2

(
tr∆†∆

)2
− Λ2

2

[(
tr∆†∆

)2
− tr

(
∆†∆∆†∆

)]
− Λ4H

†
uHutr

(
∆†∆

)
− Λ5H

†
u

[
∆†,∆

]
Hu −

[
Λ6√

2
HT
u iσ2∆†Hu + h.c.

]
−
[

1√
2

(Y∆)fg `
Tf
L Ciσ2∆`gL + h.c.

]
. (3.24)

The covariant derivative of the Higgs triplet is given by

Dµ∆ = ∂µ∆ + i

√
3
5
g1Bµ∆ + ig2 [Wµ,∆] . (3.25)

Note, that the complex Higgs triplet couples to the SM Higgs doublet as well as the leptonic doublet
which leads to a neutrino mass term after the triplet acquires a VEV or equivalently decouples. After
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decoupling, the matching yields a contribution to the effective D5 operator

∆k

Hu
d

Hu
b

`gLc

`fLa

q2�M2
∆−−−−−→ κ

Hu
d `gLc

`fLa Hu
b

(Y∆)fg (σ2σk)ac
i

q2−M2
∆

Λ6 (σ2σk)db
q2�M2

∆−−−−−→ −i Λ6

M2
∆

(Y∆)fg (εabεcd + εadεcb)

(3.26)

which results in
κEFT = κ− 2

Y∆Λ6

M2
∆

. (3.27)

The decoupling of the Higgs triplet also gives a contribution to the SM model Higgs self–coupling
because there is a coupling between the SM Higgs doublet and the Higgs triplet given in Eq. (3.24)

λEFT = λ+ 2
|Λ6|2

M2
∆

. (3.28)

In the MSSM, in addition to the Higgs triplet � ∼ (3, 1), a second Higgs triplet � ∼ (3,−1) with
opposite hypercharge is needed to generate a D5 mass term for neutrinos. Furthermore, � ensures
that the model is anomaly-free. Note, however, that only � couples to the left–handed leptons. The
additional terms in the superpotential are given by

W∆ = M∆Tr(��) +
(Y∆)fg√

2
l
fT iσ2�l

g +
Λu√

2
h

(2)T iσ2�h
(2) +

Λd√
2
h

(1)T iσ2�h
(1) , (3.29)

where l denotes the left-handed doublet and h
(i) denotes the Higgs doublets. We use the same

notation as in [134]. Analogously to the SM, we add an effective neutrino mass operator κ. The
decoupling of the Higgs triplet generates an effective dimension 4 term κEFT in the superpotential,
whereas the tree-level matching condition reads

κEFT = κ− 2
Y∆Λu
M∆

. (3.30)

3.2 Unified Theories

Unification of forces is a common concept in physics. One well-established example is the elec-
tromagnetic force which describes electric and magnetic interactions at the same time. Today, it
is appealing to think about the unification of the forces in the SM, the strong SU(3)C , the weak
SU(2)L and the hypercharge U(1)Y to one force in analogy to the electromagnetic force. The two
main hints which point towards a further unification are

• the quantization of hypercharge, which satisfy the anomaly constraint

• and that the gauge couplings unify at the same energy scale of 2 · 1016 GeV in the MSSM.

The most prominent examples of grand unified theories [1, 2] are SU(5) [2] and SO(10) [3, 4] which
unify all three forces. SO(10) also unifies all SM matter particles and additionally a RH neutrino into
one irreducible representation. Furthermore the anomaly-free group E6 [5–9] is discussed, since it is
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an exceptional Lie group and a subgroup of E8 which is motivated by heteorotic string theory. From
a low-energy perspective, it contains SO(10) and the trinification group SU(3)3 × Z3 [6, 135, 136],
where Z3 is a discrete symmetry which relates the gauge couplings of the three SU(3) factors.
Besides GUTs, there is the possibility of partial unification, e.g. in left-right symmetric models.
In the minimal left-right symmetric model SU(2)L × SU(2)R × U(1)B−L × SU(3)C [40, 137–139],
the Pati-Salam (PS) group SU(2)L × SU(2)R × SU(4)PS which further unifies color and the B − L
quantum number1 [140] or the already mentioned trinification group SU(3)3 × Z3.
Although the GUT scale is large and possibly not accessible to direct detection experiments from
todays knowledge, there are bounds on GU models. Models with simple GU groups lead necessarily
to proton decay [35]. Therefore proton decay measurements put strong bounds on GUTs. The
current model-independent lower bound [93] on the proton life-time is

τp > 2.1 · 1029 years , CL 90% . (3.31)

Under the assumption that the dominant decay mode is among the investigated ones, the bound
can be improved to

τp > 1031 to 1033 years . (3.32)

Proton decay has already excluded minimal SUSY SU(5) [141–143]. Product groups, like the left-
right symmetric models, are not as sensitive to proton decay. The main contributions to proton
decay are the exchange of X and Y bosons in SU(5) and groups which contain SU(5). They lead to
effective D6 operators like uude+ and udue+. In SUSY GUTs there are further D5 operators due to
the exchange of colored triplet Higgsinos of the form QQQL/MH . This operator can be suppressed
by a large mass of the colored triplet Higgsino MH . However, the 5 and 5 Higgs particles in SU(5)
contain both an electroweak Higgs doublet as well as a colored triplet Higgs. Therefore, a GU model
has to provide a mechanism to split the masses of the doublet and the triplet which is denoted by
Doublet-Triplet-Splitting (DTS). This can be achieved by the missing partner mechanism [144–146]
in SU(5) by a mismatch in the number of electroweak doublets and colored triplets, such that all
colored triplets become massive but some electroweak doublets do not obtain a direct mass term.
In SUSY, there is the sliding singlet mechanism [147–150]. Although it does not work in SU(5)
phenomenologically, but only in rank 5 and large gauge groups, we present it in SU(5) notation.
It requires an additional SM singlet as well as an adjoint Higgs representation. The superpotential
contains the term

W ⊃ 5 (45 + 1) 5 . (3.33)

If the adjoint acquires a vacuum expectation value (VEV) 〈45〉 = v45diag
(
−1

3 , −
1
3 , −

1
3 , −

1
2 , −

1
2

)
,

SU(5) is broken down to the SM. F-term flatness requires〈
5
〉

(〈45〉+ 〈1〉) = (〈45〉+ 〈1〉) 〈5〉 = 0 . (3.34)

Therefore, the F-term flatness with respect to Hu and Hd leads to 〈1〉 = −1
2v45 which results in

〈45〉 + 〈1〉 = v45diag (−5/6, −5/6, −5/6, 0, 0). Hence, the electroweak doublets remain massless
whereas the colored triplets acquire a vector-like mass of order v45.
Besides proton decay, flavor changing neutral currents (FCNCs) in the quark sector as well as the
lepton sector provide strong bounds to GUTs, especially SUSY GUTs which are favored due to
the gauge coupling unification in the MSSM. At the Paul-Scherrer Institute (PSI) in Villigen, the
MEG experiment [151] searches for the process µ → eγ which is forbidden in the SM (without
RH neutrinos). It will improve the present upper limit of 1.2 · 10−11 on the branching ratio by the

1B denotes the baryon number and L lepton number.
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MEGA experiment [152] to 10−13. Of course, there are also other processes like τ → eγ and τ → µγ.
However, the experimental sensitivity is not as good as in µ → eγ. Another interesting process is
µ → e conversion in Ti, which has the potential to exclude many SUSY GU models discussed by
Albright and Chen [153]. However, they did not impose the flavor symmetry on the soft masses,
but imposed mSUGRA initial conditions. FCNCs in the quark sector are also able to constrain and
even exclude GU models as it has been done in [154] by the combination of several FCNCs. Due to
the uncertainty in the hadronic matrix elements, the calculations are difficult and there is a large
theoretical uncertainty compared to leptonic processes.
Another sign for GU models are N − N oscillations. However, theoretical predictions for the
experimental bound on the oscillation time τN−N ≥ 0.86 · 108sec [155] can be easily satisfied by a
shifting the B − L breaking scale, since this process violates B − L.
The RG evolution in the MSSM leads to the unification of the third generation Yukawa couplings
for specific values of tanβ. However, the second and the first generation do not unify. Evolving the
Yukawa couplings from the electroweak scale to ΛGUT leads to

md ≈ 3me , ms ≈
1
3
mµ and mb ≈ mτ (3.35)

which can be explained by a specific arrangement of Clebsch-Gordan coefficients [156,157].
Different types of the seesaw mechanism naturally show up in unified theories. In the PS model, as
soon as the RH neutrinos acquire a Majorana mass term, there is a type I+II seesaw mechanism,
since there will generally be a contribution to the left-handed neutrinos as well. The type of seesaw
mechanism which is implemented in SU(5) depends on the particle content. Additional fermionic
singlets lead to the standard seesaw mechanism. A 15 Higgs representation, however, leads to a
triplet seesaw mechanism. The fermionic triplet seesaw will be operating, if there is a fermionic
adjoint representation. In SO(10), RH neutrinos acquire a Majorana mass term by the coupling to a
126 representation and consequently lead to a type I+II seesaw mechanism. It can be a 126 Higgs
particle or two 16 Higgs particles which form effectively a 126 representation in the symmetric part
of their tensor product. Additional fermions in the adjoint representation lead to a fermionic triplet
seesaw.
Since SO(10) and E6 are used in Chapter 4, we briefly review basic properties of these groups.
Technical details about Lie groups can be found in App. B.1

3.2.1 SO(10)

SO(10) is a Lie group of rank 5. Hence, the rank has to be lowered by 1 to obtain the SM which
has rank 4. SO(10) has several advantages in model building:

• it is free of anomalies (See. App. B.3.);

• it unifies all SM particles and additionally a RH neutrino in one 16 spinor representation;

• B − L is a gauge symmetry, which allows to explain baryogenesis via leptogenesis by its
breaking. Since R parity is a discrete subgroup of U(1)B−L, it is automatically a symmetry
at high energies in SUSY theories;

• in some models R parity is automatically conserved, which ensures that there are no dimension
4 operators which lead to proton decay [158,159].

It can be broken to the SM in two different ways, either via the PS group or SU(5)× U(1)X . The
breaking via PS leads to the hypercharge Y = 2T3R + (B − L) and the breaking via SU(5)×U(1)
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Figure 3.1: Different ways of breaking SO(10) to the SM.

leads to Y/2 = αz + βx where z and x are the charges with respect to U(1)Z and U(1)X in

SO(10)→ SU(5)×U(1)X
→ SU(3)× SU(2)×U(1)Z ×U(1)X
→ SU(3)× SU(2)×U(1)Y .

(3.36)

The hypercharge in the SM shows that there are two different possibilities to choose α and β,
either (α, β) = (1/6, 0) or (α, β) = (−1/5, 1/5). These combinations lead to Y/2 = z/6 for the
breaking via SU(5) and Y/2 = 1

5 (z − x) for the breaking via flipped SU(5) [145, 146, 160], which is
SU(5)× U(1)X . In flipped SU(5), the up-type and down-type quarks are exchanged u(c) ↔ d(c) as
well as the neutrinos and the charged leptons ν(c) ↔ e(c). There is also a variant of SO(10) which
is accompanied by an additional U(1) factor. It is called flipped SO(10) [161]. The arrangement of
SM particles in its multiplets differs from ordinary SO(10), similarly to flipped SU(5). The breaking
sequences and the necessary representations are depicted in Fig. 3.1. The Higgs potential which
leads to this breaking has only been studied in the simplest cases [162–166]. Bounds on the different
mass scales (e.g. the scale related to proton decay) in the breaking sequences have been studied
in [167]. It is found that the proton decay scale in SO(10) is larger than in SU(5).
As it has already been mentioned, all SM fermions and in addition a SM singlet, i.e. a RH neutrino,
fit into one 16 of SO(10) which explains charge quantization of the SM particles and intimately
links all particles of one family. There is no additional exotic matter, as it is in other groups. As
the tensor product

16⊗ 16 = 10S ⊕ 120A ⊕ 126S (3.37)

decomposes into a sum of three irreducible representations, it is possible to accommodate different
mass matrices for the different SM particles at the renormalizable level depending on the specific
VEV structure of the SO(10) Higgs representations. The SM mass matrices are completely deter-
mined by the SO(10) structure. The Higgs representations 10 and 126 lead to symmetric mass
matrices which fulfill mu ∼ mD and md ∼ mT

e , where mu and md are the up-type and down-type
quark mass matrices, respectively, mD is the Dirac neutrino mass matrix and me is the mass matrix
of charged leptons. The relation mu ∼ mD is broken by the introduction of 120, also since 120 is
contained in the antisymmetric part of the tensor product, the contribution to the mass matrices
from 120 is antisymmetric. The Georgi-Jarlskog factor can be obtained by the Higgs representa-
tions 120 and 126. In terms of SU(5), 45 of SU(5) has to acquire a VEV and in terms of the PS
model, (2, 2, 15) has to acquire a VEV to obtain the factor 3 between quarks and leptons in Eq.
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(3.35). There also exists a DTS mechanism which uses the mismatch of doublets and triplets in
the 126 Higgs representation [168], such that all colored triplets become massive while two Higgs
doublets do not have a direct mass term and consequently remain light. However, the mass of
colored triplet Higgs has to be about an order of magnitude larger than the GUT scale to account
for the non-observation of proton decay.
Most models are SUSY, because gauge coupling unification is possible in the MSSM. Renormalizable
SO(10) models usually include a 10 and 126 Higgs representation (See, e.g., [158, 169, 170]) to
account for Majorana neutrino masses. However, recently, it has been shown [171, 172], that a
phenomenologically viable renormalizable model probably needs all three Higgs representations 10,
120 and 126. But, such a large Higgs sector leads to a very strong running of the gauge coupling.
In the case of a SUSY model containing 10, 120, 126, the β-function of the gauge coupling becomes
according to Eq. (2.24)

βg =
25
3π2

g3 (3.38)

and α = g2

4π enters the non-perturbative regime after less than one order of magnitude of running2.
Hence, a more fundamental theory is needed.
Alternatively, masses can be generated by non-renormalizable interactions with low-dimensional
irreducible Higgs representations only, i.e. 10, 16, 16, 45 and 54. This implies the existence of a
more fundamental theory which explains non-renormalizable operators, e.g. heteorotic string theory
which only predicts small representations [173]. There are several models which implement this
idea. Let us mention two models which have been studied in detail: Babu, Pati and Wilczek [174]
suggested a model which uses an Abelian U(1) flavor symmetry and in addition to the SM matter
fields 16i, there are a 10, a 45 and one vector-like 16 ⊕ 16 Higgs representations. Albright and
Barr [175–177] proposed a model which has a U(1)×Z4 ×Z4 family symmetry to forbid unwanted
couplings and besides the SM matter fields, two vector-like 16 ⊕ 16, two vector-like 10 and six
additional singlet matter fields and four 10, two vector-like 16⊕ 16, one 45 and five singlet Higgs
representations. The extended particle content in the Albright-Barr model is used to explain the
generation of all non-renormalizable operators by decoupling heavy vector-like particles.
Generally in these models, the third generation becomes massive at tree level and the remaining
masses are generated at the non-renormalizable level. Here, we briefly summarize the most impor-
tant contributions to the mass matrices in the above mentioned models, since we refer to them in
Chapter 4:

• the coupling 16i 16j 10 leads to symmetric mass matrices mu = md = me = mD and usually
generates the masses of the third generation;

• the coupling 16i 16j 1616 acts like the coupling 16i 16j 126 in a renormalizable SO(10)
model. The RH neutrino Majorana mass matrix is generated by this term;

• the coupling 16i 16j 1045 generates a difference between leptons and quarks. It leads to the
Georgi-Jarlskog factor if 45 acquires a VEV in B − L direction;

• the coupling 16i 16j 1616′ contributes only to down-type quarks and charged leptons me =
mT
d which leads to non-trivial CKM mixing and a lopsided structure of those mass matrices;

• equivalently, the coupling 16i 16j 1616′ contributes to the up-type quark and neutrino Dirac
mass matrices only.

2If all particles have a mass of the GUT scale, α(Λ = 6.4 · 1016 GeV) ≈ 1.
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Most non-renormalizable SO(10) models are accompanied by an Abelian flavor symmetry U(1)
[174–179] to forbid couplings or relate couplings by a non-Abelian flavor symmetry. There are
models based on SU(2) [180,181] and SU(3) [182–184].
There exist two variants of the DTS mechanism which make use of the mismatch of electroweak
doublets and colored triplets in the 45 Higgs representation. Dimopoulos andWilczek [185] proposed
a mechanism which achieves the mass splitting by a VEV in the B − L direction

〈45〉 = iτ2 ⊗ diag (a, a, a, 0, 0) (3.39)

and Chacko and Mohapatra [186] proposed another mechanism which leads to a complimentary
VEV pattern

〈45〉 = iτ2 ⊗ diag (0, 0, 0, b, b) . (3.40)

More technical details can be found in App. B.1.1.

3.2.2 E6

E6 is a Lie group of rank 6 which can be broken to the SM in three different ways as depicted in
Fig. 3.2. Like SO(10), it is free of anomalies. The SM matter is embedded into the fundamental

E6

SO(10)×U(1)

〈78〉,
〈650〉

SU(3)× SU(3)× SU(3)

〈650〉

SO(10)

〈27〉,〈351 ′〉

Figure 3.2: Breaking of E6 to SO(10), flipped SO(10) and the trinification group. The breaking of SO(10) is shown
in Fig. 3.1.

representation 27 which contains in addition a RH neutrino, a 10 of SO(10) matter multiplet and
an additional SO(10) singlet which can be used in the cancellation mechanism being discussed in
Chapter 4. The tensor product

27⊗ 27 = 27⊕ 351A ⊕ 351S (3.41)

decomposes in 3 summands where 27 and 351S are contained in the symmetric part and 351A in
the antisymmetric one. A Majorana mass term of RH neutrinos is obtained from the coupling of
27 to 351S . Since U(1)B−L is a subgroup of E6, the scale of the RH neutrino masses is related
to B − L breaking and the relation to baryogenesis via leptogenesis as well as the conservation
of R-parity work similarly like in SO(10). The fundamental representation 27 of E6 does not
allow a quartic coupling 274. Therefore D5 proton decay operators are suppressed [187], i.e. the
proton decay bound can be relaxed in E6 models. The Georgi-Jarlskog factor can be obtained
in the same way as in SO(10), since the relevant SO(10) representation is contained in the 351
and 351′ representation. As there are several models, we restrict ourselves and mention only two
recent models which are worked out. In the model by Stech and Tavartkiladze [9], which we use to
implement the cancellation mechanism in Sec. 4.4, they use a 27 to incorporate the SM matter and
3 Higgs representations 27, 351A and 351S to generate all fermion mass matrices. E6 is broken to
the SM via the trinification group SU(3)3. They do not consider the 650 Higgs representation which
is required to break E6 to the trinification group. Note, that the gauge coupling of E6 becomes non-
perturbative almost immediately above the GU scale due to the large Higgs representations like in
SO(10). The model was extended to include the flavor symmetry SO(3) [33]. The E6 model by King,
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Moretti and Nezorov [188] is inspired by string theory. However, they mainly consider the low-energy
phenomenology of an extra non-anomalous U(1)′ factor to the MSSM which is motivated from an E6

GU model. E6 is broken via the Hosotani mechanism [189], i.e. breaking via non-trivial boundary
conditions in the compactification procedure, directly to SU(3)×SU(2)×U(1)Y ×U(1)X×U(1)Z and
U(1)X ×U(1)Z is broken in a second step to U(1)′. The U(1)′ is chosen such that RH neutrinos are
uncharged and can acquire a large mass. It predicts many exotic particles at the TeV scale which
can be tested by the large hadron collider (LHC). Indeed, there are three complete 27 and one
additional pair of electroweak Higgs doublets from an incomplete 27⊕27 representation. However,
gauge coupling unification is still possible, since the exotic matter comes in full SU(5) multiplets
which affect all three gauge couplings in the same way. The µ-problem of the MSSM is solved,
since the µHuHd term is forbidden by the additional U(1)′ symmetry. More technical details can
be found in App. B.1.2.

3.3 Flavor Symmetries

Flavor symmetries can be classified in different categories according to whether they are

• global or local;

• Abelian or non-Abelian;

• continuous or discrete.

In the SM, the largest flavor group 3 is U(3)5, since there are five different particle species and three
families. In SO(10), the maximal flavor group is U(3), since all SM fermions are contained in 16.
Hence, every flavor symmetry has to be a subgroup of U(3)5 in the case of the SM and U(3) within
SO(10). As the masses and mixing parameters do not reveal a flavor symmetry at low energies, the
flavor symmetry has to be broken spontaneously or explicitly above the electroweak scale. In the
following, we firstly outline continuous flavor symmetries, before we summarize facts about discrete
symmetries, which are needed in the following discussion. Technical details regarding group theory
can be found in App. B.

3.3.1 Continuous Symmetries

Additional Abelian symmetry factors are common in string theory below the compactification scale.
But, they can only explain hierarchies in mass matrices by the Froggatt-Nielsen mechanism and
texture zeros. Exact relations between elements are not possible. Non-Abelian flavor symmetries,
like SU(2), SO(3) and SU(3) relate different couplings. Barbieri et al. [25, 26] proposed U(2) ∼=
SU(2) × U(1) as flavor group where SM fermions are assigned to the representation 2 + 1, which
only allows direct mass terms for the third family, especially the top quark. The symmetry is broken
in two steps SU(2)→ U(1)→ nothing. However, SU(2) cannot explain the number of generations,
because the fundamental representation is two dimensional. As the fundamental representation
of SO(3) and SU(3) are three-dimensional, they are ideal candidates to explain the number of
generations. On the level of Lie algebras so(3) ∼= su(2), since SU(2) is the double covering of SO(3).
Therefore, SO(3) models differ from SU(2) models by the used representations only. In SO(3)
models, e.g. [27], only vectorial representations are used, but half integer spin representations are
not used. SU(2) can be further embedded into SU(3). King and Ross [28, 29] introduced a model

3In almost all models, the flavor symmetry and the gauge symmetry are a direct product and commute. However,
there are models, where gauge interactions and the flavor symmetry do not commute, e.g. [190].
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based on SU(3) which is firstly broken to SU(2). They explain fermion masses by a set of flavon
VEVs, i.e. VEVs of gauge singlets which transform under the flavor symmetry. Models based on
the Abelian flavor symmetry U(1) and the non-Abelian group SU(3) might be anomalous and the
anomaly constraints have to be fulfilled in a local flavor symmetry. Anomalies are outlined in App.
B.3.
In the following two subsections, we briefly introduce the Froggatt-Nielsen mechanism and lepton
flavor charge symmetries, since their knowledge is required in the following chapters.

Froggatt-Nielsen Mechanism

Froggatt and Nielsen [191] proposed a mechanism to explain the large hierarchies in the quark and
charged lepton sector by the introduction of a U(1) symmetry, usually denoted by Froggatt-Nielsen
symmetry. The U(1) charges Qi of the particles Fi determine the suppression factor of each element
mij in the mass matrix, i.e.

mij ∼ λQi+Qj (3.42)

where λ is some small number. The mass of the heaviest particle is usually generated at tree level.
The Froggatt-Nielsen mechanism is implemented in an EFT approach. At some high-energy scale,
there are heavy vector-like fermions X which couple to massless fermions. After the heavy vector-
like fermions are integrated out and the scalar fields θ in the Yukawa couplings acquire a VEV,
they generate mass terms for the light fermions which are suppressed by λ = 〈θ〉 /MX where MX

is the mass of the vector-like fermions X. However, since the Yukawa couplings XFiθ are arbitrary
numbers of O(1), which are not related among each other, the Froggatt-Nielsen mechanism can
only explain the hierarchy but not the value exactly. There are several models which implement the
Froggatt-Nielsen mechanism. The additional U(1) factor can be anomalous, if the model relies of
the cancellation of the anomalies by the Green-Schwarz mechanism [192]. However, there are also
models which are non-anomalous, where the anomalies are cancelled by additional fermions.

Lepton Flavor Charge Symmetries

In this section, we consider continuous flavor symmetries of the neutrino mass matrix. One class of
them are the lepton flavor charges Le, Lµ and Lτ and combinations thereof. The charge assignment
is given in Tab. 3.2. In total, there are 10 different linear combinations ceLe + cµLµ + cτLτ ,
ce,µ,τ = 0,±1 which can serve as a symmetry of the neutrino mass matrix. However, most of them
are already phenomenologically excluded (Lµ, Lτ , Le−Lµ, Le−Lτ , Le+Lµ−Lτ and Le−Lµ+Lτ ),
only 4 of them are viable (Le, Lµ−Lτ , Le−Lµ−Lτ and Le +Lµ +Lτ ). The last one Le +Lµ +Lτ
corresponds to total lepton number conservation which results in Dirac neutrinos but does not
constrain masses and mixing angles. In the following, we concentrate on the lepton flavor charges
which are compatible with Majorana neutrinos. In the Dirac neutrino case, the RG effect is rather
small, since the neutrino Yukawa couplings are small. We briefly discuss the flavor symmetries Le,
Le − Lµ − Lτ and Lµ − Lτ .

The flavor symmetry Le [16–18] restricts the form of the lepton Yukawa couplings and the effective
neutrino mass matrix to

Ye =

 ye 0 0
0 Y

(22)
e Y

(23)
e

0 Y
(32)
e Y

(33)
e

 , mν =

 0 0 0
. mµµ mµτ

. . mττ

 (3.43)
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`
(e)
L `

(µ)
L `

(τ)
L e1, N1 e2,N2 e3, N3

Le 1 0 0 -1 0 0
Lµ 0 1 0 0 -1 0
Lτ 0 0 1 0 0 -1

Table 3.2: Lepton flavor charge assignment. In some models (e.g. [17]), only
the charge of the left-handed doublets are specified and the charges of the RH
particles is chosen differently. We restrict ourselves to this charge assignment.

in flavor basis

Ye =

 ye 0 0
0 yµ 0
0 0 yτ

 , mν =
√
|∆m2

32|

 0 0 0
. a b
. . d

 (3.44)

where a, b and d are parameters of O(1). a and d can be chosen real (after electroweak symmetry
breaking). The neutrino mass matrix results in a normal mass hierarchy m1 � m2 ≤ m3. The

neutrino masses are m1 = 0, m2,3 = 1
2

(
a+ d±

√
(a− d)2 + 4b2

)
. The atmospheric mixing angle

is close to maximal, i.e. tan θ23 = O(1). However, the solar mixing angle and θ13 vanish. Therefore,
the symmetry has to be broken by additional contributions to the first row of the neutrino mass
matrix. These breaking terms can originate from flavon fields of the U(1) symmetry [17], as it is
done in the Froggatt-Nielsen mechanism [191].

Le − Lµ − Lτ [19] restricts the flavor structure to

Ye =

 ye 0 0
0 Y

(22)
e Y

(23)
e

0 Y
(32)
e Y

(33)
e

 , mν =

 0 meµ meτ

. 0 0

. . 0

 (3.45)

in flavor basis

Ye =

 ye 0 0
0 yµ 0
0 0 yτ

 , mν =
√
|∆m2

32|

 0 a b
. 0 0
. . 0

 (3.46)

where a and b are real (after electroweak symmetry breaking) coefficients of O(1), which result in
an inverted mass hierarchy

√
a2 + b2 = m2 = m1 � m3 = 0. The atmospheric mixing angle is

tan θ23 =
√

3b2√
2|a|4+|b|4

and θ13 vanishes. As the solar mass squared difference vanishes, the solar mix-

ing angle is unphysical. Small corrections, which induce a solar mass squared difference, however,
lead to an almost maximal solar angle.

Lµ − Lτ [20–24] restricts the flavor structure to

Ye =

 ye 0 0
0 yµ 0
0 0 yτ

 , mν =
√
|∆m2

32|

 a 0 0
. 0 b
. . 0

 (3.47)

where a and b are coefficients of O(1), which result in a quasi-degenerate mass spectrum a = m1 '
m2 = m3 = b, where the atmospheric mixing angle is maximal and the solar angle and θ13 vanish.
The mass matrix automatically obeys a µ− τ exchange symmetry [48–51], i.e. , the mass matrix is
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of the form

mµ =

 A B B
. D E
. . D

 . (3.48)

Lµ −Lτ can be gauged, since it is anomaly-free [193,194]. Moreover, it can be extended to include
RH neutrinos with charges given in Tab. 3.2. As a consequence, the charged lepton Yukawa
couplings are real and diagonal as in Eq. (3.47). The neutrino Yukawa couplings and the RH
neutrino Majorana mass matrix are

mD = v


a 0 0

0 b 0

0 0 d

 and MNN = M

 X eiφ 0 0
· 0 Y eiω

· · 0

 , (3.49)

where a, b, d,X, Y, φ, ω are real parameters. After integrating out the heavy RH neutrinos, the
effective light neutrino mass matrix is given by

mν = − v
2

M

 a2 e−iφ

X 0 0
· 0 b d e−iω

Y
· · 0

 , (3.50)

which has the same form as the one in Eq. (3.47). Therefore, Lµ−Lτ has to be broken [24] in order
to generate a successful phenomenology. The non-vanishing mass squared difference ∆m2

21 is given
by

∆m2
21 =

v4

M2

∣∣∣∣b2d2

Y 2
− a4

X2
ei(φ−ω)

∣∣∣∣ . (3.51)

In the following, we break Lµ − Lτ softly by additional small parameters in MNN . The first and
minimal approach is to add just one small entry to MNN . For instance, we can add to the 1-2
element an entry ε eiχ with real ε� 1. The resulting low energy mass matrix reads

mν =
v2

M


a2 e−iφ

X 0 −a d ε ei(χ−ω−φ)

X Y

· 0 b d e−iω

Y

· · d2 ε2 ei(2χ−2ω−φ)

X Y 2

 . (3.52)

It is interesting to note that there is no CP violation in oscillation experiments which can be
immediately seen by the vanishing of JCP (See App. A.) or at high energies. In order to have CP
violation, we are therefore forced to add another perturbation to MNN :

MNN = M

 X eiφ ε1 e
iψ1 0

· ε2 e
iψ2 Y eiω

· · 0

 . (3.53)

By rephasing all mass matrices, it can be shown that there is only one physical phase. Therefore,
we choose φ = ω = ψ1 = 0 and ψ2 = ψ. This leads to the low energy effective mass matrix

mν = − v
2

M


a2

X 0 −a d ε1
X Y

· 0 b d
Y

· · −d2(X ε2 eiψ−ε21)
X Y 2

 , (3.54)
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which has 2 texture zeros. This allows us to use the well-known predictions [195–198] for neutrino
mass matrices with zeros in the 1-2 and 2-2 elements. In particular, only quasi–degenerate light
neutrinos are compatible with such a matrix and in addition it is required that the 1-1 and the 2-3
elements are of leading order and similar magnitude [196]. This is however just the approximate
form of a mass matrix conserving Lµ − Lτ .
After inserting the conditions of vanishing 1-2 and 2-2 elements in the definition of the general
neutrino mass matrix in flavor basis, an expression for the ratio of neutrino masses is obtained. In
the expansion in terms of the small parameter sin θ13∣∣∣∣m1

m3

∣∣∣∣ ' tan2 θ23 − sin θ13 cos δ cot θ12
tan θ23

cos2 θ23
, (3.55a)∣∣∣∣m2

m3

∣∣∣∣ ' tan2 θ23 + sin θ13 cos δ tan θ12
tan θ23

cos2 θ23
(3.55b)

is obtained. As the atmospheric mixing angle is close to maximal and sin θ13 is small, the light
neutrinos are obviously quasi–degenerate. The ratio of the mass squared differences ζ which is
defined in Eq. (3.1) is obtained from the ratio of masses

ζ '
∣∣∣∣4 sin θ13 cos δ

tan θ23

cos 2θ23

sin2 θ23

sin 2θ12

∣∣∣∣ . (3.56)

As ζ is inversely proportional to the rather small quantity cos 2θ23, it is necessary that sin θ13 cos δ =
ReUe3 � cos 2θ23. Hence, the Dirac phase should be located around its maximal value π/2, i.e., CP
violation is close to maximal. The larger sin θ13 is, the smaller cos δ has to be, i.e. the CP violation
becomes close to maximal. Furthermore, the angle θ23 cannot become maximal in order to keep ζ
small. From Eq. (3.55a) it can be deduced that the mass ordering for θ23 > π/4 is inverted and
otherwise normal. These predictions are almost independent of the precise value of θ12, which can
receive large renormalization corrections which we discuss in Sec. 6.2. The effective mass governing
0ν2β decay shows again that maximal atmospheric neutrino mixing is forbidden

〈mee〉 =
v2

M

a2

X
' tan2 θ23

√
|∆m2

32|
|1− tan4 θ23|

. (3.57)

Since the charged leptons display a hierarchy, it is natural to assume that also the eigenvalues of
the Dirac mass matrix are hierarchical. Then it is required that also the heavy Majorana neutrinos
display a hierarchy in the form of Y � X. Typical values of the parameters which in this case
successfully reproduce the neutrino data are Y = O(1), a = O(0.01), b ∼ d = O(0.1), X = O(0.001),
ε1 = O(0.001) and ε2 = O(0.1). With these values, the eigenvalues of MNN are approximatively
given by M X and M (Y ± ε2/2).

3.3.2 Discrete Symmetries

After continuous flavor symmetries are broken, there might be still discrete symmetries of the
Lagrangian. There might be even discrete symmetries which are not embedded into a continuous
symmetry. Compared to continuous flavor symmetries, they have the advantage, that they usually
contain more small representations which can be used to construct models and the spontaneous
breaking of a discrete symmetry does not lead to Goldstone or massive gauge bosons. Abelian
discrete groups

⊕
i
ZNi contain only one dimensional representations and they can be used to forbid

or suppress certain couplings. However, it is not possible to relate couplings similar to the continuous
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Abelian group U(1). In the following, we briefly review the most important facts of µ− τ symmetry
and the way to obtain tri-bimaximal mixing from the group A4, since we refer to both in the
following sections.

µ− τ exchange symmetry

The experimental data of the neutrino mass matrix is compatible with a µ − τ exchange symme-
try [48–51], i.e. neutrino masses can be described by the matrix

mν =

 A B −B
. D C
. . D

 (3.58)

in flavor basis which is invariant under the exchange of the second and third row and column. The
neutrino masses are given by

m3 = C +D , m1,2 =
1
2

(
A− C +D ±

√
8B2 + (A+ C −D)2

)
. (3.59)

The µ−τ exchange symmetry leads to maximal atmospheric mixing and vanishing 1-3 mixing. The
solar mixing angle is determined by

tan 2θ12 =
2
√

2B
D − C −A

. (3.60)

The bimaximal neutrino mass matrix is automatically µ−τ symmetric. However, the µ−τ exchange
symmetry is not compatible with the charged lepton mass matrix, since mµ 6= mτ . Therefore, it is
difficult to implement this symmetry. One possibility is by the Dirac screening mechanism which is
described in Chapter 4 which completely cancels the flavor structure of the Dirac mass matrices in
the DS mechanism. Therefore the neutrino mass matrix is not related to Yukawa couplings and its
flavor structure is given by MSS which is independent and can obey a µ− τ symmetry.

A4

The group A4 is of order 12 and is the symmetry group of the regular tetrahedron. It is also
isomorphic to the group of even permutations of 4 distinct elements. Ma [30] used it to describe
the neutrino mass matrix and to explain the MNS matrix. It is the smallest group with a three
dimensional representation. In addition, there are three one dimensional representations which are
denoted by 11

∼= 1, 12
∼= 1′ and 13

∼= 1′′. 1′ and 1′′ are complex conjugated to each other while
the other representations are real. It can be embedded into the group SO(3). The character table,
generators and the Kronecker products are given in [30].
Phenomenologically, A4 is interesting, since it can lead to tri-bimaximal mixing in the lepton sec-
tor [199]. Ma assigns the left-handed lepton doublets to 3 and (eR, µR, τR)T ∼ 1 ⊕ 1′ ⊕ 1′′. A4 is
broken by electroweak Higgs doublets φ ∼ 3. After the Higgs doublets acquire all the same VEV
〈φi〉 = v the charged lepton mass matrix becomes

me = diag (me, mµ, mτ )Ue , (3.61)

where ω = ei2π/3 and mi = yiv. The charged lepton mass matrix is diagonalized by the so-called
magic matrix

Ue =
1√
3

 1 1 1
1 ω ω2

1 ω2 ω

 . (3.62)
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In addition, Higgs triplets are introduced which transform as ξ ∼ 1 ⊕ 1′ ⊕ 1′′ ⊕ 3. The neutrinos
acquire a mass via the triplet seesaw mechanism

mν =

 a+ b+ c 0 0
. 1 + ωb+ ω2c d
. . a+ ω2b+ ωc

 (3.63)

with a, b, c coming from the A4 singlets and d = 〈ξ4〉 from the first component of the A4 triplet. The
other components of the triplet do not acquire a VEV. The neutrino mass matrix is diagonalized
by a maximal 2-3 rotation if the equality b = c is assumed, which results in a tri-bimaximal mixing
matrix, as it has been shown in Sec. 3.1.1.
Altarelli and Feruglio [200] derived tri-bimaximal mixing by flavons. A4 is broken by two 3 flavons
in the directions 〈φ′〉 = (v′, 0, 0) and 〈φ〉 = (v, v, v), which break A4 to two different subgroups.
In addition, there is a singlet ξ which obtains the VEV 〈ξ〉 = u. φ couples to the charged leptons
and leads to the mass matrix given in Eq. (3.61) φ′ and ξ couple to the D5 operator which results
in the mass matrix

mν =
〈Hu〉2

Λ

 a 0 0
. a d
. . a

 (3.64)

where

a ∼ u

Λ
, d ∼ v′

Λ
. (3.65)

The separation between the two sectors, which allows the breaking to different subgroups, can be
explained by an additional symmetry.

3.4 Quark Lepton Complementarity

Recently, it has been realized [12–14] that the sums of the 1-2 and 2-3 mixing angles add up to 45◦

within 1σ
θ12 + ϑ12 ≈

π

4
, θ23 + ϑ23 ≈

π

4
. (1.2)

According to Eq. (1.2), which are called quark lepton complementarity (QLC) relations, the quark
and lepton mixing angles are complementary to maximal mixing. If these relations are not ac-
cidental coincidences, they will imply a symmetry which connects quarks and leptons as well as
some mechanism which produces maximal or bimaximal mixing. However, even in this context,
deviations from the QLC relations can be expected due to symmetry breaking and RG effects.
There are several attempts [13, 201–205] to implement the QLC relations which mostly lead to
approximate QLC relations by the interplay of several independent contributions. The simplest
unified model which implements a quark-lepton symmetry in a straightforward way is the PS model
[201,203]. The phenomenology of schemes which obey the QLC relations has been studied in several
works [202,205–211].
One general scheme for the QLC relations is that

“lepton mixing = bimaximal mixing− CKM′′,

where the bimaximal mixing matrix is Ubm = U23(π/4)U12(π/4).
We assume that bimaximal mixing is generated by the neutrino mass matrix. That is, the same
mechanism which is responsible for the smallness of neutrino mass also leads to the large lepton
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mixing, and it is the seesaw mechanism that plays the role of the additional structure that generates
bimaximal mixing. Therefore

UMNS = U †eUν = V †CKMΓαUbm, (3.66)

where Γα ≡ diag(eiα1 , eiα2 , eiα3) is a phase matrix that can appear, in general, in the diagonalization
of the charged lepton or neutrino Dirac mass matrix. A quark-lepton symmetry leads to similar
Dirac mass matrices in the lepton and quark sector which is the origin of the CKM rotations in the
lepton sector. There are two appealing possibilities:

• In a certain (“symmetry”) basis, where the theory of flavor is formulated, the neutrino mass
matrix is of bimaximal form. So

Uν = Ubm , (3.67)

and the charged lepton mass matrix is diagonalized by the CKM rotation

Ue = VCKM. (3.68)

However, as it has been noted in Sec. 3.2, the masses of charged leptons and down quarks are
different at the GUT scale: in particular, me/mµ = 0.0047, whereas md/ms = 0.04 − 0.06,
and also mµ 6= ms . Since me 6= md, the equality in Eq. (3.68) implies a certain structure of
the mass matrices in which the mixing weakly depends on the eigenvalues.

• In the “symmetry” basis both bimaximal and CKM mixings come from the neutrino mass
matrix, and the charged lepton mass matrix is diagonal, i.e. the symmetry basis coincides
with the flavor basis. In this case the Dirac mass matrix of neutrinos is the origin of the CKM
rotation, whereas the Majorana mass matrix of the RH neutrinos is responsible for bimaximal
mixing. Since the eigenvalues of the Dirac neutrino mass matrix are unknown we can assume
an exact equality of the mass matrices

mu = mD , (3.69)

as a consequence of the quark-lepton symmetry. The equality in Eq. (3.69) propagates the
CKM mixing from the quark to the lepton sector. In this case, however, the GST relation
between ϑ12 and the ratio of md and ms [11] turns out to be accidental. Moreover, it is to be
explained why in the symmetry basis the charged lepton and down quark mass matrices are
simultaneously diagonal in spite of their different mass eigenvalues.

These two cases have different theoretical implications, however the phenomenological consequences
and the RG effects are the same. In the following, we assume the first scenario for definiteness, i.e.
the effective light neutrino mass matrix, Eq. (3.15), should generate the bimaximal rotation:

mν = mbm = ΓδUbmΓϕ/2m
diag
ν Γϕ/2U

T
bmΓδ. (3.70)

Here Γδ ≡ diag(eiδ1 , eiδ2 , eiδ3) is a phase matrix, mdiag
ν is the diagonal matrix of the light neutrinos,

and Γϕ/2 ≡ diag(eiϕ1/2, eiϕ2/2, 1) with ϕi being the Majorana phases of light neutrinos.
According to our assumption, the CKM rotation follows from the diagonalization of the charged
lepton mass matrix and we parameterize it as

Ue = ΓφVCKM(ϑij , δq) . (3.71)
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Here the diagonal matrix of the phase factors on the RH side has been absorbed in the charged
lepton field redefinition; VCKM is the CKM matrix in the standard parameterization, ϑij and δq are
the CKM mixing angles and phase, and

Γφ ≡ diag(eiφ1 , eiφ2 , eiφ3) . (3.72)

Thus, in general, there are three phase matrices, Γδ, Γϕ and Γφ, relevant for relations between the
mixing angles. Finally, from Eq. (3.71) and Eq. (3.70) we obtain

UMNS = V †CKM(ϑij , δq)Γ(δl − φl)Ubm, (3.73)

and therefore in Eq. (3.66) αj = δj − φj . The neutrino mass matrix in flavor basis equals

mf
ν = V T

CKMmbmVCKM . (3.74)

From Eq. (3.15) and Eq. (3.70) we find an expression for the RH neutrino mass matrix analogous
to [212]:

MNN = Γδm
diag
D UbmΓϕ/2(mdiag

ν )−1Γϕ/2U
T
bmm

diag
D Γδ , (3.75)

where mdiag
D denotes the diagonalized neutrino Dirac mass matrix mD. We absorb the phase factor

Γδ in MNN and omit it in the following. Also the CP phases ϕi are included into the masses of the
light neutrinos Γϕ/2(mdiag

ν )−1Γϕ/2 = (m̃diag
ν )−1. Hence, we obtain

MNN = mdiag
D Ubm(m̃diag

ν )−1UTbmm
diag
D , (3.76)

which can be written explicitly in terms of neutrino masses and mD

MNN =
1
4
mdiag
D


2A

√
2B −

√
2B

. C +A C −A

. . C +A

mdiag
D , (3.77)

where
A ≡ 1

m̃1
+

1
m̃2

, B ≡ 1
m̃2
− 1
m̃1

, C ≡ 2
m3

. (3.78)

We can parameterize mdiag
D as

mdiag
D = mt diag(ε′2, ε, 1), (3.79)

with mt being the mass of the top quark and ε′ ≈ ε ∼ 3 · 10−3. The RH neutrino masses are easily
estimated using the smallness of ε and ε′

M3 ≈
m2
t

4
(A+ C) , M2 ≈ m2

t ε
2 AC

A+ C
, M1 ≈ m2

t ε
′4A

2 −B2

2A
. (3.80)

Furthermore, the 1-2 and 2-3 mixing angles are of the order of ε, whereas the 1-3 mixing is of the
order of ε2.
In the case of a normal mass hierarchy, m1 � m2 � m3, Eq. (3.80) lead to

M3 ≈
m2
t

4m1
, M2 ≈

2m2
t ε

2

m3
, M1 ≈

2m2
t ε
′4

m2
, (3.81)
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in agreement with the results of [212]. Notice the permutation character of these expressions: the
masses of the RH neutrinos M1, M2 and M3 are determined by the light masses m2, m3 and m1.
With m1 → 0, apparently, M3 →∞. For ε′ = ε ∼ 3 · 10−3 and m1 = 10−3 eV, the masses equal

M3 = 9 · 1015 GeV, M2 = 1 · 1010 GeV, M1 = 5 · 105 GeV. (3.82)

Thus, there is a “quadratic” hierarchy as expected to cancel the hierarchy in mD.
In the case of an inverted mass hierarchy, m3 � m1 ≈ m2 ≡ mA, and the same CP phases of ν1

and ν2 we obtain from Eq. (3.80)

M3 ≈
m2
t

2m3
, M2 ≈

2m2
t ε

2

mA
, M1 ≈

m2
t ε
′4

mA
, (3.83)

where mA ≡
√
|∆m2

31|. This leads again to a strong mass hierarchy. Notice that now the mass of
the lightest RH neutrino is determined by the atmospheric mass scale. Thus, apart from special
regions in the parameter space that correspond to level crossings (See Sec. 6.3.5.) the QLC relations
imply generically a very strong (“quadratic”) mass hierarchy of the RH neutrinos and very small
mixing: Θij ∼ ε. As we will see, this determines substantially the size of the RG effects.
Let us introduce the unitary matrix, UN , which diagonalizes the RH neutrino mass matrix

UTNMNNUN = Mdiag
NN ≡ diag (M1, M2, M3) , (3.84)

and the mixing matrix can be parameterized as

UN = Γ∆V (Θij ,∆)Γξ/2, (3.85)

where Θij and ∆ are the angles and CP-phase of the RH neutrino mixing matrix. They are used
in the discussion of the RG effects in Sec. 6.3.
We will not elaborate further on the origin of the particular structures of MNN in Eq. (3.77), just
noticing that it can be related to the cancellation mechanism which is discussed in Sec. 4.1.
Note, that the relation Eq. (1.2) is not realized precisely even for zero phases αi since the rotation
matrix related to the Cabibbo angle has to be permuted with U23(π/4) in Eq. (3.66) to reduce the
mixing matrix to the standard parameterization form. From Eq. (3.66) we obtain the following
expressions for the leptonic mixing angles:

Ue2 ≡ cos θ13 sin θ12 = sin(
π

4
−ϑ12)+

1
2

sinϑ12

[√
2− 1− Vcb cos(α3 − α1)

]
+

1
2
Vub cos(α3−α1− δq). (3.86)

This expression differs from the one derived in [14] by a factor cos θ13 as well as by the last term, that
turns out to be relevant at the level of accuracy we will consider here. The 1-3 mixing [14,206–211]:

sin θ13 = −sinϑ12√
2

(1− Vcb cosα3)− Vub√
2

cos(α3 − δq) ≈ −
sinϑ12√

2
(3.87)

or equivalently |Ue3| = | sin θ13| is large in this scenario and, hence, the Dirac CP phase δ is close
to 180◦. So, for the 1-2 mixing we find the relation

sin θ12 =
|Ue2|√

1− |Ue3|2
≈ Ue2(1 +

1
4

sin2 ϑ12), (3.88)

and Ue2 is given in Eq. (3.86).
Note, that the QLC relation for the 1-2 mixing angles can also be written in the form

arcsin(Vus) + arcsin(Ue2) =
π

4
(3.89)

which coincides in the limit Ue3 → 0 with Eq. (1.2). The expression for the 2-3 mixing reads

Uµ3 = cos θ13 sin θ12 = cosϑ12

[
sin(π/4− θcb) +

Vcb√
2

(1− cosα3)
]
. (3.90)



Chapter 4

Cancellation Mechanism

As we have pointed out in Sec. 3.2, Yukawa couplings are related in unified theories, especially in
left-right symmetric models, like G2231 and G224 Yν ∼ Ye and in SO(10) or E6 Yν ∼ Yu. Therefore,
neutrino Yukawa couplings are strongly hierarchical, although the neutrino masses show a very
modest hierarchy. In this chapter, we present a simple and elegant mechanism to cancel the strong
hierarchy encoded in the neutrino Yukawa couplings. In Sec. 4.1, we explain the cancellation
mechanism. In Sec. 4.2, we argue that the same formulas hold for singular mass matrices of the
additional singlets. Finally, specific realizations are discussed in Sec. 4.3.

4.1 Description of the Mechanism

We work in the framework of the cascade seesaw mechanism which is described in Sec. 3.1.2.
Defining

F = M−1T
SN mD , (4.1)

we can rewrite the formulas of the DS contribution

mDS
ν = F TMSSF (4.2)

and the LS contribution
mLS
ν = −

[
F TmSν +mT

SνF
]

(4.3)

in terms of F and the matrices MSS and mSν , which are not a priori related to the SM Yukawa
couplings. If MT

SN shows the same hierarchy as mD, the hierarchies cancel and F becomes a non-
hierarchical matrix. Turning the argument around, we impose the relationMSN = F−1TmT

D, where
the singular values of F are required to be quasi-degenerate. We call that complete cancellation.
More generally, the cancellation can be incomplete or partial, i.e. F is still hierarchical, which shows
up in the realization by the flavor symmetry T7 (See Sec. 4.5.1).
The relative size of the two contributions

mLS
ν

mDS
ν

∼ mSνMSN

mDMSS
=
mSν

MSS
F−1 (4.4)

depends on the relative hierarchy between mSν , MSS and F . One appealing possibility in the
context of GUTs is mSν ,mD ∼ O(Λew), MSN ∼ O(ΛGUT) and MSS ∼ O(MPl). Then the DS
term dominates over the LS term by mLS

ν /mDS
ν ∼ O(10−3). At the same time, the neutrino mass

scale mν . eV is naturally explained by the hierarchies between mD, ΛGUT and MPl. However,
since the singlets are not related to the GUT and their mass scale is also not fixed by any other

33
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means besides the experimental data, it is arbitrary and could also be lower than ΛGUT. The LS
term gains importance when the singlet mass scale is lowered from the Planck scale while all other
mass scales are fixed. At the same time, the LS contribution leads to a complete cancellation of
hierarchies. Let us comment on the special case that mD and MT

SN are proportional to each other,
which leads to a complete cancellation of the flavor structure and

F ∝ 1⇒ mD ∝MT
SN (4.5)

which is called Dirac screening [78]. In the remainder of this chapter, we concentrate on the
scenario, where mSν ,mD ∼ O(Λew), MSN ∼ O(ΛGUT) and O(ΛGUT) . MSS . O(MPl). Therefore
we neglect the LS contribution in the following, such that the mass matrix of the uncharged fermions
is given by

M =

 0 Y T
ν 〈Hu〉 0

Yν 〈Hu〉 0 Y T
SN 〈∆〉N

0 YSN 〈∆〉N MSS

 . (4.6)

As we have already discussed in the introduction, the mass matrix MSS of the singlets Si might
be generated above the GUT scale and it is not related to the quark mass matrices. Therefore it
is possible that MSS has a certain symmetry which is translated to light neutrinos (See, e.g., [12–
14, 48–51, 118–121]) and not seen in the quark and charged lepton sector. In the case of Dirac
screening, this symmetry propagates immediately to the light neutrino sector. In general, it is
slightly perturbed by F .
For example, the QLC relation [12–14] can be realized within Dirac screening, since the mass matrix
MSS can be the origin of bimaximal mixing. Then the CKM type mixing follows from the charged
lepton mass matrix which is related to the mass matrix of the down quarks, so that Ue = VCKM. In
the lowest order (without radiative corrections) we find from Eq. (3.21)

mf
ν =

[
〈Hu〉
〈∆〉N

]2

UTe MSSUe =
[
〈Hu〉
〈∆〉N

]2

V T
CKMU

∗
bmM

diag
SS U †bmVCKM . (4.7)

The leptonic mixing matrix equals UMNS = V †CKMUbm. This realizes the so called “neutrino sce-
nario” which leads to deviations from the exact QLC relations [14].

4.2 Singular MSS

Let us consider the special case of the DS contribution of a singular MSS , detMSS = 0, which can
be a consequence of a certain symmetry in the singlet sector. Now one cannot immediately use
Eq. (3.21) and the whole DS mass matrix should be considered. In what follows we show that the
tree-level mass matrix of the light neutrinos is still proportional to MSS , that is, Eq. (3.21) will
hold even if MSS is singular. For this we will compare the light neutrino mass spectra in the lowest
approximation found from the whole DS matrix Eq. (4.6) and from the matrix mν after decoupling
of the heavy degrees of freedom in Eq. (3.21).
According to Eq. (3.21) the condition detMSS = 0 implies (at least one) zero eigenvalue in the
spectrum of the usual left-handed neutrinos. The same follows from the complete matrix. Indeed,

detM = − (detmD)2 detMSS = 0,

and hence, a zero eigenvalue of MSS leads to a massless eigenstate ofM. The non-zero eigenvalues
of the matrix mν , ξi, coincide with eigenvalues of the full matrixM up to corrections of the order
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〈Hu〉 / 〈∆〉N . This can be seen by inserting ξi in the characteristic polynomial of the complete
matrix χM [λ]. The result is of the order of O((〈Hu〉 / 〈∆〉N )8) ∼ 0 which proves the claim.
There are no other light states, because the expansion of the polynomial

χM [λ]
∏
i

(λ− ξi)−1 ,

in eigenvalues of the order 〈Hu〉 does not yield any new solutions. All other eigenvalues are at least
of the order O(〈∆〉2N /MSS).
A peculiarity of the spectrum ofM is the appearance of one heavy Dirac particle, if the eigenstate
of MSS with zero mass, S, couples to only one right-handed neutrino N . This Dirac particle is
formed by S and N .
The mass spectrum can be easily obtained if MSS = diag (MS1, MS2, 0) in the basis where YSN =
diag (y1, y2, y3). Apart from one zero mass which corresponds mainly to ν3, and two super heavy
eigenvalues MS1 and MS2 for two singlets S, we find

m1 = MS1
〈Hu〉2

〈∆〉2N
, m2 = MS2

〈Hu〉2

〈∆〉2N
, M1 = −

y2
1 〈∆〉

2
N

MS1
, M2 = −

y2
1 〈∆〉

2
N

MS2
, MDS = y3 〈∆〉N ,

that is, two light neutrinos are predominantly given by ν1,2 with masses m1 and m2, two heavy
neutrinos mostly consisting of N1,2 with masses M1 and M2 and one heavy Dirac particle of the
GUT scale mass MDS which is formed by N3 and S3. The light eigenstates are mainly composed of
the left-handed neutrinos and the mixing with other neutral leptons is of the order O(〈Hu〉 / 〈∆〉N ).
The coincidence of the spectrum of mν and the spectrum of light states ofM is related essentially
to the fact that the relation between mν and MSS is linear, and the characteristic polynomial is
linear in the eigenvalues for the non-degenerate case. The same conclusion holds for MSS with two
zero eigenvalues.

4.3 Realization of DS Matrix Structure

In the following, we outline different possible origins of the DS structure Eq. (4.6) and discuss how
the condition Eq. (4.2) can be achieved.
The texture of Eq. (4.6) with zero 1-1, 1-3, and 2-2 blocks can be obtained by assigning lepton
numbers, e.g.

L(ν) = L(S) = 1, L(N) = −1, L(Hu) = 0, L(∆) = 0 .

Therefore, the lepton numbers of the blocks in mass matrix of the neutral fermions Eq. (4.6) equal

L(M) =

 2 0 2
0 −2 0
2 0 2

 . (4.8)

Hence, the DS texture shows up if the introduced lepton number is only broken by the Majorana
mass terms of the additional singlets S. It can be broken explicitly or spontaneously by the VEV
of a new scalar field ρ which has lepton number L(ρ) = −2 and couples to S only: STYSSρ. The
interaction νTSρ is forbidden by gauge symmetry. The possible non-renormalizable term

1
MPl

`SHuρ
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is suppressed, if the VEV 〈ρ〉 < MPl. In the SUSY version, the term NNρ is absent due to
holomorphy. Otherwise, an extended gauge symmetry can forbid the 2-2 entry in the non-SUSY
version or if also the left superfield ρc exists.
Indeed, in left-right symmetric models N is part of an SU(2)R doublet and the 2-2 block has gauge
charge (1,3). The 2-2 entry appears only if a RH Higgs triplet obtains a VEV. The whole texture
Eq. (4.6) can be a consequence of gauge symmetry. Let us consider the SU(2)L×SU(2)R×U(1)B−L
symmetry [40,137–140]. The transformation properties with respect to the (SU(2)L, SU(2)R) gauge
group of the mass matrix elements are

G(M) =

 (3,1) (2,2) (2,1)
. (1,3) (1,2)
. . (1,1)

 . (4.9)

The required matrix structure is generated if a Higgs bidoublet with an electroweak VEV, a RH
doublet with a GUT scale VEV and a direct Planck scale mass term of the singlets exist.
Within SO(10) [3, 4], ν and N are part of 16 and S is a singlet. The required texture can be
generated by the following Yukawa interactions:

Yu 1616H + YSN 16S∆ +MSSS S, (4.10)

where H ∼ 10, ∆ ∼ 16 are Higgs multiplets. To generate the required matrix Eq. (4.6) H should
acquire an electroweak scale VEV and ∆ a GUT scale VEV in N (SU(5) singlet) direction.
However, the interactions Eq. (4.10) do not produce any mixing, and the Dirac masses of quarks and
leptons are equal at the GUT scale. Thus, a realistic model has to contain additional contributions
to the fermion masses which may, in general, destroy the cancellation. For instance, the introduction
of a 126-plet of Higgs fields which acquire VEVs in the directions of the left-handed and RH triplets
in terms of the minimal left-right symmetric model generates the 1-1 and 2-2 blocks. This leads to
additional contributions to the neutrino mass matrix, which are not governed by the cancellation
mechanism.
Apparently, none of those constructions directly lead to the cancellation relation Eq. (4.2). The
relation between the Yukawa couplings Eq. (4.2) can appear due to

• a further unification of ν and S, which is discussed in Sec. 4.4;

• a non-Abelian1 flavor symmetry. Two realizations within SO(10) are discussed in Sec. 4.5.

4.4 Realization of Cancellation Mechanism with GUT Symmetry

In Sec. 4.3, several possibilities are shown to implement the DS matrix structure, although none
of these realizations automatically led to the condition Eq. (4.1) or even Eq. (4.5). Here, we
demonstrate how the Dirac screening mechanism can be implemented within E6 [5–8]. In this
context, we obtain Dirac screening.
The neutral fermions ν, N and S are part of the fundamental representation 27 of E6. Note that
there are two additional neutral leptons per generation: S′ and S′′. All three Higgs representations,
27, the symmetric 351S and the antisymmetric 351A, which can couple to the tensor product of
two 27i, are introduced,

(Y27)ij 27i 27j 27 + (Y351S )ij 27i 27j 351S + (Y351A)ij 27i 27j 351A , (4.11)

1An Abelian flavor symmetry, like in the Froggatt-Nielsen approach [191], can only relate hierarchies of different
couplings, which results in an approximate cancellation. In order to obtain an exact relation, a non-Abelian flavor
symmetry is required.
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to generate the screening structure, i.e. the matrix Eq. (4.6) with the proportionality Eq. (4.5).
In terms of the maximal subgroup SU(3)L × SU(3)R × SU(3)C ⊂ E6, the left-handed leptons
transform as L ∼

(
3, 3, 1

)
. The (SU(3))3 assignment of the neutral leptons is

ν ∼ L2̇
3, N ∼ L3̇

2, S ∼ L3̇
3, S

′ ∼ L1̇
1, S

′′ ∼ L2̇
2. (4.12)

See App. B.1.2 for the SU(3)3 index structure2. The neutral components of the Higgs multiplets
H, HA and HS which can acquire VEVs belong to

H ⊂
(
3, 3, 1

)
⊂ 27

HS ⊂
(
3, 3, 1

)
+
(
6, 6, 1

)
⊂ 351S

HA ⊂
(
3, 3, 1

)
+
(
3, 6, 1

)
+ (6, 3, 1) ⊂ 351A .

The Majorana mass term is generated by HS
3 [9] while the Higgs multiplets H and HA can generate

only the Dirac structure. Note that it is not possible to get a Dirac mass term of S = L3̇
3 with

N = L3̇
2, using a 27 Higgs multiplet due to the antisymmetry in the SU(3) indices. However, all

mass terms of the neutral leptons which are required for Dirac screening can be generated by the
symmetric Higgs representation 351S . Indeed, the VEVs of (HS){23}

{2̇3̇} and (HS){33}
{2̇3̇} can be of order

of the electroweak scale and of the SU(2)R breaking scale, respectively. Furthermore, the Majorana
mass of the additional singlets S can be generated by (HS){33}

{3̇3̇}. However, a single 351S leads to
the same structure of MSS and the Dirac mass matrices. An additional 351S can lead to different
structures.
The introduction of the antisymmetric 351A Higgs representation is more promising, because oth-
erwise it is difficult to explain why two 351S couple differently. The antisymmetric 351A Higgs
multiplet generates all necessary Dirac matrices. It does not produce the Majorana masses of S
which can be done using 351S so that the structure of MSS is different from that of all Dirac
structures.
The following VEVs of the 351A and 351S components〈

(HA)1̇
1

〉
' O(SU(2)L breaking scale)〈

(HA){33}
1

〉
' O(SU(2)R breaking scale)〈

(HS){33}
{3̇3̇}

〉
'
〈

(HA)3̇
3

〉
' O(SU(3)L × SU(3)R breaking scale)

lead to the DS structure. Indeed, in the basis (ν, N, S, S′, S′′) the mass matrix

0 −Y351A

〈
(HA)1̇

1

〉
0 0 0

. 0 −Y351A

〈
(HA){33}

1

〉
0 0

. . Y351S

〈
(HS){33}

{3̇3̇}

〉
Y351A

〈
(HA)1̇

1

〉
0

. . . 0 Y351A

〈
(HA)3̇

3

〉
. . . . 0


(4.13)

2 Flavor indices are suppressed.
3The 27 and 351A cannot generate Majorana mass terms because the corresponding Yukawa interactions have to

be antisymmetric in the SU(3) indices.
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is generated with the required structure for ν, N and S. Moreover, there is a pseudo-Dirac particle
formed by the additional singlets S′ and S′′ with a mass of the order of the SU(3)L × SU(3)R
breaking scale.
Note that interactions with a 27 Higgs multiplet can be used to generate sub-leading effects, cor-
recting the masses of quarks and producing some deviation from complete screening if needed.
Furthermore, VEVs of components contributing to the 1-3 and 2-2 block can only lead to entries
which are at most of the order of the electroweak scale since they break SU(2)L.
Finally, we comment on a completely different possibility within SO(10). Since N and S are both
SM singlets, they can be, in principle, exchanged. If S is part of 16 and N is a singlet of SO(10),
the required relation between the Yukawa couplings Eq. (4.2) is automatically reproduced. There
is even a proportionality as needed by the Dirac screening mechanism in Eq. (4.5). The screening
structure can be generated by the interactions

Y 16116 + YS 1616126 + Yq161610 , (4.14)

if 16 obtains an electroweak VEV in the ν direction and a GUT scale VEV in the N direction,
and 126 has a Planck scale VEV in the direction of the SU(5) singlet. The last term in Eq. (4.14)
leads to Dirac masses of quarks and leptons and also to the Dirac mass term of ν and S. The mass
matrix generated by Eq. (4.14) equals

M =

 ∼ 0 Y T
〈
16
〉

Y T
q 〈10〉

. ∼ 0 Y T
〈
16
〉

. . YS
〈
126

〉
 . (4.15)

The 126 Higgs multiplet can also contribute to the 1-1 and 2-2 blocks. However, now Yν and YSN
are not related to the Dirac matrices of quarks, and the problem of cancellation does not exist from
the beginning. Note, that there is also a strongly hierarchical LS contribution, but it is suppressed
compared to the DS contribution.

4.5 Realization of Cancellation Mechanism with Flavor Symmetry

We explain a realization of the cancellation mechanism within SO(10) with a flavor symmetry.
The SM fermions are unified with RH neutrinos N into three 16i-plets, i = 1, 2, 3. Furthermore,
we consider three SO(10) singlet fermions Si. In order to ensure that the gauge couplings are
perturbative well above the GUT scale, we only choose low-dimensional Higgs representations:
H ∼ 10, ∆ ∼ 16 and 45. The form of the uncharged fermion mass matrix is given in Eq. (3.17),
whereas the zeros are due to the particle content, especially, since there is no 126-plet and we do not
introduce non-renormalizable operators of the form 16i 16j ∆ ∆ which is forbidden by symmetry.
The coupling of H to the fermions generates the usual Dirac Yukawa couplings and ∆ couples the
singlets Si and the 16-plet. After the Higgs scalars acquire a VEV, they lead to mass matrices
for the uncharged fermions. Since the top mass is of the electroweak scale and H also generates
the up-type quark masses, 〈H〉 is of the order of the electroweak scale. The components of ∆ can
acquire two different VEVs, one SO(10)-breaking in the SU(5) singlet direction and the other in
the direction of the electroweak doublet breaks the SM down to SU(3)C × U(1)em. Therefore, we
assume 〈∆〉N ∼ O(ΛGUT) and 〈∆〉ν ∼ O(〈H〉).
In order to explain the number of three generations we assume the fermions 16 to transform with
respect to the flavor group GF as representation 3. Additionally, we choose the representation to
be complex to forbid the coupling 1616H. This excludes the discrete group A4, since it has only
a real three-dimensional representation.
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In order to disentangle the gauge and the flavor sector, we assign all SO(10) Higgs fields to the trivial
representation of GF and introduce flavons which are additional scalar fields trivially transforming
under the gauge group but non-trivially under GF . The cancellation mechanism requires a relation
between the VEVs of the different Higgs fields, which is not obviously achievable for the SO(10)
Higgs multiplets H and ∆. However, it is easy to obtain this relation using flavons. Therefore, we
require that the VEV relation is explained by flavon fields, which forces us to describe all fermion
masses by non-renormalizable operators

αfg
Λ

16f 16gHχ+
βfg
Λ
Sf 16g∆χ

′ + (MSS)fg SfSg , (4.16)

where χ and χ′ are flavons. The VEV relation is achieved by χ′ = χ or χ′ = χ∗. As all SM
fermion masses originate from non-renormalizable operators 161610χ, at least one coupling has
to be large in order to explain the top mass. Hence the expansion parameter 〈χ〉 /Λ is not small
and multi-flavon insertions have to be taken into account.
The smallest [82] discrete groups which allow the realization of the cancellation mechanism are T7

and Σ(81) which have been discussed in high-energy physics literature for the first time by Luhn [213]
and by Ma [214,215], respectively. In the following sections, the cancellation mechanisms is realized
by these minimal groups. They explain the lowest order of fermion mixing, i.e. possibly lead to
tri-bimaximal mixing in the lepton sector and no mixing in the quark sector. The hierarchy of
up-type quark masses are explained only by the VEV hierarchy.
The required idea to cancel the hierarchy in the neutrino mass matrix in a unified context was first
implemented by King and Malinsky [216,217] which considered the standard seesaw mechanism in
a PS model and showed that a relation between different VEVs can in principle be to achieved in
the flavon potential. Our model has the advantage that it can be implemented in SO(10) without
introducing extra dimensions.

4.5.1 T7 Realization

The group T7
∼= Z7 o Z3 is of order 21 and it contains five irreducible representations which are

denoted by 11, 12, 13 and 3, 3?. The representations 12 and 13 as well as 3 and 3? are complex
conjugated to each other. It was discussed in [213] for the first time as a subgroup of PSL(2,F7)
which is a subgroup of SU(3). T7 is also called Frobenius group. Its structure is similar to the
previously introduced A4. The main difference is, that T7 has two complex three dimensional
representations and not a real one like A4. Indeed, it is the smallest non-Abelian discrete group
with complex three dimensional representations. Therefore, the product 3⊗3 does not contain the
trivial representation, but only three dimensional representations, i.e. an additional 3∗ is needed to
form an invariant. The character table, generators and Kronecker products are given in App. B.2.1.
Due to its similarity to A4, it can be used to generate tri-bimaximal mixing. In the following, we
present a SUSY realization of the cancellation mechanism.

Lowest Order

As it has been pointed out above, the SM fermions 16i are assigned to the three dimensional 3 in
order to explain the number of generations. The fermion masses are generated by the symmetric
coupling to H which transforms trivially under T7 and the flavon χ ∼ 3?. The Kronecker product
which is given in App. B.2.1 leads to a diagonal Dirac mass matrix where the hierarchy is determined
by the VEVs of χi. The additional fermionic SO(10) singlets Si are assigned to the representation
11 ⊕ 12 ⊕ 13 which leads to a partial cancellation of the large mass hierarchy from the Dirac mass
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Field 16i S1 S2 S3 H ∆ χi
SO(10) 16 1 1 1 10 16 1
T7 3 11 12 13 11 11 3?

Table 4.1: Minimal particle content in the SUSY T7 model. 16i and Si are fermions,
H and ∆ are Higgs fields and χi are flavons.

matrix in the light effective neutrino mass matrix. The singlets Si are coupled to the SM matter
by ∆. This information is collected in Tab. 4.1. Hence, the resulting Yukawa couplings in the
Lagrangian are

LY = α (163H 163 χ1 + 161H 161 χ2 + 162H 162 χ3)/Λ
+ β1 ∆S1 (161 χ1 + 162 χ2 + 163 χ3)/Λ

+ β2 ∆S2 (161 χ1 + ω 162 χ2 + ω2 163 χ3)/Λ

+ β3 ∆S3 (161 χ1 + ω2 162 χ2 + ω 163 χ3)/Λ
+AS1 S1 +B (S2 S3 + S3 S2) + h.c.

(4.17)

They generate the mass matrices matrices mD, MSN and MSS of the form

mD =
α 〈H〉

Λ

 〈χ2〉 0 0
0 〈χ3〉 0
0 0 〈χ1〉

 , (4.18)

MSN =
〈∆〉N

Λ

 β1 〈χ1〉 β1 〈χ2〉 β1 〈χ3〉
β2 〈χ1〉 ω β2 〈χ2〉 ω2 β2 〈χ3〉
β3 〈χ1〉 ω2 β3 〈χ2〉 ω β3 〈χ3〉


=
〈∆〉N

Λ

 β1 0 0
0 β2 0
0 0 β3

  1 1 1
1 ω ω2

1 ω2 ω

  〈χ1〉 0 0
0 〈χ2〉 0
0 0 〈χ3〉

 ,

MSS =

 A 0 0
0 0 B
0 B 0

 .

Eq. (3.21) leads to the light effective neutrino mass matrix

mν ≈
(
α 〈H〉
〈∆〉N

)2

Dχ

 Ã+ 2B̃ Ã− B̃ Ã− B̃
. Ã+ 2B̃ Ã− B̃
. . Ã+ 2B̃

 Dχ, (4.19)

where
Dχ = diag

(
〈χ2〉
〈χ1〉

,
〈χ3〉
〈χ2〉

,
〈χ1〉
〈χ3〉

)
, Ã =

A

9β2
1

, B̃ =
B

9β2β3
. (4.20)

The VEVs 〈χi〉 have to be chosen as

〈χ2〉
〈χ1〉

≈ ε2, 〈χ3〉
〈χ1〉

≈ ε with ε ≈ 3 · 10−3 (4.21)

in order to produce the up-type quark mass hierarchy. We outline a possibility to achieve this
hierarchy. On the other hand, the large top quark mass requires that 〈χ1〉 is large, i.e. the ratio
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〈χ1〉
Λ = η has to be of the order O(1). Hence Eq. (4.21) results in

mν ≈
(
α 〈H〉
〈∆〉N ε

)2
 (Ã+ 2B̃) ε6 (Ã− B̃) ε3 (Ã− B̃) ε3

. Ã+ 2B̃ Ã− B̃

. . Ã+ 2B̃

 . (4.22)

Note the dominant 2-3 block, which leads to an (almost) maximal atmospheric mixing angle θ23,
unless Ã and B̃ are equal. However, the elements in the first row and column are strongly suppressed
and therefore the two other mixing angles are very small. Especially, the solar mixing angle has
to be generated by additional contributions. The mass spectrum is normally ordered with an
approximately vanishing m1. For 3 |B̃| < |2Ã+ B̃| we find

m2 = 3
(
α 〈H〉
〈∆〉N ε

)2

|B̃| , m3 =
(
α 〈H〉
〈∆〉N ε

)2

|2Ã+ B̃| (4.23)

and therefore

ζ ≈ 9 |B̃|2

|2Ã+ B̃|2 − 9 |B̃|2
. (4.24)

A small ζ is obtained by |B̃| � |Ã|. For a weak hierarchy in the additional singlet mass, i.e. A ∼ B,
a hierarchy in the couplings β1 � β2,3 fulfills this condition.
Otherwise in the case |2Ã+ B̃| < 3 |B̃|, the light neutrino masses are obtained by interchanging m2

and m3, which changes ∆m2
21 and ∆m2

32 accordingly. Hence the mixing angles θ12 and θ13 are also
exchanged.
Note, the VEV hierarchy in the Dirac mass matrix enhances the neutrino mass ε−2 ≈

(
3 · 10−3

)−2 ≈
1.1 · 105, as it can be seen in Eq. (4.22). Therefore, the bounds on the absolute neutrino mass scale
O( eV) & mν ∼ α2 〈H〉2Ã

〈∆〉2N
1
ε2

requires a weaker or even an inverse hierarchy between the singlet masses
(A,B) and 〈∆〉N . Either 〈∆〉N is close to the Planck scale or the singlet masses (A,B) are of the
order O(ΛGUT). The couplings βi have to be as large as possible.
According to Sec. 3.1.2 a similar contribution enters the expression of the ratio of the LS over the DS
contribution 〈H〉

〈∆〉ν
Ã,B̃
〈∆〉N

. Thus a suppression of the DS contribution leads to a relative enhancement
of the LS contribution and the only way to suppress the LS vs the DS contribution is a small VEV
ratio 〈∆〉ν / 〈H〉 � 10−2. In this minimal setup, the LS term is diagonal and cannot generate a
solar mixing angle. However, the introduction of a second field ∆ leads to a non-diagonal LS term.

Contributions from Higher-Dimensional Operators

As mentioned the large top quark mass requires the flavon VEV 〈χ1〉 to be of the order of O(Λ),
i.e. η = 〈χ1〉 /Λ ∼ O(1). More precisely, we require η ∼ O(ε1/8) ≈ 0.48. Therefore, a careful
study of the higher-dimensional operators is indispensable, since they might destroy the leading
order structure. It is necessary to consider at least all corrections up to order η17, since the smallest
element in the leading order contribution is of the order ηε2 ∼ η17. The group structure of T7 allows
to directly read off the transformation property of a given operator O(χi) from the transformation
property with respect to the generator A. All relevant operators are presented in Tab. 4.2. Note,
that the order of the operator in ε always has to be multiplied by ηn, where n denotes the number
of flavons in the operator. Tab. B.8 in the appendix shows the relevant contributions at each
order in n in the different representations. It can be derived from Tab. 4.2. All corrections from
higher-dimensional operators to the mass matrices mD, MSN and MSS are obtained by the help
of these two tables. The higher-dimensional operators show a different structure compared to the



42 CHAPTER 4. CANCELLATION MECHANISM

Structure Transformation Properties Order in ε
under Generator A

χn1 e−
2π i

7
n χn1 O(1)

χn−1
1 χ2 e−

2π i
7

(n+1) χn−1
1 χ2 O(ε2)

χn−1
1 χ3 e−

2π i
7

(n+3) χn−1
1 χ3 O(ε)

χn−2
1 χ2 χ3 e−

2π i
7

(n+4) χn−2
1 χ2 χ3 O(ε3)

χn−2
1 χ2

3 e−
2π i

7
(n+6) χn−2

1 χ2
3 O(ε2)

χn−3
1 χ3

3 e−
2π i

7
(n+9) χn−3

1 χ3
3 O(ε3)

Table 4.2: List of products of χi which lead to contributions up to O(ε3) for
〈χ1〉 /Λ = η ∼ O(1), 〈χ2〉 / 〈χ1〉 ≈ ε2 and 〈χ3〉 / 〈χ1〉 ≈ ε1. Note that the factor
ηn has to be included for the order n. The generator A uniquely determines the
T7-transformation properties of each operator.

Field 16i S1 S2 S3 H ∆ χi
T7 3 11 12 13 11 11 3∗

Z7 3 0 0 0 0 3 1

Table 4.3: The Z7 charge assignment of all fields.

leading order one. Hence, they have to be properly constrained by an additional symmetry. An
investigation of the different contributions reveals that an additional Z7 symmetry is enough, since
it forbids all higher-dimensional operators up to order η7. The Z7 charge assignment is presented
in Tab. 4.3. Moreover, the covariants in Tab. 4.2 show a periodicity in seven because the phase
factors are of the form ei2πn/7 with n being an integer and hence periodic in seven. The periodicity
is due to the subgroup Z7 ⊂ T7. Then all non-vanishing matrix elements are corrected only by small
contributions. However, vanishing matrix elements will be filled.
In the Dirac mass matrix, tiny off-diagonal elements of the order of O(ε3η8) are generated. Thus
quark mixing angles cannot be obtained in this way and have to be generated by higher-dimensional
operators of the form 16i 16j 1616′χn (See Sec. 3.2.1.) which contribute to the down quark
as well as the charged lepton mass matrix. It is suppressed compared to the leading order by
〈16〉ν / 〈H〉 〈16′〉N /Λ. The first row (and column) of the neutrino mass matrix also receives small
corrections from higher-dimensional (Z7 invariant) operators in the 1-2 and 1-3 elements of the
order of O(η7ε2). m1 remains approximately massless and m2 and m3, as well as the atmospheric
mixing angle receive corrections of O(η7) relative to the leading order result. The corrections to
the solar mixing angle and θ13 are of the order of O(η7), which cannot account for a viable solar
mixing angle.
In addition, RG corrections cannot generate a sizable solar mixing angle, since the neutrino masses
show a strong normal hierarchy and the solar mixing angle is small. Even if we do not constrain
the higher-dimensional operators by the additional Z7 symmetry, but only require that we fine-
tune some of the couplings such that the additional operators do not spoil the leading order result
concerning the charged fermion mass hierarchy and the largeness of θ23 in the lepton sector, we
cannot enhance the elements of the first row (and column) in the light neutrino mass matrix mν

in order to generate a large solar mixing angle by higher dimensional operators. For this to see,
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observe that the hierarchy is generated by mD. Corrections to mD which cancel the neutrino mass
hierarchy are incompatible with the hierarchy in the quark mass spectrum. It can be checked that
unitary rotations of mD cannot generate a viable θ12 while preserving maximal atmospheric mixing.
Therefore corrections to mD do not lead to a viable phenomenology. Corrections to MSS cannot
change the hierarchy of the neutrino mass matrix as long as they are subdominant. By inversion
of the DS formula, it can be shown, that MSS has to be almost singular (MSS)fg ∝ βfβg in order
to fit the neutrino mass matrix. This results in a huge hierarchy of the singlet masses. Small
corrections to MSN cannot change the hierarchy in mν because it depends on the inverse of MSN .
A cancellation of order O(ε3/2) between different contributions to the elements in the first column
of MSN weakens the large hierarchy in mν . It would require the coefficients of the next-to-leading
order to be O(η−7) larger than the leading order. In summary, it is not possible to explain the solar
mixing angle by the DS term alone and additional contributions are needed.

Contribution from the Linear Seesaw

Up to now, the LS term has been neglected. As the LS contribution coming from ∆ alone is diagonal,
we extend our setup by a second ∆ which we denote ∆′ ∼ 16. The additional Yukawa couplings
are defined by

L∆′ = β′1 ∆′ S1 (161 χ1 + 162 χ2 + 163 χ3)/Λ

+ β′2 ∆′ S2 (161 χ1 + ω 162 χ2 + ω2 163 χ3)/Λ

+ β′3 ∆′ S3 (161 χ1 + ω2 162 χ2 + ω 163 χ3)/Λ .

(4.25)

Note, that it is always possible to find a linear combination of ∆ and ∆′ with a vanishing GUT
scale VEV. Therefore we assume 〈∆′〉N = 0 and the cancellation mechanism in the DS contribution
is not affected. The leading order of the LS contribution is

mLS
ν = −

αη 〈H〉 〈∆′〉ν
3ε 〈∆〉N

 2
(

3 〈∆〉ν〈∆′〉ν
+

3∑
i=1

β̃i

)
ε3

3∑
i=1

β̃iω
1−i

3∑
i=1

β̃iω
i−1

. O(ε2) O(ε)

. . O(ε)

 , (4.26)

where β̃i = β′i/βi and we assume 〈∆〉ν . 〈∆′〉ν such that the main contribution is due to ∆′.
In order to produce the solar mixing angle, the LS contribution has to be comparable to the DS
contribution. The dominant terms of the neutrino mass matrix are

mν ≈
(
α 〈H〉
〈∆〉N ε

)2

 −2X
(

3 〈∆〉ν〈∆′〉ν
+

3∑
i=1

β̃i

)
ε3 −X

3∑
i=1

β̃iω
1−i −X

3∑
i=1

β̃iω
i−1

. Ã+ 2B̃ Ã− B̃

. . Ã+ 2B̃

 . (4.27)

Hence, the remaining hierarchy is by an interplay between both contributions. The SO(10) Higgs
VEVs can been adjusted such that

X =
〈∆〉N 〈∆′〉ν εη

3α 〈H〉
(4.28)

leads to the correct hierarchy between the first row and the 2-3 block, i.e. the masses of the singlets
Si encoded in Ã, B̃ (See Eq. (4.20).) have to be smaller than 〈∆〉N . The resulting mixing angles
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are

tan θ12 ≈
X|β̃2 − β̃3|√

6 |B̃|
(4.29a)

sin θ13 ≈
X|2β̃1 − β̃2 − β̃3|√

2 |2Ã+ B̃|
(4.29b)

θ23 ≈
π

4
(4.29c)

under the assumptions that |B̃| � |Ã| coming from the discussion of the lowest order and X|β̃i| �
|Ã|. Hence a large solar mixing angle and small θ13 can be accommodated. The masses are also
corrected by the LS contribution, especially m1 and m2

m1 ≈
(
α 〈H〉
〈∆〉N ε

)2 ∣∣∣3|B̃| tan2 θ12 − |2Ã+ B̃| sin2 θ13

∣∣∣ (4.30a)

m2 ≈ 3
(
α 〈H〉
〈∆〉N ε

)2

|B̃|
∣∣1− tan2 θ12

∣∣ (4.30b)

m3 ≈
(
α 〈H〉
〈∆〉N ε

)2

|2Ã+ B̃|
∣∣1 + sin2 θ13

∣∣ (4.30c)

as well as the mass squared differences and their ratio ζ which are given by

∆m2
21 ≈

(
α 〈H〉
〈∆〉N ε

)4

9|B̃|2(1− 2 tan2 θ12) (4.31a)

∆m2
32 ≈

(
α 〈H〉
〈∆〉N ε

)4 (
|2Ã+ B̃|2 − 9|B̃|2

(
1− tan2 θ12

)2) (4.31b)

ζ ≈ 1− 2 tan2 θ12∣∣∣2Ã+B̃
3B̃

∣∣∣2 − 1 + 2 tan2 θ12 − tan4 θ12

(4.31c)

in the limit of vanishing θ13. This limit corresponds to a µ − τ symmetric mass texture [48–51].
Hence, the LS term leads to large changes in the 1-2 sector, but mainly preserves the 2-3 sector. Thus
maximal atmospheric mixing is still a prediction of the T7 realization and the other mixing angles
and masses can be fitted to the experimental data. Additionally, higher-dimensional operators to
the LS term are controlled by the Z7 symmetry, as it was discussed for the DS term.

Flavon Potential

The VEV hierarchy which is assumed in Eq. (4.21) has to be explained by the minimization
of the flavon potential. As we assume that the SUSY breaking scale is much lower, we do not
consider soft SUSY breaking terms. Additionally, since the SO(10) Higgs representations transform
trivially under T7 and the flavons trivially under SO(10), the flavons and SO(10) Higgs fields are
disentangled up to RG corrections as well as the flavor-breaking scale Λ and the GUT scale ΛGUT

can be separated. Therefore, the flavon potential can be discussed separately. Firstly, we consider
the renormalizable part of the flavon superpotential without any additional symmetry

W = κχ1χ2χ3 . (4.32)
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The F-terms of the flavon fields χi have to vanish which results in the set of equations

∂W

∂χ1
= κχ2χ3 , and cyclic . (4.33)

Eq. (4.33) is solved if the VEVs of two of the three flavons vanish. Assuming 〈χ1〉 6= 0 explains the
leading order structure of the VEV hierarchy.
However, the phenomenology of the fermion mass matrices requires the introduction of an additional
Z7 symmetry to forbid dangerous contributions. We assume that the additional Z7 symmetry also
exists in the flavon potential. The renormalizable part of the superpotential is then forbidden and
the lowest order is described by

W =
a1

Λ4
(χ7

1 + χ7
2 + χ7

3) +
a2

Λ4
(χ2

1 χ
4
2 χ3 + χ4

1 χ2 χ
2
3 + χ1 χ

2
2 χ

4
3) , (4.34)

but these terms do not allow for the configuration 〈χ1〉 6= 0 and 〈χ2,3〉 = 0. Hence, we conclude that
Z7 should be broken in the flavon superpotential or there have to exist other fields apart from the
flavons χi. One possibility to reconcile the VEV structure and the Z7 symmetry is to introduce a
driving field φ ∼ (3∗, 5) analogous to [218] and an additional U(1)R symmetry which is an extension
of R-parity. The superpotential has charge +2, the driving field has charge +2, fermions have charge
+1 and flavons and Higgs scalars are uncharged under U(1)R symmetry. Hence, the driving field
only appears linear in the superpotential and does not couple to fermions. The flavon superpotential
is given by

W = κφχ2 . (4.35)

The F-term of the driving field φ leads to the same condition as Eq. (4.33) and, hence, is solved if
the VEVs of two of the three flavons vanish.

4.5.2 Σ(81) Realization

The discrete group Σ(81) is of order 81 and has nine one-dimensional representations 1i and eight
three-dimensional representations 3i. The first six of the three dimensional representations are
faithful, i.e. all group elements are represented by distinct elements of the representation. Like in
T7 all representations besides the trivial one are complex. It has been firstly discussed in physics
literature by Ma in [214, 215]. In contrast to T7, Σ(81) is not a subgroup of SU(3) but of U(3).
Note, that the realization in the context of Σ(81) has to be non-SUSY4 because the Clebsch-Gordan
coefficients in App. B.2.2 require the complex conjugated flavon field coupling to the SM matter
16i in the coupling of the singlets Si to 16j in order to produce the magic matrix. It turns out that
Σ(81) leads to a complete cancellation of the mass hierarchy.

Lowest Order

Analogously to T7, the three generations of fermions 16i are assigned to a three-dimensional rep-
resentation, more precisely to one of the six faithful representations. Without loss of generality we
choose 31. The flavon χi ∼ 32, i.e. the complex conjugate representation of 31 and the SO(10)
Higgs fields H and ∆ transform trivially under Σ(81), which leads to a diagonal Dirac mass matrix.
The three additional singlets Si are assigned to three inequivalent singlets, Si ∼ 11 ⊕ 12 ⊕ 13 like
in T7. The particle content is summarized in Tab. 4.4. It results in the same matrix structures of

4Due to this gauge coupling unification might not be maintained without additional fields.
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Field 16i S1 S2 S3 H ∆ χi
SO(10) 16 1 1 1 10 16 1
Σ(81) 31 11 12 13 11 11 32

Table 4.4: Particle assignment in Σ(81) model. 16i and Si are fermions, H and ∆
are Higgs fields and χi are flavons. Note that 32 is equivalent to 3∗1.

MSN and MSS , see Eq. (4.18). The Dirac mass matrix mD, however, is of the form:

mD =
α 〈H〉

Λ

 〈χ1〉? 0 0
0 〈χ2〉? 0
0 0 〈χ3〉?

 , (4.36)

i.e. the flavon VEVs are complex conjugated and permuted compared to Eq. (4.18). Like in T7, the
up-quark mass hierarchy is generated by the flavon VEVs

〈χ1〉
〈χ3〉

≈ ε2, 〈χ2〉
〈χ3〉

≈ ε and η =
〈χ3〉

Λ
∼ O(1) with ε ≈ 3 · 10−3 . (4.37)

The effective neutrino mass matrix is given by

mν ≈
(
α 〈H〉
〈∆〉N

)2
 Ã+ 2B̃ Ã− B̃ Ã− B̃

. Ã+ 2B̃ Ã− B̃

. . Ã+ 2B̃

 (4.38)

(after a phase redefinition), where Ã and B̃ are defined in Eq. (4.20). Note, the missing factors Dχ

compared to the light neutrino mass matrix in the realization by T7. Therefore, the hierarchy of
the up-quark masses is completely erased in mν without any further assumptions on 〈χi〉 or any of
the couplings.
The masses obtained from Eq. (4.38) equal

m2 = 3
∣∣∣∣α 〈H〉〈∆〉N

∣∣∣∣2 |Ã|, m1 = m3 = 3
∣∣∣∣α 〈H〉〈∆〉N

∣∣∣∣2 |B̃| , (4.39)

and the mass squared differences amount to

∆m2
21 = 9

∣∣∣∣α 〈H〉〈∆〉N

∣∣∣∣4 (|Ã|2 − |B̃|2) , ∆m2
31 = 0 . (4.40)

The result is unsatisfactory, since ∆m2
31 vanishes. A difference is generated by higher-dimensional

corrections which is pointed out in the next section. Obviously, mν of Eq. (4.38) is diagonalized by
the tri-bimaximal mixing matrix. Nevertheless the maximal atmospheric mixing angle is unphysical
because of the degeneracy of m1 and m3. It is interesting to note that the matrix given in Eq.
(4.38) is the most general one which is S3 invariant [219].
Finally, we want to comment on the LS contribution, since it improved the phenomenology in the
T7 realization. In the minimal scenario, it is diagonal and mainly the 3-3 element of mν is changed.
The introduction of ∆′ dominantly results in corrections to the third row and column. Therefore,
in both cases, it is not possible to generate a viable atmospheric mass squared difference while
preserving maximal atmospheric mixing.
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Order in ε Operator Structure No. of Operators
O(1) χm3 (χ?3)n−m (m = 0, ..., n) n+ 1
O(ε2) χm3 (χ?3)n−1−m χ

(?)
1 (m = 0, ..., n− 1) 2n

O(ε) χm3 (χ?3)n−1−m χ
(?)
2 (m = 0, ..., n− 1) 2n

O(ε3) χm3 (χ?3)n−2−m χ1 χ2 (m = 0, ..., n− 2) 4 (n− 1)
χm3 (χ?3)n−2−m χ?1 χ2 (m = 0, ..., n− 2)
χm3 (χ?3)n−2−m χ1 χ

?
2 (m = 0, ..., n− 2)

χm3 (χ?3)n−2−m χ?1 χ
?
2 (m = 0, ..., n− 2)

O(ε2) χm3 (χ?3)n−2−m χ2
2 (m = 0, ..., n− 2) 3 (n− 1)

χm3 (χ?3)n−2−m χ2 χ
?
2 (m = 0, ..., n− 2)

χm3 (χ?3)n−2−m (χ?2)2 (m = 0, ..., n− 2)
O(ε3) χm3 (χ?3)n−3−m χ3

2 (m = 0, ..., n− 3) 4 (n− 2)
χm3 (χ?3)n−3−m χ2

2 χ
?
2 (m = 0, ..., n− 3)

χm3 (χ?3)n−3−m χ2 (χ?2)2 (m = 0, ..., n− 3)
χm3 (χ?3)n−3−m (χ?2)3 (m = 0, ..., n− 3)

Table 4.5: List of products of χi and χ?i which lead to contributions up to O(ε3).
Note that for the order n the power ηn has to be taken into account. Since we have to
deal with fields χi and their complex conjugates χ?i , the number of possible operators
is increased compared to T7 and depends on the order n.

Contributions from Higher-Dimensional Operators

Similarly to the realization with T7, the large top quark mass requires to take into account higher-
dimensional operators which are potentially dangerous. The necessary flavon VEV hierarchies are
given in Eq. (4.37). We again assume η ∼ O(ε1/8) ≈ 0.48. The number of different higher-
dimensional operators is larger compared to the realization by T7, since complex-conjugate fields
are allowed in the operators because the realization is not supersymmetric. Therefore, the general
structure of the higher-dimensional operators is given by χn1

i χ
? n2
j /Λn with n1 + n2 = n. As the

smallest non-vanishing element at leading order is of the order of ηε2, at least all operators up to
order η17 have to be considered. The relevant monomials in the fields χi and χ?i are displayed in Tab.
4.5. Similarly to T7, it is possible to determine the transformation properties of a given operator
under Σ(81) by its transformation properties with respect to the generators which is summarized
in Tab. B.12. With the help of these tables, the corrections to each element of mD, MSN and MSS

can be derived. They are not corrected by arbitrary powers in ε but the corrections are at most
of the equal power in ε than the leading order result for non-vanishing matrix elements. Vanishing
ones are filled by higher-dimensional corrections. For mD, they are less or equal to the elements
on the corresponding elements on the diagonal which can be seen in Eq. (4.41). The vanishing
elements in MSS are filled by contributions of O(η2) which can lead to a phenomenologically viable
neutrino mass matrix.
Higher-dimensional operators lead to off-diagonal entries in the Yukawa couplings which can generate
quark mixing angles. The dominant contributions are

mD ∼

 O(ε2η) O(ε3η2) O(ε2η2)
. O(εη) O(εη2)
. . O(η)

 . (4.41)
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Although the generated quark mixing angles are larger compared to T7

(ϑ12, ϑ13, ϑ23) ∼
(
O(ε2η), O(ε2η), O(εη)

)
(4.42)

but still too small. Therefore we also have to rely on higher-dimensional operators of the form
16i 16j 1616′χnχ?m as it was pointed out in Sec. 4.5.1.
In the following, we discuss the corrections of higher-dimensional operators to the neutrino mass
matrix. Analytic formulas of the neutrino masses and leptonic mixing angles are difficult to ob-
tain, because the neutrino mass matrix elements are all of the same order, if there are no further
restrictions on the couplings. Therefore, we just note some aspects which can be seen easily and
prove that a viable neutrino mass matrix can be obtained by a numerical example. The atmospheric
mass squared difference ∆m2

32 is of the order of η and does not depend on corrections coming from
MSS . Since the atmospheric mixing angle is (almost) maximal, (mν)23 � δm32 = (mν)33 − (mν)22.

Therefore, Ã − B̃ has to be large compared to the corrections to
(
〈∆〉N
α 〈H〉

)2

δm32 ∼ O(η). As the

smallness of the solar mass squared difference requires |Ã| ∼ |B̃| which can be seen in Eq. (4.40)
the relative phase between Ã and B̃ has to be around π to fulfill the phenomenological constraints.
Hence

B̃ = −Ã+O(η4) ,

can lead to the ratio of mass squared differences ζ ∼ O(η3).
Let us present one numerical example, that demonstrates the possibility to fit the experimental
data. The relevant mass matrices are

mD =

 1.1589 · 10−6 0 8.6454 · 10−7

. 1.0051 · 10−3 3.4268 · 10−4

. . 0.63863

 〈Hu〉 , (4.43)

MSN =

 7.4031 · 10−6 3.0486 · 10−3 1.2503
4.6288 · 10−6 1.9009 · 10−3 ω 0.91423ω2

3.2038 · 10−6 1.4336 · 10−3 ω2 0.71852ω

 〈∆〉N , (4.44)

MSS =

 1 1.7689 · 10−2 ω2 3.8688 · 10−2 ω
. 1.1516 · 10−2 ω −0.7475
. . 2.3890 · 10−2 ω2

MPl (4.45)

with 〈∆〉N = ΛGUT, which result in the effective neutrino mass matrix

mν ≈

 1.1809 · ei 0.019 1.7675 · ei 3.12 1.5297 · e−i 3.08

. 2.5403 · e−i 0.031 3.4549 · ei 3.11

. . 1.8254

 · 10−2 eV . (4.46)

The 3σ bounds of the measured parameters [220] given in the standard parameterization [93]:

∆m2
21 = 7.9 10−5 eV2 , ∆m2

32 = 2.5 10−3 eV2 , θ12 = 33.0◦ ,
θ13 = 4.5◦ , θ23 = 49.5◦ , δ = 137◦ , ϕ1 = 313◦ , ϕ2 = 162◦

are fulfilled. This set of parameters is fully compatible with the experimental data and therefore
it is possible to produce a phenomenologically viable neutrino mass matrix in this model by the
inclusion of higher-dimensional operators. RG corrections are discussed in Sec. 5.3.5.
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Flavon Potential

The renormalizable part of the flavon potential is given by

Vχ(χj) = M2
∑
i

|χi|2 +

[
κeiα

∑
i

χ3
i + h.c.

]
+ λ1

∑
i

|χi|4 + λ2

∑
i 6=j

|χi|2|χj |2 , (4.47)

where λi, κ and α are real coefficients. In order to analyze it, we parameterize χi in polar coordinates,
i.e. χi = Xie

iξi . Then

Vχ(Xj , ξj) = M2
∑
i

X2
i + λ1

∑
i

X4
i + λ2

∑
i 6=k

X2
iX

2
k + 2κ

∑
i

X3
i cos (α+ 3ξi) . (4.48)

The extremization conditions for the VEVs 〈X1〉 and 〈ξ1〉 read

∂Vχ
∂X1

= 2X1

(
M2 + 2λ1X

2
1 + λ2X

2
2 + λ2X

2
3 + 3κX1 cos (α+ 3ξ1)

)
= 0 (4.49a)

∂Vχ
∂ξ1

= −6κX3
1 sin (α+ 3ξ1) = 0 . (4.49b)

The corresponding equations for 〈X2,3〉 and 〈ξ2,3〉 are obtained by a cyclic permutation. Eq. (4.49b)
is solved by either a vanishing VEV 〈Xi〉 or the relation 3 〈ξi〉+ α = nπ, n ∈ Z between the phase
of 〈χ〉 and the phase α of the cubic term.
Hence there is a solution which results in the required VEV configuration at leading order. If we set
〈X1〉 = 〈X2〉 = 0, 〈X3〉 6= 0 and require that the extremum is actually a minimum of the potential,
we will obtain the following solutions

〈X3〉 =
3κ+

√
9κ2 − 8M2λ1

4λ1
, 〈ξ1〉 = 〈ξ2〉 = 0 , 〈ξ3〉 = −α± π

3
(4.50)

together with the consistency condition 9κ2 > 8M2λ1 .
Higher-dimensional operators modify this result. Here we systematically discuss their effect by using
power counting in Λ−1. In polar coordinates the D5 part of the flavon potential is given by

V (5)
χ =

2 b1
Λ

∑
i

X5
i cos (β1 + 3ξi)

+
2
Λ
(
b2X

3
1X

2
2 cos (β2 + 3ξ1) + b3X

3
1X

2
3 cos (β3 + 3ξ1) + cyclic

)
, (4.51)

where bi and βi are real coefficients. 〈X1〉 and 〈X2〉 still vanish. There are only corrections to 〈X3〉
and 〈ξ3〉 of the order O(Λ−1). More generally, this holds at higher orders in Λ−1 too, since the
leading order in Λ−1 of Eq. (4.49a) is proportional to 〈X1〉 or 〈X2〉, respectively

∂Vχ
∂X1

LO=
(
2M2 + 2λ2X

2
3

)
X1 = 0 , (4.52)

which forces 〈X1〉 and 〈X2〉 to vanish in order to ensure the vanishing of ∂V
∂X1,2

.
Concluding, the leading order structure of the VEVs can be explained. Additional flavon fields have
to be introduced to generate non-vanishing VEVs for 〈X2,3〉.
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Chapter 5

Threshold Corrections

In this chapter, we discuss threshold corrections in the standard seesaw framework and its extension,
the cascade seesaw model. In Sec. 5.1, the RG effect between thresholds in the standard seesaw
framework is studied. The result is applied to the cascade seesaw mechanism in Sec. 5.2. The
stability of the cancellation mechanism with respect to the RG is investigated in Sec. 5.3 using the
results from Sec. 5.2.

5.1 Thresholds in the Standard (Type I) Seesaw Model

In this section we will consider effects of the radiative corrections [60, 61, 221, 222] in the standard
seesaw model with non-degenerate RH neutrino masses. Our main goal is to understand the cor-
rections between the mass thresholds of the RH neutrinos, since the dominant RG effect is due to
this region for non-degenerate mass thresholds.
Here we will consider the RG effects below a certain scale Λ:

Mi � Λ, (5.1)

where Mi are the masses of RH neutrinos (See Fig. 2.1.).
Let us stress that the mass spectrum of the RH neutrinos can be strongly hierarchical. Therefore
effects of the RG running between different mass thresholds are crucial [9, 62, 63, 69, 223]. We

introduce the effective operator
(n)

OM which generates neutrino masses in the basis (ν,N)

L = −(νT , NT )
(n)

OM (νT , NT )T . (5.2)

The superscript (n) designates the number of RH neutrinos which are not decoupled at a given
energy scale, that is, RH neutrinos in the effective theory. This superscript will denote also a
range of RG running with a given number of RH neutrinos. In addition, we use the notation
(n−m)

Z ≡
(n)

Z
(n+1)

Z . . .
(m−1)

Z
(m)

Z .

Below the scale Λ the effective operator
(3)

OM can be written as

(3)

OM (Λ) =

 0
(3)

Y T
ν Hu

(3)

Yν Hu

(3)

MNN

 (5.3)

51



52 CHAPTER 5. THRESHOLD CORRECTIONS

where
(3)

MNN is the RH neutrino mass matrix MNN (Λ) and
(3)

Yν is the neutrino Yukawa coupling
matrix Yν(Λ) at the scale Λ.
The effect of the RG evolution can be split in effects coming from the renormalization of the wave
functions and the vertex corrections. It turns out, that the RG corrections can be factorized in the
LL approximation. So, in general, the renormalization of Yν , MNN and κ is given by

Yν
RG−−→ ZTNYνZext (5.4a)

MNN
RG−−→ ZTNMNNZN (5.4b)

κ
RG−−→ ZTextκZextZκ . (5.4c)

Here Zext combines the renormalization effect of the left-handed doublets `, the Higgs doublet Hu,
and the vertex correction to Yν . ZN denotes the wave function renormalization effect of the RH
neutrinos N . In order to simplify the presentation, we define the wave function renormalization so
that the usual powers of 1/2 are absent. Eq. (5.4c) describes the renormalization of the effective D5
operator which appears after decoupling (integration out) of the corresponding RH neutrino. Apart
from renormalization of the wave functions and vertices which exist in the SM model this operator
has additional vertex corrections given by the diagrams in Fig. 5.1. The RG effect due to these

diagrams denoted by
(n)

Zκ plays a crucial role in the discussion of the stability of the cancellation
mechanism1. These D5 operator corrections are absent in the SUSY version of theory due to the
non-renormalization theorem [224,225].

`

Hu

`

Hu

HuHu

(a) Higgs self-coupling
`

Hu

`

Hu

Hu Hu

(b) Gauge interactions

Figure 5.1: The D5 operator vertex corrections. Shown are additional divergent diagrams in the effective theory.

The RG evolution of the charged leptons can be treated separately. As they are integrated out
below the electroweak scale, we do not have to consider thresholds and their RG evolution from Λ
down to the electroweak scale is simply obtained by integrating the β-function which is given in
Sec. 6.1. However, as it has been mentioned in Sec. 6.1, the main RG effect on the MNS matrix
is due to neutrinos because of their weak mass hierarchy. Therefore, in the following discussion, we
work in the flavor basis and concentrate on the neutrino mass matrix.
We describe the RG effects in the effective theory, where the heavy RH neutrinos are decoupled
successively2 [9,62,63,69,223] as depicted in Fig. 2.1. In each step (interval between mass thresholds)
we first calculate the RG correction to the matrices. We diagonalize the resulting matrices at the
lower end of the interval, i.e., at µ = Mi and then decouple Ni, (i = 3, 2, 1). We will denote the

1As the additional corrections are flavor blind, these factors are ordinary numbers.
2The running between mass thresholds of RH neutrinos has been treated analytically in the approximation of

strongly hierarchical and diagonal Yukawa matrix [9]. Here we present a general consideration required for our
approach.
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renormalization factors in the LL approximation by
(n)

Z= 1+
(n)

δZ. This notation is also used for the
parameters of the effective theory. The renormalization factors in the extended (by RH neutrinos)
SM and the MSSM are given in App. C.2.
Let us describe the main steps of the renormalization procedure.

1. The RG evolution between Λ and M3 yields the operator
(3)

OM at M3

(3)

OM (M3) =

 0
(3)

ZText

(3)

Y T
ν Hu

(3)

ZN

.
(3)

ZTN

(3)

MNN

(3)

ZN

 . (5.5)

Performing a rotation of the RH neutrinosN =
(3)

UN N ′ we reduce the renormalized RH neutrino
mass matrix to the form

(3)

UTN

(3)

ZTN
(3)

MNN

(3)

ZN
(3)

UN=

(
(2)

MNN 0
0 M3

)
, (5.6)

where
(2)

MNN is a 2 × 2 (in general non-diagonal) mass matrix. Let us split the 3 × 3 Dirac
type Yukawa coupling matrix in Eq. (5.5) after this rotation into two parts as

(3)

ZText

(3)

Y T
ν

(3)

ZN
(3)

UN≡
(

(2)

Y T
ν , yT3

)
, (5.7)

where y3 is the 3rd row of the Yukawa couplings matrix, i.e. the couplings between νi and N3,

and
(2)

Yν is the remaining 3 × 2 submatrix. Then in the rotated basis the operator Eq. (5.5)
can be written as

(3)

OM (M3) =


0

(2)

Y T
ν Hu yT3 Hu

.
(2)

MNN 0
0 M3

 . (5.8)

Below the scale M3 the neutrino N3 is integrated out and from Eq. (5.8) we obtain

(2)

OM (M3) =

 −yT3 M−1
3 y3H

2
u

(2)

Y T
ν Hu

.
(2)

MNN

 . (5.9)

Notice that the D5 operator is formed in the 1-1 block due to the decoupling of N3.

2. The discussion of the RG running is analogous in the interval M2 −M3. We can write the
operator OM at the scale M2 (threshold of N2) as

(2)

OM (M2) =

 −
(2)

ZText

(2)

Zκ y
T
3 M

−1
3 y3H

2
u

(2)

Zext

(2)

ZText

(2)

Y T
ν Hu

(2)

ZN

.
(2)

ZTN
(2)

M
(2)

ZN

 . (5.10)
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Here we have included the corrections
(2)

Zκ to the D5 operator.

By applying the rotation N ′ =
(2)

UN N ′′ the renormalized mass matrix of the RH neutrinos is
diagonalized:

(2)

UTN

(2)

ZTN
(2)

M
(2)

ZN
(2)

UN≡

(
(1)

MNN 0
0 M2

)
. (5.11)

The renormalized Yukawa matrix is then split as

(2)

ZText

(2)

Y T
ν

(2)

ZN
(2)

UN≡
(

(1)

Y T
ν , yT2

)
, (5.12)

where
(1)

Yν and y2 are two component rows. Decoupling the second neutrino N2 we obtain

(1)

OM (M2) =

 − (2)

ZText

(2)

Zκ y
T
3 M

−1
3 y3H

2
u

(2)

Zext −yT2 M
−1
2 y2H

2
u

(1)

Y T
ν Hu

.
(1)

MNN

 . (5.13)

3. Running the matrix down to the lowest seesaw scale M1 and integrating out N1 yields

(0)

OM (M1) =−
(1−2)

ZText

(1−2)

Zκ yT3 M
−1
3 y3H

2
u

(1−2)

Zext

−
(1)

ZText

[
(1)

Zκ y
T
2 M

−1
2 y2+

(1)

Y T
ν

(1)

M−1
NN

(1)

Yν

]
H2
u

(1)

Zext .

(5.14)

4. Finally, evolving
(0)

OM (M1) down to the EW scale, we obtain (after Hu develops a VEV) the
mass matrix of the light neutrinos

mν = −〈Hu〉2
(0−3)

ZText

(3)

Y T
ν

(3)

ZN
(3)

UN

(
K12 0

0
(0−2)

Zκ
M3

)
(3)

UTN

(3)

ZTN
(3)

Yν
(0−3)

Zext , (5.15)

with

K12 ≡
(2)

ZN
(2)

UN


(0)

Zκ
(1)

MNN

0

0
(0−1)

Zκ
M2

 (2)

UN

T (2)

ZTN . (5.16)

This expression can be presented in a simpler and more transparent way. Using the definitions of

the matrices
(2)

UN and
(3)

UN in Eqs. (5.11, 5.6) we can rewrite mν as

mν = −〈Hu〉2 ZText

[
(3)

Y T
ν XN

(3)

M−1
NN

(3)

Yν

]
Zext , (5.17)
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where

XN ≡
(3)

ZN
(3)

UN

(2)

Z ′N

(2)

U ′N Zκ

(2)

U
′†
N

(2)

Z
′−1
N

(3)

U †N

(3)

Z−1
N (5.18)

describes the RG effects due to the running between the thresholds. Here

(2)

Z ′N≡

(
(2)

ZN 0
0 1

)
,

(2)

U ′N≡

(
(2)

UN 0
0 1

)
, (5.19)

and

Zκ ≡ diag

(
(0)

Zκ,
(0−1)

Zκ ,
(0−2)

Zκ

)
(5.20)

is the matrix of the effective D5 operator corrections (Fig. 5.1). Note, that

XN

(3)

M−1
NN=

(3)

M−1
NN XT

N (5.21)

which can be seen in two different ways, either by looking at the step from Eq. (5.15) to Eq. (5.17)
or simply by the property that the effective neutrino mass matrix is symmetric which cannot be
changed by the RG evolution.

5.1.1 Effects of Vertex Corrections

In order to study D5 operator corrections in the (non-SUSY) SM in more details we introduce the
matrix VN which diagonalizes the RH neutrino mass matrix at Λ:

V T
N

(3)

MNN VN = DN ≡ diag(M1,M2,M3). (5.22)

In the lowest order approximation:
(2)

ZN=
(3)

ZN= 1, and according to Eq. (5.6) and Eq. (5.11) we
obtain

VN =
(3)

UN

(2)

U ′N . (5.23)

Therefore the matrix XN Eq. (5.18) can be rewritten in the form

XN = VNZκV
†
N = I + VNδZκV

†
N , (5.24)

where
δZκ ≡ Zκ − I. (5.25)

Plugging this expression in for XN in Eq. (5.17) we find

mν ≈ −〈Hu〉2 ZText

[
(3)

Y T
ν VNZκD

−1
N V T

N

(3)

Yν

]
Zext

= −〈Hu〉2 ZText

[
(3)

Y T
ν

(
M−1
NN + VNδZκD

−1
N V T

N

) (3)

Yν

]
Zext

= −〈Hu〉2 ZText

[
(3)

Y T
ν M ′ −1

NN

(3)

Yν

]
Zext

(5.26)
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where

M ′NN ≡ V ∗Ndiag

(
M1

(0)

Z−1
κ ,M2

(0−1)

Z−1
κ ,M3

(0−2)

Z−1
κ

)
V †N . (5.27)

According to this expression the effects of the D5 operator corrections are reduced to renormalization
of the (running) masses of the RH neutrinos (at the largest RH neutrino mass).

5.1.2 Generalizations

This result can be easily generalized in two different ways.

More RH neutrinos

Eq. (5.17) depends only implicitly on the number of RH neutrinos. Therefore, we can easily
generalize our results to the case of an arbitrary number n of RH neutrinos. The effective neutrino
mass matrix becomes

mν = −〈Hu〉2 ZText

[
(n)

Y T
ν XN

(n)

M−1
NN

(n)

Yν

]
Zext . (5.28)

The RG effect between the thresholds is summarized in

XN ≡

(
n∏
i=2

(i)

Z ′N

(i)

U ′N

)
Zκ

 n∏
i=2

(i)

U ′ †N

(i)

Z ′ −1
N

 , (5.29)

where
(i)

Z ′N≡

(
(i)

ZN 0
0 1n−i

)
,

(i)

U ′N≡

(
(i)

UN 0
0 1n−i

)
, (5.30)

and

Zκ ≡ diag

(
(0)

Zκ,
(0−1)

Zκ , . . . ,
(0−(n−1))

Zκ

)
. (5.31)

Hence, the main result still holds and the RG evolution between the seesaw scales leads at the
leading order to a rescaling of the RH neutrino masses which can be seen in

mν ≈ −〈Hu〉2 ZText

[
(n)

Y T
ν VNZκD

−1
N V T

N

(n)

Yν

]
Zext , (5.32)

where

V T
N

(n)

MN VN = DN ≡ diag(M1,M2, . . . ,Mn). (5.33)

Beyond LL Approximation

Beyond the LL approximation, the calculation becomes more involved. There are several difficulties:

• The renormalization factors do not commute any longer like they do in the LL approximation.

• The effective D5 neutrino mass operator receives additional non-diagonal corrections. Thus κ
has to be renormalized additively by

κ
RG−−→ ZTL [κ+ δκ]ZLZ2

φ , (5.34)
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because the renormalization cannot be factorized (See Fig. 5.2(a).) due to diagrams like in
Fig. 5.2(b). As these two loop contributions are of the order of y4

τ

(4π)4 , they are about four
orders of magnitude smaller than the one loop contributions and can be neglected in a first
approximation.

` `

HuHu

=
` ``

Hu

`

Hu

HuHu

+Dκ

(a) The vertex corrections to the effective neutrino mass matrix do not factorize. There are additional non–
factorizable divergent diagrams Dκ which emerge in the effective theory and correspond to a UV finite
diagram in the full theory.

` `

eR;N

Hu

`

eR;N

Hu

`

HuHu

(b) Example of a two loop diagram which destroys the factor-
ization of the vertex corrections to the effective neutrino
mass matrix.

Figure 5.2: Renormalization of the effective neutrino mass operator.

• Finally, finite threshold corrections have to be taken into account, because the threshold
effects to n loop order are of the same order as the RG effects to n + 1 loop order. They
factorize like the renormalization effects, since they emerge from the same diagrams. These
effects might also destroy the structure, as the effective neutrino mass operator receives an
additional contribution compared to −Y T

ν M
−1
NNYν .

However, the form of the renormalization of Yν and MNN remains the same. The vertex correction
to Yν factorizes to all orders becauseN is a singlet and the only coupling ofN to other particles is the
neutrino Yukawa coupling as it is shown in Fig. 5.3(b). Furthermore, there are no vertex corrections
to the mass of chiral fields to all orders due to chirality. Especially, there are no vertex corrections
to the mass of the RH neutrinos. Fig. 5.3(a) shows the general wave function renormalization of a
chiral field N . For definiteness, we choose a RH field. The blob has a certain γ–structure Γ which
can be expanded in a basis of the γ–algebra

Γ = aLPL + aRPR + bLµPLγ
µ + bRµPRγ

µ + cµνσ
µν . (5.35)

The chirality of the field N ensures that the correction is proportional to PLΓPR = bLµγ
µPR. Hence,

there is no vertex correction to the mass.
Concluding, the simple formulas which have been derived do not hold beyond LL approximation in
the SM. In the MSSM, however, the formula can be easily generalized up to arbitrary loop order,
because the only obstacle is the non–commutativity of the wave function renormalization factors.
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N N

(a) The renormalization of a chiral field.

N `

Hu

`

Hu

(b) The vertex corrections to the neutrino Yukawa
couplings factorize.

Figure 5.3: Vertex Renormalization.

Generally, the result also holds for the decoupling of other heavy particles if the following three
conditions are fulfilled:

• its mass term does not receive vertex corrections;

• the vertex corrections of its couplings to light particles factorize in the way shown in Fig.
5.3(a);

• vertex corrections to the effective operator κ are scalars or more precisely can be factorized
in the form Z

T 1/2
κ κZ

1/2
κ .

5.2 Thresholds in the Cascade Seesaw

The renormalization of the cascade seesaw mechanism is similar to the standard seesaw mechanism,
since it can be understood as a successive application of the standard seesaw mechanism. Therefore,
the results of Sec. 5.1 can be applied. However, the additional massive singlets may be so heavy
that additional particles coming from GUT representations have to be considered in the discussion
of the renormalization. Hence, we have to make some assumptions about the high energy theory
in order to discuss the RG effects. We assume that either the additional massive singlets S as well
as the RH neutrinos N are total singlets of the gauge group, which is often the case in low energy
theories or

• all additional singlets S are heavier than the RH neutrinosN in Eq. (3.1.2), i.e. the eigenvalues
of MSS are strictly larger than the eigenvalues of −MT

SNM
−1
SSMSN ;

• the additional singlets S are total singlets, at least below the scale of their largest mass;

• the RH neutrinos N are total singlets, at least below the scale of their largest mass.

Then, the scales can be clearly separated and the renormalization of the singlets S and the RH
neutrinos N can be treated separately. In the context of SO(10) where we are going to apply our
results in Sec. 4.5, the requirements are fulfilled when all additional singlets are heavier than the
LR-breaking scale and all RH neutrinos masses are below the LR-breaking scale. This ensures that
the formulas of Sec. 5.1 are applicable, because all requirements which are stated at the end of Sec.
5.1 are fulfilled.
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We introduce the effective operator OM (Λ) at scale Λ which generates the masses of all uncharged
fermions

OM (Λ) =

 ν
N
S

 0 Y T
ν Hu Y T

Sν∆′

. 0 Y T
SN∆

. . MSS

( ν N S
)
. (5.36)

The Yukawa couplings are related to the mass matrices in Eq. (3.17) by mD = Yν 〈Hu〉, mSν =
YSν 〈∆′〉ν and MSN = YSN 〈∆〉N , where Hu, ∆ and ∆′ are Higgs fields. We assume, that ∆ obtains
a GUT scale VEV and Hu, ∆′ acquire an electroweak scale VEV. The application of Eq. (5.17)
results in the effective mass operator OM (Λ′)

O(Λ′) = ZText,S

(
−Y T

SνXSM
−1
SSYSν∆′ 2 Y T

ν Hu − Y T
SνXSM

−1
SSYSN∆∆′

. −Y T
SNXSM

−1
SSYSN∆′2

)
Zext,S (5.37)

after all additional singlets have been integrated out, where XS subsumes the renormalization of
the singlet mass matrix and Zext,S denotes the external renormalization factor between Λ and Λ′.
The exact form can be easily obtained by Eq. (5.18) and the knowledge of the underlying theory.
At the scale 〈∆〉N , the RH neutrinos become massive by spontaneous symmetry breaking and a
subsequent application of Eq. (5.17) results in the following contributions to the effective neutrino
mass matrix

mDS
ν = ZTextm

T
DX

′
NM

−1
SNMSSXSM

T −1
SN mDZext (5.38a)

mLS
ν = −ZText

[(
mT
SνXSM

−1
SSMSNX

′
NM

−1
SNMSSX

−1
S MT −1

SN mD

)
+ (. . . )T

]
Zext (5.38b)

mT1
ν = ZTextm

T
SνXSM

−1
SS

(
1−MSNX

′
NM

−1
SN

)
mSνZext , (5.38c)

where X ′N = Zext,SXNZ
−1
ext,S , XN equals Eq. (5.18) and Zext = Zext,SZext,N denotes the external

renormalization factor between Λ and 〈Hu〉. Note, that the DS contribution receives at leading
order a contribution from the RG effect due to the singlet thresholds as well as the thresholds of the
RH neutrinos, the LS contribution receives only a correction from the threshold of the RH neutrinos
at leading order and the standard seesaw contribution mT1

ν which vanishes in the cascade seesaw
formula, receives a correction from RH neutrino thresholds. However, it is negligible in most cases
because it is suppressed by the large mass scale of the additional singlets. The expressions can be
further expanded keeping only the leading order which results in the following corrections to the
different contributions

δmDS
ν = ZText

[
mT
DδX

′
NM

−1
SNMSSM

T −1
SN mD +mT

DM
−1
SNMSSδXSM

T −1
SN mD

]
Zext (5.39a)

δmLS
ν = −ZText

[(
mT
SνM

−1
SSMSNδX

′
NM

−1
SNMSSM

T −1
SN mD

)
+ (. . . )T

]
Zext (5.39b)

δmT1
ν = ZTextm

T
SνM

−1
SSMSNδX

′
NM

−1
SNmSνZext , (5.39c)

where δX ′N ≡ X ′N − 1 and δXS ≡ XS − 1.
In the case, in which the masses of the additional singlets are below the scale 〈∆〉N ∼ O(ΛGUT),
there are basically no threshold corrections, since the RH neutrinos and the additional singlets form
pseudo Dirac particles with a mass of the order O(MSN ±MSS). The thresholds corrections are
proportional to ln (1−MSS/ 〈∆〉N )� O(1).

5.3 RG Stability of the Cancellation Mechanism

In Sec. 5.2, the RG corrections to the light neutrino mass matrix have been considered. Here,
we apply the result to the cancellation mechanism, especially the DS contribution. If Eq. (4.1) is



60 CHAPTER 5. THRESHOLD CORRECTIONS

satisfied, the DS contributions shown in Eq. (5.38a) to the neutrino mass becomes

mν ≈ mDS
ν = ZTextm

T
DX

′
NM

−1
SNMSSXSFZext (5.40)

which is approximately given by

mν ≈ ZText

[
F TMSSF + F TMSSδXSF +mT

DδX
′
NM

−1
SNMSSF

]
Zext . (5.41)

Since the RG effect due to the mass thresholds of the singlets can be subsumed in a redefinition of
MSS , which is described by a rescaling of the singlet masses, we concentrate on the RG effect due
to the RH neutrinos. In the special case of Dirac screening, i.e. F ∝ 1, the RG corrections to the
neutrino mass matrix amount to

mν ≈
〈Hu〉2

〈∆〉2N
ZText

[
MSS + Y T

ν δX
′
NY
−1
ν MSS

]
Zext (5.42)

neglecting threshold corrections of the additional singlets S. Dirac screening is reproduced and the
dependence of mν on the Yukawa (Dirac) couplings disappears if XN = I. The expression Eq.
(5.42) coincides with that in Eq. (4.2) up to external renormalization. In turn, according to Eq.
(5.18) the equality XN = I holds provided that Zκ = I, that is, when the D5 operator corrections
are absent. This is automatically satisfied in the SUSY theory, but these corrections are present in
the SM and its non-SUSY extensions.
Note that the D5 operator corrections are due to the gauge interactions and self interactions of the
Higgs boson, which are by themselves flavor blind. However, they influence the flavor structure
of the light neutrino mass matrix due to difference of masses of the RH neutrinos and therefore
different threshold effects.
We apply the results obtained in this section to several phenomenologically interesting structures of
MSS . We study effects of the radiative corrections on the light neutrino mass matrix. The matrix
MSS will be defined in the basis where the equality of the Yukawa couplings Eq. (4.5) is fulfilled.
We discuss mf

ν - the neutrino mass matrix in the flavor basis where the charge lepton mass matrix
Ye is diagonal. It is related to mν as

mf
ν = UTe mνUe, (5.43)

where Ue is the transformation of left-handed charged lepton components which diagonalizes the
matrix Ye at the electroweak scale. The radiative corrections to Ye are in general small due to the
strong mass hierarchy, as it was already mentioned in Sec. 5.1. In the following three subsections,
we explore the Dirac screening case. In Secs. 5.3.4 and 5.3.5, we discuss the two realizations of the
cancellation mechanism by a flavor symmetry.

5.3.1 Singular MSS

Let us consider the effect of radiative corrections in the singular case. As long as all contributions
to the Majorana mass matrix mν receive the same quantum corrections, the RG evolution does
not generate non-zero masses from vanishing masses [226]. However, between the mass thresholds
of the RH neutrinos, there are two contributions from the decoupling of the RH neutrinos which
are renormalized differently. One contribution is due to the D5 operator of already decoupled RH
neutrinos and the other is due to the contribution of the RH neutrinos which are not decoupled yet
(Y T
ν M

−1
NNYν) in the intervals M2 −M3 and M1 −M2. Hence, the generated mass is proportional

to the additional renormalization factor δZκ from the D5 operator between the thresholds and the
mismatch between the two mass contributions, i.e. the deviation of the unitary matrix transforming
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from the eigenbasis of the D5 operator to the eigenbasis of −Y T
ν M

−1
NNYν between the thresholds

from the unit matrix (See Sec. 4 in [69].). In the SUSY version, all contributions to the Majorana
mass matrix receive the same quantum corrections, and hence zero mass eigenvalues remain zero.

5.3.2 Quasi-Degenerate Neutrino Spectrum

Let us first consider MSS which is proportional to the unit matrix I at Λ, i.e.,

MSS = M0
SSI . (5.44)

This choice is apparently basis independent and therefore we can take Yν = YSN = diag(y1, y2, y3).
The RH neutrino mass matrix is diagonal and strongly hierarchical:

MNN = −Y T
SNM

−1
SSYSN 〈∆〉

2
N =

〈∆〉2N
MSS

diag
(
y2

1, y
2
2, y

2
3

)
. (5.45)

Therefore VN = I and we find

mf
ν =
〈Hu〉2

〈∆〉2N
M0
SSU

T
e Z

T
ext [I + δZκ]ZextUe. (5.46)

The corrections are also diagonal3

δZκ =
(0)

Zκ

[
exp

(
−A diag

(
0, ln

y2
1

y2
2

, ln
y2

1

y2
3

))
− I
]
∼ O(0.1) , (5.47)

where
A ≡ 1

16π2

(
λ+

9
10
g2

1 +
3
2
g2

2

)
. (5.48)

This leads to splittings of the light neutrino masses which would be degenerate otherwise.
Note that the external corrections (due to wave function renormalization of the left-handed leptons,
Eq. (C.2), and the vertex corrections to the neutrino Yukawa couplings, Eq. (C.4)), are described in
general by off-diagonal matrices due to the mismatch of the structures of Ye and Yν . As the charged
lepton Yukawa couplings are also strongly hierarchical, the largest flavor dependent correction is
the one to the 3-3 element. Neglecting the off-diagonal entries, it can be estimated as

− 2
y2
τ

16π2
ln
〈Hu〉

Λ
− 4

y2
3

16π2
ln
M3

Λ
∼ O(0.1), (5.49)

where the second term (due to the neutrino Yukawa coupling) dominates. It has the same order of
magnitude as the correction due to the D5 operator renormalization in Eq. (5.47).
Let us now comment on a possibility to explain the neutrino data. In the non-SUSY version,
the mass split, δm, generated by the D5 operator corrections, δm = m0δZ, leads to ∆m2

32 =
2m0δm = 2m2

0δZ = (2− 8) · 10−3 eV2 for the overall scale m0 = (0.1− 0.2) eV. This can reproduce
the atmospheric mass split, but it is too large for the solar mass split. The ratio of solar and
atmospheric mass squared differences for quasi-degenerate neutrinos,

ζ ≈ m2 −m1

m3 −m2
∼ O(1) , (5.50)

3We assume a strong hierarchy in Yν and use Yν ∼ Yu for numerical estimates.
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does not fit the observations. The external corrections do not improve the situation either. Therefore
some other (non-radiative) contribution is required to compensate the 1-2 mass split. Mixings can
also be generated by small (non-radiative) corrections.
In the SUSY version we have δZκ = 0 and ZYν = I, so that the mass splitting is produced by the
external renormalization only:

mf
ν =
〈Hu〉2

〈∆〉2N
M0
SSU

T
e Z

T
extZextUe . (5.51)

In the flavor basis we obtain the mass split due to Yukawa couplings coming from the external
renormalization:

exp
[
− 1

8π2
diag(y2

e , y
2
µ, y

2
τ ) ln

〈Hu〉
Λ

]
, (5.52)

where the neutrino Yukawa couplings are neglected. This can provide the atmospheric mass split
and the mixings should be generated again by corrections to the zero order structure.
Next, we consider for MSS the “triangle” structure

MSS = M0
SS

 1 0 0
0 0 1
0 1 0

 (5.53)

in the basis where the neutrino Yukawa matrix is diagonal. In lowest order it produces a degenerate
mass spectrum and maximal 2-3 mixing of the light neutrinos. This matrix leads to a spectrum of
RH neutrinos with two heavy degenerate states and one relatively light state:

M1 =
〈∆〉2N y2

1

M0
SS

, M2 = −M3 =
〈∆〉2N y2y3

M0
SS

. (5.54)

The renormalization interval (2) (See Fig. 2.1.) is therefore absent and the matrix of D5 operator
corrections can be written as

δZκ =

[
exp

(
δ

(1)

Zκ

)
− 1

]
diag(0, 1, 1) , δ

(1)

Zκ= A ln
y2

1

y2y3
, (5.55)

where A is defined in Eq. (5.48). The state N1 decouples and maximal mixing is realized in the 2-3
block of VN . Using this feature and Eq. (5.55) we find from Eq. (5.42)

mf
ν = ZText

〈Hu〉2

〈∆〉2N
M0
SSU

T
e

(0)

Zκ


1 0 0

0 0 1− δ
(1)

Zκ

0 1− δ
(1)

Zκ 0

ZextUe . (5.56)

Therefore the D5 operator corrections do not destroy the triangular structure, but they lead to a
mass splitting between the degenerate pair and the isolated state:

∆m
m

= δ
(1)

Zκ . (5.57)

In the SUSY version δ
(1)

Zκ= 0, so that the original “triangle” structure is renormalized by the external
corrections only. In this case, one also needs perturbations of the original screening structure in
order to obtain phenomenologically viable mixings and mass splittings.
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Note, that the stability of the structure in (non-)SUSY theories can be easily understood. The
seesaw formula leads to the same mass texture. Therefore mν as well as MNN have the same
structure. Furthermore, as it has been mentioned in Sec. 3.3.1, Lµ − Lτ which also results in a
triangular structure is anomaly-free which explains the stability of the structure.
As a third possibility we consider for MSS the “triangle” structure which leads to a degenerate
spectrum and maximal 1-2 mixing:

MSS = M0
SS

 0 1 0
1 0 0
0 0 1

 . (5.58)

Similar considerations as above results in the mass spectrum of RH neutrinos with two light degen-
erate states and an isolated heavier state:

M1N = −M2N =
〈∆〉2N y1y2

M0
SS

, M3N =
〈∆〉2N y2

3

M0
SS

. (5.59)

For the light neutrinos we find

mν ≡ ZText

〈Hu〉2

〈∆〉2N
M0
SSU

T
e

(0)

Zκ

 0 1 0
1 0 0

0 0 1− δ
(2)

Zκ

ZextUe , (5.60)

where

δ
(2)

Zκ= exp
(
A ln

y1y2

y2
3

)
− 1 . (5.61)

The corrections due to running of the D5 operator are of the same order as in the previous case.
The mass split

∆m2
32 = 2m0δm32 = −2m2

0δ
(2)

Zκ= (2− 8) · 10−3 eV2 , (5.62)

for m0 = (0.08−0.16) eV can explain the atmospheric neutrino data. The external renormalization
contributes in the same way as for MSS ∝ I.
The original matrixMSS as given in Eq. (5.58) has to be perturbed in order to produce phenomeno-
logically acceptable mixings.

5.3.3 Perturbations of MSS

Next, we consider perturbations of the structure of MSS which (can be required by phenomenology
and) effect radiative corrections on these perturbed structures.
As an example we take the matrix

MSS = M0
SS

 1 0 0
0 x 1
0 1 0

 (5.63)

with x being a small parameter. Now the second and third neutrinos are no longer degenerate and

the renormalization factor
(2)

Zκ in the interval (2) between their masses appears. Approximating
(n)

Zκ
by 1 +A ln(Mn/Mn+1) we obtain for the light neutrinos

mf
ν =
〈Hu〉2

〈∆〉2N
M0
SSU

T
e

(0)

Zκ Z
T
ext

 1 0 0
... x (1 +A)mth

22 1 +Amth
23

... ... Amth
33

ZextUe , (5.64)
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where the threshold dependent corrections, mth
fg, equal

mth
22 =− 3 lnλ+

(
1
2
− λ2

x2y

)
ln
y − 1
y + 1

,

mth
23 =− 3 lnλ+

1
2y

ln
y − 1
y + 1

, (5.65)

mth
33 =

1
xy

ln
y − 1
y + 1

.

Here y ≡
√

1 + 4
(
λ
x

)2 and λ ≡ y2/y3. (The logarithms depend on the ratios of the RH neutrino
masses M2/M3.)
The nonzero 3-3 element is generated in Eq. (5.64) by radiative corrections. Furthermore, this
element can be enhanced by the small parameter x in the denominator, provided that λ is also
small enough. Indeed, from Eq. (5.65) we find explicitly

(mν)33 =



2A
x

ln
λ

x
, x� λ

−1.26A
x

, x = 2λ

−Ax
2λ2

, x� λ

(5.66)

As A ∼ 10−2, the 3-3 element can be of the order O(1) or even more if, e.g., λ� x < 10−2. Thus,
a quasi-degenerate MSS with nearly maximal 2-3 mixing leads after (non-SUSY) RG corrections to
the hierarchical mass matrix mν with small mixing. The texture Eq. (5.63) is not stable against
quantum corrections, since the structure of mν strongly differs from the original structure of MSS .
This example shows that radiative corrections can substantially modify the original texture of MSS

in the light neutrino mass matrix for a particular MSS . In other words, radiative corrections may
destroy Dirac screening.
Apparently the corrections are small if λ � x ∼ 1. This corresponds to the phenomenologically
important case of a dominant 2-3 block:

MSS = M0
SS

 ε 0 0
0 x 1
0 1 x

 (5.67)

with x ∼ 1 and ε� 1.
In the SUSY version of the model screening is stable.

5.3.4 T7 Realization

As the realization is SUSY, thresholds, as they are discussed in Sec. 5.1, do not lead to corrections.
Hence the structure is stable and RG running is entirely given by the external renormalization and
it can be described by the formulas given in Sec. 6.1 after the singlets have been integrated out.
Since the RH neutrinos are heavier than the singlets, the RG evolution has to be considered only
in the effective theory. Therefore, the running strongly depends on tanβ as well as the absolute
neutrino mass scale. In case of small tanβ and a strong normal hierarchy which is produced by the
DS term alone, there is only a weak RG evolution. After the inclusion of the LS term, the hierarchy
does not necessarily have to be strong. It can be as well quasi-degenerate, which leads to large RG
corrections, especially for large tanβ.



5.3. RG STABILITY OF THE CANCELLATION MECHANISM 65

5.3.5 Σ(81) Realization

The RG evolution is described by Eq. (5.41). Hence, the singlet masses as well as the RH neutrino
masses are rescaled by the threshold corrections. The corrections due to the singlet mass thresholds
can be included by rescaling A and B. In the following, we concentrate on the corrections due to
the RH neutrino mass thresholds. Since there is a large hierarchy in the RH neutrino masses

M1 =
1

|Ã+ 2B̃|
ε4 M2 =

∣∣∣∣∣∣ Ã+ 2B̃

3B̃
(

2Ã+ B̃
)
∣∣∣∣∣∣ ε2 M3 =

∣∣∣∣∣2Ã+ B̃

9ÃB̃

∣∣∣∣∣ , (5.68)

large corrections can be expected. The RG effect due to thresholds can be estimated to

δZκ =
(0)

Zκ

exp

Adiag

0, ln
∣∣∣3B̃ (2Ã+ B̃

)∣∣∣ ε2, ln 9

∣∣∣∣∣∣ ÃB̃(
2Ã+ B̃

)(
9Ã+ 2B̃

)
∣∣∣∣∣∣ ε4
− 1

 .

(5.69)
This leads to a correction to the 2-3 block of the neutrino mass matrix mν = m0

ν + δmν

δmν = 3A
„
α 〈H〉
〈∆〉N

«2

0BBB@
0 0 0

.
B̃(2Ã+B̃)
Ã+2B̃

ln
“
M1
M2

”
B̃(Ã−B̃)
Ã+2B̃

ln
“
M1
M2

”
. .

B̃(Ã−B̃)2

(Ã+2B̃)(2Ã+B̃)
ln
“
M1
M2

”
+ Ã

2Ã+B̃
ln
“
M1
M3

”
1CCCA , (5.70)

which generates a split between the 2-2 and 3-3 element. Therefore the degeneracy of m2 and m3

is lifted. However, the resulting atmospheric mass squared difference and mixing angle

∆m2
32 ≈ 18A B̃2

(
α 〈H〉
〈∆〉N

)4

ln
4

3ε2
for Ã→ 0 (5.71)

tan 2θ23 ≈
2B̃

9A Ã ln
(

6Ãε2/B̃
) . (5.72)

cannot explain the data, since the RG corrections can be estimated∣∣A ln ε2
∣∣ ∼ O(0.1) . (5.73)

This results in the ratio of mass squared differences

ζ ∼ 5

(
1− |Ã|

2

|B̃|2

)
, (5.74)

i.e. |Ã| ≈ |B̃| which leads to a large correction to the atmospheric mixing angle θ23 ≈ 34◦ which is
incompatible with the experimental data. Hence, the atmospheric mass squared difference has to
be generated by multi-flavon insertions. In this case, quantum corrections can be absorbed in the
additional couplings.

Beyond LL Approximation

Let us briefly comment on RG effects beyond the LL approximation. For certain structures of MSS

which are discussed in the following subsections, the additional two loop diagrams lead to corrections
to the renormalization of the effective neutrino mass operator which could be comparable to the
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one loop corrections. However, assuming the same hierarchy in the neutrino Yukawa couplings as in
the up-type quark Yukawa couplings, these contribution are further suppressed since the heaviest
right-handed neutrino is already integrated out. Therefore all two loop contributions in the effective
theory are suppressed by y2

2/16π2 ≤ 10−6, where y2 is the second to largest singular value of Yν
compared to the one loop contributions. Altogether higher loop contributions are less than 10% of
the one loop corrections and can be neglected.



Chapter 6

RG Effects in Neutrino Mass Models

In this chapter, we apply RG techniques to several models. Firstly, Sec. 6.1 summarizes the structure
of RG equations in matrix form in the effective theory, standard, triplet as well as the type I+II
seesaw scenario. Furthermore, the derivation of the RG equations of the mixing parameters is
outlined. The RG effect in the case of the flavor symmetry Lµ − Lτ is discussed in Sec. 6.2
numerically and analytically and Sec. 6.3 treats the QLC relations in the scenario given in Sec. 3.4.
Finally, RG equations of leptonic mixing parameters in the triplet seesaw scenario are derived in
Sec. 6.4.

6.1 General Structure of RG Equations in Seesaw Models

In summary, the running of the effective neutrino mass matrix mν is given by the running of the
different contributions to the neutrino mass matrix m(i)

ν which have been shown in Sec. 3.1.
The one-loop β-function for m(i)

ν in the various effective theories can be summarized as

16π2 ṁ(i)
ν = P (i)Tm(i)

ν +m(i)
ν P (i) + α(i)

ν m(i)
ν , (6.1)

where
P (i) ≡

[
C(i)
e Y †e Ye + C(i)

ν Y †ν Yν + C
(i)
∆ Y †∆Y∆

]
. (6.2)

and

ṁ(i)
ν ≡ µ

dm(i)
ν

dµ
, (6.3)

m
(i)
ν stands for any of the contributions to the light neutrino mass matrix and αν includes the gauge

interaction terms that can influence the flavor structure in the SM case between mass thresholds.
The coefficients C(i)

e,ν,∆ and α(i)
ν are listed in Tab. 6.1, where T = tr

(
Y †ν Yν + Y †e Ye + 3Y †uYu + 3Y †d Yd

)
.

Note, that they are the same for all mass contributions m(i)
ν in the MSSM due to the non-

renormalization theorem [227,228]. As the running of the MNS matrix depends on the evolution of
the charged lepton Yukawa matrix Ye, we also present its RG equation,

16π2Ẏe = YeF + αeYe (6.4)

where
F ≡

[
DeY

†
e Ye +DνY

†
ν Yν +D∆Y

†
∆Y∆

]
. (6.5)

The coefficients De,ν,∆ and αe are listed in Tab. 6.2. In the case that the renormalization of the

67
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model m
(i)
ν Ce Cν C∆ flavor-trivial term αν

SM κ −3
2

1
2

3
2 2T − 3g2

2 + λ

SM 2Y T
ν M

−1Yν −3
2

1
2

3
2 2T − 9

10g
2
1 − 9

2g
2
2

SM −2 Λ6M
−2
∆ Y∆

1
2

1
2

3
2

T − 2tr
(
Y †∆Y∆

)
− 3g2

2 + λ− 8Λ1− 2Λ2− 4Λ4 + 8Λ5−(
4Λ4m

2 + |Λ6|2
)
M−2

∆ − 4tr
(
Y †∆Y

T
ν MYν

)
Λ−1

6

MSSM κ 1 3 3
2 2tr

(
Y †ν Yν + 3Y †uYu

)
+ 3|Λu|2 − 2

(
3
5g

2
1 + 3g2

2

)
MSSM 2Y T

ν M
−1Yν 1 3 3

2 2tr
(
Y †ν Yν + 3Y †uYu

)
+ 3|Λu|2 − 2

(
3
5g

2
1 + 3g2

2

)
MSSM −2 Λ6M

−2
∆ Y∆ 1 3 3

2 2tr
(
Y †ν Yν + 3Y †uYu

)
+ 3|Λu|2 − 2

(
3
5g

2
1 + 3g2

2

)
Table 6.1: Coefficients of the β-functions of Eq. (6.1), which govern the running of the effective neutrino mass
matrix in minimal type I+II seesaw models. In the MSSM, the coefficients coincide due to the non-renormalization
theorem [227,228] in supersymmetric theories.

model De Dν D∆ flavor-trivial term αe
SM 3

2 −3
2

3
2 T − 9

4g
2
1 − 9

4g
2
2

MSSM 3 1 3
2 tr

(
Y †e Ye + 3Y †d Yd

)
+ 3

2 |Λd|
2 − 9

5g
2
1 − 3g2

2

Table 6.2: Coefficients of the β-functions of Eq. (6.4), which govern the running of the charged lepton Yukawa
coupling in minimal type I+II seesaw models.

effective neutrino mass matrix mν =
∑

im
(i)
ν can be written in the form

16π2ṁν = P Tmν +mνP + ανmν , (6.6)

i.e. P = P (i) and αν = α
(i)
ν ∀i, RG equations for masses, as well as mixing angles and phases

can be derived by the method which is described in the Appendix of [69]. It is based on earlier
works [55, 221, 226, 229]. It is always possible in supersymmetric theories and in the SM below all
thresholds and above all thresholds, if there are only RH neutrinos or a Higgs triplet. Here, we just
sketch the main steps and refer the interested reader to the stated references. The resulting RG
equations in the standard seesaw framework are listed in App. C.1 which have been taken from [69].

• In an arbitrary basis, one can define unitary matrices Uν and Ue by

Uν(t)T mν(t)Uν(t) =diag
(
m1(t),m2(t),m3(t)

)
≡ Dν , (6.7a)

Ue(t)† Y †e Ye(t)Ue(t) =diag
(
y2
e(t), y

2
µ(t), y2

τ (t)
)

= diag

(
m2
e(t)
v2

,
m2
µ(t)
v2

,
m2
τ (t)
v2

)
≡ De (6.7b)

with v fixed.

The MNS matrix is given by

UMNS(t) = U †e (t)Uν(t) . (6.8)
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• The application of the RG operator δRG = d
dt = µ d

dµ on Eqs. (6.7a, 6.7b) results in

Ḋν =
1

16π2

(
P ′TDν +DνP

′ + αν
)

+Dν Xν −X∗νDν (6.9a)

Ḋe =
1

16π2

(
F ′ †De +DeF

′ + 2Reαe
)

+DeXe −XeDe (6.9b)

after applying the chain rule, where the primed matrices are defined as P ′ ≡ U †νPUν , F ′ ≡
U †eFUe and Xν, e ≡ U †ν, eU̇ν, e which is anti-Hermitian.

• The real and imaginary parts of those matrices yield the following set of equations for the
running masses

16π2ṁf =
(
Reαν + 2 ReP ′ff

)
mf , f = 1, 2, 3 (6.10a)

16π2ṁf =
(
Reαe + ReF ′ff

)
mf , f = e, µ, τ (6.10b)

and the mixing parameters are implicitly given by

16π2Im (Xν)fg = −
mf −mg

mf +mg
ImP ′fg (6.11a)

16π2Re (Xν)fg = −
mf +mg

mf −mg
ReP ′fg (6.11b)

16π2 (Xe)fg =
y2
g + y2

f

y2
g − y2

f

F ′fg , (6.11c)

where we used the hermiticity of P ′ and F ′. The diagonal parts of Xe which determine the
unphysical phases remain undetermined.

• In order to obtain the RG equations for the mixing parameters, we observe that the application
of the RG operator to Eq. (6.8) yields

U †MNS U̇MNS = UeXν U
†
e − U †ν Xe Uν . (6.12)

Eq. (6.12) simplifies in the flavor basis where Ue = 1 and Uν = UMNS to

U †MNS U̇MNS = Xν − U †MNSXe UMNS , (6.13)

which is a solvable linear system of equations in the β-functions of the mixing parameters.
Although, a basis has been specified in the calculation, the resulting equations are basis-
independent 1.

6.2 Lµ − Lτ Flavor Symmetry

The flavor symmetry Lµ − Lτ which has been introduced in Sec. 3.4 leads to quasi-degenerate
neutrino masses. Therefore, strong running of the mixing angles is expected [52–59]. The running
of the mixing angles θij in a quasi-degenerate mass scheme with a common mass scalem0 is typically
proportional tom2

0/∆m
2
ij and therefore particularly strong for θ12 above and below the seesaw scales.

1If P and F are not expressed in terms of basis-independent quantities as it is done in the formulas of the standard
seesaw case, the resulting equations still depend on the chosen basis.
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This behavior also turns out to hold when the running between the seesaw scales [9, 62, 63, 69, 230,
231] is taken into account. In general this leads to quite involved expressions for the β-functions.
However, in our case the structure of the Dirac and charged lepton mass matrices (i.e., the fact
that they are diagonal and hence P is diagonal) simplifies matters considerably and allows for some
analytic understanding of the numerical results

16π2 θ̇12 =
m2

0

∆m2
21

(1 + cos (ϕ2 − ϕ1)) sin 2θ12

[
P11 −

(
P22 cos2 θ23 + P33 sin2 θ23

)]
,

32π2 θ̇13 =
m2

0

∆m2
32

(cos (δ − ϕ1)− cos (δ − ϕ2)) sin 2θ12 sin 2θ23 (P22 − P33) , (6.14)

16π2 θ̇23 =
m2

0

∆m2
32

[
(1 + cosϕ2) cos2 θ12 + (1 + cosϕ1) sin2 θ12

]
sin 2θ23 (P22 − P33) .

Note, since the masses have the same CP parity, i.e. ϕ1 ≈ ϕ2 ≈ π [196], there is no cancellation in
the first relation for θ̇12. We can safely neglect P11 with the values of the parameters in mD as given
in Sec. 3.3.1 (i.e., a � b ∼ d = O(0.1)). This leads in particular to a negative β-function for θ12.
Hence, it will increase when evolved from high to low scales. Furthermore, neglecting the charged
lepton Yukawas in Ye above the seesaw scales and noting that P22 ≈ b2/2 and P33 ≈ d2/2 for the
SM and twice those values for the MSSM, we see that the running of θ13 and θ23 is suppressed
with respect to the running of θ12 due to two reasons: firstly, it is inversely proportional to ∆m2

32

and secondly, it is proportional to P22 − P33 ∝ b2 − d2, which is smaller than P22 + P33, which the
running of θ12 (approximately) depends on. Hence, the running of θ13 and θ23 is suppressed by
ζ (b2 − d2)/b2 above the seesaw scales.
Below the seesaw scales only the τ -lepton Yukawa coupling yτ governs the RG corrections. In this
regime the evolution is described by [59]

16π2 θ̇12 ≈ −y2
τ sin 2θ12 sin2 θ23

m2
0

∆m2
21

(1 + cos(ϕ2 − ϕ1)) , (6.15)

in the MSSM, which is again negative and leads to sizable running. The formulas for the running
of θ13,23 are suppressed by roughly a factor ζ.
The phases stay almost constant in the whole range, because it can be shown, that ϕ̇1 and ϕ̇2 are
mainly proportional to sinϕ1 and sinϕ2, respectively. Roughly the same behavior is found below
M1. Finally, the RG effects on the neutrino masses correspond predominantly to a rescaling, since
the flavor-diagonal couplings, i.e., gauge couplings and the quartic Higgs coupling, dominate the
evolution [54]. Hence, ζ is relatively stable with respect to the RG evolution.
We can analyze whether zero entries in the mass matrix Eq. (3.54) remain zero entries. Below
the seesaw scale it is well-known that the RG corrections are multiplicative on the mass matrix,
a fact which leaves zero entries zero. Taking the running in between the heavy Majorana masses
into account, one can factorize the RG effects Zext from the tree-level neutrino mass matrix in the
MSSM as it is shown in Sec. 5.1

mν = ZTextm
0
ν Zext . (6.16)

As the RG effects are flavor diagonal, i.e. P is diagonal, texture zeroes in the charged lepton basis
remain zero, even above all see-saw scales. With the already mentioned simplifications, Zext is
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Figure 6.1: Typical plot for the evolution of the mixing angles and masses from ΛGUT to the electroweak scale. In
this example, we have tanβ = 10 and the parameters in the matrix Eq. (3.54) at the GUT scale are a = 0.0066926,
b = 0.0692883, c = 0.0697464, X = 0.0096528, Y = 1, ε1 = 0.0005595, ε2 = 0.0749098, ϕ = 2.45376 and M =
9.098937108 · 1011 GeV. The software package REAP introduced in [69] has been used to produce those plots.

approximately2 given by

16π2
(
ZMSSM

ext − 1
)

= diag
(

0, b2 ln
M Y

ΛGUT
, d2 ln

M Y

ΛGUT
+ y2

τ ln
v

ΛGUT

)
+ b2 ln

M Y

ΛGUT
+ d2 ln

M Y

ΛGUT
+
[
−3

5
g2

1 − 3g2
2 + 3y2

t

]
ln

v

ΛGUT
. (6.17)

In the SM, however, there are additional corrections which cannot be factorized. They are respon-
sible for the instability of texture zeroes under the RG which is shown in Sec. 5.1. We checked
that for most observables the running behavior in the SM is similar to the running in case of the
MSSM. The solar neutrino mixing angle receives more RG corrections in the SM, a fact which can
be traced back to the appearance of an 1-2 entry in the mass matrix Eq. (3.54). One might wonder
at this point if this filling of zero entries would allow to generate a successful phenomenology from a
mass matrix obeying the flavor symmetry Lµ−Lτ without any breaking, i.e., just from Eq. (3.50).
Recall, however, that in the SM Lµ − Lτ is anomaly free and therefore the texture of the mass
matrix is stable.
We plot in Fig. 6.1 the running of the angles, phases and masses for a typical example in the MSSM
with tanβ = 10. The neutrino parameters at the GUT scale are sin2 θ12 = 0.123, sin θ13 = 0.0484,
δ = 4.73 rad, sin2 θ23 = 0.481, (m1, m2, m3) = (0.1527, 0.1533, 0.1653) eV with ∆m2

21 = 1.9 ·
2As the perturbations are small, the mass eigenvalues of the heavy RH neutrinos are approximately given by

(M1,M2,M3) ≈M (X,Y (1− ε2/2), Y (1 + ε2/2)) ≈ (X,Y, Y ).
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10−4 eV2 and ∆m2
32 = 3.8 · 10−3 eV2. They are changed by the RG evolution to sin2 θ12 = 0.303,

sin θ13 = 0.0496, δ = 4.73, sin2 θ23 = 0.481, (m1, m2, m3) = (0.1152, 0.1155, 0.1245) eV with
∆m2

21 = 7.9·10−5 eV2 and ∆m2
32 = 2.1·10−3 eV2. Note that the phases and θ13,23 remain practically

constant, whereas sin2 θ12, ∆m2
21 and ∆m2

31 are changed by factors of up to three, and that the
running in between and above the seesaw scales is at least as important as the running below them.
This implies that radiative corrections, in particular for θ12 and the mass squared differences, can
be crucial especially for quasi-degenerate neutrinos like in this model.

6.3 Quark Lepton Complementarity

In this section, we mainly study the RG evolution of θ12, since it receiver the largest RG corrections
in the QLC relations. The RG effect on VCKM is negligible due to the large hierarchy in the charged
fermion mass matrices and the smallness of ϑ12 [232].

6.3.1 RG Effects: General Considerations

General Considerations

The quark-lepton symmetry implied by the QLC relations means that physics responsible for these
relations should be realized at some scale Λ which is at the quark-lepton unification scale, ΛGUT,
or at an even higher scales. An alternative possibility would be the quark-lepton relation due to
the PS symmetry [140] broken below the GUT scale. Consequently, there are, in principle, three
different regions of RG running:

• below the seesaw scales, µ < M1, where M1 is the lightest RH neutrino mass. In this region
all three neutrinos decouple and the D5 operator Eq. (3.9) is formed;

• between the seesaw scales, M1 < µ < M3, where M3 is the heaviest RH neutrino mass;

• above the seesaw scales M3 < µ < Λ. If Λ > ΛGUT new features of running can appear above
ΛGUT.

Above the seesaw scales the renormalization of the couplings of the full Lagrangian Eq. (3.11) has
to be considered.
Below the seesaw scales, running is dominated by P33 in the flavor basis which results in an increase
of θ12 in the MSSM and a slight decrease in the SM due to a different sign of Ce:

32π2θ̇12 ≈ −Q+
12 sin 2θ12s

2
23P33 . (6.18)

Above the seesaw scales, the leading contribution is again given by P33, and the next–to–leading
contribution is due to P32. This yields an increase of θ12 when running to low scales both in the
MSSM and in the SM. Explicitly the corresponding evolution equation can be written as

32π2θ̇12 = −Q+
12Cν sin 2θ12 sin θ23 [sin θ23 − Vcb cos θ23 cos (φ2 − φ3)] , (6.19)

where the phases φi are determined in Eqs. (3.71, 3.72).
The effect of running between the seesaw scales (about ten orders of magnitude in µ) is more
complicated. In this range there are more contributions to the neutrino mass matrix which evolve
differently as it is described in Sec. 5.1. So, in the MSSM, the RG equations are the same for both
contributions and the RG equation for θ12 is applicable in contrast to the SM.
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After the heaviest RH neutrino is integrated out, the RH neutrino mixing at the threshold influences
the running of θ12. In the second order of sinϑ12, the expression for θ̇12 reads:

32π2θ̇12 = −1
4
Q+

12Cν (s23 − Vcbc23 cos (φ2 − φ3))(
3− 2 cos 2Θ23 cos2 Θ13 − cos 2Θ13

)
sin 2θ12s23 , (6.20)

where Θij are the RH neutrino mixing angles at the scale at which the heaviest neutrino is integrated
out. The unitary rotation of the RH neutrino fields is done at the threshold of the heaviest RH
neutrino, and the exact definitions of the angles are given in Eqs. (3.84, 3.85).

RG Evolution and Scales of Flavor Physics

We have performed the running from the scale Λ down to the electroweak scale and calculated
∆θ12 ≡ θ12(MZ) − θ12(Λ). For that we have numerically solved the complete set of RG equations
including sub-leading effects due to non-zero 1-3 mixing. In most of our calculations we take for
definiteness Λ = ΛGUT = 2 · 1016 GeV. We separately consider the dependence of our results on Λ
in Sec. 6.3.6.
The following free parameters determine the RG effects substantially: the absolute scale of light
neutrino masses, the Majorana CP phase difference, ∆ϕ = ϕ2 − ϕ1, and the phases αi, which have
been defined in Sec. 3.4, as well as tanβ in the MSSM. The dependence on other parameters (e.g.,
other phases) is rather weak. Still we will explicitly use the phase ϕ2 keeping everywhere ϕ1 = 0◦.
We studied the dependence of the RG effects on these parameters. For each set of parameters we
have calculated the RH mass matrix and the running effects. The angles are fixed by the QLC
relation at Λ, and the mass squared differences are adjusted to lie in the experimentally allowed
region at the electroweak scale. For the neutrino Yukawa couplings we take y1 : y2 : y3 = ε2 : ε : 1,
(ε = ε′) and ε = 3 · 10−3.
In what follows we will describe the results of our numerical calculations. We give an interpretation
of the results using the derived approximate formulas in this section and Sec. 3.4.

6.3.2 RG Effects: MSSM Case

MSSM and Normal Mass Hierarchy

We consider the RG evolution in the MSSM with a unique SUSY threshold at 1 TeV. In Fig. 6.2 we
show some examples of the scale dependence of θ12 for various values of parameters. With increase
of m1 two factors enhance the RG effects:

• the largest mass M3 decreases according to Eq. (3.81). Correspondingly, the region above
the seesaw scale, M3−ΛGUT increases where the running is especially strong due to the large
neutrino Yukawa couplings;

• corrections to the mass matrix elements δmij are proportional to their values: δmij ∝ mij

and since with the increase of m1 the matrix elements mij generically increase, the corrections
increase correspondingly.

For relatively small tanβ ∼ (3− 10), the dominant contribution follows from the region above the
seesaw scales due to large (Yν)33. The evolution below M3 is mainly due to the Yukawa couplings
Ye which are relatively small. The effect increases fast with m1:

∆θ12 ∝ Q+
12 log(ΛGUT/M3). (6.21)
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Figure 6.2: Examples of running θ12 in the case of MSSM and normal mass hierarchy. The dependence of θ12 on µ
(a) for different values of m1, and tanβ = 10; (b) on tanβ for m1 = 10−3 eV. All CP-phases are taken to be zero.

Note that the largest RH neutrino mass M3 is proportional to the lightest left-handed neutrino
mass: M3 ∝ 1/m1. Therefore for m1 ∼ 10−3 eV the running of θ12 is mainly related to an increase
of the region above the seesaw scale. For m1 > 10−2 eV the spectrum of light neutrinos becomes
degenerate and ∆θ12 ∝ Q+

12 ∝ m2
1 (Fig. 6.2(a)). For large tanβ and small m1 the dominant

contribution to ∆θ12 comes from the region below M3 where ∆θ12 ∝ tan2 β (see Fig. 6.2(b)).
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Figure 6.3: Contours of constant RG corrections, ∆θ12, in the tanβ −m1 plane in the case of MSSM and normal
mass hierarchy. All the CP-phases are taken to be zero.

A combined dependence of the corrections, ∆θ12, on m1 and tanβ is presented in Fig. 6.3 where
we show contours of constant ∆θ12 in the (m1 − tanβ) plane. The change of behavior of contours
at m1 = 8 · 10−4 eV is a consequence of our boundary condition: At m1 < 8 · 10−4 eV we have
M3 > ΛGUT, and therefore the region above the seesaw scale disappears.
In Fig. 6.4 we show the correction ∆θ12 as function of m1 for different values of ϕ2. The dependence
of ∆θ12 on ϕ2, given essentially by the factorQ+

12, is weak for an hierarchical spectrum,m1 � 8·10−3

eV, and very strong for a degenerate spectrum: ∆θ12 ∝ (1 + cos ∆ϕ). The corrections are strongly
suppressed for opposite CP parities ϕ2 = 180◦ (Fig. 6.4). This agrees with the results of previous
studies of corrections in the quasi-degenerate case [52–59].
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Figure 6.4: The dependence of the RG correction, ∆θ12 (in degrees), on m1 for different values of ϕ2 (figures at the
curves) in the MSSM and a normal mass hierarchy. The lines correspond to tanβ = 10 and ϕ1 = 0◦.

The corrections ∆θ12 are positive. This fact is mainly a consequence of a strong hierarchy of the
Yukawa couplings Yν and Ye. The evolution is given approximately by the general RG equation for
θ12, where P33 ∝ (|(Ye)33|2 + |(Yν)33|2)/2 > 0. The off-diagonal couplings Pfg are much smaller.
Since Q+

12 > 0 we obtain θ̇12 < 0, that is, the angle θ12 increases with decreasing µ.
The condition of the QLC prediction for θ12 being within 1σ of the best fit experimental value
requires ∆θ12 < 0.5◦ − 1◦. This, in turn, leads to bounds on parameters of the neutrino spectrum
and tanβ. In particular, according to Fig. 6.4 the degenerate neutrino spectrum is excluded for the
same CP parities (ϕ2 = 0◦). In the case of large tanβ it requires a strongly hierarchical spectrum:
m1 < 10−3 eV that eliminates the running region above all seesaw scales. However, a degenerate
spectrum is allowed for ϕ2 ∼ 180◦.
Taking the 2σ upper bound ∆θ12 < 2◦ we find that the quasi-degenerate spectrum with m1 ∼ 10−2

eV is allowed even for the same CP parities. For a normal mass hierarchy with m1 < 10−3 eV and
tanβ ∼ (3− 10) the running effect is negligible: ∆θ12 < 0.1◦.
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Figure 6.5: Examples of running θ12 in the case of MSSM and inverted mass hierarchy. The dependence of θ12 on
µ (a) for different values of m1, and tanβ = 10, (b) on tanβ for m1 = 10−3 eV. The value ϕ2 = 0◦ is taken.

MSSM and Inverted Mass Hierarchy

In the case of an inverted mass hierarchy, the states ν1 and ν2 associated to 1-2 mixing are strongly
degenerate. Therefore, the RG effects are similar to those in the normal hierarchical case for
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m1 = mA ∼ 5 · 10−2 eV. The corrections ∆θ12 are enhanced by the factor

(∆θ12)IH

(∆θ12)NH
≈ (mIH

2 )2

(mNH
2 )2

≈ (mIH
1 )2

(mNH
1 )2

, (6.22)

where the superscripts NH and IH stand for a normal and an inverted mass hierarchy, respectively.
In Fig. 6.5 we show examples of the running of θ12 for different values of masses and phases. The
dependences of θ12 are well-described by Q+

12, as in the case of a normal mass hierarchy. Notice
that now the heaviest RH neutrino mass is determined by m3, and the two others by mA. With
increase of m3 which is the lightest neutrino mass (See Fig. 6.5(a).) the range above the seesaw
scales, where the evolution of θ12 is strongest, increases. The change of θ12 below M3 is smaller and
it is of the same size for different values of m3 as long as m3 � mA. In this range the evolution
is mainly due to charged lepton Yukawa couplings Ye, so that ∆θ12 ∝ tan2 β (Fig. 6.5(b)). The
correction can be strongly suppressed for opposite CP parities of ν1 and ν2: ∆θ12 ∝ (1 + cos ∆ϕ).
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Figure 6.6: The dependence of the RG correction ∆θ12 on m1 for different values of ϕ2 (figures at the curves) in
the case of MSSM, inverted mass hierarchy and tanβ = 10.

As in the case of a normal hierarchy, in a large part of the parameter space the correction is
positive, ∆θ12 > 0◦, due to the dominant effect of P33. For ϕ2 = 0◦, consistency of the QLC
prediction with the experimental data, especially ∆θ12 < 2◦, implies tanβ < 10 and m3 < 8 · 10−4

eV. For ϕ2 ∼ 180◦ corrections can be strongly suppressed, so that a larger region of the parameter
space becomes allowed. The corrections become negative for ϕ2 = 180◦ (See Figs. 6.6 and 6.7.)
when the leading RG effects are strongly suppressed and the running is mainly due to sub-leading
effects related to non-zero 1-3 mixing. This possibility has been mentioned in [14]. The sign of
the contribution due to non-zero θ13 to the RG running of θ12 depends on the parameter (masses,
phases) region.
In general, for non-zero θ13, the contribution to θ̇12 is given by

Cνθ13

32π2
sin 2θ23

[ (
Q+

12 cos 2θ12 +Q+
13s

2
12 +Q+

23c
2
12

)
cos δ

+ 2
(
m1m2

∆m2
21

sin(ϕ1 − ϕ2) +
m1m3

∆m2
31

sinϕ1s
2
12 +

m2m3

∆m2
32

sinϕ2c
2
12

)
sin δ

]
. (6.23)

According to this equation for ϕ2 = 180◦, ϕ1 = 0◦ and δ = 180◦, the dominant contribution is
determined by the combination −m3+m1

m3−m1
sin2 θ12 sin 2θ23, that is positive in the inverted hierarchy

case, and therefore θ12 decreases from high to low energies.
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Figure 6.7: Contours of constant RG corrections, ∆θ12, in the tanβ−m1 plane in the case of MSSM, inverted mass
hierarchy and ∆ϕ = ϕ2 = 180◦.

6.3.3 RG Effects: SM Case

In the SM the evolution of θ12 is more complicated. As we have already mentioned, apart from the
Yukawa coupling contributions, there are additional vertex diagrams [63]. Furthermore, the vertex
diagrams with the gauge bosons become important: their contribution to the running between the
seesaw scales influences the flavor structure of the mass matrix and therefore changes θ12. Above
the seesaw scales (where all RH neutrinos are operative) and below the seesaw scales (where all RH
neutrinos decouple), flavor universality of the gauge interaction corrections is restored. There is no
simple analytic formula for the RG evolution of θ12 in the SM.
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Figure 6.8: Examples of running of θ12 in the case of SM and normal mass hierarchy. The dependence of θ12 on µ
(a) for different values of m1, and ϕ2 = 0◦, (b) on ϕ2 for m1 = 10−3 eV.

In Fig. 6.8 we show examples of the RG running of the solar mixing angle θ12. Above the seesaw
scales the running is due to the Yukawa interactions, Yν , and the effect is well-described by the
analytic formula for θ12. Below the seesaw scales, µ < M1, the evolution is negligible: it is related
to Ye couplings that are small in the SM. The main effect arises between the seesaw scales. As we
mentioned above, it is mainly due to the gauge vertex corrections since N3 with the largest Yukawa
coupling is decoupled and Ye are small. The corrections increase with m1.
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The most interesting dependence of ∆θ12 is the one on the CP-violation phase ϕ2 (See Fig. 6.8(b).).
The corrections are positive, ∆θ12 > 0◦, for ϕ2 ∼ 0◦. They are strongly suppressed for ϕ2 ∼ 90◦,
in contrast to the SUSY case where the suppression is realized for ϕ2 ∼ 180◦. The corrections are
negative for ϕ2 ∼ 180◦. The phase of zero corrections, ϕ2(θ12 = 0◦), depends on m1 and in general
deviates from 90◦. The deviation is due to the Yukawa interaction effects that produce the positive
shift for a strong Yukawa coupling hierarchy as we discussed before. The shift occurs both above
and between the seesaw scales (see Fig. 6.8(b)).
In Fig. 6.9 we show contours of constant corrections in the m1 − ϕ2 plane, and in Fig. 6.10,
an explicit dependence of ∆θ12 on m1 for different values of ϕ2. The line ∆θ12 = 0◦, is close to
ϕ2 = 90◦, 270◦ for m1 → 0, and it approaches 180◦ with increase of m1 when the spectrum becomes
strongly degenerate. The pattern is nearly symmetric with respect to ϕ2 = 180◦ for small m1, the
asymmetry appears for m1 > 3 · 10−3 eV.
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Figure 6.9: Contours of constant RG corrections to θ12 (figures at the curves) in the ϕ2 −m1 plane in the case of
the SM and a normal mass hierarchy.

The line ∆θ12 = 2◦ restricts the region consistent with the QLC relations. Along the contours
∆θ12 = −1.5◦ the best fit experimental value for θ12 can be reproduced. This corresponds to
m1 > 2·10−3 eV and ϕ2 ∼ 150◦−210◦. Large negative corrections appear in the regionm1 > 5·10−3

eV and ϕ2 ∼ 180◦.

6.3.4 Renormalization of 1-3 Mixing

In the scenario discussed in this thesis, the 1-3 mixing is non-zero and relatively large at the flavor-
breaking scale

sin2 θ13 ≈ 0.024 . (6.24)

Notice that θ13

• interferes with the 1-2 mixing in the QLC relations as we discussed before;

• produces sub-leading effects in the renormalization of θ12;

• can provide further bounds on the considered scenario if RG corrections are positive and large.
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Figure 6.10: The dependence of the RG correction ∆θ12 on m1 for different values of ϕ2 (figures at the curves) in
the SM with a normal mass hierarchy.

The dominant contribution to the renormalization of θ13 is given by

64π2θ̇13 = Cν sin 2θ12 sin 2θ23(A+
13 −A

+
23), (6.25)

where A+
i3 is given in App. C.1. In our case sin 2θ12 > 0◦, sin 2θ23 > 0◦, δ ≈ 180◦ and for vanishing

Majorana CP phases, ϕi = 0◦, the dominant contribution can be approximated to

64π2θ̇13 = Cν sin 2θ12 sin 2θ23(Q+
23 −Q

+
13), (6.26)

and the last factor in Eq. (6.26): Q+
23 − Q

+
13 = A+

13 − A
+
23 is negative, irrespective of the mass

hierarchy. Consequently θ13 increases when running to low energies. For non-vanishing phases ϕi
this factor can be positive, thus leading to a decrease of θ13 when µ decreases.
In the case of a strong mass hierarchy Eq. (6.25) gives

64π2θ̇13 = −2 sin 2θ12 sin 2θ23 cos(δ − ϕ2)
√
ζ. (6.27)

The running is suppressed by a small mass ratio. Therefore only a small RG effect on the 1-3 mixing
appears for the hierarchical (normal as well as inverted) case. For instance, we find that for the
parameter sets used in Fig. 6.2 (MSSM), the correction ∆θ13 is always smaller than 0.2◦. In the
SM, it is smaller than 0.3◦.
For the degenerate spectrum, there can be a larger effect which strongly depends on the CP phases.
From Eq. (6.25) we find

64π2θ̇13 ≈ 2 sin 2θ12 sin 2θ23
m2

1

∆m2
31

[cos(δ − ϕ1)− cos(δ − ϕ2)]. (6.28)

Notice that for zero CP phases the cancellation occurs again. In the MSSM for m1 = 0.03 eV and
tanβ = 50, we find ∆θ13 ∼ 0.5◦. In contrast, for δ = ϕ1 = 180◦ and ϕ2 = 0◦ the two terms
in Eq. (6.28) sum up and we obtain running towards larger values: 64π2θ̇13 ≈ 4 sin 2θ12 sin 2θ23.
Consequently θ13 becomes smaller at low energies.

6.3.5 Level Crossing Points

As we have established in Sec. 3.4 the spectrum of the RH Majorana neutrinos is generically hi-
erarchical. However, there are level crossing points, where two of the RH neutrino masses become
equal [212]. When the two lighter RH neutrino states M1 ≈ M2 are degenerate, it is of special
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interest for the generation of the baryon asymmetry in the Universe, since in this case resonant lep-
togenesis [233] becomes possible which produces a large enough asymmetry in spite of the smallness
of the masses and consequently, a large wash-out effect.
From Eq. (3.80) we find

M1 =
2m2

t ε
′4

m̃1 + m̃2
, M2 =

2m2
t ε

2(m̃1 + m̃2)
(m̃1 + m̃2)m̃3 + 2m̃1m̃2

. (6.29)

It is easy to see that due to the smallness of ε the condition M1 ≈ M2 can be satisfied only in the
case of strong mass degeneracy |m1| ≈ |m2| ≈ m0 when

m̃1 + m̃2 =
∆m2

21

2m0
≈ 0. (6.30)

Then from the condition M1 ≈M2 we find

m0 =

√
∆m2

21

2
√

2ε
∼ 0.1 eV. (6.31)

In this special case the mass

M1 ≈M2
4m2

t ε
′4m0

∆m2
21

= MNH
1

2m0√
∆m2

21

(6.32)

is enhanced by a factor 2m0/
√

∆m2
21 ∼ 20 and the third mass is much smaller than in the hierar-

chical case:

M3 ≈
m2
t

2m3
, (6.33)

that is, smaller by a factor mNH
1 /m3 < 10−3.

The level crossing condition Eq. (6.30) implies opposite Majorana CP phases and it coincides with
the condition of strong suppression of RG effects. It also implies smallness of the 1-1 element of
the matrix mbm. The condition for level crossing differs from that in [212] since here we require
the neutrino Dirac matrix to be diagonal in the basis where the mass matrix of light neutrinos has
exactly bimaximal form. If instead we use a generic matrix with non-maximal 1-2 mixing the level
crossing condition can be realized for the hierarchical spectrum [212].
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Figure 6.11: Examples of running of mixing angles in the case of M1 ≈M2 in MSSM and a normal mass ordering.
We show the dependence of θ12, θ13 θ23 on µ for tanβ = 10, ϕ1 = 0◦, ϕ2 = 180◦ and m1 = 0.13 eV.

In Fig. 6.11 we show the RG evolution of the mixing angles for parameters that correspond to the
level crossing point M1 = M2. In this point M1 = M2 = 8 · 106 GeV, M3 = 8 · 1013 GeV, ϕ1 = 0◦,
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Figure 6.12: The dependence of the RG correction ∆θ12 on m1 for different values of ϕ2 (figures at the curves) in
the MSSM with a normal mass hierarchy and tanβ = 10. The boundary condition is at MPl.

ϕ2 = 180◦, m1 = 0.13 eV. Note, that the equality of M1 and M2 is broken by RG effects. The angle
θ12 evolves very weakly due to the cancellation Q+

12 = S+
12 ≈ 0 related to Eq. (6.30). In contrast,

the 1-3 mixing evolves substantially above the thresholds: ∆θ13 = 7◦. The same holds for the 2-3
mixing which can influence the second QLC relation.
We find that in this crossing point the solar mass squared difference becomes large even if it is very
small at the boundary. So, the solar mass squared difference has a radiative origin. The atmospheric
mass squared difference decreases by a factor ∼ 2.

6.3.6 Evolution above the GUT scale

For Λ > ΛGUT the RG evolution should be also performed above the GUT scale. Restoration of
the GUT symmetry and unification of the gauge couplings does not prevent from different running
of the Yukawa couplings, and therefore, from a change of the mixing angles. Renormalization of
mixing angles would stop after a possible unification of the Yukawa couplings which can be related,
e.g., to the restoration at Λ of a non-Abelian flavor symmetry. An alternative is the boundary at the
string or Planck scale, where the Yukawa couplings are formed and their properties are determined
immediately by some symmetry or/and string selection rules.
For illustration we performed the running in the MSSM up to the Planck scale (ignoring possible
GUT effects, which are highly model-dependent). In Fig. 6.12 we show the dependence of ∆θ12 on
m1 for the same (QLC) initial conditions at the Planck scale: Λ = MPl = 1.2 · 1019 GeV. The RG
effect becomes much larger. In particular the contribution from the region above the seesaw scale
due to large Yukawa coupling Yν increases substantially. It is enhanced in comparison to the case
of running up to ΛGUT by the factor

log(MPl/M3)
log(ΛGUT/M3)

(6.34)

that can be as large as 3 - 5 in some cases. Still for ϕ2 = 180◦ or for small m1 the RG effects are
suppressed and can be consistent with the QLC relations.
Similar RG effects are expected in SU(5) with RH neutrinos. In fact, no new diagrams with large
Yν appear. The effect of charged lepton couplings Ye is enhanced by a factor 4 above ΛGUT due to
the loop diagrams with down quarks (squarks) and H1/3 charged Higgs bosons (Higgsinos).
The flavor-diagonal parts of the RG equations do influence the angles only indirectly through the
change of the mass eigenvalues. Thus, the main effect of these interactions is due to the evolution
of ∆m2

12.
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6.4 Triplet (Type II) Seesaw Model

In this section, we derive the RG equations of the mixing parameters in the triplet (type II) seesaw
model. Chao and Zhang [234] have derived the formulas in the approximation |Ye| � |Y∆| which
captures the dominant effects as long as there is a strong hierarchy. Here, we calculate the RG
equations exactly 3 and compare them with their results. The evolution of the neutrino mass
matrix and the charged lepton Yukawa couplings are given by Eqs. (6.1, 6.4) in Sec. 6.1. Since Y∆

is directly proportional to the neutrino mass matrix, we can express P and F in terms of physical
parameters.

P =Cediag(y2
e , y

2
µ, y

2
τ ) + C∆U

∗
MNSdiag(y2

1, y
2
2, y

2
3)UTMNS (6.35a)

F =Dediag(y2
e , y

2
µ, y

2
τ ) +D∆U

∗
MNSdiag(y2

1, y
2
2, y

2
3)UTMNS , (6.35b)

where yi = mi/ 〈∆〉 and 〈∆〉 is the VEV of the Higgs triplet ∆. Note, that the Majorana phases
drop out in the definition of P and F in flavor basis. Hence the RG equations of the angles and the
Dirac CP phase are independent of the Majorana phases, as it can be seen below.
We derive the RG equations by using the technique outlined in Sec. 6.1. In all numerical examples,
we set M∆(ΛGUT) = 1010 GeV. As we are only interested in showing the generic features of the
RG evolution, we choose the Higgs self-couplings to be Λ1,2,4,5 = 0.5 for simplicity, since they
only indirectly influence the RG evolution of the angles and the flavor-dependent part of the RG
equations of the masses. In a realistic model, the parameters Λi have to satisfy certain relations to
produce the desired VEV structure, e.g. see [235] for the RG effect in the Higgs sector.
In the following, we present all formulas in the approximation ye � yµ � yτ and θ13 � 1. The
exact formulas can be downloaded from http://www.mpi-hd.mpg.de/~mschmidt/rgeTriplet.

6.4.1 Running of Masses

The main contributions to the RG equations of the masses

16π2 ṁ1

m1
=Reαν + 2C∆

m2
1

〈∆〉2
+ 2Cey2

τ sin2 θ12 sin2 θ23 +O(θ13) (6.36a)

16π2 ṁ2

m2
=Reαν + 2C∆

m2
2

〈∆〉2
+ 2Cey2

τ cos2 θ12 sin2 θ23 +O(θ13) (6.36b)

16π2 ṁ3

m3
=Reαν + 2C∆

m2
3

〈∆〉2
+ 2Cey2

τ cos2 θ23 +O(θ13) (6.36c)

are the flavor–independent term Reαν and the flavor–dependent term 2C∆m
2
i / 〈∆〉

2. These equa-
tions agree well with the result by Chao and Zhang [234] in their approximation. As the smallness
of neutrino masses is usually explained by a small VEV of the Higgs triplet 〈∆〉, the eigenvalues
yi of the Yukawa coupling Y∆ can be of O(1). This in turn leads to sizable flavor-dependent RG
effects. Furthermore, the evolution of the mass squared differences are mainly given by

16π2
˙∆m2
ji

∆m2
ji

≈ 2 Reαν + 4C∆

m2
j +m2

i

〈∆〉2
(6.37)

in the SM and MSSM with small tanβ. There can be a cancellation of the RG effect depending
on the parameters Λi in the Higgs potential and the sign of C∆, but generically the RG effect in

3A Mathematica package with the exact formulas can be downloaded from http://www.mpi-hd.mpg.de/
~mschmidt/rgeTriplet/.

http://www.mpi-hd.mpg.de/~mschmidt/rgeTriplet
http://www.mpi-hd.mpg.de/~mschmidt/rgeTriplet/
http://www.mpi-hd.mpg.de/~mschmidt/rgeTriplet/
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Figure 6.13: As input values, we have chosen tri-bimaximal mixing at the GUT scale, m1 = 0 eV, ∆m2
32 =

2.5 · 10−3 eV2, ∆m2
21 = 1.2 · 10−4 eV2, M∆ = 1010 GeV and Λ6 = 2.5 10−5M∆, corresponding to 〈∆〉 = 0.15 eV. The

shadowed area indicates the full theory including the Higgs triplet. It is integrated out at the energy scale between
the shadowed and the white area.

the effective theory is large, as it can be seen in Fig. 6.13. This is just one possible example. The
precise RG effect strongly depends on the parameters in the Higgs potential Λi. The charged lepton
masses depend on the neutrino masses in a flavor non–diagonal way:

16π2 ṁe

me
=Reαe +D∆

(
m2

1

〈∆〉2
cos2 θ12 +

m2
2

〈∆〉2
sin2 θ12

)
+O(θ13) (6.38a)

16π2 ṁµ

mµ
=Reαe +D∆

[
m2

3

〈∆〉2
sin2 θ23 +

(
m2

2

〈∆〉2
cos2 θ12 +

m2
1

〈∆〉2
sin2 θ12

)
cos2 θ23

]
+O(θ13)

(6.38b)

16π2 ṁτ

mτ
=Reαe +D∆

[
m2

3

〈∆〉2
cos2 θ23 +

(
m2

2

〈∆〉2
cos2 θ12 +

m2
1

〈∆〉2
sin2 θ12

)
sin2 θ23

]
+Dey

2
τ +O(θ13) .

(6.38c)

6.4.2 Running of Mixing Angles

We present the equations for the mixing angles in the approximation of vanishing ye, yµ and θ13:

16π2θ̇12 =− 1
2

[
D∆

∆m2
21

〈∆〉2
+ Cey

2
τ

(m2 +m1)2

∆m2
21

sin θ23

]
sin 2θ12 +O(θ13) (6.39a)

16π2θ̇13 =− Ce
2
y2
τ

(m2 −m1)m3

(m3 −m1)(m3 −m2)
cos δ sin 2θ12 sin 2θ23 +O(θ13) (6.39b)

16π2θ̇23 =− 1
2

[
D∆

(
m2

3

〈∆〉2
− m2

1

〈∆〉2
sin2 θ12 −

m2
2

〈∆〉2
cos2 θ12

)
(6.39c)

+ Cey
2
τ

m2
3 −m1m2 + (m2 −m1)m3 cos 2θ12

(m3 −m2) (m3 −m1)

]
sin 2θ23 +O(θ13) .

The equations of θ12 and θ13 agree well with the result by Chao and Zhang [234] in their approxi-
mation, however, we disagree in the RG equation of θ23 by a factor of 2. In order to support our
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result, let us note, that the evolution of θ23 in Fig. 6.14 agrees well with our result. It is obtained
by running the mass matrices to the low-energy scale before they are diagonalized, which is dif-
ferent from the calculation of the RG equations of the mixing parameters. The two contributions
to the running from charged leptons and neutrinos can be of the same order of magnitude and it
strongly depends on the hierarchy of neutrino masses which of the two contributions is dominant.
The contribution coming from the evolution of the neutrino mass matrix (∝ Ce) shows almost the
same features as in the effective theory:

• there is an enhancement factor which is proportional to m2
0

∆m2
ji
, where m0 denotes the mass

scale of neutrinos;

• the running strongly depends on tanβ through the charged lepton Yukawa couplings;

• vanishing mixing is a fixed point.

In contrast to the effective theory, however, there is no dependence on Majorana phases. This still
holds for the exact equations. The RG evolution of the mixing angles is only influenced by the
Dirac CP phase. On the other hand, the contribution from the charged leptons shows a completely
different dependence on the Yukawa couplings. It is mainly proportional to the corresponding mass
squared difference divided by the square of the VEV of the Higgs triplet. Hence, there is no large
enhancement factor and no dependence on tanβ in the SUSY case. Thus the overall size of the RG
effect mainly depends on 〈∆〉. The formula

θ̇ij ∼
∆m2

ji

〈∆〉2
sin 2θij . (6.40)

gives a good estimate for the running in the strongly hierarchical case. The sign of the RG effect
is determined by the sign of the mass squared difference and the factor D∆. As D∆ is positive in
the SM and MSSM, θ23 is evolving to larger values coming from the high renormalization scale for
a normal hierarchy. Furthermore, the β–function is approximately proportional to sin 2θij implying
that a vanishing angle remains small. Taking into account these generic features, the RG effect from
the charged leptons is largest on θ23 due to the combination of a large mass squared difference and
a large mixing angle. Moreover, as it can be seen from equations, zero mixing is a fixed point. This
is also obvious from the RG equation in matrix form, since in this configuration, P and F will be
diagonal, if Ye and Y∆ are diagonal. In Fig. 6.14, we have plotted the evolution of mixing angles in
the SM for a strongly hierarchical spectrum in order to suppress the effect coming from the effective
D5 operator. The gross features of the running can be immediately seen: the only sizable effect is
on θ23 due to the large angle and mass squared difference. As it can be seen from Fig. 6.14, the
RG effect can be estimated by a LL approximation to

∆θij ≈ −
D∆

2
∆m2

ji

〈∆〉2
sin 2θij ln

(
Λ
M∆

)
. (6.41)

The contribution to θ13 coming from the charged leptons vanishes in our approximation. For non–
vanishing θ13, it is given by

− D∆

2

(
m2

3

〈∆〉2
− m2

1

〈∆〉2
cos2 θ12 −

m2
2

〈∆〉2
sin2 θ12

)
sin 2θ13 (6.42)

Let us comment on the configuration θ13 = m3 = 0, which is stable under the RG in the effective
theory. Vanishing mass eigenvalues remain zero, as it can be seen from Eq. (6.36c), but θ13 receives
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Figure 6.14: Plot showing the evolution of the leptonic mixing angles in the SM. As input values, we have chosen
tri-bimaximal mixing at the GUT scale, m1 = 0 eV, ∆m2

32 = 2.5 · 10−3 eV2, ∆m2
21 = 1.2 · 10−4 eV2, M∆ = 1010 GeV

and Λ6 = 2.5 10−5M∆, corresponding to 〈∆〉 = 0.15 eV. The shadowed area indicates the full theory including the
Higgs triplet. It is integrated out at the energy scale between the shadowed and the white area.

corrections

16π2θ̇13 =
Ce
2

∆m2
21

〈∆〉2
y2
e

(
y2
τ − y2

µ

)
(y2
τ − y2

e)
(
y2
µ − y2

e

) cos δ sin 2θ12 sin 2θ23 +O(θ13, y3) (6.43)

Thus θ13 = m3 = 0 is not stable under the RG. However, the effect is negligible, because
(
ye
yµ

)2 ∆m2
21

〈∆〉2

is very small and m3 = 0 is stable.

6.4.3 Running of Phases

The RG evolution of the phases is rather small and can be neglected in most cases:

16π2δ̇ =
Ce
2

(m2 −m1)m3

(m3 −m1)(m3 −m2)
y2
τ sin δ sin 2θ12 sin 2θ23 θ

−1
13 +O(θ13) (6.44a)

16π2ϕ̇1 =− 2

"
2Cey

2
τ

(m2
1 +m2

3)m2 sin2 θ23 − ((m2
1 +m2

2) sin2 θ12 −m1m2(cos 2θ12 − cos 2θ23))m3

(m3 −m1)(m3 −m2)(m2 −m1)
cot θ12

+D∆
∆m2

21

〈∆〉2
sin 2θ12

#
cot θ23 sin δ θ13 +O(θ2

13) (6.44b)

16π2ϕ̇2 =− 2

"
2Cey

2
τ
−(m2

1 +m2
2)m3 cos2 θ12 +m1((m2

2 +m2
3) sin2 θ23 +m2m3(cos 2θ12 + cos 2θ23))

(m3 −m1)(m3 −m2)(m2 −m1)
tan θ12

+D∆
∆m2

21

〈∆〉2
sin 2θ12

#
cot θ23 sin δ θ13 +O(θ2

13) , (6.44c)

because the leading order of the Majorana phases is of order θ13. Only the Dirac CP phase δ
involves a term which is inversely proportional to θ13. Thus, there is a sizable effect for small θ13.
For vanishing θ13, δ has to vanish (for realistic values of θ12 and θ23) in order to ensure analyticity
of δ(t) analogous to the effective theory [59]. The RG equation of the Dirac CP phase δ does like
the angles not depend on the Majorana phases ϕi.
We agree with the result of Chao and Zhang [234] for the Dirac CP phase δ in their approximation.
However, we completely disagree for the Majorana phases. Their result for the Majorana phases is
not sensible, since the Majorana phases are physical parameters even in the limit of vanishing 1-3
mixing unlike δ. Therefore, the RG equations should not show a pole at vanishing 1-3 mixing.
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Figure 6.15: In the type I+II seesaw case, there is a complicated interplay between the two contributions to the
neutrino mass matrix. Here, we just plot an example for the following initial values at the GUT scale: M∆ = 1010 GeV,
Λ6 = 4.56 ·109 GeV, m1 = 0.02 eV, ∆m2

21 = 1.5 ·10−4 eV2, ∆m2
32 = 5.5 ·10−3 eV2, θ12 = θ23 = π

4
, θ13 = 0, δ = ϕ1 =

ϕ2 = 0, Yν = 0.37 diag
`
10−2, 10−1, 1

´
, where Y∆ is chosen diagonal Y∆ = diag

`
1.3 · 10−5, 1.5 · 10−5, 5.1 · 10−5

´
and M is chosen appropriately to produce bimaximal mixing. The differently shaded areas indicate the different
energy ranges of the various EFTs. At each border, a particle, either a RH neutrino or the Higgs triplet, is integrated
out.

6.4.4 RG Evolution in Type I+II Model

In the type I+II case, it is not possible to express the RG equations in terms of mixing parameters.
Therefore one has to resort to numerical calculations. For this purpose, we have extended the
Mathematica package REAP, which is available on the webpage http://www.ph.tum.de/~rge, to
include a left–handed triplet.
To illustrate the largeness of RG effects in the type I+II seesaw scenario, we show an example, where
bimaximal mixing at high energy evolves to the large mixing angle (LMA) solution at low energy.
In previous works [64, 66, 67, 69], this evolution was due to an inverted hierarchy in the neutrino
Yukawa couplings Yν or large imaginary off-diagonal entries. Here, the relevant matrix Y †ν Yν is real
and has a normal hierarchy. In addition, the singular values of the Yukawa coupling matrix Y∆ are
small (O(10−5)). In spite of the small couplings, there is a sizable effect on θ12 which can be seen in
Fig. 6.15. It is due to the different RG equations of the contributions to the neutrino mass matrix.

In our example, we have chosen Λ6 to be relatively large Λ6 = O(109) GeV, because it receives
corrections of the order ofM3 (Yν)2

33 (Y∆)33. The evolution of the mixing angles θ12 and θ23 is highly
non–linear above the threshold of the Higgs triplet. Hence, a LL approximation is not possible. In
the MSSM, the equations for the mixing angles presented in [69] are valid at each renormalization
scale µ. Hence, θ12 is increasing, as long as there there are no imaginary off-diagonal entries and
there is a normal hierarchy in the neutrino Yukawa couplings.

http://www.ph.tum.de/~rge


Chapter 7

Summary & Conclusions

Despite of the great success of the SM, there are several hints to physics beyond the SM, like the
quantization of charge and gauge coupling unification in the MSSM, as well as the already mentioned
regularities in the flavor sector. In particular, neutrino masses might be related to physics at a high
energy scale via the seesaw mechanism because of their smallness and different flavor structure.
Therefore, in Chapter 4, we have studied a mechanism which cancels the large hierarchies in the
neutrino mass matrix and allows to have a special structure that is completely different from all
charged fermions. It works within the cascade seesaw mechanism which can be viewed as an ex-
tension of the standard seesaw mechanism. We showed a possible connection of the cancellation
mechanism and the QLC relations and argued that the cancellation mechanism allows to imple-
ment a special neutrino symmetry. The light neutrino mass matrix is given by the same formula
Eq. (3.20) in the case of singular MSS , which leads to a massless neutrino. As vanishing masses
can only be generated between mass thresholds when there are several contributions to the neutrino
mass matrix, the vanishing mass is protected in the MSSM and receives corrections proportional to
the logarithmic hierarchy between the largest and smallest mass threshold in the SM. Otherwise the
light neutrino mass matrix is just rescaled. The DS structure will dominate over the LS contribution
if the additional singlets are heavier than the scale 〈∆〉N .
We outlined several possibilities to obtain the DS structure and, additionally, we have presented
three different realizations of the cancellation mechanism, one based on an extended gauge sym-
metry, more precisely the GU group E6, and two realizations with non-Abelian discrete flavor
symmetries in the context of SO(10). These two predict nearly maximal atmospheric mixing. The
realization with the flavor symmetry T7 is SUSY and achieves a partial cancellation of the hierarchy.
The choice of scales requires to include the LS contribution which cancels the remaining hierarchy.
Thus, the weak hierarchy in the neutrino mass matrix is explained by an interplay between the
LS and DS contribution. The DS contribution alone cannot lead to a viable phenomenology. We
studied corrections by higher-dimensional operators which can be controlled by an additional Z7

symmetry. The realization with the discrete group Σ(81) has to be non-SUSY due to the group
structure. It leads to a complete cancellation of the hierarchy, while the additional singlet masses
are close to the Planck scale. Hence, the DS contribution dominates. In the leading order, two
masses are degenerate and the mass matrix is diagonalized by the tri-bimaximal mixing matrix.
However, the atmospheric mixing angle is unphysical as long as the atmospheric mass squared dif-
ference vanishes. The study of higher-dimensional operators shows that their corrections are safe,
since they are always smaller than the leading order. In general, they generate a non-vanishing
atmospheric mass squared difference and a phenomenologically viable neutrino mass matrix can be
obtained. An additional ZN symmetry can further suppress these corrections. Finally, since the

87
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VEV structure of the flavons is essential, we demonstrated how the leading order can be obtained.
The next-to-leading order requires a more complicated flavon potential.
As threshold corrections turn out to be important in non-SUSY theories, we studied them in Chapter
5. The interplay of different contributions to the neutrino mass matrix does not allow to derive
RG equations for the mixing parameters between the seesaw scales. Therefore, we calculated the
RG effect in the LL approximation. Our main result, here, is that the quantum corrections can be
summarized as a rescaling of the RH neutrino masses at leading order. We discussed the RG effects
beyond LL approximation qualitatively. Furthermore we argued, that the results immediately apply,
if the vertex corrections to the Yukawa couplings and the effective operator factorize and the mass
term does not receive vertex corrections.
We applied our results to the cascade seesaw mechanism. The corrections can be described by a
rescaling of the additional singlets as well as the RH neutrinos, i.e. all particles which have been
integrated out. The rescaling of the RH neutrinos leads to an effective standard seesaw contribution
besides the corrections to the DS and LS term, although the standard seesaw term exactly cancels
without RG corrections.
Hence, the cancellation mechanism is stable with respect to the RG in the MSSM, i.e. its structure
does not change, since RG corrections can be factorized in SUSY theories. Thus, in the T7 real-
ization, they strongly depend on tanβ and the absolute neutrino mass scale which has not been
specified. The RG effect in a concrete model is easily obtained by the usual formulas in the effective
theory. In non-SUSY theories, the mass thresholds of the RH neutrinos are important, since they
can change the structure of the DS formula and can neither be factorized like the wave function
renormalization nor absorbed in parameters of the full theory like the threshold corrections from
additional singlets. In the framework of the cancellation mechanism, they can be large, since there
is a large hierarchy in the RH neutrino masses. The results have been analytically discussed in
several examples where MSS takes a particularly simple form. Small perturbations in vanishing el-
ements can lead to large effects. However, in the Σ(81) model, they can be absorbed in coefficients
of higher-dimensional operators.
In Chapter 6, we have discussed quantum corrections to several models. The model based on the
Lµ − Lτ symmetry leads to a quasi-degenerate neutrino mass spectrum and equal CP parities of
the masses. Therefore, there are large RG corrections to the solar mixing angle as well as the mass
squared differences and it is crucial to take them into account.
Furthermore, we did a comprehensive study of RG corrections to the QLC relations under the
assumption that they are realized with “lepton mixing = bi-maximal mixing−CKM”. In the MSSM,
RG corrections to θ12 are generically positive due to a dominant effect of the 3-3 element of Yν .
So, they worsen the agreement of the predicted θ12 with the experimental data. Small negative
corrections, |∆θ12| < 0.5◦, can appear for opposite CP parities and an inverted mass hierarchy, in
which case the main terms in the RG equations are strongly suppressed and the running is due to
sub-leading effects related to non-zero 1-3 mixing. The RG corrections increase withm1 and strongly
depend on the relative Majorana phase. For ∆ϕ ≈ 0◦ the consistency of the QLC prediction for
θ12 with the experimental data implies a strong mass hierarchy of the light neutrinos and small
tanβ. For ∆ϕ ≈ 180◦ the corrections are suppressed and even the degenerate spectrum becomes
allowed. For an inverted mass hierarchy RG corrections are generically enhanced by larger neutrino
masses m1,2. The situation is qualitatively different in the SM. Here important contributions follow
from the vertex corrections to the D5 operator in the range between the seesaw scales. The Yukawa
couplings (especially for small m1) give sub-leading contributions. The RG corrections are negative
around ∆ϕ ≈ 180◦. The corrections depend substantially on the scale Λ. The value ∆θ12 can be
enhanced by a factor 2–5 if Λ increases from ΛGUT to MPl. For the hierarchical mass spectrum the
renormalization of the 1-3 mixing is, in general, small: ∆θ13 ∼ 0.2◦− 0.3◦, although it can be large,
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∆θ13 ∼ θ13, for a quasi-degenerate spectrum.
We derived exact RG equations in terms of the mixing parameters in the triplet seesaw scenario.
The equations have a different structure compared to the ones in the standard seesaw case as well
as in the effective theory. Majorana phases do not influence the evolution of the other parameters.
Hence, there is no damping of the RG effect due to phases. The main difference is the proportional-
ity of the β-functions to the mass squared difference in contrast to the inverse proportionality in the
case of an hierarchical spectrum. Hence, there is no enhancement factor and the RG effect is small
as long as Y∆ is small. Furthermore, as the RG equations of the mixing angles θij are proportional
to sin 2θij , there are sizable RG corrections to the atmospheric mixing angle for a strong normal
hierarchy in contrast to the standard seesaw scenario. The RG equations in the full case can only
be studied numerically. The interplay of the contributions from RH neutrinos and the Higgs triplet
can lead to large RG effects even in the SM.

Concluding, it is essential to consider RG effects in model building to make predictions which
can be compared to the experimental data, because they can lead to substantial corrections of
the predicted values at an high energy scale. The largest RG effects show up for θ12 and the
mass squared differences in the standard seesaw as well as θ23 in the triplet seesaw framework. In
general, they are enhanced for large tanβ due to charged lepton and down-type quark loops. If
there are two contributions to the neutrino mass matrix or any mass matrix which have different
RG equations, very large corrections can be expected from the interplay of both contributions. This
has been demonstrated by the threshold corrections in the standard seesaw scenario and in the type
I+II seesaw framework in non-SUSY theories. Furthermore, future experiments will improve the
precision of leptonic mixing parameters and neutrino masses. Therefore, even small corrections like
for a strongly hierarchical spectrum will become comparable to the experimental precision.
The discussion of RG effects in already existing GU models is an interesting task in order to be able
to compare their predictions of masses and mixing angles to future precision data. Besides the RG
evolution of masses and mixing angles, the quantum corrections to sfermion mass matrices in SUSY
theories are interesting and help to constrain SUSY GUTs (See e.g. [153].), because non-diagonal
sfermion matrices lead to lepton flavor violating processes. The Mathematica package REAP can
be easily extended to include the running of sfermion mass matrices.
Otherwise, the cancellation mechanism in the cascade seesaw framework offers new possibilities to
combine a flavor symmetry with a GU model, since neutrino masses are related to the additional
singlet sector, which can explain the differences between neutral and charged fermions. As the
hierarchy in the charged fermion sector depends on the generation of the VEV hierarchy, the explicit
construction of the flavon potential is an important task. Moreover, it is interesting to extend one of
the presented realizations to a complete GU model, which explains all fermions masses and mixings,
and to discuss its predictions for the low-energy data. The used flavor groups are minimal [82]. This
proof shows, in addition, that there are three alternative small groups which allow to implement the
cancellation mechanism, but have not been discussed so far. As they might overcome some of the
problems of the investigated flavor groups, a study of their predictions can lead to useful results.
Anyway, the coming years will be exiting, because there are many experiments further constraining
the flavor sector and the LHC which will probe the TeV region directly to investigate the Higgs
mechanism and test whether there is low-energy SUSY, i.e. the MSSM or one of its extensions.



90 CHAPTER 7. SUMMARY & CONCLUSIONS



Appendix A

Conventions

In this chapter, we collect conventions, which are used throughout the thesis.

• We use RL convention for SM Yukawa couplings, i.e.

efRY
fg
e `gHd +N

f
Y fg
ν `gHu,

where eR and N denotes the RH charged and neutral leptons, respectively. The left-handed
doublet is called `.

• GUT charge normalization is used for the U(1)Y hypercharge, i.e. the charge qY is related to

the charge in GUT normalization by qUY =
√

3
5qY and the gauge coupling satisfies g2

1 = 3
5

(
gU1
)2.

• The Fourier transformation from position space to momentum space is defined by exp−ipµxµ .
Therefore ∂µ in position space corresponds to −ipµ in momentum space.

A.1 Mixing Matrices

The connection between the flavor basis and the mass basis in the SM is described by two mixing
matrices VCKM = VCKM(ϑ12, ϑ13, ϑ23, δ

q) in the quark and UMNS = UMNS(θ12, θ13, θ23, δ, ϕ1, ϕ2)
in the leptonic sector. We use the standard parameterization which is defined in App. A.2 for both
matrices. Mixing angles in the leptonic sector are denoted by θij , the Dirac CP phase by δ and
the Majorana phases are referred to as ϕi. The corresponding mixing angles and Dirac CP phase
in the quark sector are denoted by ϑij and δq. Sometimes, the quark mixing is expressed in terms
of matrix elements of the CKM matrix which can be approximately described by the Wolfenstein
parameterization [236]

VCKM = V †uLVdL =

 Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 =

 1− 1
2λ

2 λ Aλ3 (ρ− iη)
−λ 1− 1

2λ
2 Aλ2

Aλ3 (1− ρ− iη) −Aλ2 1

 . (A.1)

As the QLC relation [12–14] suggests a relation between the quark and lepton sector, it is useful to
use the Cabibbo angle Vus = λ ≈ sinϑ12 as expansion parameter [237]

Ue2 =

√
1
2

(1− λ) , Ue3 = Aλn , Uµ3 =

√
1
2

(1−Bλm) eiδq . (A.2)
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The free parameters m and n account for the experimental uncertainty in the matrix elements.
Unitarity determines the remaining elements. For definiteness, we show the case m = n = 1

UMNS = U †eLUνL =

 Ue1 Ue2 Ue3
Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3



=


√

1
2 (1 + λ)

√
1
2 (1− λ) Aλ

−1
2

(
1−

(
1−B −Aeiδ

)
λ
)

1
2

(
1 +

(
1 +B −Aeiδ

)
λ
) √

1
2 (1−Bλ) eiδq

1
2

(
1−

(
1 +B +Aeiδ

)
λ
)
−1

2

(
1 +

(
1−B +Aeiδ

)
λ
) √

1
2 (1 +Bλ) eiδq

+O(λ2) .

(A.3)

The CP violating phases can also be expressed in terms of weak-basis invariants like the Jarlskog
invariant [238]

JqCP = Im {Vud Vcs V ∗us V ∗cd} (A.4)

J lCP = Im
{
Ue1 Uµ2 U

∗
e2 U

∗
µ1

}
which is related to the Dirac CP phase. The rephasing invariant CP violation measures are

S1 ≡ Im {Ue1U∗e3} , S2 ≡ Im {Ue2U∗e3} (A.5)

in the case of the Majorana phases [239].

A.2 Standard Parameterization

A unitary matrix can be described by three angles and six phases. Thus it can be written in the
following way:

U = diag(eiδe , eiδµ , eiδτ ) · V (θ12, θ13, θ23, δ) · diag(e−iϕ1/2, e−iϕ2/2, 1) (A.6)

V is a special unitary matrix and is parameterized in standard parameterization like the CKM
matrix in the quark sector with three angles (θ12, θ13, θ23) and one CP phase (δ) [93].

V (θ12, θ13, θ23, δ) =

 c12c13 s12c13 s13 e
−iδ

−c23s12 − s23s13c12 e
iδ c23c12 − s23s13s12 e

iδ s23c13

s23s12 − c23s13c12 e
iδ −s23c12 − c23s13s12 e

iδ c23c13

 (A.7)

where sij and cij are defined as sij = sin θij and cij = cos θij , respectively. The Jarlskog invariant
Eq. (A.4) is related to the mixing angles and the Dirac CP phase by

J lCP =
1
8

sin 2θ12 sin 2θ23 sin 2θ13 cos θ13 sin δ . (A.8)

In addition, there are phase matrices multiplied from both sides. In the lepton sector, the matrix
on the left-hand side is characterized by the unphysical phases δe, δµ and δτ which can be rotated
away by a change of the phases in the left-handed charged leptons. The matrix on the right-hand
side is described by the Majorana phases ϕ1 and ϕ2 which can only be rotated away by left-handed
neutrinos, if they are Dirac particles. Analogous reasoning applies to the quark sector, where all
additional phases can be rotated away.



Appendix B

Group Theory

In this chapter, we collect the relevant technical details which are needed for the calculations in the
main part.

B.1 Lie Groups

Here, we present technical details about Lie groups, more precisely their Lie algebras, which are
needed in the main chapters. A detailed discussion of Lie algebras is given in [240, 241], which in-
cludes the calculation of Clebsch-Gordan coefficients by the ladder operator technique and breaking
to subgroups.
All semi-simple Lie algebras can be classified by Dynkin diagrams, e.g. the Dynkin diagram be-
longing to su(5) is shown in Fig. B.1. It determines the Cartan matrix Aij = 2 (αi,αj)

(αj ,αj)
which can be

translated to the metric tensor Gij =
(
A−1

)
ij

(αj ,αj)
2 of the weight space in terms of the simple root

αi which form a basis. Thus the non-orthogonality of simple roots is encoded in the Cartan matrix.
The Lie algebra is uniquely given by the Dynkin diagram. There are 4 series of semi-simple Lie
algebras An ∼= su(n+ 1), Bn ∼= so(2n+ 1), Cn ∼= sp(2n) and Dn

∼= so(2n) as well as 5 exceptional
algebras G2, F4, E6, E7 and E8.

Figure B.1: Dynkin diagram of A4
∼= su(5).

An irreducible representation of a Lie algebra is completely determined by its highest weight Λ.
The Weyl formula determines the dimensionality

N(Λ) =
∏

α∈positive roots

(Λ + δ, α)
(δ, α)

(B.1)

of the representation, where δ = (1, 1, . . . , 1, 1)T in the Dynkin basis. Besides the dimensionality,
there are further invariants of a given representation. The quadratic Casimir

C(Λ) = (Λ,Λ + 2δ) (B.2)
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is directly related to the Dynkin index of a representation

l(Λ) =
N(Λ)
N(Ad)

C(Λ) . (B.3)

This relation becomes obvious from the definitions in terms of generators in the given representation

C(Λ)δab =
∑
A

(
TATA

)
ab

(B.4a)

l(Λ)δAB = tr
(
TATB

)
. (B.4b)

In an Abelian group, the above formulas for the quadratic Casimir and the Dynkin index are replaced
by the squared charge of the representation, i.e. l(Λ) = C(Λ) = q2

Λ.

B.1.1 SO(10)

The Dynkin diagram of so(10) is shown in Fig. B.2 and leads to the Cartan matrix

A =


2 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 −1
0 0 −1 2 0
0 0 −1 0 2

 (B.5)

and the metric tensor for the weight space

G =


1 1 1 1/2 1/2
1 2 2 1 1
1 2 3 3/2 3/2

1/2 1 3/2 5/4 3/4
1/2 1 3/2 3/4 5/4

 . (B.6)

The relevant representations and their properties are collected in Tab. B.1. The decomposition of

Figure B.2: Dynkin diagram of D5
∼= so(10).

representations in terms of their subgroups is shown in Tab. B.2.
In Tab. B.3, all tensor product which are used in the main part are summarized. There are two
convenient ways to calculate the results which are presented in the tables besides the general one by
ladder operators. Depending on the symmetry breaking chain, it is either more convenient to do the
calculation in terms of the subgroup SU(5) [242] or in terms of the PS subgroup SO(4)× SO(6) ∼=
SU(2) × SU(2) × SU(4) [243]. We used the decomposition in terms of SU(5) which is extensively
discussed in [244,245].
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label N type l
(10000) 10 r 2
(00001) 16 c 4
(01000) 45 r 16
(20000) 54 r 24
(00100) 120 r 56
(00002) 126 c 70

Table B.1: SO(10) representations. Real representations are denoted by “r” and complex ones by “c”.

SO(10) ⊃ SU(5)×U(1)
10 = 5(2)⊕ 5(2)
16 = 1(5)⊕ 5(3)⊕ 10(1)
45 = 1(0)⊕ 10(4)⊕ 10(4)⊕ 24(0)
54 = 15(4)⊕ 15(4)⊕ 24(0)

120 = 5(2)⊕ 5(2)⊕ 10(6)⊕ 10(6)⊕ 45(2)⊕ 45(2)
126 = 1(10)⊕ 5(2)⊕ 10(6)⊕ 15(6)⊕ 45(2)⊕ 50(2)

SO(10) ⊃ SU(2)× SU(2)× SU(4)
10 = (2,2,1)⊕ (1,1,6)
16 = (2,1,4)⊕ (1,1,4)
45 = (3,1,1)⊕ (1,3,1)⊕ (1,1,15)⊕ (2,2,6)
54 = (1,1,1)⊕ (3,3,1)⊕ (1,1,20′)⊕ (2,2,6)

120 = (2,2,1)⊕ (1,1,10)⊕ (1,1,10)⊕ (3,1,6)⊕ (1,3,6)⊕ (2,2,15)
126 = (1,1,6)⊕ (3,1,10)⊕ (1,3,10)⊕ (2,2,15)

Table B.2: Decomposition of some representations of SO(10) in terms of subgroups. Barred U(1) charges q are
understood as −q.

B.1.2 E6

The Dynkin diagram of E6 is shown in Fig. B.3. The corresponding Cartan matrix is

A =



2 −1 0 0 0 0
−1 2 −1 0 0 0
0 −1 2 −1 0 −1
0 0 −1 2 −1 0
0 0 0 −1 2 0
0 0 −1 0 0 2

 (B.7)
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10⊗ 10 = 1s ⊕ 45a ⊕ 54s
10⊗ 16 = 16⊕ 144

16⊗ 16 = 10s ⊕ 120a ⊕ 126s
16⊗ 16 = 1⊕ 45⊕ 210

Table B.3: Tensor products of SO(10) representations
which are used in the main text.

Figure B.3: Dynkin diagram of E6.

which leads to the metric tensor

G =



4/3 5/3 2 4/3 2/3 1
5/3 10/3 4 8/3 4/3 2
2 4 6 4 2 3

4/3 8/3 4 10/3 5/3 2
2/3 4/3 2 5/3 4/3 1
1 2 3 2 1 2

 . (B.8)

The relevant representations and their properties are collected in Tab. B.4. Note, that we do not
follow the notation of Slansky [240] in the main text. In order to distinguish the symmetric and
antisymmetric 351-plets, we assign to the symmetric one the index S and to the antisymmetric one
the index A. The decomposition of the representations in terms of their subgroups is shown in Tab.
B.5. Besides the general method for group-theoretical calculations in E6, tensor products of small
representations are most easily performed in terms of maximal subgroups. In Sec. 4.4, we use the
trinification subgroup SU(3)3: upper indices are SU(3)L indices in the fundamental 3 representation
and the lower ones belong to SU(3)R. The irreducible representation 6 of SU(3) is represented by
symmetric 3× 3 matrices and described by two symmetrized indices. Dotted indices belong to the
complex conjugate representation 3.

label N type l
(100000) 27 c 6
(000001) 78 r 24
(000100) 351A ∼= 351 c 150
(000020) 351S ∼= 351′ c 168

Table B.4: E6 representations. Real representations are denoted by “r” and complex ones by “c”.

In Tab. B.6, all tensor products which are used in the main part are summarized.
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E6 ⊃ SO(10)×U(1)
27 = 1(4)⊕ 10(2)⊕ 16(1)
78 = 1(0)⊕ 45(0)⊕ 16(3)⊕ 16(3)

351A ∼= 351 = 10(2)⊕ 16(5)⊕ 16(1)⊕ 45(4)⊕ 120(2)⊕ 144(1)
351S ∼= 351′ = 1(8)⊕ 10(2)⊕ 16(5)⊕ 54(4)⊕ 126(2)⊕ 144(1)

E6 ⊃ SU(3)× SU(3)× SU(3)
27 = (3,3,1)⊕ (3,1,3)⊕ (1,3,3)
78 = (8,1,1)⊕ (1,8,1)⊕ (1,1,8)⊕ (3,3,3)⊕ (3,3,3)

351A ∼= 351 = (3,3,1)⊕ (3,6,1)⊕ (6,3,1)⊕ (3,1,3)⊕ (6,1,3)⊕ (3,8,3)⊕ (1,3,3)
⊕ (1,6,3)⊕ (8,3,3)⊕ (3,1,6)⊕ (1,3,6)⊕ (1,3,6)⊕ (3,3,8)

351S ∼= 351′ = (3,3,1)⊕ (6,6,1)⊕ (3,1,3)⊕ (3,8,3)⊕ (1,3,3)⊕ (8,3,3)⊕ (6,1,6)
⊕ (1,6,6)⊕ (3,3,8)

Table B.5: Decomposition of representations of E6 in terms of their subgroups. Barred U(1) charges q stand for
−q.

27⊗ 27 = 27⊕ 351A ⊕ 351S
27⊗ 27 = 1⊕ 78⊕ 650

Table B.6: Tensor products of E6 representations.
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classes
C1 C2 C3 C4 C5

G 1 B B2 A A3

◦Ci 1 7 7 3 3
◦h Ci 1 3 3 7 7
11 1 1 1 1 1
12 1 ω ω2 1 1
13 1 ω2 ω 1 1
3 3 0 0 ξ ξ?

3? 3 0 0 ξ? ξ

Table B.7: Character table of T7. ω = e
2πi
3 = − 1

2
+ i
√

3
2

and ξ = 1
2
(−1 + i

√
7).

Furthermore ξ = ρ + ρ2 + ρ4 where ρ = e
2πi
7 . Ci denotes the different classes which

make up the group. The elements of a class Ci are related by an inner group auto-
morphism, i.e. G1 = T−1G2T , where G1, G2 ∈ Ci and T is an element of the group.
G is a representative of the corresponding class, ◦Ci is the order of the class, i.e.
the number of elements and ◦h Ci is the order of the elements in the class, i.e. the
smallest integer with G

◦h Ci = 1. The characters χ of a group are defined as the
trace over the matrix D(G) which represents the group element G in representation
D: χ ≡ trD(G).

B.2 Discrete Groups

Here, we collect the relevant group-theoretical details which are used in Sec. 4.5.

B.2.1 T7

T7 is group of order 21 which is very similar to A4 with the crucial difference that A4 contains one
real three-dimensional representation and T7 has two complex three-dimensional representations.
T7 as well as A4 contain the subgroup Z3. The character table is presented in Tab. B.7. The used
generators for the three-dimensional representations are:

3 : A =

 e
2πi
7 0 0

0 e
4πi
7 0

0 0 e
8πi
7

 , B =

 0 1 0
0 0 1
1 0 0


and

3? : A =

 e−
2πi
7 0 0

0 e−
4πi
7 0

0 0 e−
8πi
7

 , B =

 0 1 0
0 0 1
1 0 0

 .

They fulfill the generator relations:

A7 = 1 , B3 = 1 , AB = BA4 .

The Kronecker products are

11 × 1i = 1i , 12 × 13 = 11 ,

12 × 12 = 13 , 13 × 13 = 12 ,

1i × 3 = 3 , 1i × 3? = 3?

[3× 3] = 3 + 3? , {3× 3} = 3?

[3? × 3?] = 3 + 3? , {3? × 3?} = 3

3× 3? = 11 + 12 + 13 + 3 + 3?

with [µ× µ] being the symmetric part of the product µ× µ and {µ× µ} being the anti-symmetric
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part. The non-trivial Clebsch-Gordan coefficients are for (a1, a2, a3)T ∼ 3, (b1, b2, b3)T ∼ 3? and
c ∼ 11, c′ ∼ 12, c′ ′ ∼ 13:

3× 11 : (a1 c, a2 c, a3 c) ∼ 3

3× 12 :
(
a1 c
′, ω a2 c

′, ω2 a3 c
′) ∼ 3

3× 13 :
(
a1 c
′ ′, ω2 a2 c

′ ′, ω a3 c
′ ′) ∼ 3

3? × 11 : (b1 c, b2 c, b3 c) ∼ 3?

3? × 12 :
(
b1 c
′, ω b2 c

′, ω2 b3 c
′) ∼ 3?

3? × 13 :
(
b1 c
′ ′, ω2 b2 c

′ ′, ω b3 c
′ ′) ∼ 3?

For (a1, a2, a3)T , (a′1, a
′
2, a
′
3)T ∼ 3:

(a3 a
′
3, a1 a

′
1, a2 a

′
2)T ∼ 3 , (a2 a

′
3, a3 a

′
1, a1 a

′
2)T ∼ 3? and (a3 a

′
2, a1 a

′
3, a2 a

′
1)T ∼ 3? .

For (b1, b2, b3)T , (b′1, b
′
2, b
′
3)T ∼ 3?:

(b2 b′3, b3 b
′
1, b1 b

′
2)T ∼ 3 , (b3 b′2, b1 b

′
3, b2 b

′
1)T ∼ 3 and (b3 b′3, b1 b

′
1, b2 b

′
2)T ∼ 3? .

For (a1, a2, a3)T ∼ 3, (b1, b2, b3)T ∼ 3? the T7 covariant combinations are:

a1 b1 + a2 b2 + a3 b3 ∼ 11 , a1 b1 + ω2 a2 b2 + ω a3 b3 ∼ 12 ,

a1 b1 + ω a2 b2 + ω2 a3 b3 ∼ 13 ,

(a2 b1, a3 b2, a1 b3)T ∼ 3 , (a1 b2, a2 b3, a3 b1)T ∼ 3? .

In Tab. B.8 the leading order contributions of the higher-dimensional operators are presented.
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B.2.2 Σ(81)

Σ(81) is a group of order 81 which has nine one-dimensional representations and eight three-
dimensional ones. The irreducible representations are 1i with i = 1, ..., 9 and 3i with i = 1, ..., 8. All
representations are complex besides the trivial one 11. The complex conjugate pairs are presented
in Tab. B.9. Six of the eight three-dimensional representations are faithful, i.e. have as many
distinct representation matrices as there are elements of the group.

Rep. 11 12 14 15 16 31 33 35 37

Rep.? 11 13 17 18 19 32 34 36 38

Table B.9: The representations of the group Σ(81) and their complex conjugates.

The character table can be found in [214] together with a choice of representation matrices for the
representation 31 which has been called 3A in the cited work. The generators are given in Tab.
B.11.
Some of the Kronecker products are already shown in [215]. In Tab. B.10 we show the Kronecker
products which we need to discuss the lowest order.

(a) Kronecker products
with one dimensional
representations

Rep. 11 12 13

11 11 12 13

12 12 13 11

13 13 11 12

31 31 31 31

32 32 32 32

(b) Kronecker products of three dimensional represen-
tations

Product 3i × 3j:

[31 × 31] = 32 + 34 and {31 × 31} = 34

[32 × 32] = 31 + 33 and {32 × 32} = 33

31 × 32 = 11 + 12 + 13 + 37 + 38

Table B.10: Relevant Kronecker products of Σ(81).

The non-trivial Clebsch-Gordan coefficients1 are for (a1, a2, a3)T ∼ 3i and c ∼ 1j:

3i × 11 : (a1 c, a2 c, a3 c) ∼ 3i

3i × 12 :
(
a1 c, ω a2 c, ω

2 a3 c
)
∼ 3i for i = 1, ..., 6

3i × 13 :
(
a1 c, ω

2 a2 c, ω a3 c
)
∼ 3i for i = 1, ..., 6

For (a1, a2, a3)T ∼ 31 and (b1, b2, b3)T ∼ 31 the structure of the Clebsch-Gordan coefficients is:

(a1 b1, a2 b2, a3 b3)T ∼ 32 , (a2 b3, a3 b1, a1 b2)T ∼ 34 , (a3 b2, a1 b3, a2 b1)T ∼ 34

For (a1, a2, a3)T ∼ 32 and (b1, b2, b3)T ∼ 32 the structure of the Clebsch-Gordan coefficients is:

(a1 b1, a2 b2, a3 b3)T ∼ 31 , (a2 b3, a3 b1, a1 b2)T ∼ 33 , (a3 b2, a1 b3, a2 b1)T ∼ 33

1The remaining Clebsch-Gordan coefficients can be obtained via the formulas given in [246].
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For (a1, a2, a3)T ∼ 31 and (b1, b2, b3)T ∼ 32 we arrive at the covariant combinations:

a1 b1 + a2 b2 + a3 b3 ∼ 11 , a1 b1 + ω2 a2 b2 + ω a3 b3 ∼ 12 , a1 b1 + ω a2 b2 + ω2 a3 b3 ∼ 13 ,

(a3 b2, a2 b1, a1 b3)T ∼ 37 and (a2 b3, a1 b2, a3 b1)T ∼ 38 .
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Rep. A B C
11 1 1 1
12 ω 1 1
13 ω2 1 1
14 1 1 ω2

15 ω2 1 ω2

16 ω 1 ω2

17 1 1 ω
18 ω 1 ω
19 ω2 1 ω

31

 0 1 0
0 0 1
1 0 0

  1 0 0
0 ω 0
0 0 ω2

  1 0 0
0 1 0
0 0 ω


32

 0 1 0
0 0 1
1 0 0

  1 0 0
0 ω2 0
0 0 ω

  1 0 0
0 1 0
0 0 ω2


33

 0 1 0
0 0 1
1 0 0

  1 0 0
0 ω 0
0 0 ω2

  ω2 0 0
0 ω2 0
0 0 1


34

 0 1 0
0 0 1
1 0 0

  1 0 0
0 ω2 0
0 0 ω

  ω 0 0
0 ω 0
0 0 1


35

 0 1 0
0 0 1
1 0 0

  1 0 0
0 ω 0
0 0 ω2

  ω 0 0
0 ω 0
0 0 ω2


36

 0 1 0
0 0 1
1 0 0

  1 0 0
0 ω2 0
0 0 ω

  ω2 0 0
0 ω2 0
0 0 ω


37

 0 0 1
1 0 0
0 1 0

  ω 0 0
0 ω 0
0 0 ω

  ω 0 0
0 1 0
0 0 ω2


38

 0 0 1
1 0 0
0 1 0

  ω2 0 0
0 ω2 0
0 0 ω2

  ω2 0 0
0 1 0
0 0 ω


Table B.11: Generators of Σ(81). We show three generators A, B and C for the
representation, although it is enough to take the generators A and C in order to
reproduce the whole group. Note that ω = e

2π i
3
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Order in ε Operator Structure Representation
O(1) χm3 (χ?3)n−m (m = 0, ..., n) 11,2,3 for (2m− n) mod 3 = 0

3rd comp. of 31 for (2m− n) mod 3 = 1

3rd comp. of 32 for (2m− n) mod 3 = 2

O(ε2) χm3 (χ?3)n−1−m χ1 (m = 0, ..., n− 1) 1st comp. of 32 for (2m+ 1− n) mod 3 = 0

2nd comp. of 33 for (2m+ 1− n) mod 3 = 1

3rd comp. of 38 for (2m+ 1− n) mod 3 = 2
χm3 (χ?3)n−1−m χ?1 (m = 0, ..., n− 1) 1st comp. of 31 for (2m− n+ 1) mod 3 = 0

3rd comp. of 37 for (2m− n+ 1) mod 3 = 1

2nd comp. of 34 for (2m− n+ 1) mod 3 = 2

O(ε) χm3 (χ?3)n−1−m χ2 (m = 0, ..., n− 1) 2nd comp. of 32 for (2m− n+ 1) mod 3 = 0
1st comp. of 33 for (2m− n+ 1) mod 3 = 1
1st comp. of 37 for (2m− n+ 1) mod 3 = 2

χm3 (χ?3)n−1−m χ?2 (m = 0, ..., n− 1) 2nd comp. of 31 for (2m− n+ 1) mod 3 = 0
1st comp. of 38 for (2m− n+ 1) mod 3 = 1
1st comp. of 34 for (2m− n+ 1) mod 3 = 2

O(ε3) χm3 (χ?3)n−2−m χ1 χ2 (m = 0, ..., n− 2) 3rd comp. of 33 for (2m− n+ 2) mod 3 = 0
14,5,6 for (2m− n+ 2) mod 3 = 1

3rd comp. of 36 for (2m− n+ 2) mod 3 = 2

χm3 (χ?3)n−2−m χ?1 χ2 (m = 0, ..., n− 2) 2nd comp. of 38 for (2m− n+ 2) mod 3 = 0
1st comp. of 36 for (2m− n+ 2) mod 3 = 1

2nd comp. of 35 for (2m− n+ 2) mod 3 = 2

χm3 (χ?3)n−2−m χ1 χ
?
2 (m = 0, ..., n− 2) 2nd comp. of 37 for (2m− n+ 2) mod 3 = 0

2nd comp. of 36 for (2m− n+ 2) mod 3 = 1
1st comp. of 35 for (2m− n+ 2) mod 3 = 2

χm3 (χ?3)n−2−m χ?1 χ
?
2 (m = 0, ..., n− 2) 3rd comp. of 34 for (2m− n+ 2) mod 3 = 0

3rd comp. of 35 for (2m− n+ 2) mod 3 = 1
17,8,9 for (2m− n+ 2) mod 3 = 2

O(ε2) χm3 (χ?3)n−2−m χ2
2 (m = 0, ..., n− 2) 2nd comp. of 31 for (2m− n+ 2) mod 3 = 0

1st comp. of 38 for (2m− n+ 2) mod 3 = 1
1st comp. of 34 for (2m− n+ 2) mod 3 = 2

χm3 (χ?3)n−2−m χ2 χ
?
2 (m = 0, ..., n− 2) 11,2,3 for (2m− n+ 2) mod 3 = 0

3rd comp. of 32 for (2m− n+ 2) mod 3 = 1

3rd comp. of 31 for (2m− n+ 2) mod 3 = 2

χm3 (χ?3)n−2−m (χ?2)2 (m = 0, ..., n− 2) 2nd comp. of 32 for (2m− n+ 2) mod 3 = 0
1st comp. of 33 for (2m− n+ 2) mod 3 = 1
1st comp. of 37 for (2m− n+ 2) mod 3 = 2

O(ε3) χm3 (χ?3)n−3−m χ3
2 (m = 0, ..., n− 3) 11,2,3 for (2m− n) mod 3 = 0

3rd comp. of 32 for (2m− n) mod 3 = 1

3rd comp. of 31 for (2m− n) mod 3 = 2

χm3 (χ?3)n−3−m χ2
2 χ

?
2 (m = 0, ..., n− 3) 2nd comp. of 32 for (2m− n) mod 3 = 0

1st comp. of 33 for (2m− n) mod 3 = 1
1st comp. of 37 for (2m− n) mod 3 = 2

χm3 (χ?3)n−3−m χ2 (χ?2)2 (m = 0, ..., n− 3) 2nd comp. of 31 for (2m− n) mod 3 = 0
1st comp. of 38 for (2m− n) mod 3 = 1
1st comp. of 34 for (2m− n) mod 3 = 2

χm3 (χ?3)n−3−m (χ?2)3 (m = 0, ..., n− 3) 11,2,3 for (2m− n) mod 3 = 0

3rd comp. of 32 for (2m− n) mod 3 = 1

3rd comp. of 31 for (2m− n) mod 3 = 2

Table B.12: Higher-dimensional Operators of Σ(81). Analogously to T7, the higher-dimensional operators
can be identified by three representation matrices S1 = C2, S2 = A2 C2 A and S3 = A B2 C A2 which are
products of the three given generators A, B and C. The resulting relations are shown in the third column.
The number of operators is about [n

3
] for larger values of n.
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B.3 Anomalies

After the correct interpretation of the decay π0 → γγ by Adler [247] as well as Bell and Jackiw [248]
in terms of a breakdown of the symmetry on the quantum level, which is denoted the Abelian
anomaly. Many more anomalies in quantum field theory have been discovered [249], like the non-
Abelian chiral anomaly, the gravitational anomaly, the conformal anomaly and the global anomaly.
As we are especially interested in gauge theories and flavor symmetries, we summarize which gauge
groups are safe and the main facts about discrete anomalies.

B.3.1 Anomalies of Gauge Theories

Any sensible gauge theory has to be anomaly-free. Here, we concentrate on chiral gauge anomalies
which are given by

Aabc = tr (γ5 {Γa,Γb}Γc) , (B.13)

where γ5 denotes the chirality operator of the Lorentz γ-algebra and Γa = PLT
−
a + PRT

+
A , PR,L =

1
2 (1± γ5). T±a is the generator of the gauge group in the given representation2. In an Abelian
theory T±a is replaced by the charge q of the particle. The anomaly constraints have been discussed
in [250]. Vector representations are automatically free of anomalies, since the anomaly is related to
γ5. All other chiral representations have to fulfill the anomaly constraint

tr
({
T±a , T

±
b

}
T±c
)

= 0 . (B.14)

All real representations are anomaly-free. Hence, Lie algebras which contain only real represen-
tations are safe. Those include A1, BN , N ≥ 2, CN , N ≥ 3, D2N , N ≥ 2, G2, F4, E7 and E8.
AN , N ≥ 2, D2(N+1), N ≥ 1 and E6 can have complex representations. However, it can be shown
by an explicit calculation that the series so(N), N ≥ 7 is also safe. Therefore models based on
SO(10) are automatically anomaly-free. Models based on E6 are also anomaly-free, independent of
which representation is associated to the fermions, since the anomaly in Eq. (B.13) is an E6 singlet
and on the other hand Γa are in the adjoint representation. However, the tensor product

[78⊗ 78]sym ⊗ 78 = [1⊕ 650⊕ 2430]⊗ 78 (B.15)

does not contain a singlet. Hence, all chiral anomalies have to vanish. The only semi-simple Lie
algebras, which can lead to anomalies are AN , N ≥ 2, where every representation has to be checked.
Let us note two important examples. In SU(5), 10⊕5, which is assigned to fermions is anomaly-free.
In the SM, the fundamental representations and its complex conjugate one as well as the adjoint
representation of SU(3) are anomaly-free. However, Abelian anomalies from U(1)Y , as well as the
mixed Abelian – non-Abelian anomalies have to be cancelled, which leads to the constraints∑

i∈SM particle

Qi =
∑

i∈SM particle

Q3
i = 0 . (B.16)

B.3.2 Discrete Anomalies

Discrete symmetries [251] can be broken by quantum effects like continuous symmetries. In the case
of Abelian ZN symmetries, it was argued [252, 253] that the discrete symmetries have to fulfill the
anomaly constraints of U(1) “modN ”, which can be understood when they are embedded into U(1).

2If there are more representations, there are also mixed anomalies which have to be cancelled. This can be seen
if all particles are in one reducible representation.
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Anomalies of non-Abelian symmetries have first been discussed in examples [254] and Araki [255]
derived an anomaly constraint by the Fujikawa method, which was further extended in [256]. The
main result of the work by Araki is that only the maximal Abelian subgroups of the non-Abelian
group G are relevant for the anomaly. Therefore a non-Abelian discrete group is anomaly-free if it
satisfies ∑

i∈ particles
qiI ≡ 0 modNI , (B.17)

where the Abelian subgroups of G are
∏
I ZNI ≤ G and qiI is the charge of particle i with respect

to ZNI .



Appendix C

Renormalization Group

C.1 General RG Equations for Mixing Parameters

We show the RG equations for the lepton mixing parameters obtained from the derivation discussed
above. We give the first order of the expansion in the small CHOOZ angle θ13.
The results are presented in the form of tables which list the coefficients of

Pfg = (Ce Y †e Ye + Cν Y
†
ν Yν)fg or

Ffg = (De Y
†
e Ye +Dν Y

†
ν Yν)fg

in the RG equations. Thus, if only a single element of P , is dominant, the derivatives of the mixing
parameters are found from the corresponding rows in the tables. Of course, if several entries of
Pfg are relevant, their contributions simply add up. While the complete RG equations are basis-
independent, the entries of the table depend on the choice of the basis, since P is basis-dependent.
We use the basis where Ye is diagonal and where the unphysical phases in the MNS matrix are zero.

16π2 ṁ1/m1 16π2 ṁ2/m2 16π2 ṁ3/m3

αν 1 1 1
P11 2c2

12 2s2
12 0

P22 2s2
12c

2
23 2c2

12c
2
23 2s2

23

P33 2s2
12s

2
23 2c2

12s
2
23 2c2

23

ReP21 −2 sin 2θ12c23 2 sin 2θ12c23 0
ReP31 2 sin 2θ12s23 −2 sin 2θ12s23 0
ReP32 −2 sin 2θ23s

2
12 −2 sin 2θ23c

2
12 2 sin 2θ23

ImP21 0 0 0
ImP31 0 0 0
ImP32 0 0 0

16π2 ṁe/me = Reαe + F11

16π2 ṁµ/mµ = Reαe + F22

16π2 ṁτ/mτ = Reαe + F33

Table C.1: β-functions of neutrino and charged lepton masses for θ13 = 0.
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Q±13 = |m3±m1eiϕ1 |2
∆m2

32(1+ζ)
S13 = m1m3 sinϕ1

∆m2
32(1+ζ)

Q±23 = |m3±m2eiϕ2 |2
∆m2

32
S23 = m2m3 sinϕ2

∆m2
32

Q±12 = |m2eiϕ2±m1eiϕ1 |2
∆m2

21
S12 = m1m2 sin(ϕ1−ϕ2)

∆m2
21

A±13 = (m2
1+m2

3) cos δ±2m1m3 cos(δ−ϕ1)

∆m2
32(1+ζ)

B±13 = (m2
1+m2

3) sin δ±2m1m3 sin(δ−ϕ1)

∆m2
32(1+ζ)

A±23 = (m2
2+m2

3) cos δ±2m2m3 cos(δ−ϕ2)

∆m2
32

B±23 = (m2
2+m2

3) sin δ±2m2m3 sin(δ−ϕ2)

∆m2
32

C12
13 = m1

∆m2
21(1+ζ)

[(1 + ζ)m2 sin (ϕ1 − ϕ2)− ζm3 sin (2δ − ϕ1)]

C23
13 = m3

∆m2
32(1+ζ)

[m1 sin (2δ − ϕ1) + (1 + ζ)m2 sinϕ2]

C12
23 = m2

∆m2
21

[m1 sin (ϕ1 − ϕ2)− ζm3 sin (2δ − ϕ2)]

C13
23 = m3

∆m2
32(1+ζ)

[m1 sinϕ1 + (1 + ζ)m2 sin (2δ − ϕ2)]

D1 = m3

∆m2
32(1+ζ)

[m1 cos (δ − ϕ1)− (1 + ζ)m2 cos (δ − ϕ2)] sin δ

D2 = m3

∆m2
32(1+ζ)

[m1 cos (2δ − ϕ1)− (1 + ζ)m2 cos (2δ − ϕ2) + ζm3]

Table C.2: Definition of the abbreviations used in Tab. C.3–Tab. C.5.

32π2 θ̇12 64π2 θ̇13 32π2 θ̇23

P11 Q+
12 sin 2θ12 0 0

P22 −Q+
12 sin 2θ12c

2
23

(
A+

23 −A
+
13

)
sin 2θ12 sin 2θ23

(
Q+

23c
2
12 +Q+

13s
2
12

)
sin 2θ23

P33 −Q+
12 sin 2θ12s

2
23 −

(
A+

23 −A
+
13

)
sin 2θ12 sin 2θ23 −

(
Q+

23c
2
12 +Q+

13s
2
12

)
sin 2θ23

ReP21 2Q+
12 cos 2θ12c23 4

(
A+

13c
2
12 +A+

23s
2
12

)
s23

(
Q+

23 −Q
+
13

)
sin 2θ12s23

ReP31 −2Q+
12 cos 2θ12s23 4

(
A+

13c
2
12 +A+

23s
2
12

)
c23

(
Q+

23 −Q
+
13

)
sin 2θ12c23

ReP32 Q+
12 sin 2θ12 sin 2θ23 2

(
A+

23 −A
+
13

)
sin 2θ12 cos 2θ23 2

(
Q+

23c
2
12 +Q+

13s
2
12

)
cos 2θ23

ImP21 4S12c23 4
(
B−13c

2
12 + B−23s

2
12

)
s23 2 (S23 − S13) sin 2θ12s23

ImP31 −4S12s23 4
(
B−13c

2
12 + B−23s

2
12

)
c23 2 (S23 − S13) sin 2θ12c23

ImP32 0 2
(
B−23 − B

−
13

)
sin 2θ12 4

(
S23c

2
12 + S13s

2
12

)
Table C.3: Coefficients of Pfg in the RG equation of the mixing angles θij in the limit θ13 → 0. The abbreviations
A±ij , B

±
ij , Sij and Q±ij depend on the mass eigenvalues and phases only, and enhance the running for a degenerate

mass spectrum, since they are of the form fij(mi,mj ,phases)/(m2
j −m2

i ). They are listed in Tab. C.2.
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64π2δ̇(−1)

P11 0

P22 −
(
B+

23 − B
+
13

)
sin 2θ12 sin 2θ23

P33

(
B+

23 − B
+
13

)
sin 2θ12 sin 2θ23

ReP21 −4
(
B+

13c
2
12 + B+

23s
2
12

)
s23

ReP31 −4
(
B+

13c
2
12 + B+

23s
2
12

)
c23

ReP32 −2
(
B+

23 − B
+
13

)
sin 2θ12 cos 2θ23

ImP21 4
(
A−13c

2
12 +A−23s

2
12

)
s23

ImP31 4
(
A−13c

2
12 +A−23s

2
12

)
c23

ImP32 2
(
A−23 −A

−
13

)
sin 2θ12

64π2δ̇(0)

P11 −8
((
C23

13 + S12 − S23

)
c2

12 +
(
C13

23 + S12 − S13

)
s2

12

)
P22 8

((
(S12 − S23) c2

23 + C23
13s

2
23

)
c2

12 +
(
(S12 − S13) c2

23 + C13
23s

2
23

)
s2

12

)
P33 8

((
C23

13c
2
23 + (S12 − S23) s2

23

)
c2

12 +
(
C13

23c
2
23 + (S12 − S13) s2

23

)
s2

12

)
ReP21 −16S12c23 cot 2θ12 + 4 (2D1c23 + (S23 − S13) s23 tan θ23) sin 2θ12

ReP31 16S12s23 cot 2θ12 − 4 (2D1s23 + (S23 − S13) c23 cot θ23) sin 2θ12

ReP32 −16
(
S23c

2
12 + S13s

2
12

)
cos 2θ23 cot 2θ23 − 8

(
C12

13c
2
12 + C12

23s
2
12

)
sin 2θ23

ImP21 −8Q−12c23 csc 2θ12 − 2
(
2D2c23 +

(
Q−23 −Q

−
13

)
cos 2θ23 sec θ23

)
sin 2θ12

ImP31 8Q−12s23 csc 2θ12 + 2
(
2D2s23 −

(
Q−23 −Q

−
13

)
cos 2θ23 csc θ23

)
sin 2θ12

ImP32 −8
(
Q−23c

2
12 +Q−13s

2
12

)
cot 2θ23

Table C.4: Coefficients of Pfg in the derivative of the Dirac CP phase. The complete RG equation is given by
δ̇ = θ−1

13 δ̇
(−1) + δ̇(0) +O(θ13). The abbreviations A±ij , B

±
ij , Q

±
ij , C

kl
ij and Di depend on the mass eigenvalues and phases

only, and are listed in Tab. C.2.
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16π2ϕ̇1

P11 −4S12c
2
12

P22 4S12c
2
12c

2
23 − 4

(
S23c

2
12 + S13s

2
12

)
cos 2θ23

P33 4S12c
2
12s

2
23 + 4

(
S23c

2
12 + S13s

2
12

)
cos 2θ23

ReP21 −4S12c23 cos 2θ12 cot θ12 − 2 (S23 − S13) cos 2θ23 sec θ23 sin 2θ12

ReP31 4S12s23 cos 2θ12 cot θ12 − 2 (S23 − S13) cos 2θ23 csc θ23 sin 2θ12

ReP32 −8
(
S23c

2
12 + S13s

2
12

)
cos 2θ23 cot 2θ23 − 4S12c

2
12 sin 2θ23

ImP21 −2Q−12c23 cot θ12 −
(
Q−23 −Q

−
13

)
cos 2θ23 sec θ23 sin 2θ12

ImP31 2Q−12s23 cot θ12 −
(
Q−23 −Q

−
13

)
cos 2θ23 csc θ23 sin 2θ12

ImP32 −4
(
Q−23c

2
12 +Q−13s

2
12

)
cot 2θ23

16π2ϕ̇2

P11 −4S12s
2
12

P22 4S12c
2
23s

2
12 − 4

(
S23c

2
12 + S13s

2
12

)
cos 2θ23

P33 4S12s
2
23s

2
12 + 4

(
S23c

2
12 + S13s

2
12

)
cos 2θ23

ReP21 −4S12c23 cos 2θ12 tan θ12 − 2 (S23 − S13) cos 2θ23 sec θ23 sin 2θ12

ReP31 4S12s23 cos 2θ12 tan θ12 − 2 (S23 − S13) cos 2θ23 csc θ23 sin 2θ12

ReP32 −8
(
S23c

2
12 + S13s

2
12

)
cos 2θ23 cot 2θ23 − 4S12s

2
12 sin 2θ23

ImP21 −2Q−12c23 tan θ12 −
(
Q−23 −Q

−
13

)
cos 2θ23 sec θ23 sin 2θ12

ImP31 2Q−12s23 tan θ12 −
(
Q−23 −Q

−
13

)
cos 2θ23 csc θ23 sin 2θ12

ImP32 −4
(
Q−23c

2
12 +Q−13s

2
12

)
cot 2θ23

Table C.5: Coefficients of Pfg in the RG equation of the Majorana phases for θ13 = 0.

16π2 θ̇12 16π2 θ̇13 16π2 θ̇23

F11 0 0 0
F22 0 0 0
F33 0 0 0
ReF21 −c23 −s23 cos δ 0
ReF31 s23 −c23 cos δ 0
ReF32 0 0 −1
ImF21 0 −s23 sin δ 0
ImF31 0 −c23 sin δ 0
ImF32 0 0 0

Table C.6: Coefficients of Ffg in the Ue contribution to the slope of
the mixing angles for θ13 = 0 and ye, yµ � yτ .
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C.2 RG Factors in the Standard Seesaw Model

The Z factors describing the LL approximation are obtained from the counterterms in [63]. The
notation is described in Sec. 5.1.

C.2.1 SM

In the SM extended by RH neutrinos, the wave function renormalization of the RH neutrinos is
given by

(n)

ZN= exp

(
1

16π2

(n)

Yν

(n)

Y †ν ln
Mn

Mn+1

)
(C.1)

and collecting the contributions from the renormalization of the left-handed doublets

βLYν =
1

32π2

(
(n)

Y †ν
(n)

Yν +Y †e Ye

)
, (C.2)

the Higgs doublet

βφYν =
1

32π2

(
2tr

(
(n)

Y †ν
(n)

Yν +Y †e Ye + 3Y †uYu + 3Y †d Yd

)
− 9

10
g2

1 −
9
2
g2

2

)
, (C.3)

and the vertex correction to Yν
βYνYν = − 1

8π2
Y †e Ye , (C.4)

the external renormalization in the effective theory with n RH neutrinos yields

(n)

Zext= exp

(
1

32π2

(
(n)

Y †ν
(n)

Yν −3Y †e Ye + 2tr

(
(n)

Y †ν
(n)

Yν +Y †e Ye + 3Y †uYu + 3Y †d Yd

)

− 9
10
g2

1 −
9
2
g2

2

)
ln

Mn

Mn+1

)
. (C.5)

Neglecting the thresholds in the charged lepton sector and the quark sector, the expression for the
external renormalization factor ZSM

ext describing the total external renormalization can be further
approximated to

ZSM
ext = exp

(
1

32π2

3∑
n=0

[
(n)

Y †ν
(n)

Yν +2tr

(
(n)

Y †ν
(n)

Yν

)]
ln

Mn

Mn+1

+
1

32π2

[
−3Y †e Ye + 2tr

(
Y †e Ye + 3Y †uYu + 3Y †d Yd

)
− 9

10
g2

1 −
9
2
g2

2

]
ln
〈φ〉
Λ

)
. (C.6)

Here, we have denoted
M0 ≡ 〈φ〉 , M4 ≡ Λ

for uniformity of the presentation. The renormalization effect due to the additional vertex correc-
tions to the D5 operator is given by

(n)

Zκ= exp
(

1
16π2

(
λ+

9
10
g2

1 +
3
2
g2

2

)
ln

Mn

Mn+1

)
. (C.7)

The mass of RH neutrinos receives only corrections from the wave function renormalization to
arbitrary loop order.
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C.2.2 MSSM

In the MSSM extended by RH neutrinos, there are no vertex corrections due to the non-renormalization
theorem and the wave function renormalization yields

(n)

ZL= exp

(
1

32π2

(
2Y †e Ye + 2

(n)

Y †ν
(n)

Yν −
3
5
g2

1 − 3g2
2

)
ln

Mn

Mn+1

)
(C.8)

(n)

ZN= exp

(
1

8π2

(n)

Yν

(n)

Y †ν ln
Mn

Mn+1

)
(C.9)

(n)

Zφ= exp

(
1

32π2

(
tr

(
6Y †uYu + 2

(n)

Y †ν
(n)

Yν

)
− 3

5
g2

1 − 3g2
2

)
ln

Mn

Mn+1

)
. (C.10)

The external renormalization factor ZMSSM
ext is given by the product of the wave function renormal-

ization of the left-handed doublet with the Higgs doublet

(n)

Zext=
(n)

ZL
(n)

Zφ (C.11)

because the two wave function renormalization factors commute. As the neutrino Yukawa couplings
only change at the thresholds (up to 1 loop order), the external renormalization factor can be further
approximated by

ZMSSM
ext = exp

(
1

16π2

3∑
n=0

(
(n)

Y †ν
(n)

Yν +tr

(
(n)

Y †ν
(n)

Yν

))
ln

Mn

Mn+1

+
1

16π2

(
Y †e Ye −

3
5
g2

1 − 3g2
2 + 3tr

(
Y †uYu

))
ln
〈φ〉
Λ

)
. (C.12)
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