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Running Neutrino Masses and Flavor Symmetries

Abstract

The flavor structure of neutral fermion masses is completely different from charged fermion masses.
The cascade seesaw framework allows to implement a cancellation mechanism, which leads to a
weak hierarchy of neutrinos despite the large hierarchy in the charged fermion masses. We present
one realization by the gauge group Fg and two in the framework of SO(10) based on discrete flavor
symmetries 77 and 3(81). Higher-dimensional operators as well as the flavon potential are discussed.
Furthermore, since renormalization group (RG) effects can become very important in neutrino
physics, especially in view of upcoming precision experiments, we have investigated several models.
The L, — L, flavor symmetry in the standard seesaw scenario leads to quasi-degenerate neutrinos
and therefore to large RG corrections. The quantum corrections to quark-lepton-complementarity
(QLC) relations are extensively discussed. In the minimal supersymmetric standard model (MSSM),
the effect is almost always positive. In the standard model (SM), there are sizable RG corrections
due to the threshold effects which are either positive for Ay =~ 0° or negative for Ay ~ 180°.
They have been studied in the leading log (LL) approximation and mainly lead to a rescaling of
right-handed (RH) neutrino masses. The results are generalized beyond LL and the conditions
for the applicability are derived. Finally, the results are applied to the cascade seesaw mechanism
and the cancellation mechanism. The RG equations of the mixing parameters in the triplet seesaw
are derived in terms of basis-independent quantities. The main results are the independence of
Majorana phases and the proportionality to the mass squared difference in the strongly hierarchical
case which differs from the standard seesaw mechanism.

Kurzfassung

Die Familienstruktur der neutralen Fermionen unterscheidet sich vollig von den geladenen Fermion-
massen. Das kaskadierte Seesaw Szenario erlaubt die Konstruktion eines Ausléschungsmechanismus,
der zu einer schwachen Hierarchie der Neutrinos fiihrt trotz der starken Hierarchie der geladenen
Fermionen. Wir prasentieren eine Realisierung durch die Eichgruppe Eg und zwei im Kontext von
SO(10), die auf einer diskreten Familiensymmetrie 77 bzw. X(81) basieren. Hoher-dimensionale
Operatoren und das Flavonpotential werden diskutiert. Da Renormierungsgruppen(RG)-Effekte in
der Neutrinophysik sehr wichtig werden koénnen, insbesondere im Blick auf die kommenden Prézis-
sionsexperimente, wurden mehrere Modelle untersucht. Die L, — L, Symmetrie im Standard Seesaw
Modell fiihrt zu quasi-degenerierten Neutrinos und somit zu groffen RG Effekten. Die Quantenko-
rrekturen zu den Quark-Lepton Komplementaritdt Relationen werden ausfiihrlich diskutiert. Im
Minimalen Supersymmetrischen Modell (MSSM) sind die Korrekturen fast immer positiv. Im Stan-
dard Modell (SM), gibt es grofsere RG Korrekturen aufgrund von Schwelleneffekten, die positiv fiir
Ap =~ 0° bzw. negativ fiir Ap ~ 180° sind. Sie werden in der fithrenden Logarithmus Ndherung be-
sprochen und fithren hauptséchlich zu einer Reskalierung der rechtshandigen (RH) Neutrinomassen.
Die Ergebnisse werden iiber die LL Naherung hinaus verallgemeinert und Bedingungen der An-
wendbarkeit werden hergeleitet. Schlieflich werden die Ergebnisse beim kaskadierten Seesaw Mech-
anismus und dem Ausléschungsmechanismus angewandt. Die RG Gleichungen der Mischungspa-
rameter im Triplett Seesaw Mechanismus werden hergeleitet und basisunabhéngig ausgedriickt. Die
Hauptergebnisse sind die Unabhéngigkeit von den Majoranaphasen und die Proportionalitdt der
Massenquadratdifferenzen im stark hierarchischen Fall im Gegensatz zum Standard Seesaw Mech-
anismus.
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Chapter 1

Introduction

The quantization of charge and the unification of the gauge couplings of all three forces in the
minimal supersymmetric standard model (MSSM) at AquT = 2-10'® GeV strongly suggest a further
unification of all forces into a (supersymmetric (SUSY)) grand unified (GU) gauge group |[1,2].
Especially, models which unify all SM particles in one irreducible representation like SO(10) [3,4]
and Fg [5-9] are appealing.
The flavor sector also shows regularities: (i) All charged fermion masses show a strong normal
hierarchy. (ii) The mixing angles in the quark sector are small and in the lepton sector, there is
maximal 2-3 mixing and possibly vanishing 1-3 mixing. (iii) The neutrino mass matrix is compatible
with the exchange of the second and third row/column which suggests a u — 7 exchange symmetry.
Furthermore, there are some peculiar relations: (i) The light quark masses are related to the Cabibbo
angle

tan 1912 ~ @ (11)

S

which is known as Gatto-Sartori-Tonin (GST) relationEI [11]. (ii) The quark mixing angles ¥;;
and the lepton mixing angles 6;;, which parameterize the Cabibbo-Kobayashi-Maskawa (CKM) and
Maki-Nakagawa-Sakata (MNS) mixing matrix, respectively, add up to maximal mixing

7T
(912 + 1912 ~ s 923 + 1923 ~ Z . (12)

N

They are known as quark lepton complementarity (QLC) relations [12-14] because of the com-
plementarity of 6;; and ¥;; to maximal mixing. They suggest a further unification of quarks and
leptons. Therefore the QLC relations are presumably due to a symmetry close to the unification
scale. (iii) Moreover, to a very high precision (107°), the charged lepton masses fulfill

(Ve + /i + vimg)® (1.3)

[SSR )

me + My +my =

which was found by Koide [15]|. It indicates that the first generation is as important as the third
one, which is in contradiction to the approach to generate the masses of the third generation at
tree level and the light generations by non-renormalizable operators. Here, all flavors should be
considered as equally important.

All these structures and relations of the experimental data indicate, that the masses and mixing
angles are not accidental but determined by a flavor symmetry. There already exist several attempts
to explain theses patterns by continuous (e.g. Abelian [16-24| and non-Abelian [25-29|) or discrete

Tt can be explained by a symmetric mass matrix with vanishing 1-1 element [10], e.g. within SO(10).

1



2 CHAPTER 1. INTRODUCTION

(e.g. Ay [30]) symmetries. However, the study of flavor symmetries has revealed, that they have to
be broken, explicitly or spontaneously, above the electroweak scale since the low-energy data does
not allow for an exact symmetry.

In view of these hints towards a GU theory (GUT) as well as a flavor symmetry, it is tempting to
combine a GU gauge group and a flavor symmetry. However, this involves some difficulties, since
the mass hierarchies in the charged and in the neutral fermions are completely different. In addition,
it is not obvious how large mixing angles in the lepton sector can be reconciled with small mixing
angles in the quark sector. This is taken into account in many low-energy models by assigning
different representations to different particle species. But, this is not possible in GUTs which unify
all SM particles within one representation. Some models aim to combine a flavor symmetry with a
GUT [31-33|, which use the standard seesaw mechanism [34-38|

T r—1
m, < =Y, MyyY.,,

where RH neutrinos N with mass My are integrated out (or a variant thereof [39-43]) to explain
the difference between charged Dirac fermion mass matrices and the light Majorana neutrino mass
matrix m,. However, in GUTs like SO(10) and Fjg, the neutrino Yukawa couplings Y,, are related
to the up-type quark Yukawa couplings Y,,, which leads to a squared hierarchy in the light neutrino
mass matrix. Therefore, it is essential to cancel this hierarchy. This can be achieved in the double
seesaw (DS) framework [44,45|, where the effective light neutrino mass matrix is obtained by the
successive application of the standard seesaw formula

Ty —1 T-1
my, X YV YSNMSSYSN Y,/ .

When the Yukawa couplings of the additional singlets S; to the RH neutrinos Ygxn are proportional
to Yy, the hierarchy automatically drops out [46,47|. Furthermore, the effective light neutrino mass
matrix is mainly given by the Majorana mass matrix Mgg of the additional singlets which is not
related to the usual Yukawa couplings and, hence, can have a weaker hierarchy. Therefore, a special
neutrino symmetry can be implemented, e.g. the y — 7 symmetry [48-51].

Moreover, as GU gauge symmetries are generally broken at a high energy scale, they predict masses
and mixing angles at this scale. However, gauge couplings as well as masses and mixing angles are
not constant, but depend on the energy scale of the considered process through quantum correc-
tions to the tree-level (classical) theory. This can be understood by thinking of the vacuum as a
polarizable mediurrEL e.g. the electric charge is screened by the dipoles in the polarizable medium
which effectively reduces its strength at low energies. At high energies or short distances, the charge
is probed closer to the center, which leads to a less screened, hence larger charge. This energy scale
dependence is described by the renormalization group (RG). Thus, in order to compare predictions
of GUTs which are valid at a high energy scale with the low-energy experimental data, RG correc-
tions have to be considered. It turns out, that they can be sizable in the neutrino sector. They
are especially large for quasi-degenerate neutrinos in the MSSM with large tan 3 [52-59] as well as
above and between the seesaw scales due to large Y, [52,60-69]. The running between mass thresh-
olds is crucial in non-SUSY theories, because there are several contributions to the neutrino mass
matrix which are renormalized differently. This generally leads to large corrections to the mixing
parameters. But even small corrections are important, since the precision of neutrino masses and
mixing angles has been increased by several neutrino oscillation experiments [70-76] and will be
improved further. In the next-generation experiments, the mixing parameters will be measured on
a 10 % level [77], 812 will be known even more precisely, i.e. RG effects become comparable to the

2The Heisenberg uncertainty allows the creation of particle-antiparticle pairs which can be considered as dipoles.



3

precision of the experiment even for a hierarchical spectrum [69]. Moreover, the above mentioned
low-energy relations Egs. are subject to quantum corrections, since it turns out that
none of them is RG invariant. Especially the QLC relations are subject to potentially large correc-
tions due to the strong running of #15. The Koide and the GST relation are expected to receive only
small corrections, because masses usually show a flavor-independent rescaling. Large corrections
to a low-energy relation disfavor an explanation by a symmetry and leave it as a mere numerical
coincidence.

This thesis is structured in the following way. The basic concepts of the RG and effective field
theories (EFTs) are introduced in Chapter [2 In Chapter 3| several aspects of model building are
outlined. At first, the experimental status of neutrino mixing parameters is presented as well as
different variants of the seesaw mechanism. GUTs and flavor symmetries are introduced and the
QLC relations are discussed. In Chapter [l a cancellation mechanism within the cascade seesaw
mechanism is presented and realizations by a GUT symmetry as well as flavor symmetries are
discussed. As thresholds can lead to large effects, we study the corrections due to mass thresholds
in the standard seesaw framework in Chapter The RG effects in the L, — L; symmetric model as
well as the phenomenologically motivated QLC scenario are discussed in terms of mixing parameters
in Chapter [0 Furthermore, RG equations of the mixing parameters are derived in the triplet seesaw
scenario. Finally, we conclude in Chapter [7}

Our conventions are shown in App. [A] Technical details of GUTs and flavor symmetries are sum-
marized in App. [B] Lastly, the necessary RG formulas are collected in App. [C] Part of this thesis
has been already published in [78-81] or will be published [82].
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Chapter 2

Renormalization Group

This chapter summarizes basic knowledge about the RG, EFTs and the decoupling of particles.
In Sec. the Wilsonian approach to the RG is presented using the example of ¢*-theory. The
Callan-Symanzik equation which underlies all RG calculation techniques is derived in Sec. 2.2] As
decoupling of particles is not automatic in mass-independent renormalization schemes, EFTs are

outlined in Sec. We discuss the decoupling of particles in Sec.

2.1 Basic Picture — Wilson Renormalization Group

Before we derive specific results using RG techniques, we want to summarize the most important
facts about RG evolution which we need in the following discussion.

The renormalization group can be understand most easily in the picture of Wilson (See e.g. [83].)
with a momentum cutoff as regulator of the theory. However, it can be extended to other regu-
larization techniques like dimensional regularization [84-86]. The starting point is the Euclidean
Feynman path integral E]

Z[J] = /Dqse—f[f“dﬂ = H/d¢(k) e~ JEZHIeL (2.1)
k

A sharp E] UV cutoff A can be imposed by restricting the integration variables ¢(k) by |k| < A and
setting ¢(k) = 0 for k£ > A. This immediately leads to the question how the quantum fluctuations
at very short distances or very large momenta influence the path integral and therefore the physical
observables, more precisely, what is the dependence of the path integral on the cutoff A. In order
to analyze this dependence, we first integrate out all momentum modes bA < |k| < A

Z[J] = /[D¢]A e JIZ($)+74]

= /[D¢]bA/[D§£][bA,A] e~ I[ZGun+61+7 (61 +0)] (2.2)

= / (D@l e~ /1 (Goa)FTua] / (D@ pp e~ I £ (@t =2 (60) 7]

1Since the metric is not positive semi-definite in Minkowskian space, it is difficult to impose a cutoff on momenta.
2In the exact RG, which is a generalization of the simple picture by Wilson, the cutoff is a smooth functional

Flp(k)].
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where we used the notation

oa(k) = ¢(k)O(A — [k]) (2.3a)

d(k) = ¢(k)O(A — [k)O(|k| — A) (2.3b)

[Ddlipa, a] = H de(k) (2.3c)
bA<|k|<A

[Déla = [Deljo,] - (2.3d)

This leads to an effective Lagrangian Z.g in
217 = / (D] pre— 1 Zen(@n ) +T0x] (2.4)

This effective Lagrangian Z.g can be related to the full Lagrangian .Z by rescaling all momenta
and distances by

k— kK =k/b, r— 2 =bx, Oy — 0y, = 0u/b. (2.5)
In order to be more explicit, we consider the ¢* theory
1 2 m2 2 A 4
_ = 22 2.
L= 00 - - 5 (2.6
which results in the effective Lagrangian
o mPHIm® 5 A40A

Lot = 5 (1+0Z4) (9u0) ¢? ¢'+ > Cna (0 6N) (2.7)

N,M

DN |

2 4!
after a functional integration over the high momentum degrees of freedom bA < k < A has been
performed. This can be done be calculating the relevant Feynman diagrams. Note, that new local
operators with N fields and M derivatives show up. The rescaling of the action results in

1 2+ 6m? A+ A

/ da/ b= | 2 (14 82,) B2 (90)° — T L0 g2 - 200 Ga  SY o (96N | (28)

2 2 4! H

N,M
which can be related to the original action by rescaling the fields ¢:
1/2

¢ = [b2*d(1 +5Z¢)} ¢ (2.9a)
m'? = (m? + om?) (1 +0Z4) " b?72 (2.9b)
N =40\ (1 +62y) v, (2.9¢)

Hence, the integration over the high momentum degrees of freedom leads to a rescaling of the cou-
plings and defines a flow (one parameter curve in parameter space) of the couplings or equivalently
a flow of the Lagrangian. The successive integration over high momentum degrees of freedom is
sometimes denoted as summing up large logarithms, since the corrections §J,. .. become large for
decreasing b.

The different operators of the Lagrangian can be classified by their behavior close to a fixed point
of the flow (¢ = ¢, m'?2 = m?, ...). There are three different classes of operators:

e relevant operators grow, when they are approaching the fixed point;
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e irrelevant ones decrease by approaching the fixed point;
e the behavior of marginal operators depends on higher order corrections.

The free theory

2o = 5 (00 (2.10)
is a fixed point, since at leading order
N o= At m'? = m2p¢? (2.11)
Therefore m? is relevant in d = 4 dimensions and \ is marginal. The next-to-leading order correction
todind=14 a2 1
XZ}‘_@IDE (2.12)

leads to a decrease of A while the high momentum degrees of freedom are integrated out step by

step. Conversely, since
A—oo

A AT o, (2.13)
¢*-theory does not exist for A # 0 when the cutoff is removed, which is denoted as triviality. In
general, an operator with N fields and M derivatives close to the free field fixed point transforms
as

Ch oy = bRy (2.14)

Hence, operators are relevant if
d<N(d/2—-1)+ M. (2.15)

2.2 Callan-Symanzik Equation

The Wilsonian approach to the RG which has been discussed in the previous section is based on a
rescaling of all momenta. In this section, we describe the derivation of the Callan-Symanzik equation
which originates from the rescaling of all mass parameters. Since the RG scale p in dimensional
regularization or the cutoff scale A in a momentum cutoff scheme are auxiliary variables and physical
results of a theory are independent of the regularization and renormalization procedure used, this
independence can be used to derive a partial differential equation (PDE) which all Greens functions
must satisfy. In the following derivation we restrict ourselves to dimensional regularization. A
theory is uniquely described by its bare Greens functions

G5 (fi}, Aj) = QT dp(1) . .. dp(wn)|Q) (2.16)

and it it independent of the used renormalization scheme. Therefore, we require the bare Greens
functions to be independent of the renormalization scale .

d

('I’L)

Hence, the renormalized Greens functions

G ({aih, \) = 27260 ({23}, M) (2.18)
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obey

d n dinZ 0 O\, O n dlnZ
R (M) (Ll N) = | A I () (L) ).
0 'udM + Tl m ] G ({zi}, A\)) [uau + 1 O + o M m G ({zi}, ) . (2.19)

This equation is called Callan-Symanzik equation [87,88] which is usually shown in the form
0 0 n
0= |p— — + A G ({z}N) 2.20

It is a quasi linear PDE which can be solved by the method of characteristic curves. This transforms
the PDE into a system of ordinary differential equations

Ok dinZ
=u— = 2.21
Br (1) Hon Y(p) = p d (2.21)

which are called B-functions in the case of G; and anomalous dimensions in the case of 7. Note
that the g-functions and the anomalous dimension v are independent of {z;}, i.e. they are inde-
pendent of the Greens functions G . The S-function of any operator @ can be derived similarly
by requiring the independence of the renormalization scale p of the bare operator @p. A formula
for the resulting S-function can be found in [89-91]. The RG evolution of couplings has been ex-
perimentally shown. The electromagnetic fine-structure constant aey = % has been measured in
the OPAL experiment [92] at an energy of 181.94 GeV and at very low energies in quantum Hall
experiments [93]

agn (181.94GeV) = 126.2735 . agy (0GeV) = 137.035999679(94) . (2.22)

Another evidence for RG evolution is the strong coupling constant which becomes non-perturbative
at the QCD scale Aqcp ~ 300 MeV and evolves asymptotically to zero at higher energies which was
first shown by Gross, Politzer and Wilczek [94]|. The S-function of a gauge coupling in an arbitrary
Yang-Mills theory with gauge group GG, gauge coupling g and an arbitrary number of representations
(reps) is at 1 loop order

3
loop _ 9 %Z(Ad)_g 3 Z(F)_é 3 1(s)| | (2.23)

g 1672
Fe{Weyl reps} Se{real scalar reps}

where [(R) denotes the Dynkin index of representation R and Ad is the adjoint representation,
which summarizes the contribution of gauge vector bosons. In a supersymmetric theory, the gauge
coupling (-function in terms of superfields is given by

3
4

glleop — —1[;] 5 [31(Ad) - = 3 1oyl . (2.24)
T C'&{chiral superfield}

2.3 Effective Field Theories

As we have already pointed out, all couplings or equivalently the effective action depend on the
external momenta of the process. As mass-independent schemes do not implicitly decouple particles,
since the renormalization scale does not know about particle masses, the decoupling has to be done
by hand, i.e. at each mass threshold, particles are integrated out which leads to an EFT. EFTs are a
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powerful tool to extract the relevant physical degrees of freedom at a given energy scale from a theory.
The dominant contribution to processes at a given energy scale is due to particles which can become
on-shell, especially those particles whose mass is close to the relevant energy scale. Particles, which
cannot become on-shell, are treated effectively. They are integrated out. This can be understood in
various equivalent ways. In Feynman diagrams, it results in deleting all propagator lines of heavy
particles. In the Feynman path integral it amounts to integrating over the heavy degrees of freedom
which cannot become on-shell. Finally, on the level of the action, these heavy particles fulfill their
classical equation of motion and can be removed from the action by inserting the equation of motion
into the action. Hence, in the EFT, we neglect all quantum fluctuations of the heavy particle and
treat it classically. The full theory is expanded in a dimensionful parameter A~! up to some power
AfN
N
Lg=>» LM, N0 (2.25)

n=0

where 21 is suppressed compared to £ by A~!. Hence an EFT can be arbitrarily precise by
the inclusion of sufficiently many inverse powers of A. This systematic expansion is controlled by
the “Power Counting” in A~! of the effective theory.

EFTs are especially useful in calculations of the effective potential with many mass scales. For sim-
plicity consider a theory of two massive particles with masses m; and ms. Since in mass-independent
renormalization schemes like MS combined with dimensional regularization, large logarithms of the
mass ratio % show up. They indicate that the loop expansion does not work properly, because
powers of the same logarithm show up at higher loop orders, e.g. the logarithm In % at 1 loop

2
order appears at 2 loop order as (ln %) . In an EFT, all particles which cannot become on-shell

are already decoupled and particles which are much lighter than the renormalization scale can be
treated as massless which essentially leaves only one mass scale in the effective potential. Therefore,
the renormalization scale can be chosen such that all logarithms are small [95,96]. In principle,
there can be many mass scales, as it is shown in Fig. At each mass threshold, the particle
is integrated out and the effective theory is matched to the underlying theory. Concluding, we
summarize the procedure to calculate the effective action at a given energy scale using an EFT:

e Identify the relevant degrees of freedom.
e Integrate out particles which cannot become on-shell.

o Identify the expansion parameter, like the mass of the RH neutrino in the standard seesaw
mechanism.

e Match the couplings of the effective theory to the underlying theory at n loop orderﬂ

e Evolve all couplings at n+ 1 loop order to the next mass threshold and integrate out the next
particle.

e ...as long as the relevant energy scale is reached.

3If the RG running is calculated at n + 1 loop order, the matching has to be done at n loop order, since the
logarithm of the running compensates for the suppression factor from the loop integral.
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Figure 2.1: The thresholds due to masses M; of RH neutrinos and the intervals of RG running. (H,) denotes the
VEV of the electroweak Higgs doublet coupling to neutrinos.

2.4 Decoupling

The power counting of the EFT ensures that Greens functions of both theories are equal at least up
to the order (’)((%)N) where N denotes the maximal order in A~! taken into account in the EFT
and p is the largest external momentum of the process. Therefore, heavy particles are unobservable
until close to their threshold where they have been integrated out. The couplings of the EFT have no
a-priori value, but they have to be matched to the underlying theory if it is known or to experimental
data. Symanzik [97] and later Appelquist and Carazzone [98] showed that particles with a large
mass M decouple from the low-energy effective theory in the limit M — oo and the resulting EFT is
renormalizable. However, there are some exceptions to the decoupling theorem. The most prominent
one is 4-Fermi theory which describes weak interactions at low energies. In the renormalizable part
of the theory [-decay is forbidden by symmetries in contrast to the experimentally visible decays.
It is still a good EFT, since there is power counting. However, dimension 6 (D6) operators are
essential and therefore it is non-renormalizable. In general, an EFT has more symmetries than
the full theory. Another example is the effective theory of Majorana neutrinos where ratios of the
neutrino mass matrix elements are invariant under rescaling of the neutrino mass matrix [99]. A
further exception are chiral theories where the mass is generated by the Higgs mechanism, e.g. the
top quark in the SM is the heaviest particle and at low energies it can be integrated out. However,
after electroweak symmetry breaking, the top Yukawa coupling y; is proportional to the top mass.
Hence in the limit m; — oo, the top Yukawa coupling diverges and the top strongly couples. Thus
it does not decouple from the low-energy effective theory. The gauge hierarchy problem can also be
understood as non-decoupling of heavy degrees of freedom. It is summarized in the two questions
why are there large hierarchies and why are they stable with respect to the RG. Fundamental scalars,
like the SM Higgs boson receive quadratic corrections from all other particles in the theory which
they couple to. Hence, when the SM is embedded into a GUT, there are also corrections which are
proportional to AéUT from GUT scale particles. Therefore heavy particles do not decouple from
a theory which involves fundamental scalars as long as the RG corrections are not cancelled like
quadratic divergences in SUSY theories where scalar masses receive only logarithmic corrections
like fermions.



Chapter 3

Aspects of Model Building

In Sec. the experimental data of neutrino experiments is presented and different mechanisms
to generate neutrino masses are outlined. The discussion is focused on variants of the seesaw
mechanism which show up in unified models. Some aspects of unified models are presented in Sec.
Sec. outlines several flavor symmetries which aim to explain neutrino masses as well as
leptonic mixing parameters. Finally, we discuss the QLC relations in Sec.

3.1 Neutrino Masses

3.1.1 Experimental Data

After the first evidence of atmospheric neutrino oscillations in 1998 by SuperKamiokande [70] which
was independently confirmed by K2K [73], there have been numerous successful experiments which
increased the precision of neutrino masses and leptonic mixing parameters. SNO [72] proved that
the neutrino deficit of solar neutrinos measured in the Homestake experiment [100] is due to neu-
trino oscillations. KamLand [74] independently confirmed the solar parameters by measuring the
flux of anti-neutrinos coming from nuclear reactors. Recently, MINOS [75| improved the precision
on the atmospheric mixing parameters and KamLand [101] on the solar parameters. Last year,
MiniBoone [102] ruled out the explanation of a sterile neutrino for the LSND measurement [103].
So far, there is only an upper bound on the third mixing angle 613 by the CHOOZ experiment |71].
In the next-generation experiments, the mixing parameters will be measured on a 10 % level [77]
or even better in the case of 615. The current best fit values of neutrino masses and leptonic mixing
angles are summarized in Tab. in the standard parameterization. They will be further im-
proved in the coming years by Borexino which measured for the first time the Berilium—7 line of the
solar neutrino spectrum [76], SuperKamiokande, Double CHOOZ, T2K, NoVa, MINOS and other
experiments. There exist upper bounds on the absolute neutrino mass from

e the MAINZ [104] experiment which has set a model-independent upper bound on the neutrino
mass m(ve) = 1/ >_; |Uei|?m? < 2.3eV(@95% C.L.) by measuring the end point of the tritium
(B-spectrum, which determines the neutrino mass kinematically;

e the Heidelberg-Moscow experiment [105] which searched for neutrinoless double beta (0v2(3)
decay in Germanium detectors. It sets the current upper limit on (me.) < 0.35eV(@90% C.L.).
Part of the group [106] claims the discovery of 0v23 with an effective neutrino mass scale of
(Mee) = 0.11 — 0.56 eV (Q95% C.L.);

11
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parameter | Am3,[107°eV?]  Am3[1073eV?] | sin® 6y, sin? 013 sin? Og3
best fit 7.6 24 0.32 0.007 0.50
30 7.1-83 2.0-28 0.26 —0.40 <0.050 0.34—0.67

Table 3.1: Current measured neutrino mass squared differences Amfj =m? - m? and leptonic mixing angles in

standard parameterization [112]. Note that the current best fit value of the 1-3 mixing is non-zero. However, it is
still compatible with a vanishing 1-3 mixing.

e astrophysical observations on the sum of neutrino masses by measuring the energy den-
sity of relativistic particles in the universe. The WMAP [107| data alone places an up-
per limit > ,m; < 1.3eV(@95%C.L.). The inclusion of distance measuring information
of baryon acoustic oscillations and supernova data further improves the upper bound to
>, m; < 0.61eV(@95% C.L.), since neutrino-like particles erase structures on small scales.

In the coming years there will be a number of experiments to address the unsolved issues. To name
a few

e Double CHOOZ [108] will set a bound on the 1-3 mixing angle sin 2613 < 0.02—0.03(@90% C'.L.);
e KATRIN [109] is going to improve the upper bound on m(v.) < 0.35eV;

e GERDA [110] and other experiments are searching for 0v2(3 decay and are going to place
a bound on m... GERDA aims to have a sensitivity on (me) of 0.09 — 0.29 in 2009. The
discovery of 0v23 decays would show that lepton flavor violating processes exist. This implies
that neutrinos are Majorana particles;

e the PLANCK satellite [111] and weak lensing experiments will decrease the astrophysical
bound on the sum of neutrino masses to >, m; < 0(0.2) eV.

~

The standard parameterization of the MNS (leptonic mixing) matrix is presented in App. [A.1}
Since the solar mass squared difference is much smaller than the atmospheric one, it is sometimes
useful to expand in the ratio

Am2,
= ) 3.1
where Am?j = m% — m? Finally, we present two special cases of the MNS matrix.
Bimaximal Mixing
Bimaximal mixing is produced by the mass matrix [113-117]
. D-C B -B
mpbimax — . D C (3.2)
D

in flavor basis, i.e. where the charged lepton Yukawa couplings are diagonal. B,C, D are arbitrary
parameters which are related to the masses by

mo —my m1 ma ms3 m1 ma m3

B= = —
2v/2 4 4 27 4 4 2
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It is diagonalized by two maximal rotations U;j(m/4) in the i — j plane

L[ VEVE O
me:U23(7r/4)U12(7r/4):5 -1 1 ﬁ . (3.4)
1 -1 V2

Although bimaximal mixing is excluded at low energies by solar neutrino oscillation experiments,
it is still a viable mass texture at high energies, since the RG running can drive bimaximal mixing
to the LMA solution [64,69,81] which is shown in Sec. [6.4.4]

Tri-bimaximal Mixing

The tri-bimaximal mixing texture was proposed by Harrison, Perkins and Scott (HPS) [118-121].
It is inspired by the experimental data which suggest Uez = 0, |U,3|> = 1/2 and |Uez|? = 1/3. This
leads to the MNS matrix

1
U, P (1] ! 1 12 ) 1 (1) O1 (3.5)
MNS=| ——F%= —= == =— w*  w . — , )
I GG B NS TR L N
V6 V3 V2
where w = ¢27/3 which leads to 1 4+ w + w? = 0. The resulting mass matrix in flavor basis is
C+D-B B B
miPm = . D C |, (3.6)
D
where B, C, D are arbitrary parameters which are related to the masses by
mo — My mi meo ms mi mao ms
B=—— C=—+4+—17-—2 D=—+—+—. 3.7
3 ’ 6 + 3 2’ 6 + 3 + 2 (37)
The mass matrix can also be written in the suggestive form
m 00 O m 111 m 4 -2 =2
thm _ 8 (g g | 4 22 11|+t 11 (3.8)
2 1 3 1 6 1

3.1.2 Neutrino Mass Models

In this section, we summarize the most important facts about neutrino masses and possibilities to
generate small neutrino masses with the focus on the different variants of the seesaw mechanism,
which are used in the following chapters. As the nature of neutrino masses is not known yet, Dirac as
well as Majorana neutrinos are possible. Indeed, there are several models which explain the smallness
of Dirac neutrino masses by a suppression with respect to the GUT scale or other extra heavy degrees
of freedom, e.g. [122,123]. In models with extra dimensions, the smallness can be explained by a
small overlap of the corresponding zero-mode profiles along extra dimensions (See, e.g., [124]) or in
the case of large extra dimensions by the volume suppression factor, if the RH neutrino is chosen to
propagate in the bulk. Another possibility are mechanisms which generate small neutrino masses
radiatively, which ensures that there is a suppression factor of 1/(87)? coming from the loop and
small couplings on the other side. Two examples for radiative generation of neutrino masses are the
Zee model [125] which generates the mass term at 1 loop level and the Babu model [126]. There,
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the neutrino mass is generated at the 2 loop level. Even gravitational interactions can generate
neutrino masses [127], although they can only lead to a subdominant contribution, since they are
suppressed by the Planck scale. In the following, we restrict ourselves to the seesaw mechanism and
just refer to [47,128,129] for recent overviews of alternatives. The seesaw mechanism naturally
shows up in GUTs since there are heavy particles which couple to neutrinos. There are essentially
three different variants, the standard (type I) [34-38|, triplet (type II) [39-41] and the fermionic
triplet (type III) [42,43] seesaw mechanism. The cascade seesaw mechanism can be viewed as a
special case of the standard seesaw mechanism with more additional singlets (RH neutrinos) and a
special structure of the neutral fermion mass matrix. Since in the following chapters, we concentrate
on the standard, cascade and triplet seesaw mechanism, we give some more details on them and just
note about the fermionic triplet seesaw mechanism, that it leads to the same decoupling formula
(up to a group theoretical factor) as in the standard seesaw case.

Effective Theory

At low energies the Majorana neutrino mass can be described by an effective dimension 5 (D5)
operator which is, in fact, the only D5 operator compatible with SU(3)¢ x SU(2), x U(1)y and the
SM field content [130]. The concrete term in the Lagrangian is

L c
~ L= {Rpgllacart(0,) ccally (3.9)
where £; denotes the lepton doublet and C is the charge conjugation matrix with respect to the

Lorentz group. After the SM Higgs field H,, acquires its VEV, the D5 operator leads to a neutrino
mass term

S, T
¢b‘ '¢d and o v
- [~] -— - [~] -
3.10
g{a g%c I/[f/ I/% ( )
Lo c s—(@)+e V2 TF, giC
_Zﬁfggiaeasz ' (E%c) Ecng E— —Z/ifgl/{l(l/g) .

Standard (Type I) Seesaw

The standard (type I) seesaw mechanism [34-38| provides a natural explanation of the smallness
of neutrino mass. It can also be the origin of the difference of the quark and lepton mixings. The
smallness of neutrino masses is explained by the introduction of RH neutrinos N which lead to
additional Yukawa couplings Y,, and mass terms My in the Lagrangian

1

~ Iy =Y, NS  + 5 (Myw) g NITCNY9 4+ hec. . (3.11)

The corresponding mass matrix of uncharged particles is

0 mT
M= D , 3.12
< mp Mnn > (312)

where mp = Y, (H,) denotes the Dirac neutrino mass matrix and Myy is the Majorana mass
matrix of the RH neutrinos. The Majorana mass scale is assumed to be much larger than the
Dirac mass scale, since the RH neutrinos are total singlets which are not constrained by any gauge
symmetry. At low energies, the RH neutrinos are decoupled and physics is described by an effective
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theory, where the neutrino mass matrix of the light neutrinos is given by the D5 operator. The
effective D5 operator is determined by matching the full theory and the effective theory.

f b f
! 14 H, b
gLa Hub La , u gLa Hu
+ ) <o (3.13)
AN
d g / H d gg
Hu ELC Hud g‘%c u Le

In terms of formulas, we have
Zg + iMy,
¢@® — M? +ie

+ |:*Z (Yl;T)fh 6adPL]

[_i (Y”T)fh EabPL} [_i (Yo )ng (6T)dc PL]

ig + 1 Mp
q? — Mi +ie
Pe<M?
— i

=i (%) (1), P

YVT)fh Mi;l (Yl/)hg (Eabecd + 6aalecb) Pr, (3'14)

where M}, denotes the Majorana mass of the RH neutrino Ni. Thus the matching condition is given
by

KT =k + 2V ML Y, (3.15)
To be more precise, the RH neutrinos are in general non-degenerate in mass and they are integrated
out one after the other, such that there are different effective theories as shown in Fig. 2.1]

Cascade Seesaw

The cascade seesaw scenario is similar to the standard seesaw scenario. The main difference is that
there are more SM singlets. It can be motivated from string theory, since some string theory models
predict many (O(100)) singlets (See e.g. [131]).

_ £79 <f Fpgar 1 <fT
- = (Yy)ng 14 Hu+(YSN)fgS NgA—{—(YSV)fgS A + 2(M55)fgS CSs9 . (3.16)
In the SM, A is a Higgs singlet and A’ a electroweak Higgs doublet. In SO(10), A and A’ are 16

Higgs representations. However, some singlets do not have a direct mass term which results in the
following mass matrix of uncharged particles

0 mp mg,
ms, Msn Msg

in the basis ( v N S )T, where mg, = Yg, (A") and Mgy = Ysn (A) originate from the Yukawa
couplings of the additional singlets. For definiteness, the SM singlets without direct Majorana mass
term are denoted RH neutrinos N and the massive SM singlets are called additional singlets S. The
decoupling of the additional singlets leads to the effective mass matrix

T -1 A
( —mig, Mggmsy  mp —IWSVJ‘{SSMSN (3.18)
: —MgnyMggMsn ' '

Hence the RH neutrino masses are given by the standard seesaw formula

Myn =~ —MEyMgg Mgy (3.19)
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The decoupling of the RH neutrinos leads to the effective neutrino mass matrix at low energies

m, ~ mP% 4+ mLS (3.20)
which consists of two contributions. They are called DS contribution [44, 45|

mPS — T (ngi,MgsMS_]%,T) mp (3.21)

v

and linear seesaw (LS) contribution [132]

mi® = = [m, (Mgyms,) + (Mgyms,)"

mD] . (3.22)
The standard seesaw contribution mZI! which shows up in the 1-1 element of Eq. exactly
vanishes. Note, that the DS contribution is proportional to the direct mass term of the additional
singlets in contrast to the standard seesaw mechanism. There are two common setups. Either the
additional singlet masses are very large, such that the suppression of the neutrino mass scale comes
from the ratio (mp/Mg N)z. In this scenario, it is usually assumed, that the singlets are related to
Planck scale physics and the scale Mgy is related to the GUT scale, which nicely leads to a neutrino
mass scale of the right order of magnitude. In the other approach, the direct singlet mass term is
assumed to be very small, since the vanishing of Mgg enhances the symmetry of the Lagrangian.
In the limit Mgg — 0, lepton number becomes a symmetry of the theory. Therefore, small singlet
masses are natural by 't Hoofts argument [133], which states that a parameter can be naturally
small, if its vanishing increases the symmetry. In this setup, a low scale seesaw mechanism is
discussed, i.e. the scale Mgy ~ O(10 —100TeV) and Mgg ~ O(keV). The LS term is independent

of the direct mass term and it is usually discussed in the GUT context at large energy scales.
Triplet (Type II) Seesaw
In the triplet (type II) seesaw mechanism [39-41], the SM is extended by a charged Higgs triplet

A~ (3,1)su@)xuq):
- O-i B A_;,_/\/é A++
ST ( A —AT/V2 ) o

in contrast to the standard seesaw mechanism where fermions are added. The SM Lagrangian is
extended by additional Yukawa couplings as well as Higgs couplings

Ln =tr {(D#A)T D“A] ~ Mitr (ATA> - % (trNA)Q - % [(trATA>2 Ctr (ATAATA)}

— AyHI Hytr (ATA) — AsH] [AT, A} H, — [j%Hf i AT H, + h.c.]

1
- [\/i (Ya) s, 01 Cioa NG, + h.c.] . (3.24)

The covariant derivative of the Higgs triplet is given by

3
DA = 9,A + i\/;ngHA +iga Wy, A . (3.25)

Note, that the complex Higgs triplet couples to the SM Higgs doublet as well as the leptonic doublet
which leads to a neutrino mass term after the triplet acquires a VEV or equivalently decouples. After
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decoupling, the matching yields a contribution to the effective D5 operator

H, \ L o b
N (3.26)
md o i H,* (e
(Ya) 5 (020k) e 72=377 A6 (020k) s —iﬁ% (Ya) 1, (€ab€cd + €adech)
which results in . Yads
K =Kk—2 M2 (3.27)

The decoupling of the Higgs triplet also gives a contribution to the SM model Higgs self-coupling
because there is a coupling between the SM Higgs doublet and the Higgs triplet given in Eq. (3.24))

| Ag|?
MR

AT — N 2 (3.28)

In the MSSM, in addition to the Higgs triplet A ~ (3,1), a second Higgs triplet A ~ (3, —1) with
opposite hypercharge is needed to generate a D5 mass term for neutrinos. Furthermore, A ensures
that the model is anomaly-free. Note, however, that only A couples to the left—-handed leptons. The
additional terms in the superpotential are given by

— (Ya), Ay T . — Ag (T
Wa = MATr(BA) + —Z21TigoAl9 + —2h®) " ioyAh® + ZZhD " oy Ah(Y) | (3.29)
V2 V2 V2

where [ denotes the left-handed doublet and h(®) denotes the Higgs doublets. We use the same
notation as in [134]. Analogously to the SM, we add an effective neutrino mass operator x. The
decoupling of the Higgs triplet generates an effective dimension 4 term "7 in the superpotential,
whereas the tree-level matching condition reads

YAA
EFT u
=Kk—2 .
K K

(3.30)

3.2 Unified Theories

Unification of forces is a common concept in physics. One well-established example is the elec-
tromagnetic force which describes electric and magnetic interactions at the same time. Today, it
is appealing to think about the unification of the forces in the SM, the strong SU(3)c, the weak
SU(2)z and the hypercharge U(1)y to one force in analogy to the electromagnetic force. The two
main hints which point towards a further unification are

e the quantization of hypercharge, which satisfy the anomaly constraint
e and that the gauge couplings unify at the same energy scale of 2 - 10'® GeV in the MSSM.

The most prominent examples of grand unified theories [1,2] are SU(5) [2] and SO(10) [3,4] which
unify all three forces. SO(10) also unifies all SM matter particles and additionally a RH neutrino into
one irreducible representation. Furthermore the anomaly-free group Fg [5-9] is discussed, since it is
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an exceptional Lie group and a subgroup of Eg which is motivated by heteorotic string theory. From
a low-energy perspective, it contains SO(10) and the trinification group SU(3)® x Z3 [6,135,136],
where Z3 is a discrete symmetry which relates the gauge couplings of the three SU(3) factors.
Besides GUTs, there is the possibility of partial unification, e.g. in left-right symmetric models.
In the minimal left-right symmetric model SU(2); x SU(2)r x U(1)p_r x SU(3)¢ [40,137-139],
the Pati-Salam (PS) group SU(2);, x SU(2)r x SU(4) ps which further unifies color and the B — L
quantum numbelﬂ [140] or the already mentioned trinification group SU(3)3 x Z3.

Although the GUT scale is large and possibly not accessible to direct detection experiments from
todays knowledge, there are bounds on GU models. Models with simple GU groups lead necessarily
to proton decay [35]. Therefore proton decay measurements put strong bounds on GUTs. The
current model-independent lower bound [93] on the proton life-time is

7 > 2.1-10% years, CL 90% . (3.31)
Under the assumption that the dominant decay mode is among the investigated ones, the bound
can be improved to

7, > 103 t0 10°3 years . (3.32)

Proton decay has already excluded minimal SUSY SU(5) [141-143|. Product groups, like the left-
right symmetric models, are not as sensitive to proton decay. The main contributions to proton
decay are the exchange of X and Y bosons in SU(5) and groups which contain SU(5). They lead to
effective D6 operators like uudet and udwe™. In SUSY GUTs there are further D5 operators due to
the exchange of colored triplet Higgsinos of the form QQQL/Mp. This operator can be suppressed
by a large mass of the colored triplet Higgsino M. However, the 5 and 5 Higgs particles in SU(5)
contain both an electroweak Higgs doublet as well as a colored triplet Higgs. Therefore, a GU model
has to provide a mechanism to split the masses of the doublet and the triplet which is denoted by
Doublet-Triplet-Splitting (DTS). This can be achieved by the missing partner mechanism [144-146]
in SU(5) by a mismatch in the number of electroweak doublets and colored triplets, such that all
colored triplets become massive but some electroweak doublets do not obtain a direct mass term.
In SUSY, there is the sliding singlet mechanism [147-150]. Although it does not work in SU(5)
phenomenologically, but only in rank 5 and large gauge groups, we present it in SU(5) notation.
It requires an additional SM singlet as well as an adjoint Higgs representation. The superpotential
contains the term

W>5(45+1)5. (3.33)

If the adjoint acquires a vacuum expectation value (VEV) (45) = vgsdiag (—%, —%, —%, —%, —%),
SU(5) is broken down to the SM. F-term flatness requires

(5) ((45) + (1)) = ({45) + (1)) (3) = 0. (3.34)

Therefore, the F-term flatness with respect to H, and Hy leads to (1) = —Llvss which results in

(45) + (1) = vgsdiag (—5/6, —5/6, —5/6, 0, 0). Hence, the electroweak doublets remain massless
whereas the colored triplets acquire a vector-like mass of order vgs.

Besides proton decay, flavor changing neutral currents (FCNCs) in the quark sector as well as the
lepton sector provide strong bounds to GUTs, especially SUSY GUTs which are favored due to
the gauge coupling unification in the MSSM. At the Paul-Scherrer Institute (PSI) in Villigen, the
MEG experiment [151] searches for the process u — ey which is forbidden in the SM (without
RH neutrinos). It will improve the present upper limit of 1.2 - 107! on the branching ratio by the

! B denotes the baryon number and L lepton number.
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MEGA experiment [152] to 1073, Of course, there are also other processes like 7 — ey and 7 — pry.
However, the experimental sensitivity is not as good as in p — e7y. Another interesting process is
u — e conversion in T4, which has the potential to exclude many SUSY GU models discussed by
Albright and Chen [153]. However, they did not impose the flavor symmetry on the soft masses,
but imposed mSUGRA initial conditions. FCNCs in the quark sector are also able to constrain and
even exclude GU models as it has been done in [154] by the combination of several FCNCs. Due to
the uncertainty in the hadronic matrix elements, the calculations are difficult and there is a large
theoretical uncertainty compared to leptonic processes.

Another sign for GU models are N — N oscillations. However, theoretical predictions for the
experimental bound on the oscillation time 7, 7 > 0.86 - 10%sec [155] can be easily satisfied by a
shifting the B — L breaking scale, since this process violates B — L.

The RG evolution in the MSSM leads to the unification of the third generation Yukawa couplings
for specific values of tan 3. However, the second and the first generation do not unify. Evolving the
Yukawa couplings from the electroweak scale to Aqur leads to

mg ~ 3me , me ~2 gm# and my ~ m, (3.35)
which can be explained by a specific arrangement of Clebsch-Gordan coefficients [156, 157].
Different types of the seesaw mechanism naturally show up in unified theories. In the PS model, as
soon as the RH neutrinos acquire a Majorana mass term, there is a type I+II seesaw mechanism,
since there will generally be a contribution to the left-handed neutrinos as well. The type of seesaw
mechanism which is implemented in SU(5) depends on the particle content. Additional fermionic
singlets lead to the standard seesaw mechanism. A 15 Higgs representation, however, leads to a
triplet seesaw mechanism. The fermionic triplet seesaw will be operating, if there is a fermionic
adjoint representation. In SO(10), RH neutrinos acquire a Majorana mass term by the coupling to a
126 representation and consequently lead to a type I+1I seesaw mechanism. It can be a 126 Higgs
particle or two 16 Higgs particles which form effectively a 126 representation in the symmetric part
of their tensor product. Additional fermions in the adjoint representation lead to a fermionic triplet
seesaw.
Since SO(10) and Ejg are used in Chapter {4 we briefly review basic properties of these groups.
Technical details about Lie groups can be found in App.

3.2.1 SO(10)

SO(10) is a Lie group of rank 5. Hence, the rank has to be lowered by 1 to obtain the SM which
has rank 4. SO(10) has several advantages in model building:

e it is free of anomalies (See. App. .);
e it unifies all SM particles and additionally a RH neutrino in one 16 spinor representation;

e B — L is a gauge symmetry, which allows to explain baryogenesis via leptogenesis by its
breaking. Since R parity is a discrete subgroup of U(1)p_r, it is automatically a symmetry
at high energies in SUSY theories;

e in some models R parity is automatically conserved, which ensures that there are no dimension
4 operators which lead to proton decay [158,159].

It can be broken to the SM in two different ways, either via the PS group or SU(5) x U(1)x. The
breaking via PS leads to the hypercharge Y = 2735 + (B — L) and the breaking via SU(5) x U(1)
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(45), (210)

SU(2) x SU(2) x SU(4)

SU(2) x SU(2) x SU(3) x U(1)

9T +91)

+oz1)

(16 +16), (126 +126) (16 +16), (126 +126)

9C1

(

SU(5) 5 10 SU(3) x SU(2) x U(1)

Figure 3.1: Different ways of breaking SO(10) to the SM.

leads to Y/2 = az + Bx where z and z are the charges with respect to U(1)z and U(1)x in

SO(10) — SU(5) x U(1)x
— SU(3) x SU(2) x U(1)z x U(1)x (3.36)
— SU(3) x SU(2) x U(1)y .

The hypercharge in the SM shows that there are two different possibilities to choose a and (3,
either (a, B) = (1/6, 0) or (o, ) = (—1/5, 1/5). These combinations lead to Y/2 = z/6 for the
breaking via SU(5) and Y/2 = 1 (z — ) for the breaking via flipped SU(5) [145,146,160], which is
SU(5) x U(1)x. In flipped SU(5), the up-type and down-type quarks are exchanged u(®) « d(© as
well as the neutrinos and the charged leptons (¢ « e(©). There is also a variant of SO(10) which
is accompanied by an additional U(1) factor. It is called flipped SO(10) [161]. The arrangement of
SM particles in its multiplets differs from ordinary SO(10), similarly to flipped SU(5). The breaking
sequences and the necessary representations are depicted in Fig. [3.1] The Higgs potential which
leads to this breaking has only been studied in the simplest cases [162-166]. Bounds on the different
mass scales (e.g. the scale related to proton decay) in the breaking sequences have been studied
in [167]. It is found that the proton decay scale in SO(10) is larger than in SU(5).

As it has already been mentioned, all SM fermions and in addition a SM singlet, i.e. a RH neutrino,
fit into one 16 of SO(10) which explains charge quantization of the SM particles and intimately
links all particles of one family. There is no additional exotic matter, as it is in other groups. As
the tensor product

16 ® 16 = 104 @ 120, @ 1264 (3.37)

decomposes into a sum of three irreducible representations, it is possible to accommodate different
mass matrices for the different SM particles at the renormalizable level depending on the specific
VEV structure of the SO(10) Higgs representations. The SM mass matrices are completely deter-
mined by the SO(10) structure. The Higgs representations 10 and 126 lead to symmetric mass
matrices which fulfill m, ~ mp and myg ~ meT, where m,, and my are the up-type and down-type
quark mass matrices, respectively, mp is the Dirac neutrino mass matrix and m, is the mass matrix
of charged leptons. The relation m, ~ mp is broken by the introduction of 120, also since 120 is
contained in the antisymmetric part of the tensor product, the contribution to the mass matrices
from 120 is antisymmetric. The Georgi-Jarlskog factor can be obtained by the Higgs representa-
tions 120 and 126. In terms of SU(5), 45 of SU(5) has to acquire a VEV and in terms of the PS
model, (2, 2, 15) has to acquire a VEV to obtain the factor 3 between quarks and leptons in Eq.
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. There also exists a DTS mechanism which uses the mismatch of doublets and triplets in
the 126 Higgs representation [168], such that all colored triplets become massive while two Higgs
doublets do not have a direct mass term and consequently remain light. However, the mass of
colored triplet Higgs has to be about an order of magnitude larger than the GUT scale to account
for the non-observation of proton decay.

Most models are SUSY, because gauge coupling unification is possible in the MSSM. Renormalizable
SO(10) models usually include a 10 and 126 Higgs representation (See, e.g., [158,169,170]) to
account for Majorana neutrino masses. However, recently, it has been shown [171,172], that a
phenomenologically viable renormalizable model probably needs all three Higgs representations 10,
120 and 126. But, such a large Higgs sector leads to a very strong running of the gauge coupling.
In the case of a SUSY model containing 10, 120, 126, the S-function of the gauge coupling becomes

according to Eq. (2.24])

2

= 530 (3.38)

By
and a = % enters the non-perturbative regime after less than one order of magnitude of runnin
Hence, a more fundamental theory is needed.

Alternatively, masses can be generated by non-renormalizable interactions with low-dimensional
irreducible Higgs representations only, i.e. 10, 16, 16, 45 and 54. This implies the existence of a
more fundamental theory which explains non-renormalizable operators, e.g. heteorotic string theory
which only predicts small representations [173]. There are several models which implement this
idea. Let us mention two models which have been studied in detail: Babu, Pati and Wilczek [174]
suggested a model which uses an Abelian U(1) flavor symmetry and in addition to the SM matter
fields 16;, there are a 10, a 45 and one vector-like 16 @ 16 Higgs representations. Albright and
Barr [175-177] proposed a model which has a U(1) x Z; x Z family symmetry to forbid unwanted
couplings and besides the SM matter fields, two vector-like 16 & 16, two vector-like 10 and six
additional singlet matter fields and four 10, two vector-like 16 ® 16, one 45 and five singlet Higgs
representations. The extended particle content in the Albright-Barr model is used to explain the
generation of all non-renormalizable operators by decoupling heavy vector-like particles.

Generally in these models, the third generation becomes massive at tree level and the remaining
masses are generated at the non-renormalizable level. Here, we briefly summarize the most impor-
tant contributions to the mass matrices in the above mentioned models, since we refer to them in

Chapter

e the coupling 16, mj 10 leads to symmetric mass matrices m, = mq = m. = mp and usually
generates the masses of the third generation;

e the coupling 16, 16; 1616 acts like the coupling 16; 16,126 in a renormalizable SO(10)
model. The RH neutrino Majorana mass matrix is generated by this term;

e the coupling 16, 16,1045 generates a difference between leptons and quarks. It leads to the
Georgi-Jarlskog factor if 45 acquires a VEV in B — L direction;

e the coupling 16,16, 16 16’ contributes only to down-type quarks and charged leptons m, =
m:‘g which leads to non-trivial CKM mixing and a lopsided structure of those mass matrices;

e ecquivalently, the coupling Eiﬁ-ﬁﬁl contributes to the up-type quark and neutrino Dirac

mass matrices only.

2If all particles have a mass of the GUT scale, a(A = 6.4 - 10'% GeV) ~ 1.
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Most non-renormalizable SO(10) models are accompanied by an Abelian flavor symmetry U(1)
[174-179] to forbid couplings or relate couplings by a non-Abelian flavor symmetry. There are
models based on SU(2) [180,181] and SU(3) [182-184].

There exist two variants of the DTS mechanism which make use of the mismatch of electroweak
doublets and colored triplets in the 45 Higgs representation. Dimopoulos and Wilczek [185] proposed
a mechanism which achieves the mass splitting by a VEV in the B — L direction

(45) = imp, ® diag (a, a, a, 0, 0) (3.39)

and Chacko and Mohapatra [186] proposed another mechanism which leads to a complimentary
VEV pattern
(45) = iy ® diag (0, 0, 0, b, b) . (3.40)

More technical details can be found in App.

3.2.2 Eg

FEg is a Lie group of rank 6 which can be broken to the SM in three different ways as depicted in
Fig. Like SO(10), it is free of anomalies. The SM matter is embedded into the fundamental

Es
0
8- 659 j<650> (2\7),(3@9
SO(10) x U(1) SU(3) x SU(3) x SU(3) S0(10)

Figure 3.2: Breaking of Eg to SO(10), flipped SO(10) and the trinification group. The breaking of SO(10) is shown

in Fig.

representation 27 which contains in addition a RH neutrino, a 10 of SO(10) matter multiplet and
an additional SO(10) singlet which can be used in the cancellation mechanism being discussed in
Chapter [4 The tensor product

27 ®27 =27 ® 351, © 3514 (3.41)

decomposes in 3 summands where 27 and 351¢ are contained in the symmetric part and 351, in
the antisymmetric one. A Majorana mass term of RH neutrinos is obtained from the coupling of
27 to 351g. Since U(1)p_r is a subgroup of Ejg, the scale of the RH neutrino masses is related
to B — L breaking and the relation to baryogenesis via leptogenesis as well as the conservation
of R-parity work similarly like in SO(10). The fundamental representation 27 of Eg does not
allow a quartic coupling 27*. Therefore D5 proton decay operators are suppressed [187], i.e. the
proton decay bound can be relaxed in Eg models. The Georgi-Jarlskog factor can be obtained
in the same way as in SO(10), since the relevant SO(10) representation is contained in the 351
and 351’ representation. As there are several models, we restrict ourselves and mention only two
recent models which are worked out. In the model by Stech and Tavartkiladze [9], which we use to
implement the cancellation mechanism in Sec. [£.4] they use a 27 to incorporate the SM matter and
3 Higgs representations 27, 351 4 and 3514 to generate all fermion mass matrices. Eg is broken to
the SM via the trinification group SU(3)3. They do not consider the 650 Higgs representation which
is required to break FEg to the trinification group. Note, that the gauge coupling of Eg becomes non-
perturbative almost immediately above the GU scale due to the large Higgs representations like in
SO(10). The model was extended to include the flavor symmetry SO(3) [33|. The Eg model by King,
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Moretti and Nezorov [188] is inspired by string theory. However, they mainly consider the low-energy
phenomenology of an extra non-anomalous U(1) factor to the MSSM which is motivated from an Fg
GU model. Ej is broken via the Hosotani mechanism [189], i.e. breaking via non-trivial boundary
conditions in the compactification procedure, directly to SU(3) xSU(2) x U(1)y x U(1)x xU(1)z and
U(1)x x U(1)z is broken in a second step to U(1)’. The U(1) is chosen such that RH neutrinos are
uncharged and can acquire a large mass. It predicts many exotic particles at the TeV scale which
can be tested by the large hadron collider (LHC). Indeed, there are three complete 27 and one
additional pair of electroweak Higgs doublets from an incomplete 27 & 27 representation. However,
gauge coupling unification is still possible, since the exotic matter comes in full SU(5) multiplets
which affect all three gauge couplings in the same way. The p-problem of the MSSM is solved,
since the uH,Hy term is forbidden by the additional U(1)" symmetry. More technical details can

be found in App.

3.3 Flavor Symmetries

Flavor symmetries can be classified in different categories according to whether they are
e global or local;
e Abelian or non-Abelian;
e continuous or discrete.

In the SM, the largest flavor group E| is U(3)?, since there are five different particle species and three
families. In SO(10), the maximal flavor group is U(3), since all SM fermions are contained in 16.
Hence, every flavor symmetry has to be a subgroup of U(3)® in the case of the SM and U(3) within
SO(10). As the masses and mixing parameters do not reveal a flavor symmetry at low energies, the
flavor symmetry has to be broken spontaneously or explicitly above the electroweak scale. In the
following, we firstly outline continuous flavor symmetries, before we summarize facts about discrete
symmetries, which are needed in the following discussion. Technical details regarding group theory
can be found in App.

3.3.1 Continuous Symmetries

Additional Abelian symmetry factors are common in string theory below the compactification scale.
But, they can only explain hierarchies in mass matrices by the Froggatt-Nielsen mechanism and
texture zeros. Exact relations between elements are not possible. Non-Abelian flavor symmetries,
like SU(2), SO(3) and SU(3) relate different couplings. Barbieri et al. [25,26] proposed U(2) =
SU(2) x U(1) as flavor group where SM fermions are assigned to the representation 2 + 1, which
only allows direct mass terms for the third family, especially the top quark. The symmetry is broken
in two steps SU(2) — U(1) — nothing. However, SU(2) cannot explain the number of generations,
because the fundamental representation is two dimensional. As the fundamental representation
of SO(3) and SU(3) are three-dimensional, they are ideal candidates to explain the number of
generations. On the level of Lie algebras s0(3) = su(2), since SU(2) is the double covering of SO(3).
Therefore, SO(3) models differ from SU(2) models by the used representations only. In SO(3)
models, e.g. 27|, only vectorial representations are used, but half integer spin representations are
not used. SU(2) can be further embedded into SU(3). King and Ross [28,29] introduced a model

3In almost all models, the flavor symmetry and the gauge symmetry are a direct product and commute. However,
there are models, where gauge interactions and the flavor symmetry do not commute, e.g. [190].
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based on SU(3) which is firstly broken to SU(2). They explain fermion masses by a set of flavon
VEVs, i.e. VEVs of gauge singlets which transform under the flavor symmetry. Models based on
the Abelian flavor symmetry U(1) and the non-Abelian group SU(3) might be anomalous and the
anomaly constraints have to be fulfilled in a local flavor symmetry. Anomalies are outlined in App.
B3l

In the following two subsections, we briefly introduce the Froggatt-Nielsen mechanism and lepton
flavor charge symmetries, since their knowledge is required in the following chapters.

Froggatt-Nielsen Mechanism

Froggatt and Nielsen [191] proposed a mechanism to explain the large hierarchies in the quark and
charged lepton sector by the introduction of a U(1) symmetry, usually denoted by Froggatt-Nielsen
symmetry. The U(1) charges Q; of the particles F; determine the suppression factor of each element
m;; in the mass matrix, i.e.

mij ~ A9t (3.42)

where A is some small number. The mass of the heaviest particle is usually generated at tree level.
The Froggatt-Nielsen mechanism is implemented in an EFT approach. At some high-energy scale,
there are heavy vector-like fermions X which couple to massless fermions. After the heavy vector-
like fermions are integrated out and the scalar fields # in the Yukawa couplings acquire a VEV,
they generate mass terms for the light fermions which are suppressed by A = () /Mx where My
is the mass of the vector-like fermions X. However, since the Yukawa couplings X F;0 are arbitrary
numbers of O(1), which are not related among each other, the Froggatt-Nielsen mechanism can
only explain the hierarchy but not the value exactly. There are several models which implement the
Froggatt-Nielsen mechanism. The additional U(1) factor can be anomalous, if the model relies of
the cancellation of the anomalies by the Green-Schwarz mechanism [192|. However, there are also
models which are non-anomalous, where the anomalies are cancelled by additional fermions.

Lepton Flavor Charge Symmetries

In this section, we consider continuous flavor symmetries of the neutrino mass matrix. One class of
them are the lepton flavor charges L., L, and L; and combinations thereof. The charge assignment
is given in Tab. @ In total, there are 10 different linear combinations c.L. + ¢,L, + c-L;,
Ce,u,r = 0, £1 which can serve as a symmetry of the neutrino mass matrix. However, most of them
are already phenomenologically excluded (L, L, Le—Ly, Le—Lr, Le+L,— L, and L — L, + L),
only 4 of them are viable (L, L, —L;, L — L, — Ly and L.+ L, + L;). The last one Lo+ L, + L,
corresponds to total lepton number conservation which results in Dirac neutrinos but does not
constrain masses and mixing angles. In the following, we concentrate on the lepton flavor charges
which are compatible with Majorana neutrinos. In the Dirac neutrino case, the RG effect is rather
small, since the neutrino Yukawa couplings are small. We briefly discuss the flavor symmetries Le,
L.—L,—L;and L, — L.

The flavor symmetry L [16-18| restricts the form of the lepton Yukawa couplings and the effective
neutrino mass matrix to

Ye 0 0 0 0 0
(23)

.= o v v comy = m M (3.43)
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E(Le) fgu) ES—) €1, N1 62,N2 €3, N3
L, 1 0 0 -1 0 0
L,| 0 1 0 0 -1 0
L;| O 0 1 0 0 -1

Table 3.2: Lepton flavor charge assignment. In some models (e.g. [17]), only
the charge of the left-handed doublets are specified and the charges of the RH
particles is chosen differently. We restrict ourselves to this charge assignment.

in flavor basis

Yye 0 0 0 0 0
Ye=| 0 y, O , my, = y/|Am3,| a b (3.44)
0 0 yr d

where a, b and d are parameters of O(1). a and d can be chosen real (after electroweak symmetry
breaking). The neutrino mass matrix results in a normal mass hierarchy m; < mgs < mg. The

neutrino masses are m; = 0, ma3 = % a+d=E/(a— d)2 + 4b% |. The atmospheric mixing angle

is close to maximal, i.e. tanfy3 = O(1). However, the solar mixing angle and 63 vanish. Therefore,
the symmetry has to be broken by additional contributions to the first row of the neutrino mass
matrix. These breaking terms can originate from flavon fields of the U(1) symmetry [17], as it is
done in the Froggatt-Nielsen mechanism [191].

L. — L, — L [19] restricts the flavor structure to

Ye 0 0 0 Mey Mer
Yo= 0o v*® v® | m=. 0o o0 (3.45)
0 }/'6(32) }/'6(33) . . 0
in flavor basis
e 0 0 0 a b
Ye=| 0 y, 0 |, my, =/|AmZ,| | . 0 0 (3.46)
0 0 yr .. 0

where a and b are real (after electroweak symmetry breaking) coefficients of O(1), which result in
an inverted mass hierarchy va2 4+ b2 = my = mq > ms3 = 0. The atmospheric mixing angle is

2 . . . .
tan a3 = — V3 and 015 vanishes. As the solar mass squared difference vanishes, the solar mix-
\/2|a|*+|b|*

ing angle is unphysical. Small corrections, which induce a solar mass squared difference, however,
lead to an almost maximal solar angle.

L, — L, [20-24] restricts the flavor structure to

Ye 0 0 a 0 0
V.= 0 y, 0 |, m, = y/|AmZ,| 0 b (3.47)
0 0 yr 0

where a and b are coefficients of O(1), which result in a quasi-degenerate mass spectrum a = my ~
ms = m3 = b, where the atmospheric mixing angle is maximal and the solar angle and 613 vanish.
The mass matrix automatically obeys a u — 7 exchange symmetry [48-51], i.e. , the mass matrix is
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of the form
A B B
my, = . D FE ) (3.48)
D

L, — L; can be gauged, since it is anomaly-free [193,194]. Moreover, it can be extended to include
RH neutrinos with charges given in Tab. [3.2] As a consequence, the charged lepton Yukawa
couplings are real and diagonal as in Eq. (3.47). The neutrino Yukawa couplings and the RH
neutrino Majorana mass matrix are

a 0 0

X e 0 0
mp = v 0 b 0 and Myy =M . 0 Yew , (3.49)
00 d 0

where a,b,d, X,Y,¢,w are real parameters. After integrating out the heavy RH neutrinos, the
effective light neutrino mass matrix is given by

2 S0 o
_ bd —iw
my = o L= (3.50)

which has the same form as the one in Eq. . Therefore, L,, — L, has to be broken [24] in order
to generate a successful phenomenology. The non-vanishing mass squared difference Am?2; is given
by

o
M2 | Y2 X2

In the following, we break L, — L, softly by additional small parameters in Myy. The first and
minimal approach is to add just one small entry to Myn. For instance, we can add to the 1-2
element an entry e eX with real € < 1. The resulting low energy mass matrix reads

aZe 0 —adeetx—w—9)
X

XY
v? bdei
d2 €2 ei(2x—2w—9)
XY?

It is interesting to note that there is no C'P violation in oscillation experiments which can be
immediately seen by the vanishing of Jop (See App. ) or at high energies. In order to have C'P
violation, we are therefore forced to add another perturbation to My y:

X e ¢ et 0
Myn =M © e YeW || (3.53)
: 0

By rephasing all mass matrices, it can be shown that there is only one physical phase. Therefore,
we choose ¢ = w = 91 = 0 and ¥y = 1. This leads to the low energy effective mass matrix

ﬁ 0 —adey
,02 X Xuﬁl/
m,=—> 1 " 0 i , (3.54)
M . ] —d2(X €9 e“p—e%)

XY?
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which has 2 texture zeros. This allows us to use the well-known predictions [195-198] for neutrino
mass matrices with zeros in the 1-2 and 2-2 elements. In particular, only quasi-degenerate light
neutrinos are compatible with such a matrix and in addition it is required that the 1-1 and the 2-3
elements are of leading order and similar magnitude [196]. This is however just the approximate
form of a mass matrix conserving L, — L.

After inserting the conditions of vanishing 1-2 and 2-2 elements in the definition of the general
neutrino mass matrix in flavor basis, an expression for the ratio of neutrino masses is obtained. In
the expansion in terms of the small parameter sin 63

tan 6
M < tan? 03 — sin 013 cos d cot Oy % ) (3.55a)
ms cos? O3

tan @
’7712 ~ tan® 3 + sin f13 cos d tan 9 r12 23 (3.55b)
ms COS (923

is obtained. As the atmospheric mixing angle is close to maximal and sinf3 is small, the light
neutrinos are obviously quasi—degenerate. The ratio of the mass squared differences ¢ which is
defined in Eq. (3.1)) is obtained from the ratio of masses

tan fo3 sin? 023

(=~ ‘4 sin 13 cosd (3.56)

cos 2053 sin 2019
As ( is inversely proportional to the rather small quantity cos 263, it is necessary that sin 613 cosd =
Re U, < cos 26,3. Hence, the Dirac phase should be located around its maximal value 7 /2, i.e., CP
violation is close to maximal. The larger sin 613 is, the smaller cos d has to be, i.e. the C'P violation
becomes close to maximal. Furthermore, the angle 623 cannot become maximal in order to keep ¢
small. From Eq. it can be deduced that the mass ordering for 653 > /4 is inverted and
otherwise normal. These predictions are almost independent of the precise value of 612, which can
receive large renormalization corrections which we discuss in Sec. The effective mass governing
0v2/3 decay shows again that maximal atmospheric neutrino mixing is forbidden

v? a? 9 |Am2,|
=— — ~tan“ 0 82 3.57
(Mee) 2 x = tan b 11— tan 6] (3.57)

Since the charged leptons display a hierarchy, it is natural to assume that also the eigenvalues of
the Dirac mass matrix are hierarchical. Then it is required that also the heavy Majorana neutrinos
display a hierarchy in the form of Y > X. Typical values of the parameters which in this case
successfully reproduce the neutrino data are Y = O(1), a = 0(0.01), b ~ d = O(0.1), X = 0(0.001),
€1 = 0(0.001) and e2 = O(0.1). With these values, the eigenvalues of My are approximatively
given by M X and M (Y £ €2/2).

3.3.2 Discrete Symmetries

After continuous flavor symmetries are broken, there might be still discrete symmetries of the

Lagrangian. There might be even discrete symmetries which are not embedded into a continuous

symmetry. Compared to continuous flavor symmetries, they have the advantage, that they usually

contain more small representations which can be used to construct models and the spontaneous

breaking of a discrete symmetry does not lead to Goldstone or massive gauge bosons. Abelian

discrete groups €D Zy, contain only one dimensional representations and they can be used to forbid
1

or suppress certain couplings. However, it is not possible to relate couplings similar to the continuous
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Abelian group U(1). In the following, we briefly review the most important facts of y — 7 symmetry
and the way to obtain tri-bimaximal mixing from the group A4, since we refer to both in the
following sections.

pu — T exchange symmetry

The experimental data of the neutrino mass matrix is compatible with a y — 7 exchange symme-
try [48-51], i.e. neutrino masses can be described by the matrix

A B -B
m,=| . D C (3.58)
D

in flavor basis which is invariant under the exchange of the second and third row and column. The
neutrino masses are given by

m3=C+ D, ml’g—;(A—C+D:|:\/8BQ+(A+C—D)2> (359)

The p — 7 exchange symmetry leads to maximal atmospheric mixing and vanishing 1-3 mixing. The
solar mixing angle is determined by

2V2B

D-C-A"
The bimaximal neutrino mass matrix is automatically y—7 symmetric. However, the —7 exchange
symmetry is not compatible with the charged lepton mass matrix, since m, # m,. Therefore, it is
difficult to implement this symmetry. One possibility is by the Dirac screening mechanism which is
described in Chapter [4 which completely cancels the flavor structure of the Dirac mass matrices in
the DS mechanism. Therefore the neutrino mass matrix is not related to Yukawa couplings and its
flavor structure is given by Mgg which is independent and can obey a p — 7 symmetry.

tan 26019 = (3.60)

Ay

The group Ay is of order 12 and is the symmetry group of the regular tetrahedron. It is also
isomorphic to the group of even permutations of 4 distinct elements. Ma [30] used it to describe
the neutrino mass matrix and to explain the MNS matrix. It is the smallest group with a three
dimensional representation. In addition, there are three one dimensional representations which are
denoted by 1; 2 1, 1, 21" and 13 =2 1”. 1’ and 1” are complex conjugated to each other while
the other representations are real. It can be embedded into the group SO(3). The character table,
generators and the Kronecker products are given in [30].

Phenomenologically, A4 is interesting, since it can lead to tri-bimaximal mixing in the lepton sec-
tor [199]. Ma assigns the left-handed lepton doublets to 3 and (eg, ugr, Tr)T ~1 @1 ®1". Ay is
broken by electroweak Higgs doublets ¢ ~ 3. After the Higgs doublets acquire all the same VEV
(¢i) = v the charged lepton mass matrix becomes

me = diag (me, my, ms) Ue (3.61)

i27/3

where w = e and m; = y;v. The charged lepton mass matrix is diagonalized by the so-called

magic matrix

11
w o w? | (3.62)

u)2 w

—_ =
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In addition, Higgs triplets are introduced which transform as £ ~ 1 ® 1’ & 1” @ 3. The neutrinos
acquire a mass via the triplet seesaw mechanism

a+b+c 0 0
m, = . 1+ wb+w?c d (3.63)
a+ w?b+ we

with a, b, ¢ coming from the A4 singlets and d = (£4) from the first component of the Ay triplet. The
other components of the triplet do not acquire a VEV. The neutrino mass matrix is diagonalized
by a maximal 2-3 rotation if the equality b = ¢ is assumed, which results in a tri-bimaximal mixing
matrix, as it has been shown in Sec. 3.1.1]

Altarelli and Feruglio [200] derived tri-bimaximal mixing by flavons. Ay is broken by two 3 flavons
in the directions (¢') = (v, 0, 0) and (¢) = (v, v, v), which break A4 to two different subgroups.
In addition, there is a singlet £ which obtains the VEV (£) = u. ¢ couples to the charged leptons
and leads to the mass matrix given in Eq. ¢’ and & couple to the D5 operator which results
in the mass matrix

0 0
(H)* [ “
y a d (3.64)
A a
where .
aw%, dw%. (3.65)

The separation between the two sectors, which allows the breaking to different subgroups, can be
explained by an additional symmetry.

3.4 Quark Lepton Complementarity

Recently, it has been realized [12-14] that the sums of the 1-2 and 2-3 mixing angles add up to 45°
within 1o

i T
012 + V12 = T B3 + Vo3 ~ 1 (1.2)

According to Eq. , which are called quark lepton complementarity (QLC) relations, the quark
and lepton mixing angles are complementary to maximal mixing. If these relations are not ac-
cidental coincidences, they will imply a symmetry which connects quarks and leptons as well as
some mechanism which produces maximal or bimaximal mixing. However, even in this context,
deviations from the QLC relations can be expected due to symmetry breaking and RG effects.
There are several attempts [13,201-205] to implement the QLC relations which mostly lead to
approximate QLC relations by the interplay of several independent contributions. The simplest
unified model which implements a quark-lepton symmetry in a straightforward way is the PS model
[201,203]|. The phenomenology of schemes which obey the QLC relations has been studied in several
works [202,205-211].

One general scheme for the QLC relations is that

“lepton mixing = bimaximal mixing — CKM”,
where the bimaximal mixing matrix is Uy, = Uas(m/4)Ura(7/4).

We assume that bimaximal mixing is generated by the neutrino mass matrix. That is, the same
mechanism which is responsible for the smallness of neutrino mass also leads to the large lepton
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mixing, and it is the seesaw mechanism that plays the role of the additional structure that generates
bimaximal mixing. Therefore

Unins = UlU, = VT aUbm, (3.66)

where I', = diag(e™, /@2, ¢1%3) is a phase matrix that can appear, in general, in the diagonalization
of the charged lepton or neutrino Dirac mass matrix. A quark-lepton symmetry leads to similar
Dirac mass matrices in the lepton and quark sector which is the origin of the CKM rotations in the
lepton sector. There are two appealing possibilities:

e In a certain (“symmetry”) basis, where the theory of flavor is formulated, the neutrino mass
matrix is of bimaximal form. So

Ul/ = Ubrn ) (367)

and the charged lepton mass matrix is diagonalized by the CKM rotation
Ue = VekuM. (3.68)

However, as it has been noted in Sec. the masses of charged leptons and down quarks are
different at the GUT scale: in particular, m./m, = 0.0047, whereas mgq/ms = 0.04 — 0.06,
and also m, # m, . Since m, # mg, the equality in Eq. implies a certain structure of
the mass matrices in which the mixing weakly depends on the eigenvalues.

e In the “symmetry” basis both bimaximal and CKM mixings come from the neutrino mass
matrix, and the charged lepton mass matrix is diagonal, i.e. the symmetry basis coincides
with the flavor basis. In this case the Dirac mass matrix of neutrinos is the origin of the CKM
rotation, whereas the Majorana mass matrix of the RH neutrinos is responsible for bimaximal
mixing. Since the eigenvalues of the Dirac neutrino mass matrix are unknown we can assume
an exact equality of the mass matrices

My =Mmp , (3.69)

as a consequence of the quark-lepton symmetry. The equality in Eq. propagates the
CKM mixing from the quark to the lepton sector. In this case, however, the GST relation
between 12 and the ratio of mg and ms [11] turns out to be accidental. Moreover, it is to be
explained why in the symmetry basis the charged lepton and down quark mass matrices are
simultaneously diagonal in spite of their different mass eigenvalues.

These two cases have different theoretical implications, however the phenomenological consequences
and the RG effects are the same. In the following, we assume the first scenario for definiteness, i.e.
the effective light neutrino mass matrix, Eq. (3.15)), should generate the bimaximal rotation:

My = My = DsUpmDyjoamy 28T, Uik Ts. (3.70)

Here I's = diag(ei‘s1 ,el%2, ei53) is a phase matrix, mgiag is the diagonal matrix of the light neutrinos,
and I’/ = diag(ein/Q, ele2/2, 1) with ¢; being the Majorana phases of light neutrinos.

According to our assumption, the CKM rotation follows from the diagonalization of the charged
lepton mass matrix and we parameterize it as

U, = F¢VCKM(19¢j, 07) . (3.71)



3.4. QUARK LEPTON COMPLEMENTARITY 31

Here the diagonal matrix of the phase factors on the RH side has been absorbed in the charged
lepton field redefinition; Vokw is the CKM matrix in the standard parameterization, ¥;; and 09 are
the CKM mixing angles and phase, and

T, = diag(e'?!, €192, €1%3) . (3.72)

Thus, in general, there are three phase matrices, I's, I', and I'y, relevant for relations between the
mixing angles. Finally, from Eq. (3.71) and Eq. (3.70) we obtain

Unins = V@i 00T (6 — ¢1)Upm, (3.73)
and therefore in Eq. (3.66) oj = d; — ¢;. The neutrino mass matrix in flavor basis equals
mi = Vdmmbm Voxu - (3.74)

From Eq. (3.15) and Eq. (3.70) we find an expression for the RH neutrino mass matrix analogous
to [212]:
My = TsmS8 U T o (md#8) 1T UL mioer; (3.75)

where m Dag denotes the diagonalized neutrino Dirac mass matrix mp. We absorb the phase factor
I's in My and omit it in the following. Also the CP phases ¢; are included into the masses of the
diag (Mmd8)~1  Hence, we obtain

light neutrinos T,/ (m;,*®) 1T, 5 =
My = mp U (m28) UL mBe | (3.76)

which can be written explicitly in terms of neutrino masses and mp

24 V2B —V2B
1 diag . C+A C-A diag

Mpyny = 1D ‘ ' ciA |m (3.77)
where . ) ) ) 5
A= — + —, = — - —, =—. (3.78)
mi mo mo mi ms3
We can parameterize m%iag as
m%ag = my diag(€”?, ¢, 1), (3.79)

with m; being the mass of the top quark and € ~ e ~ 3-1073. The RH neutrino masses are easily

estimated using the smallness of € and ¢
m2 2 2
my 2 9 AC 2 nA”—B

M3 ~ (A-I—C) Ms ~ mye A+’ 94

(3.80)

Furthermore, the 1-2 and 2-3 mixing angles are of the order of €, whereas the 1-3 mixing is of the
order of €.

In the case of a normal mass hierarchy, m; < my < mgs, Eq. (3.80) lead to

th 2m?2e> 2m2e

, My =~ , M=~ , 3.81
4m1 2 ms3 ! my ( )

M;3 ~
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in agreement with the results of [212]. Notice the permutation character of these expressions: the
masses of the RH neutrinos M, My and M3 are determined by the light masses mo, ms and mjy.
With m; — 0, apparently, Ms — co. For € = e ~ 3-1073 and m; = 1072 eV, the masses equal

M;=9-10"% GeV, My, =1-10'" GeV, M; =5-10° GeV. (3.82)
Thus, there is a “quadratic” hierarchy as expected to cancel the hierarchy in mp.

In the case of an inverted mass hierarchy, ms < mj ~ ms = m4, and the same CP phases of 14
and vy we obtain from Eq. (3.80)

2 2 2 2 14
2
Msr 2 Ay S gy THE (3.83)
2mg ma ma

where mg = 4/ |Am§1\. This leads again to a strong mass hierarchy. Notice that now the mass of
the lightest RH neutrino is determined by the atmospheric mass scale. Thus apart from special
regions in the parameter space that correspond to level crossings (See Sec. ) the QLC relations
imply generically a very strong (“quadratic”) mass hierarchy of the RH neutrmos and very small
mixing: ©;; ~ €. As we will see, this determines substantially the size of the RG effects.

Let us introduce the unitary matrix, Uy, which diagonalizes the RH neutrino mass matrix

UNMNNUN = Nl?vg = dlag (Ml, Mg, Mg) (3.84)
and the mixing matrix can be parameterized as
Un =TaV (045, A)l¢a, (3.85)

where ©;; and A are the angles and CP-phase of the RH neutrino mixing matrix. They are used
in the discussion of the RG effects in Sec.

We will not elaborate further on the origin of the particular structures of My in Eq. (3.77)), just
noticing that it can be related to the cancellation mechanism which is discussed in Sec. [I1]

Note, that the relation Eq. ( is not realized precisely even for zero phases «; since the rotation
matrix related to the Cablbbo angle has to be permuted with Usz(7/4) in Eq. (3.66) to reduce the
mixing matrix to the standard parameterization form. From Eq. (3.66)) we obtain the following
expressions for the leptonic mixing angles:

1 1
Ugo = cosfi3sinfis = sin(% — o)+ 3 sin Y12 [\/5 —1—Vcos(ag — 041)} + §Vub cos(ag —aj; —07). (3.86)

This expression differs from the one derived in [14] by a factor cos 013 as well as by the last term, that
turns out to be relevant at the level of accuracy we will consider here. The 1-3 mixing [14,206-211]:

. sin 1912 Vub sin 1912
sinfy3 = — 1—Vypcosag) — —=cos(ag — 07) ~ — 3.87
13 7 ( cb 3) NG (ag —07) NG (3.87)
or equivalently |Ues| = |sin 63| is large in this scenario and, hence, the Dirac CP phase ¢ is close
to 180°. So, for the 1-2 mixing we find the relation
. ‘Ue2| 1
sinfjg = ——— o(1 + = sin? 9y 3.88
[~ UL+ goin ), (389
and Ugg is given in Eq. ((3.86)).
Note, that the QLC relation for the 1-2 mixing angles can also be written in the form
arcsin(V,s) + arcsin(Ueg) = Z (3.89)

which coincides in the limit U3 — 0 with Eq. (1.2]). The expression for the 2-3 mixing reads

Ve
+ ﬁ(l —cosas)| . (3.90)

Uz = cost13sin 012 = cos vy [sin(m/4 — Oup)



Chapter 4

Cancellation Mechanism

As we have pointed out in Sec. Yukawa couplings are related in unified theories, especially in
left-right symmetric models, like Gaa31 and Gaag Yy, ~ Y and in SO(10) or Eg Y, ~ Y,. Therefore,
neutrino Yukawa couplings are strongly hierarchical, although the neutrino masses show a very
modest hierarchy. In this chapter, we present a simple and elegant mechanism to cancel the strong
hierarchy encoded in the neutrino Yukawa couplings. In Sec. we explain the cancellation
mechanism. In Sec. we argue that the same formulas hold for singular mass matrices of the
additional singlets. Finally, specific realizations are discussed in Sec.

4.1 Description of the Mechanism

We work in the framework of the cascade seesaw mechanism which is described in Sec. B.1.21

Defining
F= Mg "mp, (4.1)
we can rewrite the formulas of the DS contribution
mPS = FT MggF (4.2)
and the LS contribution
mbS = — [FTmS,, + mgl,F] (4.3)

in terms of F' and the matrices Mgg and mg,, which are not a priori related to the SM Yukawa
couplings. If MgN shows the same hierarchy as mp, the hierarchies cancel and F becomes a non-
hierarchical matrix. Turning the argument around, we impose the relation Mgy = Ffleg, where
the singular values of F' are required to be quasi-degenerate. We call that complete cancellation.
More generally, the cancellation can be incomplete or partial, i.e. F' is still hierarchical, which shows
up in the realization by the flavor symmetry 7% (See Sec. .

The relative size of the two contributions

mbd _msyMsy _ msy

-1
mDS  mpMgs MSSF (4.4
depends on the relative hierarchy between mg,, Mgg and F. One appealing possibility in the
context of GUTs is mg,,mp ~ O(Aew), Mgy ~ O(Agur) and Mgs ~ O(Mp;). Then the DS
term dominates over the LS term by mZS/mDPS ~ ©(1073). At the same time, the neutrino mass
scale m, < eV is naturally explained by the hierarchies between mp, Agur and Mp;. However,
since the singlets are not related to the GUT and their mass scale is also not fixed by any other

33
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means besides the experimental data, it is arbitrary and could also be lower than Agyr. The LS
term gains importance when the singlet mass scale is lowered from the Planck scale while all other
mass scales are fixed. At the same time, the LS contribution leads to a complete cancellation of
hierarchies. Let us comment on the special case that mp and M;:FN are proportional to each other,
which leads to a complete cancellation of the flavor structure and

F o 1= mpo My (4.5)

which is called Dirac screening [78]. In the remainder of this chapter, we concentrate on the
scenario, where mgy,, mp ~ O(Aew), Msn ~ O(Agur) and O(Agur) S Mss < O(Mpy). Therefore
we neglect the LS contribution in the following, such that the mass matrix of the uncharged fermions
is given by
0 Y, (H,) 0
M= | Y, (Hy) 0 Yiv Ay | - (4.6)
0 YS N <A> N M SS

As we have already discussed in the introduction, the mass matrix Mgg of the singlets S; might
be generated above the GUT scale and it is not related to the quark mass matrices. Therefore it
is possible that Mgg has a certain symmetry which is translated to light neutrinos (See, e.g., [12—
14,48-51,118-121|) and not seen in the quark and charged lepton sector. In the case of Dirac
screening, this symmetry propagates immediately to the light neutrino sector. In general, it is
slightly perturbed by F.

For example, the QLC relation [12-14]| can be realized within Dirac screening, since the mass matrix
Mggs can be the origin of bimaximal mixing. Then the CKM type mixing follows from the charged
lepton mass matrix which is related to the mass matrix of the down quarks, so that U, = Vg, In
the lowest order (without radiative corrections) we find from Eq.

Hu 2 Hu 2 * a
mi = [<A q Ul MgsU, = PA >] VEauUitn MESIUT Ve - (4.7)
(A)n (A)y

The leptonic mixing matrix equals Uy ng = VCTKMme. This realizes the so called “neutrino sce-
nario” which leads to deviations from the exact QLC relations [14].

4.2 Singular Mgg

Let us consider the special case of the DS contribution of a singular Mgg, det Mggs = 0, which can
be a consequence of a certain symmetry in the singlet sector. Now one cannot immediately use
Eq. and the whole DS mass matrix should be considered. In what follows we show that the
tree-level mass matrix of the light neutrinos is still proportional to Mgg, that is, Eq. will
hold even if Mgg is singular. For this we will compare the light neutrino mass spectra in the lowest
approximation found from the whole DS matrix Eq. and from the matrix m, after decoupling
of the heavy degrees of freedom in Eq. .

According to Eq. the condition det Mgs = 0 implies (at least one) zero eigenvalue in the
spectrum of the usual left-handed neutrinos. The same follows from the complete matrix. Indeed,

det M = — (det mp)* det Mgg = 0,

and hence, a zero eigenvalue of Mgg leads to a massless eigenstate of M. The non-zero eigenvalues
of the matrix m,,, &, coincide with eigenvalues of the full matrix M up to corrections of the order
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(Hy) / (A) . This can be seen by inserting &; in the characteristic polynomial of the complete
matrix xa [A]. The result is of the order of O(((Hy) / (A}N)S) ~ 0 which proves the claim.
There are no other light states, because the expansion of the polynomial

N -6

i

in eigenvalues of the order (H,) does not yield any new solutions. All other eigenvalues are at least
of the order O((A)3 /Mss).

A peculiarity of the spectrum of M is the appearance of one heavy Dirac particle, if the eigenstate
of Mgg with zero mass, S, couples to only one right-handed neutrino N. This Dirac particle is
formed by S and N.

The mass spectrum can be easily obtained if Mggs = diag (Mg1, Mgz, 0) in the basis where Ygn =
diag (y1, y2, y3). Apart from one zero mass which corresponds mainly to v3, and two super heavy
eigenvalues Mg1 and Mgy for two singlets S, we find

H, 2 H, 2 N 2 2 /(A 2
N N

my = Mgy

that is, two light neutrinos are predominantly given by v with masses m; and mg, two heavy
neutrinos mostly consisting of Nq 2 with masses M; and M> and one heavy Dirac particle of the
GUT scale mass Mpg which is formed by N3 and S3. The light eigenstates are mainly composed of
the left-handed neutrinos and the mixing with other neutral leptons is of the order O((Hy) / (A) y ).
The coincidence of the spectrum of m, and the spectrum of light states of M is related essentially
to the fact that the relation between m, and Mgg is linear, and the characteristic polynomial is
linear in the eigenvalues for the non-degenerate case. The same conclusion holds for Mgg with two
zero eigenvalues.

4.3 Realization of DS Matrix Structure

In the following, we outline different possible origins of the DS structure Eq. and discuss how
the condition Eq. can be achieved.

The texture of Eq. with zero 1-1, 1-3, and 2-2 blocks can be obtained by assigning lepton
numbers, e.g.

Lw)=L(S)=1, L(N)=-1, L(H,)=0, L(A)=0.

Therefore, the lepton numbers of the blocks in mass matrix of the neutral fermions Eq. (4.6)) equal

2 0 2
LM)=[0 =20 | . (4.8)
2 0 2

Hence, the DS texture shows up if the introduced lepton number is only broken by the Majorana
mass terms of the additional singlets S. It can be broken explicitly or spontaneously by the VEV
of a new scalar field p which has lepton number L(p) = —2 and couples to S only: S7YgSp. The
interaction 7 Sp is forbidden by gauge symmetry. The possible non-renormalizable term

1
——V(SH
Mp, uP



36 CHAPTER 4. CANCELLATION MECHANISM

is suppressed, if the VEV (p) < Mp;. In the SUSY version, the term NNp is absent due to
holomorphy. Otherwise, an extended gauge symmetry can forbid the 2-2 entry in the non-SUSY
version or if also the left superfield p° exists.

Indeed, in left-right symmetric models N is part of an SU(2)g doublet and the 2-2 block has gauge
charge (1,3). The 2-2 entry appears only if a RH Higgs triplet obtains a VEV. The whole texture
Eq. can be a consequence of gauge symmetry. Let us consider the SU(2); x SU(2)r x U(1)p_1,
symmetry [40,137-140]. The transformation properties with respect to the (SU(2)z,SU(2)r) gauge
group of the mass matrix elements are

2
,3) (1,2) | . (4.9)

The required matrix structure is generated if a Higgs bidoublet with an electroweak VEV, a RH
doublet with a GUT scale VEV and a direct Planck scale mass term of the singlets exist.

Within SO(10) [3,4], v and N are part of 16 and S is a singlet. The required texture can be
generated by the following Yukawa interactions:

Y, 1616 H + Yoy 16 SA + MggS S, (4.10)

where H ~ 10, A ~ 16 are Higgs multiplets. To generate the required matrix Eq. H should
acquire an electroweak scale VEV and A a GUT scale VEV in N (SU(5) singlet) direction.
However, the interactions Eq. do not produce any mixing, and the Dirac masses of quarks and
leptons are equal at the GUT scale. Thus, a realistic model has to contain additional contributions
to the fermion masses which may, in general, destroy the cancellation. For instance, the introduction
of a 126-plet of Higgs fields which acquire VEVs in the directions of the left-handed and RH triplets
in terms of the minimal left-right symmetric model generates the 1-1 and 2-2 blocks. This leads to
additional contributions to the neutrino mass matrix, which are not governed by the cancellation
mechanism.

Apparently, none of those constructions directly lead to the cancellation relation Eq. . The
relation between the Yukawa couplings Eq. can appear due to

e a further unification of v and S, which is discussed in Sec. [4.4}

° a non-Abeliaan flavor symmetry. Two realizations within SO(10) are discussed in Sec.

4.4 Realization of Cancellation Mechanism with GUT Symmetry

In Sec. [£:3] several possibilities are shown to implement the DS matrix structure, although none
of these realizations automatically led to the condition Eq. or even Eq. . Here, we
demonstrate how the Dirac screening mechanism can be implemented within Eg [5-8|. In this
context, we obtain Dirac screening.

The neutral fermions v, NV and S are part of the fundamental representation 27 of Eg. Note that
there are two additional neutral leptons per generation: S” and S”. All three Higgs representations,
27, the symmetric 351¢ and the antisymmetric 351 4, which can couple to the tensor product of
two 27,, are introduced,

(Yor);; 27;27; 27 + (Yas1);; 27;27;351 + (Ya51,),; 27;27;351,, (4.11)

!An Abelian flavor symmetry, like in the Froggatt-Nielsen approach [191], can only relate hierarchies of different
couplings, which results in an approximate cancellation. In order to obtain an exact relation, a non-Abelian flavor
symmetry is required.
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to generate the screening structure, i.e. the matrix Eq. (4.6)) with the proportionality Eq. (4.5]).
In terms of the maximal subgroup SU(3); x SU(3)g x SU(3)c C FEg, the left-handed leptons
transform as L ~ (3, 3, 1). The (SU(3))? assignment of the neutral leptons is

v~ LE N~IL3, S~I3, S ~LL 8"~ L2 (4.12)

See App. for the SU(3)? index structur(ﬂ The neutral components of the Higgs multiplets
H, Hy and Hg which can acquire VEVs belong to

Hg C (3,3,1) + (6,
HiC(3,3,1)+(3,6,1)+(6,3,1)C351,.

The Majorana mass term is generated by Hg E| [9] while the Higgs multiplets H and H 4 can generate
only the Dirac structure. Note that it is not possible to get a Dirac mass term of S = L% with
N = L%, using a 27 Higgs multiplet due to the antisymmetry in the SU(3) indices. However, all
mass terms of the neutral leptons which are required for Dirac screening can be generated by the

symmetric Higgs representation 351¢. Indeed, the VEVs of (Hs)gg and (HS)Eg can be of order
of the electroweak scale and of the SU(2) breaking scale, respectively. Furthermore, the Majorana
{33}
{33}
the same structure of Mgg and the Dirac mass matrices. An additional 3514 can lead to different
structures.

mass of the additional singlets S can be generated by (Hg) However, a single 3514 leads to

The introduction of the antisymmetric 351 4 Higgs representation is more promising, because oth-
erwise it is difficult to explain why two 351 couple differently. The antisymmetric 351, Higgs
multiplet generates all necessary Dirac matrices. It does not produce the Majorana masses of S
which can be done using 351¢ so that the structure of Mgg is different from that of all Dirac
structures.

The following VEVs of the 351 4 and 351¢ components

<(HA)1> ~ O(SU(2)1 breaking scale)
<(HA)£33}> ~ O(SU(2) g breaking scale)
<(HS)§§{> ~ <(HA)§> ~ O(SU(3)L x SU(3) g breaking scale)

lead to the DS structure. Indeed, in the basis (v, N, S, S’, S”) the mass matrix

0 —Y35, <(HA)}> 0 0 0
0 — Y351, <(HA)§33}> 0 0
Visus (Hs)5 ) Yasia ((Ha)i) 0 (4.13)
0 Vst ((Ha)3 )
0

2 Flavor indices are suppressed.
3The 27 and 351 , cannot generate Majorana mass terms because the corresponding Yukawa interactions have to
be antisymmetric in the SU(3) indices.



38 CHAPTER 4. CANCELLATION MECHANISM

is generated with the required structure for v, N and S. Moreover, there is a pseudo-Dirac particle
formed by the additional singlets S’ and S” with a mass of the order of the SU(3)y x SU(3)r
breaking scale.

Note that interactions with a 27 Higgs multiplet can be used to generate sub-leading effects, cor-
recting the masses of quarks and producing some deviation from complete screening if needed.
Furthermore, VEVs of components contributing to the 1-3 and 2-2 block can only lead to entries
which are at most of the order of the electroweak scale since they break SU(2)r.

Finally, we comment on a completely different possibility within SO(10). Since N and S are both
SM singlets, they can be, in principle, exchanged. If S is part of 16 and N is a singlet of SO(10),
the required relation between the Yukawa couplings Eq. is automatically reproduced. There
is even a proportionality as needed by the Dirac screening mechanism in Eq. . The screening
structure can be generated by the interactions

Y16116 + Y5 1616126 + Y,1616 10 , (4.14)

if 16 obtains an electroweak VEV in the v direction and a GUT scale VEV in the N direction,
and 126 has a Planck scale VEV in the direction of the SU(5) singlet. The last term in Eq. (4.14))
leads to Dirac masses of quarks and leptons and also to the Dirac mass term of v and S. The mass

matrix generated by Eq. (4.14) equals

~0 YT(16) Y/ (10)
M= : ~0 YT(16) | . (4.15)
Ys (126)

The 126 Higgs multiplet can also contribute to the 1-1 and 2-2 blocks. However, now Y, and Ysy
are not related to the Dirac matrices of quarks, and the problem of cancellation does not exist from
the beginning. Note, that there is also a strongly hierarchical LS contribution, but it is suppressed
compared to the DS contribution.

4.5 Realization of Cancellation Mechanism with Flavor Symmetry

We explain a realization of the cancellation mechanism within SO(10) with a flavor symmetry.
The SM fermions are unified with RH neutrinos N into three 16;-plets, ¢ = 1,2,3. Furthermore,
we consider three SO(10) singlet fermions S;. In order to ensure that the gauge couplings are
perturbative well above the GUT scale, we only choose low-dimensional Higgs representations:
H ~ 10, A ~ 16 and 45. The form of the uncharged fermion mass matrix is given in Eq. ,
whereas the zeros are due to the particle content, especially, since there is no 126-plet and we do not
introduce non-renormalizable operators of the form 16, 16; A A which is forbidden by symmetry.
The coupling of H to the fermions generates the usual Dirac Yukawa couplings and A couples the
singlets 5; and the 16-plet. After the Higgs scalars acquire a VEV, they lead to mass matrices
for the uncharged fermions. Since the top mass is of the electroweak scale and H also generates
the up-type quark masses, (H) is of the order of the electroweak scale. The components of A can
acquire two different VEVs, one SO(10)-breaking in the SU(5) singlet direction and the other in
the direction of the electroweak doublet breaks the SM down to SU(3)c x U(1)em,. Therefore, we
assume (A)y ~ O(Agur) and (A), ~ O((H)).

In order to explain the number of three generations we assume the fermions 16 to transform with
respect to the flavor group G as representation 3. Additionally, we choose the representation to
be complex to forbid the coupling 16 16 H. This excludes the discrete group Ay, since it has only
a real three-dimensional representation.
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In order to disentangle the gauge and the flavor sector, we assign all SO(10) Higgs fields to the trivial
representation of G and introduce flavons which are additional scalar fields trivially transforming
under the gauge group but non-trivially under Gr. The cancellation mechanism requires a relation
between the VEVs of the different Higgs fields, which is not obviously achievable for the SO(10)
Higgs multiplets H and A. However, it is easy to obtain this relation using flavons. Therefore, we
require that the VEV relation is explained by flavon fields, which forces us to describe all fermion
masses by non-renormalizable operators

%Lﬁfﬁgﬂxﬁ- %SfmgAxl-f- (MSS)fg S¢Sy, (4.16)
where x and x’ are flavons. The VEV relation is achieved by ¥’ = x or X' = x*. As all SM
fermion masses originate from non-renormalizable operators 16 16 10 y, at least one coupling has
to be large in order to explain the top mass. Hence the expansion parameter (x) /A is not small
and multi-flavon insertions have to be taken into account.

The smallest [82] discrete groups which allow the realization of the cancellation mechanism are 7%
and X(81) which have been discussed in high-energy physics literature for the first time by Luhn [213]
and by Ma [214,215], respectively. In the following sections, the cancellation mechanisms is realized
by these minimal groups. They explain the lowest order of fermion mixing, i.e. possibly lead to
tri-bimaximal mixing in the lepton sector and no mixing in the quark sector. The hierarchy of
up-type quark masses are explained only by the VEV hierarchy.

The required idea to cancel the hierarchy in the neutrino mass matrix in a unified context was first
implemented by King and Malinsky [216,217] which considered the standard seesaw mechanism in
a PS model and showed that a relation between different VEVs can in principle be to achieved in
the flavon potential. Our model has the advantage that it can be implemented in SO(10) without
introducing extra dimensions.

4.5.1 T> Realization

The group 17 & Z7 X Zs is of order 21 and it contains five irreducible representations which are
denoted by 1;, 1,5, 15 and 3, 3*. The representations 1, and 15 as well as 3 and 3* are complex
conjugated to each other. It was discussed in [213] for the first time as a subgroup of PSL(2,[F7)
which is a subgroup of SU(3). 7% is also called Frobenius group. Its structure is similar to the
previously introduced A4. The main difference is, that T% has two complex three dimensional
representations and not a real one like A4. Indeed, it is the smallest non-Abelian discrete group
with complex three dimensional representations. Therefore, the product 3 ® 3 does not contain the
trivial representation, but only three dimensional representations, i.e. an additional 3* is needed to
form an invariant. The character table, generators and Kronecker products are given in App.
Due to its similarity to A4, it can be used to generate tri-bimaximal mixing. In the following, we
present a SUSY realization of the cancellation mechanism.

Lowest Order

As it has been pointed out above, the SM fermions 16, are assigned to the three dimensional 3 in
order to explain the number of generations. The fermion masses are generated by the symmetric
coupling to H which transforms trivially under 7% and the flavon y ~ 3*. The Kronecker product
which is given in App. leads to a diagonal Dirac mass matrix where the hierarchy is determined
by the VEVs of x;. The additional fermionic SO(10) singlets S; are assigned to the representation
1, ® 1, @ 15 which leads to a partial cancellation of the large mass hierarchy from the Dirac mass
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Field mz Sl SQ 53 H A Xi
SO0 161 1 110 16 1
Ty 3 |14 1, 131 1, |3

Table 4.1: Minimal particle content in the SUSY 77 model. 16, and S; are fermions,
H and A are Higgs fields and x; are flavons.

matrix in the light effective neutrino mass matrix. The singlets S; are coupled to the SM matter
by A. This information is collected in Tab. [.I] Hence, the resulting Yukawa couplings in the
Lagrangian are
Ly = a (163 H163x1 + 16, H 16, x2 + 16, H 16, x3)/A

+ B1 AS1 (16, x1 + 165 X2 + 163 x3)/A

+ B2 A S3 (16, X1 + w16y x2 + w? 163 x3) /A (4.17)

+ B3 A S3 (164 x1 +UJ2L62 X2 + w163 x3)/A

+AS151+B (5253 + S3 SQ) + h.c.

They generate the mass matrices matrices mp, Mgy and Mgg of the form

0
( o ) a1
(x1)
(A) B1 (x 51 (x2) B (x3)
Msn = B2 (x wﬁz Xx2) w=B2 (x3
S Oe) W B (xs)
ﬁz w 53 <X2> w B3 <X3>
A) B1 0 0 1 1 1 {x1) 0 0
AN(0520)<1ww2>(0<X2>0),
0 0 63 1 w2 w 0 0 <X3>
A 0 0
Mgs = 0 0 B .
0 B 0

Eq. (3.21)) leads to the light effective neutrino mass matrix

a (H)\? A+2B A-B A-B
my, ~ <<A> > D, A+2B A-B | Dy, (4.19)
N A+2B
where b () ) A B
. X2 X3 X1 bt 5
D, = dia , , , A=—, B= . 4.20
T <<xl> () <X3>> 957 05253 420)
The VEVs (x;) have to be chosen as
b €2, 03) e with e~ 31077 (4.21)

{x1) (x1)

in order to produce the up-type quark mass hierarchy. We outline a possibility to achieve this
hierarchy. On the other hand, the large top quark mass requires that (x1) is large, i.e. the ratio
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% = n has to be of the order O(1). Hence Eq. (4.21)) results in

(A+2B)e® (A-B)e® (A—B)é
my, ~ ( O‘A<H> )2 . AveB  A-B . (4.22)
(A)y € A+2B

Note the dominant 2-3 block, which leads to an (almost) maximal atmospheric mixing angle 63,
unless A and B are equal. However, the elements in the first row and column are strongly suppressed
and therefore the two other mixing angles are very small. Especially, the solar mixing angle has
to be generated by additional contributions. The mass spectrum is normally ordered with an
approximately vanishing m;. For 3|B| < |24 + B| we find

my =3 <<C“A§f>€>2 Bl, ms= (&;il)z 124 + B (4.23)

and therefore

52

L (4.24)

|2A + B|?> - 9|B|?
A small ¢ is obtained by |B| < |A|. For a weak hierarchy in the additional singlet mass, i.e. A ~ B,
a hierarchy in the couplings $; < 323 fulfills this condition.
Otherwise in the case |24 + B| < 3|B|, the light neutrino masses are obtained by interchanging mo
and mg, which changes Am3; and Am%2 accordingly. Hence the mixing angles 615 and 613 are also
exchanged.
Note, the VEV hierarchy in the Dirac mass matrix enhances the neutrino mass ¢ =2 ~ (3 : 10_3) 2
1.1-10°, as it can be seen in Eq. . Therefore, the bounds on the absolute neutrino mass scale

O(eV) Zm, ~ %é requires a weaker or even an inverse hierarchy between the singlet masses
N

(A, B) and (A),. Either (A) is close to the Planck scale or the singlet masses (A, B) are of the

order O(Agur). The couplings (3; have to be as large as possible.

According to Sec. [3.1.2)a similar contribution enters the expression of the ratio of the LS over the DS

contribution % é}B . Thus a suppression of the DS contribution leads to a relative enhancement
v N

of the LS contribution and the only way to suppress the LS vs the DS contribution is a small VEV
ratio (A), /(H) < 1072, In this minimal setup, the LS term is diagonal and cannot generate a
solar mixing angle. However, the introduction of a second field A leads to a non-diagonal LS term.

Contributions from Higher-Dimensional Operators

As mentioned the large top quark mass requires the flavon VEV (x1) to be of the order of O(A),
ie. 7 = (x1)/A ~ O(1). More precisely, we require 7 ~ O(¢'/8) ~ 0.48. Therefore, a careful
study of the higher-dimensional operators is indispensable, since they might destroy the leading
order structure. It is necessary to consider at least all corrections up to order n'7, since the smallest
element in the leading order contribution is of the order ne? ~ n'7. The group structure of T4 allows
to directly read off the transformation property of a given operator O(x;) from the transformation
property with respect to the generator A. All relevant operators are presented in Tab. [£.2] Note,
that the order of the operator in € always has to be multiplied by 1", where n denotes the number
of flavons in the operator. Tab. [B:§ in the appendix shows the relevant contributions at each
order in n in the different representations. It can be derived from Tab. All corrections from
higher-dimensional operators to the mass matrices mp, Mgy and Mgg are obtained by the help
of these two tables. The higher-dimensional operators show a different structure compared to the
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Structure | Transformation Properties | Order in €
under Generator A

X1 R O(1)
Xi 1 xe ety nlyy O(e?)
Xt xs e T )yl O(e)
X1 x2 x3 e 7 () X% X2 X3 O(€?)
X2 e T MO O(e)
X e T Mg G

Table 4.2: List of products of x; which lead to contributions up to O(e?) for
(x1) /A =n ~ OQ), {x2) /() = ¢ and (x3)/(x1) = €'. Note that the factor
n™ has to be included for the order n. The generator A uniquely determines the
Tr-transformation properties of each operator.

Field || 16, | S1 S22 Ss (| H A || xi
T 3 1, 1, 131, 1, | 3
Z7 3 0O 0 0 0o 3 1

Table 4.3: The Z7 charge assignment of all fields.

leading order one. Hence, they have to be properly constrained by an additional symmetry. An
investigation of the different contributions reveals that an additional Z7 symmetry is enough, since
it forbids all higher-dimensional operators up to order 7. The Z; charge assignment is presented
in Tab. [£.3] Moreover, the covariants in Tab. show a periodicity in seven because the phase
factors are of the form ¢2™/7 with n being an integer and hence periodic in seven. The periodicity
is due to the subgroup Z7 C T%7. Then all non-vanishing matrix elements are corrected only by small
contributions. However, vanishing matrix elements will be filled.

In the Dirac mass matrix, tiny off-diagonal elements of the order of O(e3n®) are generated. Thus
quark mixing angles cannot be obtained in this way and have to be generated by higher-dimensional
operators of the form 16, 16, 1616'x" (See Sec. [3.2.1]) which contribute to the down quark
as well as the charged lepton mass matrix. It is suppressed compared to the leading order by
(16), / (H) (16') 5 /A. The first row (and column) of the neutrino mass matrix also receives small
corrections from higher-dimensional (Z7 invariant) operators in the 1-2 and 1-3 elements of the
order of O(n7€?). mq remains approximately massless and msy and ms, as well as the atmospheric
mixing angle receive corrections of O(n7) relative to the leading order result. The corrections to
the solar mixing angle and 13 are of the order of O(n”), which cannot account for a viable solar
mixing angle.

In addition, RG corrections cannot generate a sizable solar mixing angle, since the neutrino masses
show a strong normal hierarchy and the solar mixing angle is small. Even if we do not constrain
the higher-dimensional operators by the additional Z7 symmetry, but only require that we fine-
tune some of the couplings such that the additional operators do not spoil the leading order result
concerning the charged fermion mass hierarchy and the largeness of 623 in the lepton sector, we
cannot enhance the elements of the first row (and column) in the light neutrino mass matrix m,,
in order to generate a large solar mixing angle by higher dimensional operators. For this to see,
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observe that the hierarchy is generated by mp. Corrections to mp which cancel the neutrino mass
hierarchy are incompatible with the hierarchy in the quark mass spectrum. It can be checked that
unitary rotations of mp cannot generate a viable 615 while preserving maximal atmospheric mixing.
Therefore corrections to mp do not lead to a viable phenomenology. Corrections to Mgg cannot
change the hierarchy of the neutrino mass matrix as long as they are subdominant. By inversion
of the DS formula, it can be shown, that Mgg has to be almost singular (Mss)fg x f(fB, in order
to fit the neutrino mass matrix. This results in a huge hierarchy of the singlet masses. Small
corrections to Mgy cannot change the hierarchy in m, because it depends on the inverse of Mgy.
A cancellation of order O(e%/?) between different contributions to the elements in the first column
of Mgy weakens the large hierarchy in m,,. It would require the coeflicients of the next-to-leading
order to be O(n~") larger than the leading order. In summary, it is not possible to explain the solar
mixing angle by the DS term alone and additional contributions are needed.

Contribution from the Linear Seesaw

Up to now, the LS term has been neglected. As the LS contribution coming from A alone is diagonal,
we extend our setup by a second A which we denote A’ ~ 16. The additional Yukawa couplings
are defined by

Lar= 1A S (167 x1 + 165 x2 + 165 x3)/A
+ By A" S5 (16, x1 + w16, Y2 + w? 165 3)/A (4.25)
+ By A" S5 (16, X1 +w? 165 X2 + w165 x3)/A .

Note, that it is always possible to find a linear combination of A and A’ with a vanishing GUT
scale VEV. Therefore we assume (A’) ,, = 0 and the cancellation mechanism in the DS contribution
is not affected. The leading order of the LS contribution is

3.~ ~
LS an (H) (A", 2 (3 (<AA/>>L; + 1; ﬁz) €3 2; Biwt—? Z; Biwi™1
m,, 3e <A>N . 0(62) 0(6) s (426)
O(e)

where §; = f/8; and we assume (A) < (A’) such that the main contribution is due to A’.

In order to produce the solar mixing angle, the LS contribution has to be comparable to the DS
contribution. The dominant terms of the neutrino mass matrix are

_ox (3480 SRR X YRR _X SN
a (H) 2 @t 2B e > fiw 2 fiw
e (20) | o

(A)ye

Hence, the remaining hierarchy is by an interplay between both contributions. The SO(10) Higgs
VEVs can been adjusted such that
(A)y (A), en

X = = (4.28)

leads to the correct hierarchy between the first row and the 2-3 block, i.e. the masses of the singlets
S; encoded in A, B (See Eq. (4.20).) have to be smaller than (A),. The resulting mixing angles
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are
tan 912 ~ M (429&)
V6B
sin 63 ~ X261 = 2 — Bs| (4.29b)
V2|2A + B
T
O23 ~ (4.29¢)

under the assumptions that |B| < |A| coming from the discussion of the lowest order and X |3;| <
|A|]. Hence a large solar mixing angle and small 613 can be accommodated. The masses are also
corrected by the LS contribution, especially m1 and mo

o (H ‘3|B| tan2 615 — [24 + B|sin 013‘ (4.30a)
AN
~ « <H> - 2
mo = 3 <A>N 6> |B| ‘1 — tan 912‘ (4.30b)
o (H - -
mg & |2A + B |1+ sin® 613] (4.30¢)
< )N €

as well as the mass squared differences and their ratio { which are given by

H
Am3, ~ <<a ;Nl) 91B[2(1 — 2 tan? 0y5) (4.31a)
~ (H) 1. B2 12 2 2
Am3, ~ <<A>N - <|2A+B| —91B[* (1~ tan?612)”) (4.31b)
_ 2
Cro— , 1 — 2tan® 0o (4.31¢)
’ 2’3—53 ‘ — 1+ 2tan? 019 — tan? 012

in the limit of vanishing #y3. This limit corresponds to a p — 7 symmetric mass texture [48-51].
Hence, the LS term leads to large changes in the 1-2 sector, but mainly preserves the 2-3 sector. Thus
maximal atmospheric mixing is still a prediction of the 7% realization and the other mixing angles
and masses can be fitted to the experimental data. Additionally, higher-dimensional operators to
the LS term are controlled by the Z7 symmetry, as it was discussed for the DS term.

Flavon Potential

The VEV hierarchy which is assumed in Eq. has to be explained by the minimization
of the flavon potential. As we assume that the SUSY breaking scale is much lower, we do not
consider soft SUSY breaking terms. Additionally, since the SO(10) Higgs representations transform
trivially under 7% and the flavons trivially under SO(10), the flavons and SO(10) Higgs fields are
disentangled up to RG corrections as well as the flavor-breaking scale A and the GUT scale Agur
can be separated. Therefore, the flavon potential can be discussed separately. Firstly, we consider
the renormalizable part of the flavon superpotential without any additional symmetry

W = kx1Xx2X3 - (4.32)
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The F-terms of the flavon fields x; have to vanish which results in the set of equations

ow = kXx2X3, and cyclic. (4.33)
Ix1

Eq. is solved if the VEVs of two of the three flavons vanish. Assuming (x1) # 0 explains the
leading order structure of the VEV hierarchy.

However, the phenomenology of the fermion mass matrices requires the introduction of an additional
Z7 symmetry to forbid dangerous contributions. We assume that the additional Z7; symmetry also
exists in the flavon potential. The renormalizable part of the superpotential is then forbidden and
the lowest order is described by

al ag
W= (XT + x5+ x5) + o 3 xa s+ Xixe 3+ xx3xs), (4.34)

but these terms do not allow for the configuration (x;) # 0 and (x2,3) = 0. Hence, we conclude that
Z7 should be broken in the flavon superpotential or there have to exist other fields apart from the
flavons ;. One possibility to reconcile the VEV structure and the Z7 symmetry is to introduce a
driving field ¢ ~ (3*,5) analogous to [218] and an additional U(1)r symmetry which is an extension
of R-parity. The superpotential has charge +2, the driving field has charge +2, fermions have charge
+1 and flavons and Higgs scalars are uncharged under U(1)r symmetry. Hence, the driving field
only appears linear in the superpotential and does not couple to fermions. The flavon superpotential
is given by

W = kox? . (4.35)

The F-term of the driving field ¢ leads to the same condition as Eq. (4.33)) and, hence, is solved if
the VEVs of two of the three flavons vanish.

4.5.2 3(81) Realization

The discrete group 3(81) is of order 81 and has nine one-dimensional representations 1; and eight
three-dimensional representations 3;. The first six of the three dimensional representations are
faithful, i.e. all group elements are represented by distinct elements of the representation. Like in
T7 all representations besides the trivial one are complex. It has been firstly discussed in physics
literature by Ma in [214,215]. In contrast to 7%, ¥(81) is not a subgroup of SU(3) but of U(3).
Note, that the realization in the context of ¥(81) has to be non—SUSYﬁ because the Clebsch-Gordan
coefficients in App. require the complex conjugated flavon field coupling to the SM matter
16, in the coupling of the singlets S; to 16, in order to produce the magic matrix. It turns out that
¥(81) leads to a complete cancellation of the mass hierarchy.

Lowest Order

Analogously to 17, the three generations of fermions 16, are assigned to a three-dimensional rep-
resentation, more precisely to one of the six faithful representations. Without loss of generality we
choose 3;. The flavon x; ~ 35, i.e. the complex conjugate representation of 3; and the SO(10)
Higgs fields H and A transform trivially under 3(81), which leads to a diagonal Dirac mass matrix.
The three additional singlets S; are assigned to three inequivalent singlets, S; ~ 1; & 1, & 15 like
in T7. The particle content is summarized in Tab. It results in the same matrix structures of

4Due to this gauge coupling unification might not be maintained without additional fields.
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Field mz Sl SQ Sg H A Xi
SO(10) 116 | 1 1 1 |10 16| 1

(81 || 3, |1, 1, 1301, 1, || 3,

Table 4.4: Particle assignment in ¥(81) model. 16, and S; are fermions, H and A
are Higgs fields and x; are flavons. Note that 3, is equivalent to 3.

Mgy and Mgg, see Eq. (4.18). The Dirac mass matrix mp, however, is of the form:

a <X1>* 0 0
mp = j\H> 0 (x2" 0 ; (4.36)
0 0 ()"

i.e. the flavon VEVs are complex conjugated and permuted compared to Eq. (4.18). Like in 7%, the
up-quark mass hierarchy is generated by the flavon VEVs

(x1) _ o (xe2) {x3) : 3
—— e, “F=eand n=-"-"—~0(1) with ex~3-107". 4.37
(x3) (x3) ! A M ( )
The effective neutrino mass matrix is given by
e (A28 AR AB
my ~ < ) > A+2B A-B (4.38)
N A+2B

(after a phase redefinition), where A and B are defined in Eq. . Note, the missing factors D,
compared to the light neutrino mass matrix in the realization by T%. Therefore, the hierarchy of
the up-quark masses is completely erased in m, without any further assumptions on (y;) or any of
the couplings.

The masses obtained from Eq. (4.38) equal

a(H)|* ; a(H)|* 4
m2:3 A, m1:m3:3 B, 4.39
@y | @] P (439
and the mass squared differences amount to
HYy|* - -
Amd = 0| MDAz 1BR),  Am2 —0. (4.40)
(A)n

The result is unsatisfactory, since Am%l vanishes. A difference is generated by higher-dimensional
corrections which is pointed out in the next section. Obviously, m, of Eq. is diagonalized by
the tri-bimaximal mixing matrix. Nevertheless the maximal atmospheric mixing angle is unphysical
because of the degeneracy of mi and ms. It is interesting to note that the matrix given in Eq.
is the most general one which is S3 invariant [219].

Finally, we want to comment on the LS contribution, since it improved the phenomenology in the
T7 realization. In the minimal scenario, it is diagonal and mainly the 3-3 element of m, is changed.
The introduction of A’ dominantly results in corrections to the third row and column. Therefore,
in both cases, it is not possible to generate a viable atmospheric mass squared difference while
preserving maximal atmospheric mixing.
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Order in € Operator Structure No. of Operators
O(1) X5 (x3)"" (m=0,...,n) n+1
O(e) X O (m=0,..,n—1) on
O(e) X 0"y (m=0,...n—1) 2n
O(e’) X5 ()" xaxe (m=0,...,n —2) A(n—1)

X3 (X§)"‘2_m Xix2 (m=0,...,n—2)
X (3" ™1 xS (m=0,...,n — 2)
X5 0" " X1 xs (m=0,...n —2)
O(e?) X (32X (m=0,...,n—2) 3(n—1)
XF O 2™ xa x5 (m=0,...,n — 2)
X3 ()2 (x3)? (m=0,..,n — 2)
O(e?) X5 (x3)" "3 (m=0,...,n—3) 1(n—2)
X5 OB)" PTG xS (m=0,..,m = 3)
X5 ()" x2 (x3)? (m=0,...,n — 3)
Xgn (Xg)ni?)im (X§)3 (m =0,...,n— 3)

Table 4.5: List of products of x; and x; which lead to contributions up to O(e?).
Note that for the order n the power n™ has to be taken into account. Since we have to
deal with fields x; and their complex conjugates X, the number of possible operators
is increased compared to 77 and depends on the order n.

Contributions from Higher-Dimensional Operators

Similarly to the realization with T, the large top quark mass requires to take into account higher-
dimensional operators which are potentially dangerous. The necessary flavon VEV hierarchies are
given in Eq. . We again assume 7 ~ (’)(61/8) ~ 0.48. The number of different higher-
dimensional operators is larger compared to the realization by 77, since complex-conjugate fields
are allowed in the operators because the realization is not supersymmetric. Therefore, the general
structure of the higher-dimensional operators is given by X?lx;m JA™ with n; + na = n. As the
smallest non-vanishing element at leading order is of the order of ne?, at least all operators up to
order n'7 have to be considered. The relevant monomials in the fields y; and X; are displayed in Tab.
Similarly to 7%, it is possible to determine the transformation properties of a given operator
under ¥(81) by its transformation properties with respect to the generators which is summarized
in Tab. With the help of these tables, the corrections to each element of mp, Mgy and Mgg
can be derived. They are not corrected by arbitrary powers in € but the corrections are at most
of the equal power in € than the leading order result for non-vanishing matrix elements. Vanishing
ones are filled by higher-dimensional corrections. For mp, they are less or equal to the elements
on the corresponding elements on the diagonal which can be seen in Eq. . The vanishing
elements in Mgg are filled by contributions of O(n?) which can lead to a phenomenologically viable
neutrino mass matrix.

Higher-dimensional operators lead to off-diagonal entries in the Yukawa couplings which can generate
quark mixing angles. The dominant contributions are

O(e*n) O(*n?) O(e*n?)
O(en)  O(en?)
On)

mp ~ (4.41)
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Although the generated quark mixing angles are larger compared to 1%

(D12, V13, Va3) ~ ((’)(6277), O(e*n), (’)(en)) (4.42)

but still too small. Therefore we also have to rely on higher-dimensional operators of the form
16,16, 1616’y *™ as it was pointed out in Sec. .

In the following, we discuss the corrections of higher-dimensional operators to the neutrino mass
matrix. Analytic formulas of the neutrino masses and leptonic mixing angles are difficult to ob-
tain, because the neutrino mass matrix elements are all of the same order, if there are no further
restrictions on the couplings. Therefore, we just note some aspects which can be seen easily and
prove that a viable neutrino mass matrix can be obtained by a numerical example. The atmospheric
mass squared difference Am%z is of the order of 17 and does not depend on corrections coming from
Msgs. Since the atmospheric mixing angle is (almost) maximal, (m,),; > dms2 = (my) 35 — (M) 9.

. 2
Therefore, A — B has to be large compared to the corrections to (fﬁ}f)) dmza ~ O(n). As the

smallness of the solar mass squared difference requires |A| ~ |B| which can be seen in Eq. (4.40)
the relative phase between A and B has to be around = to fulfill the phenomenological constraints.

Hence
B=-A+0(n"),

can lead to the ratio of mass squared differences ¢ ~ O(n?).
Let us present one numerical example, that demonstrates the possibility to fit the experimental
data. The relevant mass matrices are

1.1589 - 10~¢ 0 8.6454 - 1077
mp = : 1.0051-107% 3.4268-10~* | (H,) , (4.43)
: 0.63863
7.4031-107%  3.0486-1073 1.2503
Mgy = | 4.6288-1076 1.9009 1073w 0.91423w? | (A)y , (4.44)

3.2038-107% 1.4336-10"3w? 0.71852w

1 1.7689-10"2w? 3.8688-10"2w
Mss=| . 1.1516-102w —0.7475 Mpy (4.45)
2.3890 - 102 w?

with (A)y = Agur, which result in the effective neutrino mass matrix

1.1809 - €' %019 17675 - 312 1.5297 . 71308
m, ~ . 2.5403 - ¢—10.031 3 4549 . £i3.11 10726V . (4.46)
1.8254

The 30 bounds of the measured parameters [220] given in the standard parameterization [93]:

Am2, =7.9107eV?, Aml, =25103eV?, 615 =33.0°,
013 = 4.50 N 023 = 49.50 y 0= 1370 s Y1 = 3130 s Y2 = 1620

are fulfilled. This set of parameters is fully compatible with the experimental data and therefore
it is possible to produce a phenomenologically viable neutrino mass matrix in this model by the
inclusion of higher-dimensional operators. RG corrections are discussed in Sec. [5.3.5]
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Flavon Potential

The renormalizable part of the flavon potential is given by

Vi) = M2 Il +

kel Z X3 +hee.
i

F A Il A2 Il (4.47)
i i#j

where \;, k¥ and « are real coefficients. In order to analyze it, we parameterize y; in polar coordinates,
ie x; = X,e'i. Then

VX5, &) = M>Y X2+ MY X+ > X2XP+25 X7 cos (o +3;) - (4.48)
i i ik i

The extremization conditions for the VEVs (X;) and (&;) read
av,

X = 2X1 (M? 42X X7 + M X3 4+ Ao X3 + 36X cos (o +36)) =0 (4.49a)

1

Vv,

aTX = —6kX}sin(a+3£)=0. (4.49b)
1

The corresponding equations for (X» 3) and ({2 3) are obtained by a cyclic permutation. Eq.
is solved by either a vanishing VEV (X;) or the relation 3 (§;) + & = nm, n € Z between the phase
of (x) and the phase « of the cubic term.

Hence there is a solution which results in the required VEV configuration at leading order. If we set
(X1) = (X2) =0, (X3) # 0 and require that the extremum is actually a minimum of the potential,
we will obtain the following solutions

2 _ 2
IV e =@ =0, () =25

(Xs) = (4.50)
together with the consistency condition 9x2 > 8M?2)\; .

Higher-dimensional operators modify this result. Here we systematically discuss their effect by using
power counting in A~!. In polar coordinates the D5 part of the flavon potential is given by

2b
V)g5) = Tl z:XZ5 cos (1 + 3%)

2
3 (b2 X7 X3 cos (B2 + 3&1) + by X7 X3 cos (B + 3&1) + cyclic) , (4.51)

where b; and 3; are real coefficients. (X;) and (X3) still vanish. There are only corrections to (X3)
and (&3) of the order O(A~!). More generally, this holds at higher orders in A~! too, since the
leading order in A~! of Eq. (4.49a)) is proportional to (X1) or (X»), respectively

IVy Lo 2 2
——= = (2M~" +2XX3) X7 =0 4.52
8X1 ( =+ 2 3) 1 ) ( )

which forces (X1) and (X2) to vanish in order to ensure the vanishing of 6?(‘{2
Concluding, the leading order structure of the VEVs can be explained. Additional flavon fields have
to be introduced to generate non-vanishing VEVs for (X5 3).
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Chapter 5

Threshold Corrections

In this chapter, we discuss threshold corrections in the standard seesaw framework and its extension,
the cascade seesaw model. In Sec. [5.I] the RG effect between thresholds in the standard seesaw
framework is studied. The result is applied to the cascade seesaw mechanism in Sec. [5.2l The
stability of the cancellation mechanism with respect to the RG is investigated in Sec. using the
results from Sec.

5.1 Thresholds in the Standard (Type I) Seesaw Model

In this section we will consider effects of the radiative corrections [60,61,221,222] in the standard
seesaw model with non-degenerate RH neutrino masses. Our main goal is to understand the cor-
rections between the mass thresholds of the RH neutrinos, since the dominant RG effect is due to
this region for non-degenerate mass thresholds.

Here we will consider the RG effects below a certain scale A:

M; < A, (5.1)

where M; are the masses of RH neutrinos (See Fig. [2.1]).
Let us stress that the mass spectrum of the RH neutrinos can be strongly hierarchical. Therefore

effects of the RG running between different mass thresholds are crucial |9, 62, 63, 69, 223]. We

(n)
introduce the effective operator Oy; which generates neutrino masses in the basis (v, N)

(n)
L =W, NTY Oy (T, NTT . (5.2)

The superscript (n) designates the number of RH neutrinos which are not decoupled at a given
energy scale, that is, RH neutrinos in the effective theory. This superscript will denote also a

range of RG running with a given number of RH neutrinos. In addition, we use the notation
(n—=m) (m)(n+l)  (m=1)(m)
Z =7 Z ... Z Z.

3)
Below the scale A the effective operator Oy; can be written as

(3)
3) o YTH,
O (W)= . (5.3)
Yl/ Hu MNN
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3 3
where ]\4( J\;N is the RH neutrino mass matrix Myy(A) and gfz is the neutrino Yukawa coupling
matrix Y, (A) at the scale A.
The effect of the RG evolution can be split in effects coming from the renormalization of the wave
functions and the vertex corrections. It turns out, that the RG corrections can be factorized in the
LL approximation. So, in general, the renormalization of Y,,, Myx and & is given by

Y, BS 21V, 7o (5.4a)
Myn 28 2T MynZy (5.4b)
LR ZL kZei Zy . (5.4c)

Here Z.yt combines the renormalization effect of the left-handed doublets ¢, the Higgs doublet H,,
and the vertex correction to Y,. Zpy denotes the wave function renormalization effect of the RH
neutrinos N. In order to simplify the presentation, we define the wave function renormalization so
that the usual powers of 1/2 are absent. Eq. describes the renormalization of the effective D5
operator which appears after decoupling (integration out) of the corresponding RH neutrino. Apart
from renormalization of the wave functions and vertices which exist in the SM model this operator
has additional vertex corrections given by the diagrams in Fig. The RG effect due to these

n
diagrams denoted by Z, plays a crucial role in the discussion of the stability of the cancellation
mechanismlﬂ These D5 operator corrections are absent in the SUSY version of theory due to the
non-renormalization theorem [224,225].

-~ ‘ - - A - \\ )/
Hu//*\\Hu H, \W/ H,
/ \ /
ny Y n\ L,
¢ ¢ l L
(a) Higgs self-coupling (b) Gauge interactions

Figure 5.1: The D5 operator vertex corrections. Shown are additional divergent diagrams in the effective theory.

The RG evolution of the charged leptons can be treated separately. As they are integrated out
below the electroweak scale, we do not have to consider thresholds and their RG evolution from A
down to the electroweak scale is simply obtained by integrating the g-function which is given in
Sec. [6.1] However, as it has been mentioned in Sec. the main RG effect on the MNS matrix
is due to neutrinos because of their weak mass hierarchy. Therefore, in the following discussion, we
work in the flavor basis and concentrate on the neutrino mass matrix.

We describe the RG effects in the effective theory, where the heavy RH neutrinos are decoupled
Successivelyﬂ [9,62,63,69,223] as depicted in Fig. In each step (interval between mass thresholds)
we first calculate the RG correction to the matrices. We diagonalize the resulting matrices at the
lower end of the interval, i.e., at p = M; and then decouple N;, (i = 3,2,1). We will denote the

! As the additional corrections are flavor blind, these factors are ordinary numbers.

2The running between mass thresholds of RH neutrinos has been treated analytically in the approximation of
strongly hierarchical and diagonal Yukawa matrix [9]. Here we present a general consideration required for our
approach.
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n
renormalization factors in the LL approximation by (g): 1+ éZ) . This notation is also used for the
parameters of the effective theory. The renormalization factors in the extended (by RH neutrinos)
SM and the MSSM are given in App.
Let us describe the main steps of the renormalization procedure.

(3)
1. The RG evolution between A and M3 yields the operator Oys at Mg

3) 3 (3)

3) 0 zZLYI'H, Zy
Onr (M) = ) (3) 3 (5:5)
ZEMNNZN

(3)
Performing a rotation of the RH neutrinos N =Uy N’ we reduce the renormalized RH neutrino
mass matrix to the form

B) B 3) 3 @ (2)
ULZEMyNZnUy= | Myn 0 ) (5.6)
0 Ms

(2)
where Myy is a 2 X 2 (in general non-diagonal) mass matrix. Let us split the 3 x 3 Dirac
type Yukawa coupling matrix in Eq. (5.5 after this rotation into two parts as

3) B) 3) (3) 9
ZE YT ZnUn= < 1(’}, o ) : (5.7)

where ys3 is the 3rd row of the Yukawa couplings matrix, i.e. the couplings between v; and Nj,

(2)
and Y, is the remaining 3 x 2 submatrix. Then in the rotated basis the operator Eq. (5.5
can be written as

(2)

O (My) o 2 Vi (5.8)
0 My

Below the scale M3 the neutrino N3 is integrated out and from Eq. (5.8) we obtain

@)
(2) —yI My H2 YT H
OM (MS) = & 3 ¥3Hu 1/(2) “

MynN

Notice that the D5 operator is formed in the 1-1 block due to the decoupling of N3.

2. The discussion of the RG running is analogous in the interval Ms — M3. We can write the
operator Oy at the scale My (threshold of Na) as

(2) (2 (2) (2) (2 (2)

(2) — 7T 7 T MYy H? Z, ' YT H, 7
_ extZr Y3 3 Ystl,, Zext extd v u 4N
O (M) = ) @ @)

ZEMZn

(5.10)
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(2)
Here we have included the corrections Z, to the D5 operator.

@)
By applying the rotation N’ =Uy N” the renormalized mass matrix of the RH neutrinos is

diagonalized:
2) 2 (9)@ @ (1)
ULzEmzyUn= | Myv 0 . (5.11)
0 Mo

The renormalized Yukawa matrix is then split as
2) (2 (2 @ 1
ZextYy ZNUn= ( ;% yT > ; (5.12)

(1)
where Y, and yy are two component rows. Decoupling the second neutrino Ny we obtain

(2) (2) (2) 1)

O (My) = |~ ZoxeZn y3 My ysH Zoxy —y3 My o Hi Y, H,
(1)

MnynN

(5.13)

3. Running the matrix down to the lowest seesaw scale M; and integrating out N7 yields

(0) (1—T2)(1_2) P , (1-2)
OM (Ml) = Z ZH Y3 M?j ySHu Zext

ext
(1) O @O (@

(1) (5.14)
Z yd My yo+ YEMGLY,

7 5 AV
- Z Hu Zext .

ext

©0)
4. Finally, evolving O (M7) down to the EW scale, we obtain (after H, develops a VEV) the
mass matrix of the light neutrinos

(0=-3) (3) (3) (3) Ko 0 (3) (3) (3)(0-3)
my =— (H,)? ZL. YT ZnUy -2 | ULZEY) Zeys | (5.15)
M
with
(0)
@@ [ % 0 | T

Kip=ZyUy | Myx | Uy z5 (5.16)

N

Mo

(2) 3)

This expression can be presented in a simpler and more transparent way. Using the definitions of
the matrices Uy and Uy in Egs. (5.11 D we can rewrite m, as

3) B 3)
m, = — (H,)* ZL, | VT Xy MyLY,

ext

Zext ) (517)
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where
3) 3 2 2 (2,) (,2) (3) (3)
X =ZNUNZNUy Zx U2y 'UN 25! (5.15)

describes the RG effects due to the running between the thresholds. Here

(2) (2) 2) (2)
Zhv=| 24y 0 ), Ui=| U~v 0 |, (5.19)
0 1 0 1

and
) (0) (0-1) (0-2)
Zo,=diag | Ze, Zx , Zg (5.20)
is the matrix of the effective D5 operator corrections (Fig. . Note, that
3) (3)
XN Myy=Myy X& (5.21)

which can be seen in two different ways, either by looking at the step from Eq. (5.15)) to Eq. (5.17))
or simply by the property that the effective neutrino mass matrix is symmetric which cannot be
changed by the RG evolution.

5.1.1 Effects of Vertex Corrections

In order to study D5 operator corrections in the (non-SUSY) SM in more details we introduce the
matrix Vi which diagonalizes the RH neutrino mass matrix at A:

(3)
V& Myy Vy = Dy = diag(My, My, M3). (5.22)

2 3
In the lowest order approximation: Zy=Zy= 1, and according to Eq. (5.6) and Eq. (5.11]) we

obtain
(3) (2)
VN :UNU]’V . (5.23)

Therefore the matrix Xy Eq. (5.18]) can be rewritten in the form
Xy = VNZ Vi =T+ VNS Z Vi, (5.24)

where

87, = Zy — 1. (5.25)
Plugging this expression in for Xy in Eq. ((5.17) we find

[ (3) (3)
V] VNZ.DN'VR Y,

my ~ — (Hu)* Zi Zext
2 T _(3%“ 1 1y /T )
= —(Hu)" Zo |V, (Myn + VNOZDN'Vy) Yo | Zext (5.26)
) [ (3) (3)
= —(Hu)" Z&o |Y) My Yo | Zexs
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where
(0) -1 (0-2)
My = Vidiag | My 2.5 My Z71, My 2,1 | Vi (5.27)

According to this expression the effects of the D5 operator corrections are reduced to renormalization
of the (running) masses of the RH neutrinos (at the largest RH neutrino mass).

5.1.2 (Generalizations

This result can be easily generalized in two different ways.

More RH neutrinos

Eq. (5.17) depends only implicitly on the number of RH neutrinos. Therefore, we can easily
generalize our results to the case of an arbitrary number n of RH neutrinos. The effective neutrino
mass matrix becomes

(n) () (n)
my = — (H,)? ZL | VT Xy MynYo | Zet - (5.28)
The RG effect between the thresholds is summarized in
n (1) (3) n o (i) (i)
Xnv=]] 28U )z ([T UNZN | (5.29)
=2 1=2
where
(i) (i) () (@)
Zv= 4y 0 ) U= U 0 (5.30)
0 jln—i 0 jln—i
and
(0) (0-1) (0—(n—1))
Ze=diag | Zy, Z 5.y  Zg . (5.31)

Hence, the main result still holds and the RG evolution between the seesaw scales leads at the
leading order to a rescaling of the RH neutrino masses which can be seen in

(n) (n)
my =~ — <HU>2 Zg;ct YVT VNZHD]QIV]’QZ; Yz/ Zext 5 (532)
where "
Vi My Vy = Dy = diag(My, Ma, ..., M,). (5.33)

Beyond LL Approximation

Beyond the LL approximation, the calculation becomes more involved. There are several difficulties:
e The renormalization factors do not commute any longer like they do in the LL approximation.

e The effective D5 neutrino mass operator receives additional non-diagonal corrections. Thus
has to be renormalized additively by

r 26, Z¥ [k + 6k] ZLZQ% , (5.34)
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because the renormalization cannot be factorized (See Fig. [p.2(a)]) due to diagrams like in

Fig. |5.2(b), As these two loop contributions are of the order of ( 4‘%4, they are about four
orders of magnitude smaller than the one loop contributions and can be neglected in a first

approximation.

H, H,
14 14 14 L > 4 0 14
—»@—4— = —»—@—»—W + D,
v ™
.7 H, H, S //Hu Hu\‘

(a) The vertex corrections to the effective neutrino mass matrix do not factorize. There are additional non—
factorizable divergent diagrams D, which emerge in the effective theory and correspond to a UV finite
diagram in the full theory.

(b) Example of a two loop diagram which destroys the factor-
ization of the vertex corrections to the effective neutrino
mass matrix.

Figure 5.2: Renormalization of the effective neutrino mass operator.

e Finally, finite threshold corrections have to be taken into account, because the threshold
effects to n loop order are of the same order as the RG effects to n + 1 loop order. They
factorize like the renormalization effects, since they emerge from the same diagrams. These
effects might also destroy the structure, as the effective neutrino mass operator receives an
additional contribution compared to —Y,7 M ]?,}VYV.

However, the form of the renormalization of Y,, and My remains the same. The vertex correction
to Y}, factorizes to all orders because N is a singlet and the only coupling of N to other particles is the
neutrino Yukawa coupling as it is shown in Fig. . Furthermore, there are no vertex corrections
to the mass of chiral fields to all orders due to chirality. Especially, there are no vertex corrections
to the mass of the RH neutrinos. Fig. shows the general wave function renormalization of a
chiral field N. For definiteness, we choose a RH field. The blob has a certain y—structure I' which
can be expanded in a basis of the y—algebra

I =a"P, +af*Pr + bf;PLfy” + bﬁPRvu + o . (5.35)

The chirality of the field N ensures that the correction is proportional to PrI'Pr = bﬁy“PR. Hence,
there is no vertex correction to the mass.

Concluding, the simple formulas which have been derived do not hold beyond LL approximation in
the SM. In the MSSM, however, the formula can be easily generalized up to arbitrary loop order,
because the only obstacle is the non—commutativity of the wave function renormalization factors.
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H,
P ’\\
/
N % N N l 14
\
\\ H,
\
\
(a) The renormalization of a chiral field. (b) The vertex corrections to the neutrino Yukawa

couplings factorize.

Figure 5.3: Vertex Renormalization.

Generally, the result also holds for the decoupling of other heavy particles if the following three
conditions are fulfilled:

e its mass term does not receive vertex corrections;

e the vertex corrections of its couplings to light particles factorize in the way shown in Fig.

p-3(a)

e vertex corrections to the effective operator k are scalars or more precisely can be factorized
. T1/2 ,1/2
in the form Z / ,%Z,{/ .

5.2 Thresholds in the Cascade Seesaw

The renormalization of the cascade seesaw mechanism is similar to the standard seesaw mechanism,
since it can be understood as a successive application of the standard seesaw mechanism. Therefore,
the results of Sec. [5.1] can be applied. However, the additional massive singlets may be so heavy
that additional particles coming from GUT representations have to be considered in the discussion
of the renormalization. Hence, we have to make some assumptions about the high energy theory
in order to discuss the RG effects. We assume that either the additional massive singlets S as well
as the RH neutrinos N are total singlets of the gauge group, which is often the case in low energy
theories or

e all additional singlets S are heavier than the RH neutrinos N in Eq. (3.1.2)), i.e. the eigenvalues
of Mgg are strictly larger than the eigenvalues of —MgNM S_SIMSN;

e the additional singlets S are total singlets, at least below the scale of their largest mass;
e the RH neutrinos N are total singlets, at least below the scale of their largest mass.

Then, the scales can be clearly separated and the renormalization of the singlets S and the RH
neutrinos N can be treated separately. In the context of SO(10) where we are going to apply our
results in Sec. [A.5] the requirements are fulfilled when all additional singlets are heavier than the
L R-breaking scale and all RH neutrinos masses are below the L R-breaking scale. This ensures that
the formulas of Sec. [5.1] are applicable, because all requirements which are stated at the end of Sec.
6.1 are fulfilled.
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We introduce the effective operator Opr(A) at scale A which generates the masses of all uncharged
fermions

v 0 Y/'H, YN
Ou(A)=| N : 0 YA |(v N S). (5.36)
S . . MSS

The Yukawa couplings are related to the mass matrices in Eq. by mp =Y, (Hy), msy, =
Ys, (A"), and Mgn = Ysn (A)y, where Hy,, A and A’ are Higgs fields. We assume, that A obtains
a GUT scale VEV and H,, A’ acquire an electroweak scale VEV. The application of Eq.
results in the effective mass operator Opr(A’)

YSVXSMS 'Ys,A'? YTH, YTXSMSSYSNAA’ ) Zoss
ex

/ T
O<A ) ext S ( _YSNXSMSS YS’NA/2 (537)

after all additional singlets have been integrated out, where Xg subsumes the renormalization of
the singlet mass matrix and Zey g denotes the external renormalization factor between A and A’.
The exact form can be easily obtained by Eq. and the knowledge of the underlying theory.
At the scale (A),, the RH neutrinos become massive by spontaneous symmetry breaking and a
subsequent application of Eq. results in the following contributions to the effective neutrino
mass matrix

= Zeymb XNy Mgy Mss Xs Mgy 'mp Zexs (5.38a)
mLS 78 | (B, X Msd Mon Xy M3 Mss X5 MET mp ) + ()| Zoxs (5.38b)
= ZLym&, XsMgg (1— MSNXEVMSTJ%I) msy Zext (5.38¢)

where X}V = Zoxt SXNZ ext, S Xn equals Eq. and Zexy = Zext,5Zext,N denotes the external
renormalization factor between A and (Hy). Note that the DS contribution receives at leading
order a contribution from the RG effect due to the singlet thresholds as well as the thresholds of the
RH neutrinos, the LS contribution receives only a Correction from the threshold of the RH neutrinos
at leading order and the standard seesaw contribution m?! which vanishes in the cascade seesaw
formula, receives a correction from RH neutrino thresholds. However, it is negligible in most cases
because it is suppressed by the large mass scale of the additional singlets. The expressions can be
further expanded keeping only the leading order which results in the following corrections to the
different contributions

ombS = ZL, [mgéXj\,ngi,MggMg]\?lmD +mb Mgt MegdXsMIy'm D} Tt (5.39a)
omiS = =78 | (B, M5dMsn XMy MssME mp ) + ()" | Zew (5.39D)
5mu ZexthVMS MS’N(SXNMSNmSVZext7 (539C>

where 60X = X\ — 1 and 0Xg = Xg — 1.

In the case, in which the masses of the additional singlets are below the scale (A)y ~ O(Agur),
there are basically no threshold corrections, since the RH neutrinos and the additional singlets form
pseudo Dirac particles with a mass of the order O(Mgy + Mgg). The thresholds corrections are
proportional to In (1 — Mgg/ (A) ) < O(1).

5.3 RG Stability of the Cancellation Mechanism

In Sec. [B.2] the RG corrections to the light neutrino mass matrix have been considered. Here,
we apply the result to the cancellation mechanism, especially the DS contribution. If Eq. (4.1)) is
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satisfied, the DS contributions shown in Eq. ((5.38a)) to the neutrino mass becomes

my, = mb¥ = ZL mh X\ Mgy Mss XsF Zexs (5.40)

€

which is approximately given by

~ 7T
my ~ Zext

[FTMgsF + FT Mgs6 XsF + mbo XNy Mgy MssF| Zex - (5.41)

Since the RG effect due to the mass thresholds of the singlets can be subsumed in a redefinition of
Mgg, which is described by a rescaling of the singlet masses, we concentrate on the RG effect due
to the RH neutrinos. In the special case of Dirac screening, i.e. F' o« 1, the RG corrections to the
neutrino mass matrix amount to

~ <Hu>2 ZT

my, ~ a2 Ze [Mss + Y, XN Y, " Mgs| Zexs (5.42)
N

neglecting threshold corrections of the additional singlets S. Dirac screening is reproduced and the
dependence of m, on the Yukawa (Dirac) couplings disappears if Xy = I. The expression Eq.
5.42)) coincides with that in Eq. up to external renormalization. In turn, according to Eq.
5.18)) the equality Xy = I holds provided that Z, = I, that is, when the D5 operator corrections
are absent. This is automatically satisfied in the SUSY theory, but these corrections are present in
the SM and its non-SUSY extensions.

Note that the D5 operator corrections are due to the gauge interactions and self interactions of the
Higgs boson, which are by themselves flavor blind. However, they influence the flavor structure
of the light neutrino mass matrix due to difference of masses of the RH neutrinos and therefore
different threshold effects.

We apply the results obtained in this section to several phenomenologically interesting structures of
Mgg. We study effects of the radiative corrections on the light neutrino mass matrix. The matrix
Mgg will be defined in the basis where the equality of the Yukawa couplings Eq. is fulfilled.
We discuss m,}j - the neutrino mass matrix in the flavor basis where the charge lepton mass matrix
Y, is diagonal. It is related to m, as

mi = Ulm,U,, (5.43)

where U, is the transformation of left-handed charged lepton components which diagonalizes the
matrix Y. at the electroweak scale. The radiative corrections to Y, are in general small due to the
strong mass hierarchy, as it was already mentioned in Sec. [5.1} In the following three subsections,
we explore the Dirac screening case. In Secs. and we discuss the two realizations of the
cancellation mechanism by a flavor symmetry.

5.3.1 Singular Mgg

Let us consider the effect of radiative corrections in the singular case. As long as all contributions
to the Majorana mass matrix m, receive the same quantum corrections, the RG evolution does
not generate non-zero masses from vanishing masses [226]. However, between the mass thresholds
of the RH neutrinos, there are two contributions from the decoupling of the RH neutrinos which
are renormalized differently. One contribution is due to the D5 operator of already decoupled RH
neutrinos and the other is due to the contribution of the RH neutrinos which are not decoupled yet
(YVTM K,}VYZ,) in the intervals My — M3 and My — M>. Hence, the generated mass is proportional
to the additional renormalization factor §Z, from the D5 operator between the thresholds and the
mismatch between the two mass contributions, i.e. the deviation of the unitary matrix transforming
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from the eigenbasis of the D5 operator to the eigenbasis of —Y,I M ]Q}VY,, between the thresholds
from the unit matrix (See Sec. 4 in [69].). In the SUSY version, all contributions to the Majorana
mass matrix receive the same quantum corrections, and hence zero mass eigenvalues remain zero.
5.3.2 Quasi-Degenerate Neutrino Spectrum

Let us first consider Mgg which is proportional to the unit matrix I at A, i.e.,

Mgs = M2 . (5.44)

This choice is apparently basis independent and therefore we can take Y, = Yoy = diag(y1,y2,y3)-
The RH neutrino mass matrix is diagonal and strongly hierarchical:

_ A
My = —YdyMggYsn (A)R = <Mi§ diag (y7, v3, ¥3) - (5.45)

Therefore Viy = I and we find

)2
mi = <<A1>Lg MIUTZT NI +62,) ZexiUe. (5.46)
N
The corrections are also diagonaf]
(0 vi o, Ut
02 =2y [exp <—A diag (0, In =5, In 2)) — I} ~ 0(0.1), (5.47)
Y2 Y3
where
_ 1 9 2,3 9

This leads to splittings of the light neutrino masses which would be degenerate otherwise.

Note that the external corrections (due to wave function renormalization of the left-handed leptons,
Eq. , and the vertex corrections to the neutrino Yukawa couplings, Eq. ), are described in
general by off-diagonal matrices due to the mismatch of the structures of Y, and Y,,. As the charged
lepton Yukawa couplings are also strongly hierarchical, the largest flavor dependent correction is
the one to the 3-3 element. Neglecting the off-diagonal entries, it can be estimated as

2 2
Yr <Hu> Y3 M3
9 Y 4B o 001 4
1672 A Tonz M3~ O0D); (5:49)

where the second term (due to the neutrino Yukawa coupling) dominates. It has the same order of
magnitude as the correction due to the D5 operator renormalization in Eq. .

Let us now comment on a possibility to explain the neutrino data. In the non-SUSY version,
the mass split, 6m, generated by the D5 operator corrections, ém = mydZ, leads to Am3, =
2modm = 2m3dZ = (2 —8) - 1073 eV? for the overall scale mg = (0.1 — 0.2) eV. This can reproduce
the atmospheric mass split, but it is too large for the solar mass split. The ratio of solar and
atmospheric mass squared differences for quasi-degenerate neutrinos,

my —my

( = —~0(), (5.50)

m3 — ma

3We assume a strong hierarchy in Y, and use Y, ~ Y, for numerical estimates.
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does not fit the observations. The external corrections do not improve the situation either. Therefore
some other (non-radiative) contribution is required to compensate the 1-2 mass split. Mixings can
also be generated by small (non-radiative) corrections.

In the SUSY version we have §Z,, = 0 and Zy,, = I, so that the mass splitting is produced by the
external renormalization only:

H,)?
(o) M2 UL ZL 7 U, . (5.51)

f—
m;, =
v <A>?V ext

In the flavor basis we obtain the mass split due to Yukawa couplings coming from the external
renormalization:

1 . H
exp |~ grpding(u2, o2 2 0] (5.52)

where the neutrino Yukawa couplings are neglected. This can provide the atmospheric mass split
and the mixings should be generated again by corrections to the zero order structure.
Next, we consider for Mgg the “triangle” structure

100
Mgs =M% | 0 0 1 (5.53)
010

in the basis where the neutrino Yukawa matrix is diagonal. In lowest order it produces a degenerate
mass spectrum and maximal 2-3 mixing of the light neutrinos. This matrix leads to a spectrum of
RH neutrinos with two heavy degenerate states and one relatively light state:
2
(A)N Y2y3

NS T
BINYE gy, = (B bens (5.54)

Ml = ;
Mg Mg

The renormalization interval (2) (See Fig. [2.1}) is therefore absent and the matrix of D5 operator
corrections can be written as

07, =

1) (1) y?
exp | d Z, | — 1| diag(0,1,1), 0 Zx=Aln —— , (5.55)
Y23

where A is defined in Eq. (5.48). The state N; decouples and maximal mixing is realized in the 2-3
block of V. Using this feature and Eq. (5.55]) we find from Eq. (5.42)

1 0 0
H,)2 (0) (1)
mi = thuMo vl z.| o 0 1-62Z¢ | ZexiUe . (5.56)
2 SS
(A)n (1)
0 1-62, 0

Therefore the D5 operator corrections do not destroy the triangular structure, but they lead to a
mass splitting between the degenerate pair and the isolated state:

)

A (1
M52, (5.57)

m
) - . . .
In the SUSY version § Z,= 0, so that the original “triangle” structure is renormalized by the external
corrections only. In this case, one also needs perturbations of the original screening structure in
order to obtain phenomenologically viable mixings and mass splittings.



5.3. RG STABILITY OF THE CANCELLATION MECHANISM 63

Note, that the stability of the structure in (non-)SUSY theories can be easily understood. The
seesaw formula leads to the same mass texture. Therefore m, as well as Myy have the same
structure. Furthermore, as it has been mentioned in Sec. @ L, — L; which also results in a
triangular structure is anomaly-free which explains the stability of the structure.

As a third possibility we consider for Mgg the “triangle” structure which leads to a degenerate
spectrum and maximal 1-2 mixing:

010
Mgs =M | 1 0 0 | . (5.58)
001

Similar considerations as above results in the mass spectrum of RH neutrinos with two light degen-
erate states and an isolated heavier state:

(Aﬁv Y1y2 (Aﬁv Y3
My = —Moy = ——5—, M3y = —35— . (5.59)
Mg Mg
For the light neutrinos we find
72 ) 01 0
m, = ZL Hu)” o g7 z. | 10 0 ZeoxiUs | (5.60)
ext <A>?\/ SSYe )
00 1-62Z.
where o
2
§ Z= exp <A In yl?) —1. (5.61)
Y3

The corrections due to running of the D5 operator are of the same order as in the previous case.
The mass split

) , @ ey

for mp = (0.08 —0.16) eV can explain the atmospheric neutrino data. The external renormalization
contributes in the same way as for Mgg o 1.

The original matrix Mgg as given in Eq. has to be perturbed in order to produce phenomeno-
logically acceptable mixings.

5.3.3 Perturbations of Mgg

Next, we consider perturbations of the structure of Mgg which (can be required by phenomenology
and) effect radiative corrections on these perturbed structures.
As an example we take the matrix

1 00
Mgs =M | 0 = 1 (5.63)
010

with = being a small parameter. Now the second and third neutrinos are no longer degenerate and

(2 (n)
the renormalization factor Z, in the interval (2) between their masses appears. Approximating 7
by 1+ Aln(M,,/M,+1) we obtain for the light neutrinos

1 0 0
(0)
MUY Z, ZX ... 2(1+A)mtl 14+ Ams | ZexUe , (5.64)

;)
v 2
AV Amg}é

m
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where the threshold dependent corrections, m}};, equal

1 A2

JJ
y—1 1
=—3InA\ —1 5.65
m} +2y 1’ (5.65)
1 -1
mit == m? "
zy y+1

Here y = /144 (%)2 and A = y2/y3. (The logarithms depend on the ratios of the RH neutrino
masses My /Ms.)

The nonzero 3-3 element is generated in Eq. by radiative corrections. Furthermore, this
element can be enhanced by the small parameter x in the denominator, provided that A is also
small enough. Indeed, from Eq. we find explicitly

2 A
—Aln—, x> A
X X
1.2
(m)gs =4 — L2840y (5.66)
T

As A ~ 1072, the 3-3 element can be of the order O(1) or even more if, e.g., A < < 1072, Thus,
a quasi-degenerate Mgg with nearly maximal 2-3 mixing leads after (non-SUSY) RG corrections to
the hierarchical mass matrix m, with small mixing. The texture Eq. is not stable against
quantum corrections, since the structure of m, strongly differs from the original structure of Mgg.
This example shows that radiative corrections can substantially modify the original texture of Mgg
in the light neutrino mass matrix for a particular Mgg. In other words, radiative corrections may
destroy Dirac screening.

Apparently the corrections are small if A < = ~ 1. This corresponds to the phenomenologically
important case of a dominant 2-3 block:

Mgs = Mg (5.67)

SO O™
— 8 O
8 = O

with z ~ 1 and € < 1.
In the SUSY version of the model screening is stable.

5.3.4 T, Realization

As the realization is SUSY, thresholds, as they are discussed in Sec. do not lead to corrections.
Hence the structure is stable and RG running is entirely given by the external renormalization and
it can be described by the formulas given in Sec. after the singlets have been integrated out.
Since the RH neutrinos are heavier than the singlets, the RG evolution has to be considered only
in the effective theory. Therefore, the running strongly depends on tan 3 as well as the absolute
neutrino mass scale. In case of small tan 8 and a strong normal hierarchy which is produced by the
DS term alone, there is only a weak RG evolution. After the inclusion of the LS term, the hierarchy
does not necessarily have to be strong. It can be as well quasi-degenerate, which leads to large RG
corrections, especially for large tan j3.



5.3. RG STABILITY OF THE CANCELLATION MECHANISM 65

5.3.5 X(81) Realization

The RG evolution is described by Eq. . Hence, the singlet masses as well as the RH neutrino
masses are rescaled by the threshold corrections. The corrections due to the singlet mass thresholds
can be included by rescaling A and B. In the following, we concentrate on the corrections due to
the RH neutrino mass thresholds. Since there is a large hierarchy in the RH neutrino masses

1 A+2B 2A+ B
|A+2B] 3B (2A + B) 9AB
large corrections can be expected. The RG effect due to thresholds can be estimated to
(0) =N o AB s
52, =7, |exp [ Adiag |0, m‘gB (2A+B) R TY') S T )
(24+B) (94 +28)
(5.69)
This leads to a correction to the 2-3 block of the neutrino mass matrix m, = mg +dm,,
0 0 0
2 B(2A+B X B(A-B .
om, =3A (CZA%LD) . (A+2B ) In (%) Eﬂzé) In (%) , (5.70)
N

B(A—E’)2 M A M
(Ar25)(2A55) (AT;) tais (ﬁ;)
which generates a split between the 2-2 and 3-3 element. Therefore the degeneracy of msy and ms
is lifted. However, the resulting atmospheric mass squared difference and mixing angle

Am2, ~ 184 B2 (?‘ggyln; for A — 0 (5.71)
tan20py 2B (5.72)
9A4 Aln (6A62 /B)
cannot explain the data, since the RG corrections can be estimated
‘Alneﬂ ~ 0(0.1) . (5.73)

This results in the ratio of mass squared differences

ey AP
¢ 5(1 \B;?) : (5.74)

i.e. |A| = |B| which leads to a large correction to the atmospheric mixing angle 63 ~ 34° which is
incompatible with the experimental data. Hence, the atmospheric mass squared difference has to
be generated by multi-flavon insertions. In this case, quantum corrections can be absorbed in the
additional couplings.

Beyond LL Approximation

Let us briefly comment on RG effects beyond the LL approximation. For certain structures of Mgg
which are discussed in the following subsections, the additional two loop diagrams lead to corrections
to the renormalization of the effective neutrino mass operator which could be comparable to the
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one loop corrections. However, assuming the same hierarchy in the neutrino Yukawa couplings as in
the up-type quark Yukawa couplings, these contribution are further suppressed since the heaviest
right-handed neutrino is already integrated out. Therefore all two loop contributions in the effective
theory are suppressed by y3/167% < 1076, where 5 is the second to largest singular value of Y,
compared to the one loop contributions. Altogether higher loop contributions are less than 10% of
the one loop corrections and can be neglected.



Chapter 6

RG Effects in Neutrino Mass Models

In this chapter, we apply RG techniques to several models. Firstly, Sec. summarizes the structure
of RG equations in matrix form in the effective theory, standard, triplet as well as the type I+II
seesaw scenario. Furthermore, the derivation of the RG equations of the mixing parameters is
outlined. The RG effect in the case of the flavor symmetry L, — L; is discussed in Sec.
numerically and analytically and Sec. treats the QLC relations in the scenario given in Sec.
Finally, RG equations of leptonic mixing parameters in the triplet seesaw scenario are derived in

Sec. [6.41
6.1 General Structure of RG Equations in Seesaw Models

different contributions to the neutrino mass matrix ml(,Z ) which have been shown in Sec.

In summary, the running of the effective neutrino mass matrix m,, is given by the running of the
.
The one-loop B-function for m,(f) in the various effective theories can be summarized as

1672 () = POTm0) 1m0 pl) 0 () (6.1)
where ‘ ‘ ‘ '
PO = [COVIY. + CPY]Y, + cQv VA - (6.2)
and .
o, dmy)

m,(,i) stands for any of the contributions to the light neutrino mass matrix and «,, includes the gauge

interaction terms that can influence the flavor cture in the SM case between mass thresholds.
The coefficients C’e(ll)/A and a,(f) are listed in Tab. where T = tr (YJY,, + YJY6 + 3YJYu + BYJYd) )

Note, that they are the same for all mass contributions m,(j) in the MSSM due to the non-
renormalization theorem [227,228]. As the running of the MNS matrix depends on the evolution of
the charged lepton Yukawa matrix Y., we also present its RG equation,

1672Y, = Y. F + .Y, (6.4)

where

F= [DeY;f Y.+ DY}V, + DAYiVA]| . (6.5)
The coefficients D, A and a, are listed in Tab. In the case that the renormalization of the

67
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(@)

model | my C. | C, | Ca | flavor-trivial term ay,

SM | YN

SMo [ 2VIMTY, | =3 5 | 5| 2T - 459t — 365

, Ll [ T2t (VAYa) - 3634 x - 8y — 280 — 48, + 845 -

(4A4m? + |Ag|?) M2 — 4tr (YATYZ,T MYV) AG?

MSSM | & 133 ]2 (WY 4 3YYL) 8182 - 2 (263 + 33)

MSSM | 2V My, |1 | 3| d | 2 (WY 4 8L 818 - 2 (267 + 363)

MSSM | —2AM3%Ya | 1|3 | § | 20 (WY, +3%Va) + 810 - 2 (263 + 363)

Table 6.1: Coefficients of the B-functions of Eq. (6.1), which govern the running of the effective neutrino mass
matrix in minimal type I+II seesaw models. In the MSSM, the coefficients coincide due to the non-renormalization
theorem [227,228] in supersymmetric theories.

model || D.| D, | Da | flavor-trivial term a,
SM 5| -5 5 [T—991— 99
mssM | 3 [ 1| 3 e (vve+3v)va) + 3AP - $07 - 363

Table 6.2: Coefficients of the S-functions of Eq. (6.4), which govern the running of the charged lepton Yukawa
coupling in minimal type I+I1 seesaw models.

(%)

effective neutrino mass matrix m, =), m,’ can be written in the form
167%m, = PT'm, + m,P + aym,, | (6.6)

ie. P = P9 and a, = ozl(,i) Vi, RG equations for masses, as well as mixing angles and phases
can be derived by the method which is described in the Appendix of [69]. It is based on earlier
works [55,221,226,229|. It is always possible in supersymmetric theories and in the SM below all
thresholds and above all thresholds, if there are only RH neutrinos or a Higgs triplet. Here, we just
sketch the main steps and refer the interested reader to the stated references. The resulting RG
equations in the standard seesaw framework are listed in App. which have been taken from [69].

e In an arbitrary basis, one can define unitary matrices U, and U, by

Uu(t)T mu(t) Uu(t) :dlag (ml (t)v mQ(t)7 mS(t)) =D, ) (67&)

(1)1 Y1Y,(0) Unt) =ding (42(0), 2(6),42(1)) = ding (mgﬁ’”? mll). mg(“) _ D, (6.7b)

with v fixed.

The MNS matrix is given by
Unins(t) = UL () U, (t) . (6.8)
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e The application of the RG operator dgra = % = u% on Egs. | D results in

- 1 T *
Dy = 15 (P"'Dy,+D,P +a,) + D, X, — X;D, (6.9a)
: 1
De=1 (F’TDe + D.F' + 2Re ae> + D, X. — X.D, (6.9b)
7'('

after applying the chain 'rule, where the primed matrices are defined as P’ = U,J,rPU,,, F' =
UJFUe and X, . = UiveUy,e which is anti-Hermitian.

e The real and imaginary parts of those matrices yield the following set of equations for the
running masses

1671y = (Reay, +2Re Pjy) my f=1,2,3 (6.10a)
1671y = (Reae + Re Fip) my f=eut (6.10b)

and the mixing parameters are implicitly given by

ms—m
167%Im (X)), = —Wlm P}, (6.11a)
2 _ My t+my /
167m“Re (Xy)fg = —WRG Pfg (611b>
2 yg + yjz”
167 (Xe)y, = . yJ%F}g , (6.11c)
g

where we used the hermiticity of P’ and F’. The diagonal parts of X, which determine the
unphysical phases remain undetermined.

e In order to obtain the RG equations for the mixing parameters, we observe that the application
of the RG operator to Eq. yields

Ul s Unns = Ue X, US — US X U, . (6.12)
Eq. (6.12) simplifies in the flavor basis where U, = 1 and U, = UyNs to
UIT/INS Unns = X, — U&Ng XeUnns (6.13)

which is a solvable linear system of equations in the S-functions of the mixing parameters.
Although, a basis has been specified in the calculation, the resulting equations are basis-
independent [1]

6.2 L,— L; Flavor Symmetry

The flavor symmetry L, — L, which has been introduced in Sec. leads to quasi-degenerate
neutrino masses. Therefore, strong running of the mixing angles is expected [52-59]. The running
of the mixing angles 6;; in a quasi-degenerate mass scheme with a common mass scale my is typically
proportional to mg / Am?j and therefore particularly strong for 615 above and below the seesaw scales.

If P and F are not expressed in terms of basis-independent quantities as it is done in the formulas of the standard
seesaw case, the resulting equations still depend on the chosen basis.
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This behavior also turns out to hold when the running between the seesaw scales [9,62,63,69, 230,
231] is taken into account. In general this leads to quite involved expressions for the S-functions.
However, in our case the structure of the Dirac and charged lepton mass matrices (i.e., the fact
that they are diagonal and hence P is diagonal) simplifies matters considerably and allows for some
analytic understanding of the numerical results

2

1672 019 :Afnf2 (1 + cos (g2 — 1)) sin 2612 [Pn - (ng cos? B3 + Psg sin® 923)] ,
21

2
397205 = Amo

- (cos (6 — ¢1) — cos (0 — p2)) sin 2612 sin 2023 (Paa — Ps3) (6.14)
32
) 2
1672 695 :An;% [(1 + cos ¢2) cos® 01 + (1 +cose¢r) sin? 912] sin 26a3 (Pag — Ps3) .
32

Note, since the masses have the same CP parity, i.e. 1 ~ @3 &~ m [196], there is no cancellation in
the first relation for 912. We can safely neglect P;; with the values of the parameters in mp as given
in Sec. 3.3.1] (i.e., a < b ~ d = ©0(0.1)). This leads in particular to a negative S-function for 615.
Hence, it will increase when evolved from high to low scales. Furthermore, neglecting the charged
lepton Yukawas in Y, above the seesaw scales and noting that Py ~ b2/2 and Psz3 ~ d2/2 for the
SM and twice those values for the MSSM, we see that the running of 613 and 6s3 is suppressed
with respect to the running of #15 due to two reasons: firstly, it is inversely proportional to Am§2
and secondly, it is proportional to Py — P33 ox b?> — d?, which is smaller than Py + P33, which the
running of 612 (approximately) depends on. Hence, the running of 613 and 63 is suppressed by
¢ (b* — d?)/b? above the seesaw scales.

Below the seesaw scales only the 7-lepton Yukawa coupling y, governs the RG corrections. In this
regime the evolution is described by [59]

2

16 72 015 ~ —y? sin 2615 sin® O3 m02 (1 4+ cos(p2 — 1)) (6.15)
Ams,

in the MSSM, which is again negative and leads to sizable running. The formulas for the running
of 613,23 are suppressed by roughly a factor (.

The phases stay almost constant in the whole range, because it can be shown, that 1 and (o are
mainly proportional to sin @ and sin g, respectively. Roughly the same behavior is found below
M. Finally, the RG effects on the neutrino masses correspond predominantly to a rescaling, since
the flavor-diagonal couplings, i.e., gauge couplings and the quartic Higgs coupling, dominate the
evolution [54|. Hence, ( is relatively stable with respect to the RG evolution.

We can analyze whether zero entries in the mass matrix Eq. remain zero entries. Below
the seesaw scale it is well-known that the RG corrections are multiplicative on the mass matrix,
a fact which leaves zero entries zero. Taking the running in between the heavy Majorana masses
into account, one can factorize the RG effects Zqt from the tree-level neutrino mass matrix in the
MSSM as it is shown in Sec. [5.1]

my, = zr

ext

MmO Zos - (6.16)

As the RG effects are flavor diagonal, i.e. P is diagonal, texture zeroes in the charged lepton basis
remain zero, even above all see-saw scales. With the already mentioned simplifications, Zey is
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Figure 6.1: Typical plot for the evolution of the mixing angles and masses from Agur to the electroweak scale. In
this example, we have tan 8 = 10 and the parameters in the matrix Eq. at the GUT scale are a = 0.0066926,
b = 0.0692883, ¢ = 0.0697464, X = 0.0096528, ¥ = 1, e; = 0.0005595, e2 = 0.0749098, ¢ = 2.45376 and M =
9.098937108 - 10" GeV. The software package REAP introduced in [69] has been used to produce those plots.

approximatelyﬂ given by

MY MY v
1672 (ZMSSM _ 1) = dia <o, b?In ,d*In +121n >
(Ze ) 8 Agur Acur 07 Acur
MY MY
+b*In —— +d*In + {—?’g% — 395 + 3y§} In (6.17)
Agur Agur 5 Agur

In the SM, however, there are additional corrections which cannot be factorized. They are respon-
sible for the instability of texture zeroes under the RG which is shown in Sec. [5.1] We checked
that for most observables the running behavior in the SM is similar to the running in case of the
MSSM. The solar neutrino mixing angle receives more RG corrections in the SM, a fact which can
be traced back to the appearance of an 1-2 entry in the mass matrix Eq. . One might wonder
at this point if this filling of zero entries would allow to generate a successful phenomenology from a
mass matrix obeying the flavor symmetry L, — L, without any breaking, i.e., just from Eq. (3.50).
Recall, however, that in the SM L, — L; is anomaly free and therefore the texture of the mass
matrix is stable.

We plot in Fig. the running of the angles, phases and masses for a typical example in the MSSM
with tan 8 = 10. The neutrino parameters at the GUT scale are sin® 615 = 0.123, sin 613 = 0.0484,
§ = 4.73rad, sin®fy3 = 0.481, (m1, ma, m3) = (0.1527, 0.1533, 0.1653) eV with Am3, = 1.9 -

2As the perturbations are small, the mass eigenvalues of the heavy RH neutrinos are approximately given by
(Ml, MQ, Md) ~M (X, Y(l — 62/2), Y(l + 62/2)) ~ (X, YV7 Y)
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10~%eV? and Am%2 = 3.8-1073eV?2. They are changed by the RG evolution to sin? f15 = 0.303,
sinl913 = 0.0496, 0 = 4.73, sin2 923 = 0.4817 (ml, ma, mg) = (0.1152, 0.1155, 0.1245) eV with
Am3, =7.9-107%eV? and Am2, = 2.1-1073eV?. Note that the phases and 613 23 remain practically
constant, whereas sin? 15, Am3; and Am%l are changed by factors of up to three, and that the
running in between and above the seesaw scales is at least as important as the running below them.
This implies that radiative corrections, in particular for 15 and the mass squared differences, can
be crucial especially for quasi-degenerate neutrinos like in this model.

6.3 Quark Lepton Complementarity

In this section, we mainly study the RG evolution of 612, since it receiver the largest RG corrections
in the QLC relations. The RG effect on Vi is negligible due to the large hierarchy in the charged
fermion mass matrices and the smallness of 12 [232].

6.3.1 RG Effects: General Considerations
General Considerations

The quark-lepton symmetry implied by the QLC relations means that physics responsible for these
relations should be realized at some scale A which is at the quark-lepton unification scale, Aqur,
or at an even higher scales. An alternative possibility would be the quark-lepton relation due to
the PS symmetry [140] broken below the GUT scale. Consequently, there are, in principle, three
different regions of RG running:

e below the seesaw scales, u < M7, where M; is the lightest RH neutrino mass. In this region
all three neutrinos decouple and the D5 operator Eq. (3.9) is formed;

e between the seesaw scales, M < u < M3, where Ms is the heaviest RH neutrino mass;

e above the seesaw scales M3 <y < A. If A > Aqur new features of running can appear above
Agur.

Above the seesaw scales the renormalization of the couplings of the full Lagrangian Eq. (3.11)) has
to be considered.

Below the seesaw scales, running is dominated by Ps3 in the flavor basis which results in an increase
of 615 in the MSSM and a slight decrease in the SM due to a different sign of Ce:

32W2912 ~ —QTQ sin 20128%3P33 . (618)

Above the seesaw scales, the leading contribution is again given by Ps3, and the next—to—leading
contribution is due to Pss. This yields an increase of 619 when running to low scales both in the
MSSM and in the SM. Explicitly the corresponding evolution equation can be written as

32W2912 = —QECV sin 2912 sin (923 [Sin 923 — Vcb COS 923 COS (¢2 — ¢3)] s (6.19)

where the phases ¢; are determined in Eqs. (3.71],[3.72)).

The effect of running between the seesaw scales (about ten orders of magnitude in p) is more
complicated. In this range there are more contributions to the neutrino mass matrix which evolve
differently as it is described in Sec. So, in the MSSM, the RG equations are the same for both
contributions and the RG equation for 615 is applicable in contrast to the SM.
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After the heaviest RH neutrino is integrated out, the RH neutrino mixing at the threshold influences
the running of #15. In the second order of sin 9, the expression for #19 reads:

. 1
32712015 = —EQECV (s23 — Vepcas cos (2 — ¢3))
(3 — 2082043 cos® O13 — cos 2@13) sin 26125923 , (6.20)

where ©;; are the RH neutrino mixing angles at the scale at which the heaviest neutrino is integrated
out. The unitary rotation of the RH neutrino fields is done at the threshold of the heaviest RH
neutrino, and the exact definitions of the angles are given in Eqgs. (3.84] [3.85)).

RG Evolution and Scales of Flavor Physics

We have performed the running from the scale A down to the electroweak scale and calculated
A9 = 012(Mz) — 012(A). For that we have numerically solved the complete set of RG equations
including sub-leading effects due to non-zero 1-3 mixing. In most of our calculations we take for
definiteness A = AquT = 2 - 10'® GeV. We separately consider the dependence of our results on A
in Sec. [6.3.6

The following free parameters determine the RG effects substantially: the absolute scale of light
neutrino masses, the Majorana CP phase difference, Ay = 9 — 1, and the phases «;, which have
been defined in Sec. , as well as tan 3 in the MSSM. The dependence on other parameters (e.g.,
other phases) is rather weak. Still we will explicitly use the phase 2 keeping everywhere ¢; = 0°.
We studied the dependence of the RG effects on these parameters. For each set of parameters we
have calculated the RH mass matrix and the running effects. The angles are fixed by the QLC
relation at A, and the mass squared differences are adjusted to lie in the experimentally allowed
region at the electroweak scale. For the neutrino Yukawa couplings we take y1 : 92 : y3 = €2 1 € : 1,
(e=¢)and e=3-1073,

In what follows we will describe the results of our numerical calculations. We give an interpretation
of the results using the derived approximate formulas in this section and Sec. [3.4]

6.3.2 RG Effects: MSSM Case
MSSM and Normal Mass Hierarchy

We consider the RG evolution in the MSSM with a unique SUSY threshold at 1 TeV. In Fig. we
show some examples of the scale dependence of 019 for various values of parameters. With increase
of mq two factors enhance the RG effects:

e the largest mass Mj decreases according to Eq. (3.81). Correspondingly, the region above
the seesaw scale, M3 — Agur increases where the running is especially strong due to the large
neutrino Yukawa couplings;

e corrections to the mass matrix elements dm;; are proportional to their values: dm;; o< m;;
and since with the increase of m; the matrix elements m;; generically increase, the corrections
increase correspondingly.

For relatively small tan 5 ~ (3 — 10), the dominant contribution follows from the region above the
seesaw scales due to large (Y})33. The evolution below Mjz is mainly due to the Yukawa couplings
Y, which are relatively small. The effect increases fast with my:

Aelg XX QB 10g(AGUT/M3). (6.21)
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Figure 6.2: Examples of running 612 in the case of MSSM and normal mass hierarchy. The dependence of 612 on p
(a) for different values of my, and tan 8 = 10; (b) on tan 8 for m; = 107 V. All CP-phases are taken to be zero.

Note that the largest RH neutrino mass Ms is proportional to the lightest left-handed neutrino
mass: Mz oc 1/mq. Therefore for m; ~ 1072 eV the running of 612 is mainly related to an increase
of the region above the seesaw scale. For m; > 1072 eV the spectrum of light neutrinos becomes
degenerate and Afp oc Qf, o« m? (Fig. [6.2(a)). For large tan 3 and small m; the dominant
contribution to Af comes from the region below M3z where Af5 o tan? 3 (see Fig. 6.2(b))).
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Figure 6.3: Contours of constant RG corrections, Afi2, in the tan 8 — m; plane in the case of MSSM and normal
mass hierarchy. All the CP-phases are taken to be zero.

A combined dependence of the corrections, Afis, on my and tan 3 is presented in Fig. where
we show contours of constant Afis in the (m; — tan 3) plane. The change of behavior of contours
at m; = 8-107% eV is a consequence of our boundary condition: At m; < 8- 10~% eV we have
M3 > Agur, and therefore the region above the seesaw scale disappears.

In Fig. [6.4 we show the correction A as function of m4 for different values of ¢o. The dependence
of Af12 on 9, given essentially by the factor QE, is weak for an hierarchical spectrum, m; < 8-1073
eV, and very strong for a degenerate spectrum: Afy3 < (1 + cos Ap). The corrections are strongly
suppressed for opposite CP parities po = 180° (Fig. [6.4). This agrees with the results of previous
studies of corrections in the quasi-degenerate case [52-59|.
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Figure 6.4: The dependence of the RG correction, Af12 (in degrees), on m; for different values of 2 (figures at the
curves) in the MSSM and a normal mass hierarchy. The lines correspond to tan 3 = 10 and @1 = 0°.

The corrections A#qo are positive. This fact is mainly a consequence of a strong hierarchy of the
Yukawa couplings Y, and Y. The evolution is given approximately by the general RG equation for
012, where P33 oc (|(Ye)ss|* + [(Y,)33]*)/2 > 0. The off-diagonal couplings Py, are much smaller.
Since Qf, > 0 we obtain 612 < 0, that is, the angle 65 increases with decreasing p.

The condition of the QLC prediction for 612 being within 1o of the best fit experimental value
requires A2 < 0.5° — 1°. This, in turn, leads to bounds on parameters of the neutrino spectrum
and tan 3. In particular, according to Fig. [6.4) the degenerate neutrino spectrum is excluded for the
same CP parities (g2 = 0°). In the case of large tan 3 it requires a strongly hierarchical spectrum:
my < 1073 eV that eliminates the running region above all seesaw scales. However, a degenerate
spectrum is allowed for ¢g ~ 180°.

Taking the 2 o upper bound Af, < 2° we find that the quasi-degenerate spectrum with m; ~ 1072
eV is allowed even for the same CP parities. For a normal mass hierarchy with m; < 1072 eV and
tan § ~ (3 — 10) the running effect is negligible: Af;2 < 0.1°.

1.2107%ev 15
awl == 7 a4
| 107%v [
421 10
40 5
40
38
36 8
34
me 36
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

10gy0 (1/GeV)

(a) (b)

10g,0(4/GeV)

Figure 6.5: Examples of running 6,2 in the case of MSSM and inverted mass hierarchy. The dependence of 612 on
u (a) for different values of m1, and tan 3 = 10, (b) on tan 3 for m; = 107% ¢V. The value @2 = 0° is taken.

MSSM and Inverted Mass Hierarchy

In the case of an inverted mass hierarchy, the states 1y and 15 associated to 1-2 mixing are strongly

degenerate. Therefore, the RG effects are similar to those in the normal hierarchical case for
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mi1 =ma ~5-1072 eV. The corrections Af;, are enhanced by the factor

(A00) (k)2 (i)

(A912)NH (méVH)Q (mJlVH)Z’

(6.22)

where the superscripts NH and IH stand for a normal and an inverted mass hierarchy, respectively.
In Fig. we show examples of the running of 612 for different values of masses and phases. The
dependences of 0,2 are well-described by QE, as in the case of a normal mass hierarchy. Notice
that now the heaviest RH neutrino mass is determined by mgs, and the two others by m4. With
increase of mg which is the lightest neutrino mass (See Fig. [6.5(a)l) the range above the seesaw
scales, where the evolution of 015 is strongest, increases. The change of 012 below M3 is smaller and
it is of the same size for different values of mg as long as m3 < m4. In this range the evolution
is mainly due to charged lepton Yukawa couplings Yz, so that Afjy o tan? 3 (Fig. [6.5(b)). The
correction can be strongly suppressed for opposite CP parities of 11 and va: A2 o< (1 + cos Ay).

10

Ab12

175°

180°

10 10°° 1072 107t
log, o(me/eV)

Figure 6.6: The dependence of the RG correction Af12 on mq for different values of o2 (figures at the curves) in
the case of MSSM, inverted mass hierarchy and tan § = 10.

As in the case of a normal hierarchy, in a large part of the parameter space the correction is
positive, Ao > 0°, due to the dominant effect of Ps3. For o = 0°, consistency of the QLC
prediction with the experimental data, especially Afjo < 2°, implies tan 3 < 10 and m3 < 8- 1074
eV. For @9 ~ 180° corrections can be strongly suppressed, so that a larger region of the parameter
space becomes allowed. The corrections become negative for pa = 180° (See Figs. and )
when the leading RG effects are strongly suppressed and the running is mainly due to sub-leading
effects related to non-zero 1-3 mixing. This possibility has been mentioned in [14]. The sign of
the contribution due to non-zero 613 to the RG running of 612 depends on the parameter (masses,
phases) region.

In general, for non-zero 613, the contribution to 01 is given by

C,013
3272

sin 2693 [ (91 cos 2612 + Qfys3y + Q;gcfz) cos )

mims mims 5 Mmams . 9\ .
+ 2 sin — + ——=—=sin Y1879 + ——=— sin Ysc sind| . (6.23
(Amgl (o1 — ¥2) Am§1 $1512 Am§2 P2 12> } ( )

According to this equation for ¢ = 180°, 3 = 0° and & = 180°, the dominant contribution is

determined by the combination —% sin2 #5 sin 2053, that is positive in the inverted hierarchy

case, and therefore 615 decreases from high to low energies.
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Figure 6.7: Contours of constant RG corrections, Af2, in the tan 3 —m, plane in the case of MSSM, inverted mass
hierarchy and Ap = 2 = 180°.

6.3.3 RG Effects: SM Case

In the SM the evolution of 675 is more complicated. As we have already mentioned, apart from the
Yukawa coupling contributions, there are additional vertex diagrams [63]. Furthermore, the vertex
diagrams with the gauge bosons become important: their contribution to the running between the
seesaw scales influences the flavor structure of the mass matrix and therefore changes 615. Above
the seesaw scales (where all RH neutrinos are operative) and below the seesaw scales (where all RH
neutrinos decouple), flavor universality of the gauge interaction corrections is restored. There is no
simple analytic formula for the RG evolution of 615 in the SM.

24 1072V
36.5
o
42 36
355} 90°
40
35 —
38 345 180°
3 34
335 w2
34 My
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l0gy, (4/GeV) 10g4(4/GeV)

(a) (b)

Figure 6.8: Examples of running of 612 in the case of SM and normal mass hierarchy. The dependence of 612 on p
(a) for different values of m1, and w2 = 0°, (b) on @2 for m; = 1073 V.

In Fig. we show examples of the RG running of the solar mixing angle 615. Above the seesaw
scales the running is due to the Yukawa interactions, Y,, and the effect is well-described by the
analytic formula for 619. Below the seesaw scales, i < Mj, the evolution is negligible: it is related
to Y. couplings that are small in the SM. The main effect arises between the seesaw scales. As we
mentioned above, it is mainly due to the gauge vertex corrections since N3 with the largest Yukawa
coupling is decoupled and Y, are small. The corrections increase with m;.
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The most interesting dependence of Af;3 is the one on the CP-violation phase 2 (See Fig. [6.8(b)}).
The corrections are positive, Ao > 0°, for o ~ 0°. They are strongly suppressed for s ~ 90°,
in contrast to the SUSY case where the suppression is realized for o ~ 180°. The corrections are
negative for p9 ~ 180°. The phase of zero corrections, ¢3(f12 = 0°), depends on m; and in general
deviates from 90°. The deviation is due to the Yukawa interaction effects that produce the positive
shift for a strong Yukawa coupling hierarchy as we discussed before. The shift occurs both above
and between the seesaw scales (see Fig. [6.8(b))).

In Fig. we show contours of constant corrections in the m; — @9 plane, and in Fig. [6.10
an explicit dependence of Afi12 on m; for different values of py. The line A2 = 0°, is close to
2 = 90°, 270° for m; — 0, and it approaches 180° with increase of m; when the spectrum becomes
strongly degenerate. The pattern is nearly symmetric with respect to w9 = 180° for small m;, the
asymmetry appears for m; >3- 1073 eV.

2n

NI

10 10° 102
log,,(my /eV)

Figure 6.9: Contours of constant RG corrections to 612 (figures at the curves) in the ¢2 — m1 plane in the case of
the SM and a normal mass hierarchy.

The line Afi5 = 2° restricts the region consistent with the QLC relations. Along the contours
Af15 = —1.5° the best fit experimental value for #15 can be reproduced. This corresponds to
mq > 2-1073 eV and @9 ~ 150°—210°. Large negative corrections appear in the region m; > 5-1073
eV and o ~ 180°.

6.3.4 Renormalization of 1-3 Mixing

In the scenario discussed in this thesis, the 1-3 mixing is non-zero and relatively large at the flavor-

breaking scale
sin? 613 ~ 0.024 . (6.24)

Notice that 613
e interferes with the 1-2 mixing in the QLC relations as we discussed before;
e produces sub-leading effects in the renormalization of 6;s;

e can provide further bounds on the considered scenario if RG corrections are positive and large.
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Figure 6.10: The dependence of the RG correction Af12 on my for different values of @2 (figures at the curves) in
the SM with a normal mass hierarchy.

The dominant contribution to the renormalization of 8,3 is given by
6472013 = C,, sin 2012 sin 2093(Af; — A%), (6.25)

where A;g is given in App. In our case sin 2612 > 0°, sin 2623 > 0°, § ~ 180° and for vanishing
Majorana CP phases, ¢; = 0°, the dominant contribution can be approximated to

64W2913 = C,/ sin 2912 sin 2923(9;3 - Qi%), (626)

and the last factor in Eq. (6.26): Q3 — Qf; = Af; — Aj; is negative, irrespective of the mass
hierarchy. Consequently 613 increases when running to low energies. For non-vanishing phases ¢;

this factor can be positive, thus leading to a decrease of 613 when p decreases.
In the case of a strong mass hierarchy Eq. (6.25) gives

6472613 = —2 sin 2012 sin 2093 cos(d — @2)\/2. (6.27)

The running is suppressed by a small mass ratio. Therefore only a small RG effect on the 1-3 mixing
appears for the hierarchical (normal as well as inverted) case. For instance, we find that for the
parameter sets used in Fig. (MSSM), the correction A3 is always smaller than 0.2°. In the
SM, it is smaller than 0.3°.

For the degenerate spectrum, there can be a larger effect which strongly depends on the CP phases.

From Eq. (6.25]) we find

2
6472013 ~ 2sin 2615 sin 2923m712[cos(5 — 1) — cos(d — ¢a)]. (6.28)
Amg
Notice that for zero CP phases the cancellation occurs again. In the MSSM for m; = 0.03 eV and
tan8 = 50, we find A3 ~ 0.5°. In contrast, for § = 1 = 180° and o = 0° the two terms
in Eq. sum up and we obtain running towards larger values: 64%2913 =~ 48in 2615 sin 2653.
Consequently 613 becomes smaller at low energies.

6.3.5 Level Crossing Points

As we have established in Sec. the spectrum of the RH Majorana neutrinos is generically hi-
erarchical. However, there are level crossing points, where two of the RH neutrino masses become
equal [212]. When the two lighter RH neutrino states M; =~ My are degenerate, it is of special



80 CHAPTER 6. RG EFFECTS IN NEUTRINO MASS MODELS

interest for the generation of the baryon asymmetry in the Universe, since in this case resonant lep-
togenesis [233]| becomes possible which produces a large enough asymmetry in spite of the smallness
of the masses and consequently, a large wash-out effect.

From Eq. (3.80]) we find

2 2 14 9 2. 2( ~ ~
My = 0 My = @“Lm?) —. (6.29)
mi + ma (M1 + ma)ma + 2myma

It is easy to see that due to the smallness of € the condition M; = My can be satisfied only in the
case of strong mass degeneracy |mi| =~ |ma| &~ mgy when

A 2
iy + iy = — 2L 0. (6.30)
2myg
Then from the condition M7 =~ My we find
A 2
mo = | ~22L 0.1 eV. (6.31)
2v/2¢
In this special case the mass
4 2 14 92
M ~ MQLQmO - fVHﬂ (6.32)
Ale Amgl

is enhanced by a factor 2mg/y/Am3; ~ 20 and the third mass is much smaller than in the hierar-

chical case:

2
L

L

M3 (6.33)

- 2m3’
that is, smaller by a factor m¥# /ms < 1073.

The level crossing condition Eq. implies opposite Majorana CP phases and it coincides with
the condition of strong suppression of RG effects. It also implies smallness of the 1-1 element of
the matrix mpy,. The condition for level crossing differs from that in [212] since here we require
the neutrino Dirac matrix to be diagonal in the basis where the mass matrix of light neutrinos has
exactly bimaximal form. If instead we use a generic matrix with non-maximal 1-2 mixing the level
crossing condition can be realized for the hierarchical spectrum [212].

30°

15°

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
log,(1/GeV)

Figure 6.11: Examples of running of mixing angles in the case of My ~ M> in MSSM and a normal mass ordering.
We show the dependence of 612, 615 023 on u for tan 8 = 10, o1 = 0°, 2 = 180° and m; = 0.13 €V.

In Fig. [6.11] we show the RG evolution of the mixing angles for parameters that correspond to the
level crossing point My = My. In this point My = My = 8-10% GeV, M3 = 8- 103 GeV, ¢ = 0°,
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Figure 6.12: The dependence of the RG correction Af12 on m; for different values of ¢2 (figures at the curves) in
the MSSM with a normal mass hierarchy and tan 8 = 10. The boundary condition is at Mp;.

2 = 180°, m1 = 0.13 eV. Note, that the equality of M; and Ms is broken by RG effects. The angle
012 evolves very weakly due to the cancellation QE = SE ~ 0 related to Eq. . In contrast,
the 1-3 mixing evolves substantially above the thresholds: Af;3 = 7°. The same holds for the 2-3
mixing which can influence the second QLC relation.

We find that in this crossing point the solar mass squared difference becomes large even if it is very
small at the boundary. So, the solar mass squared difference has a radiative origin. The atmospheric
mass squared difference decreases by a factor ~ 2.

6.3.6 Evolution above the GUT scale

For A > Agur the RG evolution should be also performed above the GUT scale. Restoration of
the GUT symmetry and unification of the gauge couplings does not prevent from different running
of the Yukawa couplings, and therefore, from a change of the mixing angles. Renormalization of
mixing angles would stop after a possible unification of the Yukawa couplings which can be related,
e.g., to the restoration at A of a non-Abelian flavor symmetry. An alternative is the boundary at the
string or Planck scale, where the Yukawa couplings are formed and their properties are determined
immediately by some symmetry or/and string selection rules.
For illustration we performed the running in the MSSM up to the Planck scale (ignoring possible
GUT effects, which are highly model-dependent). In Fig. we show the dependence of A5 on
my for the same (QLC) initial conditions at the Planck scale: A = Mp; = 1.2 - 10* GeV. The RG
effect becomes much larger. In particular the contribution from the region above the seesaw scale
due to large Yukawa coupling Y, increases substantially. It is enhanced in comparison to the case
of running up to Agur by the factor

log(M Pl / M. 3)

log(Agut/Ms3)

that can be as large as 3 - 5 in some cases. Still for o = 180° or for small m; the RG effects are
suppressed and can be consistent with the QLC relations.

Similar RG effects are expected in SU(5) with RH neutrinos. In fact, no new diagrams with large
Y, appear. The effect of charged lepton couplings Y. is enhanced by a factor 4 above Agur due to
the loop diagrams with down quarks (squarks) and H'/3 charged Higgs bosons (Higgsinos).

The flavor-diagonal parts of the RG equations do influence the angles only indirectly through the
change of the mass eigenvalues. Thus, the main effect of these interactions is due to the evolution
of Am2,,.

(6.34)
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6.4 Triplet (Type II) Seesaw Model

In this section, we derive the RG equations of the mixing parameters in the triplet (type II) seesaw
model. Chao and Zhang [234] have derived the formulas in the approximation |Ye| < |Ya| which
captures the dominant effects as long as there is a strong hierarchy. Here, we calculate the RG
equations exactly E| and compare them with their results. The evolution of the neutrino mass
matrix and the charged lepton Yukawa couplings are given by Eqgs. in Sec. . Since Ya
is directly proportional to the neutrino mass matrix, we can express P and F' in terms of physical
parameters.

P =Cediag(yZ, 5, v2) + CalUsnsdiag (i, 43, v3) Unins (6.35a)
F =D.diag(y?,yp,y7) + DaUsnsdiag (1, v3, 43) Usins - (6.35b)

where y; = m;/ (A) and (A) is the VEV of the Higgs triplet A. Note, that the Majorana phases
drop out in the definition of P and F' in flavor basis. Hence the RG equations of the angles and the
Dirac CP phase are independent of the Majorana phases, as it can be seen below.

We derive the RG equations by using the technique outlined in Sec. [6.1} In all numerical examples,
we set Ma(Agur) = 10'1°GeV. As we are only interested in showing the generic features of the
RG evolution, we choose the Higgs self-couplings to be Aj245 = 0.5 for simplicity, since they
only indirectly influence the RG evolution of the angles and the flavor-dependent part of the RG
equations of the masses. In a realistic model, the parameters A; have to satisfy certain relations to
produce the desired VEV structure, e.g. see [235] for the RG effect in the Higgs sector.

In the following, we present all formulas in the approximation y. < y, < y, and 613 < 1. The
exact formulas can be downloaded from http://www.mpi-hd.mpg.de/ mschmidt/rgeTriplet.

6.4.1 Running of Masses
The main contributions to the RG equations of the masses

91 i

1672 —Re a, + 2 Ca—ds + 2C.y? sin® 65 sin® g + O(613) (6.36a)
e (A)

16#2@ =Rea, +2C 3 20,12 cos? 015 sin?

= v A 5 + 2Cey; cos” 012 8In” O3 + O(03) (6.36b)

e (A)
' 2
ms ms 2 . 2

16— =Rea, +2C + 2C.y; cos” a3 + O(0 6.36¢
ms A(A>2 Y 23 + O(613) ( )

are the flavor-independent term Re o, and the flavor-dependent term 2 Cam?/ (A)?. These equa-
tions agree well with the result by Chao and Zhang [234] in their approximation. As the smallness
of neutrino masses is usually explained by a small VEV of the Higgs triplet (A), the eigenvalues
y; of the Yukawa coupling YA can be of O(1). This in turn leads to sizable flavor-dependent RG
effects. Furthermore, the evolution of the mass squared differences are mainly given by

"2

2 2
1672295 < 9 Ry +4Ca 0 (6.37)
Am?i <A>2

in the SM and MSSM with small tan 3. There can be a cancellation of the RG effect depending
on the parameters A; in the Higgs potential and the sign of Ca, but generically the RG effect in

3A Mathematica package with the exact formulas can be downloaded from http://www.mpi-hd.mpg.de/
“mschmidt/rgeTriplet/.


http://www.mpi-hd.mpg.de/~mschmidt/rgeTriplet
http://www.mpi-hd.mpg.de/~mschmidt/rgeTriplet/
http://www.mpi-hd.mpg.de/~mschmidt/rgeTriplet/
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Figure 6.13: As input values, we have chosen tri-bimaximal mixing at the GUT scale, m; = 0eV, Am3, =
2.5-107%eV?, Am3; = 1.2 - 10 *eV?, Ma = 10'° GeV and As = 2.510 °Ma, corresponding to (A) = 0.15eV. The

shadowed area indicates the full theory including the Higgs triplet. It is integrated out at the energy scale between

the shadowed and the white area.

the effective theory is large, as it can be seen in Fig. This is just one possible example. The
precise RG effect strongly depends on the parameters in the Higgs potential A;. The charged lepton
masses depend on the neutrino masses in a flavor non—diagonal way:

m 2
1672 —< =Reae + Da ( 4l 5 COS 20,5 + 2 sin 912> + O(b13) (6.38a)
Me (A) < )
. m? -
1673@ =Rea, + Da 3 5 sin 2095 + < 5 COS 20,5 + 5 L gin? 912> cos® Oas| + O(03)
my, L(A) (A) |
(6.38b)
m [ m m? |
1672~ =Rea. + D 5 COS 2095 + ( 00526 + —L ¢in?4 > sin? 03| + D, 72.+ O(013) .
. A e 23 12 A 12 2 y (613)

6.4.2 Running of Mixing Angles

(6.38¢)

We present the equations for the mixing angles in the approximation of vanishing y., v, and 6;3:

1620y = — L DBy o plmatma)® o o+ O(01) (6.39)
2 (AT Am3,
1672015 = g (ma — ma)ms cos d sin 2019 sin 2053 + O(613) (6.39b)
2 77 (m3 —m1)(m3 —ma)
. 1 m3 m? m2
1672093 = — = | D 3 L sin? 69 — 2 cos? 6 > 6.39¢
I [ s (Tae oy e o 05

—mimg + (mg — my) ms cos 2012
(m3 —m2) (m3 —mq)

] sin 263 + O(613) .

The equations of 615 and 613 agree well with the result by Chao and Zhang [234] in their approxi-
mation, however, we disagree in the RG equation of 83 by a factor of 2. In order to support our
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result, let us note, that the evolution of f»3 in Fig. agrees well with our result. It is obtained
by running the mass matrices to the low-energy scale before they are diagonalized, which is dif-
ferent from the calculation of the RG equations of the mixing parameters. The two contributions
to the running from charged leptons and neutrinos can be of the same order of magnitude and it
strongly depends on the hierarchy of neutrino masses which of the two contributions is dominant.
The contribution coming from the evolution of the neutrino mass matrix (o< Ce) shows almost the
same features as in the effective theory:
2

e there is an enhancement factor which is proportional to —=2-, where mo denotes the mass

2
Amﬁ

scale of neutrinos;
e the running strongly depends on tan 8 through the charged lepton Yukawa couplings;
e vanishing mixing is a fixed point.

In contrast to the effective theory, however, there is no dependence on Majorana phases. This still
holds for the exact equations. The RG evolution of the mixing angles is only influenced by the
Dirac CP phase. On the other hand, the contribution from the charged leptons shows a completely
different dependence on the Yukawa couplings. It is mainly proportional to the corresponding mass
squared difference divided by the square of the VEV of the Higgs triplet. Hence, there is no large
enhancement factor and no dependence on tan § in the SUSY case. Thus the overall size of the RG
effect mainly depends on (A). The formula

9'~~%sin29~ (6.40)
MEVNE v '

gives a good estimate for the running in the strongly hierarchical case. The sign of the RG effect
is determined by the sign of the mass squared difference and the factor Da. As Da is positive in
the SM and MSSM, 63 is evolving to larger values coming from the high renormalization scale for
a normal hierarchy. Furthermore, the 3-function is approximately proportional to sin 26;; implying
that a vanishing angle remains small. Taking into account these generic features, the RG effect from
the charged leptons is largest on 23 due to the combination of a large mass squared difference and
a large mixing angle. Moreover, as it can be seen from equations, zero mixing is a fixed point. This
is also obvious from the RG equation in matrix form, since in this configuration, P and F' will be
diagonal, if Y, and Y are diagonal. In Fig. [6.14] we have plotted the evolution of mixing angles in
the SM for a strongly hierarchical spectrum in order to suppress the effect coming from the effective
D5 operator. The gross features of the running can be immediately seen: the only sizable effect is
on B33 due to the large angle and mass squared difference. As it can be seen from Fig. the
RG effect can be estimated by a LL approximation to

Dy Am3; A

The contribution to 13 coming from the charged leptons vanishes in our approximation. For non—
vanishing 63, it is given by

Da m% m% 9 m% . 9 ) .
- = — cos” 019 — sin“ 6 sin 260 6.42
: < Az (oot b st ) sin2 (6.42)

Let us comment on the configuration 13 = mg = 0, which is stable under the RG in the effective
theory. Vanishing mass eigenvalues remain zero, as it can be seen from Eq. (6.36c)), but 03 receives
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Figure 6.14: Plot showing the evolution of the leptonic mixing angles in the SM. As input values, we have chosen
tri-bimaximal mixing at the GUT scale, m; = 0eV, Am2, = 2.5 -1072eV?, Am2; = 1.2 -107%*eV?, Ma = 10'° GeV
and A¢ = 2.5107°Ma, corresponding to (A) = 0.15eV. The shadowed area indicates the full theory including the
Higgs triplet. It is integrated out at the energy scale between the shadowed and the white area.

corrections

. C A 2 2 2,2
1672015 = —< My Ye (yT y“) cos d sin 2615 sin 2023 + O(613, y3) (6.43)

2 (A (g2 —v2) (v} —v2)

2
Ams,

2
Thus 013 = mg = 0 is not stable under the RG. However, the effect is negligible, because (g—;)

is very small and m3 = 0 is stable.

6.4.3 Running of Phases
The RG evolution of the phases is rather small and can be neglected in most cases:

Ce (m2 —m1)ms

16726 =3 (m3 — mu)(ms — ma) y3 sin d sin 2612 sin 2623 49;31 + O(613) (6.44a)
167201 — — 2|20.42 (m% + m%)mz sin? 0,5 — ((m% + m%) sin? 015 — mama(cos 2012 — cos 2623))ms3 cot 0
o < (ms —m1)(ms — ma)(mz2 — ma) "
Am§1 . . 2
+ DA <A>2 sin 2612 | cot 23 sind 613 + 0(913) (6.44b)
167200 — — 22042 —(m3 4+ m3)ms cos® 012 + m1((m3 4+ m3) sin® faz + mama(cos 2612 + cos 2023)) tan 0
72 ¥ (ms — ma) (ms —m2)(ma — my) .
Am3, . . 2
+ Da <A>2 sin 2012 | cot B23sind 013 + O(073) , (6.44c¢)

because the leading order of the Majorana phases is of order #13. Only the Dirac CP phase §
involves a term which is inversely proportional to 613. Thus, there is a sizable effect for small ;3.
For vanishing 613, 0 has to vanish (for realistic values of 12 and #23) in order to ensure analyticity
of §(t) analogous to the effective theory [59]. The RG equation of the Dirac CP phase § does like
the angles not depend on the Majorana phases ;.

We agree with the result of Chao and Zhang [234] for the Dirac CP phase 0 in their approximation.
However, we completely disagree for the Majorana phases. Their result for the Majorana phases is
not sensible, since the Majorana phases are physical parameters even in the limit of vanishing 1-3
mixing unlike . Therefore, the RG equations should not show a pole at vanishing 1-3 mixing.
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Figure 6.15: In the type I+II seesaw case, there is a complicated interplay between the two contributions to the
neutrino mass matrix. Here, we just plot an example for the following initial values at the GUT scale: Ma = 10'° GeV,
Ag = 4.56 -10° GeV, m1 = 0.02eV, Am3; = 1.5 -1074eV?, Am2, =55 -1072eV?, 010 =03 = X, 013 =0,0 = ¢ =

4
@2 =0, Y, = 0.37diag (1072, 107", 1), where Ya is chosen diagonal Yo = diag (1.3 -107°, 1.5 -107%, 5.1 -107°)
and M is chosen appropriately to produce bimaximal mixing. The differently shaded areas indicate the different
energy ranges of the various EFTs. At each border, a particle, either a RH neutrino or the Higgs triplet, is integrated
out.

6.4.4 RG Evolution in Type I41I Model

In the type I+II case, it is not possible to express the RG equations in terms of mixing parameters.
Therefore one has to resort to numerical calculations. For this purpose, we have extended the
Mathematica package REAP, which is available on the webpage http://www.ph.tum.de/ rgel to
include a left-handed triplet.

To illustrate the largeness of RG effects in the type [+411 seesaw scenario, we show an example, where
bimaximal mixing at high energy evolves to the large mixing angle (LMA) solution at low energy.
In previous works [64,66,67,69|, this evolution was due to an inverted hierarchy in the neutrino
Yukawa couplings Y, or large imaginary off-diagonal entries. Here, the relevant matrix Y, Y, is real
and has a normal hierarchy. In addition, the singular values of the Yukawa coupling matrix YA are
small (O(1079)). In spite of the small couplings, there is a sizable effect on 612 which can be seen in
Fig. [6.15] It is due to the different RG equations of the contributions to the neutrino mass matrix.

In our example, we have chosen Ag to be relatively large Ag = O(10%) GeV, because it receives
corrections of the order of Msz (Y,,)§3 (YA)s3. The evolution of the mixing angles 612 and 63 is highly
non-linear above the threshold of the Higgs triplet. Hence, a LL approximation is not possible. In
the MSSM, the equations for the mixing angles presented in [69] are valid at each renormalization
scale p. Hence, 019 is increasing, as long as there there are no imaginary off-diagonal entries and
there is a normal hierarchy in the neutrino Yukawa couplings.


http://www.ph.tum.de/~rge

Chapter 7

Summary & Conclusions

Despite of the great success of the SM, there are several hints to physics beyond the SM, like the
quantization of charge and gauge coupling unification in the MSSM, as well as the already mentioned
regularities in the flavor sector. In particular, neutrino masses might be related to physics at a high
energy scale via the seesaw mechanism because of their smallness and different flavor structure.

Therefore, in Chapter [4] we have studied a mechanism which cancels the large hierarchies in the
neutrino mass matrix and allows to have a special structure that is completely different from all
charged fermions. It works within the cascade seesaw mechanism which can be viewed as an ex-
tension of the standard seesaw mechanism. We showed a possible connection of the cancellation
mechanism and the QLC relations and argued that the cancellation mechanism allows to imple-
ment a special neutrino symmetry. The light neutrino mass matrix is given by the same formula
Eq. in the case of singular Mgg, which leads to a massless neutrino. As vanishing masses
can only be generated between mass thresholds when there are several contributions to the neutrino
mass matrix, the vanishing mass is protected in the MSSM and receives corrections proportional to
the logarithmic hierarchy between the largest and smallest mass threshold in the SM. Otherwise the
light neutrino mass matrix is just rescaled. The DS structure will dominate over the LS contribution
if the additional singlets are heavier than the scale (A) .

We outlined several possibilities to obtain the DS structure and, additionally, we have presented
three different realizations of the cancellation mechanism, one based on an extended gauge sym-
metry, more precisely the GU group FEg, and two realizations with non-Abelian discrete flavor
symmetries in the context of SO(10). These two predict nearly maximal atmospheric mixing. The
realization with the flavor symmetry 7Tr is SUSY and achieves a partial cancellation of the hierarchy.
The choice of scales requires to include the LS contribution which cancels the remaining hierarchy.
Thus, the weak hierarchy in the neutrino mass matrix is explained by an interplay between the
LS and DS contribution. The DS contribution alone cannot lead to a viable phenomenology. We
studied corrections by higher-dimensional operators which can be controlled by an additional Z5
symmetry. The realization with the discrete group 3(81) has to be non-SUSY due to the group
structure. It leads to a complete cancellation of the hierarchy, while the additional singlet masses
are close to the Planck scale. Hence, the DS contribution dominates. In the leading order, two
masses are degenerate and the mass matrix is diagonalized by the tri-bimaximal mixing matrix.
However, the atmospheric mixing angle is unphysical as long as the atmospheric mass squared dif-
ference vanishes. The study of higher-dimensional operators shows that their corrections are safe,
since they are always smaller than the leading order. In general, they generate a non-vanishing
atmospheric mass squared difference and a phenomenologically viable neutrino mass matrix can be
obtained. An additional Zn symmetry can further suppress these corrections. Finally, since the
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VEV structure of the flavons is essential, we demonstrated how the leading order can be obtained.
The next-to-leading order requires a more complicated flavon potential.

As threshold corrections turn out to be important in non-SUSY theories, we studied them in Chapter
[l The interplay of different contributions to the neutrino mass matrix does not allow to derive
RG equations for the mixing parameters between the seesaw scales. Therefore, we calculated the
RG effect in the LL approximation. Our main result, here, is that the quantum corrections can be
summarized as a rescaling of the RH neutrino masses at leading order. We discussed the RG effects
beyond LL approximation qualitatively. Furthermore we argued, that the results immediately apply,
if the vertex corrections to the Yukawa couplings and the effective operator factorize and the mass
term does not receive vertex corrections.

We applied our results to the cascade seesaw mechanism. The corrections can be described by a
rescaling of the additional singlets as well as the RH neutrinos, i.e. all particles which have been
integrated out. The rescaling of the RH neutrinos leads to an effective standard seesaw contribution
besides the corrections to the DS and LS term, although the standard seesaw term exactly cancels
without RG corrections.

Hence, the cancellation mechanism is stable with respect to the RG in the MSSM, i.e. its structure
does not change, since RG corrections can be factorized in SUSY theories. Thus, in the 77 real-
ization, they strongly depend on tan 3 and the absolute neutrino mass scale which has not been
specified. The RG effect in a concrete model is easily obtained by the usual formulas in the effective
theory. In non-SUSY theories, the mass thresholds of the RH neutrinos are important, since they
can change the structure of the DS formula and can neither be factorized like the wave function
renormalization nor absorbed in parameters of the full theory like the threshold corrections from
additional singlets. In the framework of the cancellation mechanism, they can be large, since there
is a large hierarchy in the RH neutrino masses. The results have been analytically discussed in
several examples where Mgg takes a particularly simple form. Small perturbations in vanishing el-
ements can lead to large effects. However, in the 3(81) model, they can be absorbed in coefficients
of higher-dimensional operators.

In Chapter [6] we have discussed quantum corrections to several models. The model based on the
L, — L; symmetry leads to a quasi-degenerate neutrino mass spectrum and equal CP parities of
the masses. Therefore, there are large RG corrections to the solar mixing angle as well as the mass
squared differences and it is crucial to take them into account.

Furthermore, we did a comprehensive study of RG corrections to the QLC relations under the
assumption that they are realized with “lepton mixing = bi-maximal mixing—CKM?”. In the MSSM,
RG corrections to 612 are generically positive due to a dominant effect of the 3-3 element of Y.
So, they worsen the agreement of the predicted 615 with the experimental data. Small negative
corrections, |Af2| < 0.5°, can appear for opposite CP parities and an inverted mass hierarchy, in
which case the main terms in the RG equations are strongly suppressed and the running is due to
sub-leading effects related to non-zero 1-3 mixing. The RG corrections increase with m; and strongly
depend on the relative Majorana phase. For Ay = 0° the consistency of the QLC prediction for
012 with the experimental data implies a strong mass hierarchy of the light neutrinos and small
tan 8. For Ay = 180° the corrections are suppressed and even the degenerate spectrum becomes
allowed. For an inverted mass hierarchy RG corrections are generically enhanced by larger neutrino
masses my1 2. The situation is qualitatively different in the SM. Here important contributions follow
from the vertex corrections to the D5 operator in the range between the seesaw scales. The Yukawa
couplings (especially for small m1) give sub-leading contributions. The RG corrections are negative
around Ap = 180°. The corrections depend substantially on the scale A. The value Afis can be
enhanced by a factor 2-5 if A increases from Agyt to Mp;. For the hierarchical mass spectrum the
renormalization of the 1-3 mixing is, in general, small: Afy3 ~ 0.2° —0.3°, although it can be large,
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Afq3 ~ 013, for a quasi-degenerate spectrum.

We derived exact RG equations in terms of the mixing parameters in the triplet seesaw scenario.
The equations have a different structure compared to the ones in the standard seesaw case as well
as in the effective theory. Majorana phases do not influence the evolution of the other parameters.
Hence, there is no damping of the RG effect due to phases. The main difference is the proportional-
ity of the g-functions to the mass squared difference in contrast to the inverse proportionality in the
case of an hierarchical spectrum. Hence, there is no enhancement factor and the RG effect is small
as long as Y is small. Furthermore, as the RG equations of the mixing angles 6;; are proportional
to sin 20;;, there are sizable RG corrections to the atmospheric mixing angle for a strong normal
hierarchy in contrast to the standard seesaw scenario. The RG equations in the full case can only
be studied numerically. The interplay of the contributions from RH neutrinos and the Higgs triplet
can lead to large RG effects even in the SM.

Concluding, it is essential to consider RG effects in model building to make predictions which
can be compared to the experimental data, because they can lead to substantial corrections of
the predicted values at an high energy scale. The largest RG effects show up for 612 and the
mass squared differences in the standard seesaw as well as 023 in the triplet seesaw framework. In
general, they are enhanced for large tan 8 due to charged lepton and down-type quark loops. If
there are two contributions to the neutrino mass matrix or any mass matrix which have different
RG equations, very large corrections can be expected from the interplay of both contributions. This
has been demonstrated by the threshold corrections in the standard seesaw scenario and in the type
I+1I seesaw framework in non-SUSY theories. Furthermore, future experiments will improve the
precision of leptonic mixing parameters and neutrino masses. Therefore, even small corrections like
for a strongly hierarchical spectrum will become comparable to the experimental precision.

The discussion of RG effects in already existing GU models is an interesting task in order to be able
to compare their predictions of masses and mixing angles to future precision data. Besides the RG
evolution of masses and mixing angles, the quantum corrections to sfermion mass matrices in SUSY
theories are interesting and help to constrain SUSY GUTs (See e.g. [153].), because non-diagonal
sfermion matrices lead to lepton flavor violating processes. The Mathematica package REAP can
be easily extended to include the running of sfermion mass matrices.

Otherwise, the cancellation mechanism in the cascade seesaw framework offers new possibilities to
combine a flavor symmetry with a GU model, since neutrino masses are related to the additional
singlet sector, which can explain the differences between neutral and charged fermions. As the
hierarchy in the charged fermion sector depends on the generation of the VEV hierarchy, the explicit
construction of the flavon potential is an important task. Moreover, it is interesting to extend one of
the presented realizations to a complete GU model, which explains all fermions masses and mixings,
and to discuss its predictions for the low-energy data. The used flavor groups are minimal [82]. This
proof shows, in addition, that there are three alternative small groups which allow to implement the
cancellation mechanism, but have not been discussed so far. As they might overcome some of the
problems of the investigated flavor groups, a study of their predictions can lead to useful results.
Anyway, the coming years will be exiting, because there are many experiments further constraining
the flavor sector and the LHC which will probe the TeV region directly to investigate the Higgs
mechanism and test whether there is low-energy SUSY, i.e. the MSSM or one of its extensions.
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Appendix A

Conventions

In this chapter, we collect conventions, which are used throughout the thesis.

e We use RL convention for SM Yukawa couplings, i.e.
%Yefggng + nyufgggHu’

where ep and N denotes the RH charged and neutral leptons, respectively. The left-handed
doublet is called ¢.

e GUT charge normalization is used for the U(1)y hypercharge, i.e. the charge gy is related to

the charge in GUT normalization by qg = \/gqy and the gauge coupling satisfies g = % (glU )2.

. . .. . _ m
e The Fourier transformation from position space to momentum space is defined by exp™P#*".
Therefore 9,, in position space corresponds to —ip,, in momentum space.

A.1 Mixing Matrices

The connection between the flavor basis and the mass basis in the SM is described by two mixing
matrices VCKM = VCKM(’&IQ, 1913, 1923, 5q) in the quark and UMNS = UMNS(912; (913, 923, (5, P1, QOQ)
in the leptonic sector. We use the standard parameterization which is defined in App. for both
matrices. Mixing angles in the leptonic sector are denoted by 6;;, the Dirac CP phase by ¢ and
the Majorana phases are referred to as ;. The corresponding mixing angles and Dirac CP phase
in the quark sector are denoted by 1J;; and 0. Sometimes, the quark mixing is expressed in terms
of matrix elements of the CKM matrix which can be approximately described by the Wolfenstein
parameterization [236]

Vid Vus Vb 1—1\2 A AN (p—in)
Vekxm =V Vap = | Vea Ves Vo | = .\ — 1N AN . (A
Via Vis Vi AN (1 —p—in) —AN 1

As the QLC relation [12-14] suggests a relation between the quark and lepton sector, it is useful to
use the Cabibbo angle V,,s = A &= sin¥;2 as expansion parameter [237|

1 1 54
Uea = 3 (1—=X), Ueg = AN, Uiz = \/g(l — BA™) € (A.2)
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The free parameters m and n account for the experimental uncertainty in the matrix elements.
Unitarity determines the remaining elements. For definiteness, we show the case m =n =1

Uel UeQ UeS
Uans =U5 Uy, = | Ua Up2 Ups
UTl UTZ UT3

\/g(1+k) \/%(1—» A

=| -2(1-(1-B-A4e%))) L(1+(14+B—Ae%))) (1- BN [ +0(N?).
(1= (14+B+A4°) ) =3 (14 (1 - B+ Ae’) \) (1+ BA) e

(A.3)

The CP violating phases can also be expressed in terms of weak-basis invariants like the Jarlskog
invariant [238]

Jep =Tm{Via Ves Vi Vi (A.4)
Jop =Im{Ue1 Un Ug Ui}

which is related to the Dirac CP phase. The rephasing invariant CP violation measures are
Sl =Im {UelU:3} y SQ =1Im {UQQU;%} (A5)

in the case of the Majorana phases [239].

A.2 Standard Parameterization

A unitary matrix can be described by three angles and six phases. Thus it can be written in the
following way:

U = diag(el%, % e) . V (012,013, 0a3, 0) - diag(e ¥1/2 e7192/2 1) (A.6)

V is a special unitary matrix and is parameterized in standard parameterization like the CKM
matrix in the quark sector with three angles (612, 013, 023) and one CP phase (§) [93].

c12€13 . 512C13 size!
V (619, 613,093,6) = | —cozsia — sazs13ci2€®  cazcia — sazsizsized sazcrs (A7)
i is
593512 — €23513C12 €0 —8523C12 — €23513512 € €23C13

where s;; and ¢;; are defined as s;; = sin0;; and ¢;; = cos 8;;, respectively. The Jarlskog invariant
Eq. (A.4) is related to the mixing angles and the Dirac CP phase by

1
Jép =3 sin 2619 sin 2093 sin 2013 cos 013 sind . (A.8)

In addition, there are phase matrices multiplied from both sides. In the lepton sector, the matrix
on the left-hand side is characterized by the unphysical phases d., d,, and ¢, which can be rotated
away by a change of the phases in the left-handed charged leptons. The matrix on the right-hand
side is described by the Majorana phases @1 and o which can only be rotated away by left-handed
neutrinos, if they are Dirac particles. Analogous reasoning applies to the quark sector, where all
additional phases can be rotated away.



Appendix B

Group Theory

In this chapter, we collect the relevant technical details which are needed for the calculations in the
main part.

B.1 Lie Groups

Here, we present technical details about Lie groups, more precisely their Lie algebras, which are
needed in the main chapters. A detailed discussion of Lie algebras is given in [240,241], which in-
cludes the calculation of Clebsch-Gordan coefficients by the ladder operator technique and breaking
to subgroups.

All semi-simple Lie algebras can be classified by Dynkin diagrams, e.g. the Dynkin diagram be-
longing to su(5) is shown in Fig. It determines the Cartan matrix A;; = 2 (ai,0)

(aj,a5)
translated to the metric tensor G;; = (Afl)ij % of the weight space in terms of the simple root
a; which form a basis. Thus the non-orthogonality of simple roots is encoded in the Cartan matrix.
The Lie algebra is uniquely given by the Dynkin diagram. There are 4 series of semi-simple Lie
algebras A, = su(n+ 1), B, Zso(2n+ 1), C, = sp(2n) and D,, = s0(2n) as well as 5 exceptional
algebras Ga, Fy, Eg, F; and Eg.

which can be

Figure B.1: Dynkin diagram of A4 2 su(5).

An irreducible representation of a Lie algebra is completely determined by its highest weight A.
The Weyl formula determines the dimensionality

(A+0,x)
ORI | (B.1)
- ;)
agEpositive roots
of the representation, where 6 = (1,1,...,1, 1)T in the Dynkin basis. Besides the dimensionality,

there are further invariants of a given representation. The quadratic Casimir

C(A) = (A, A + 26) (B.2)
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is directly related to the Dynkin index of a representation

I(A) = z\x(ﬁ;) C(A) .

(B.3)

This relation becomes obvious from the definitions in terms of generators in the given representation

C(N)day =Y _ (TTH), (B.4a)
A
I(A)§4B = tr (T4TP) . (B.4b)

In an Abelian group, the above formulas for the quadratic Casimir and the Dynkin index are replaced
by the squared charge of the representation, i.e. [(A) = C(A) = ¢3.

B.1.1 SO(10)
The Dynkin diagram of s0(10) is shown in Fig. and leads to the Cartan matrix

2 -1 0 0 O
-1 2 -1 0 O

A= o -1 2 -1 -1 (B.5)
0o 0 -1 2 0
0O 0 -1 0 2
and the metric tensor for the weight space
1 1 1 1/2 1)2
1 2 2 1 1
G= 1 2 3 3/2 3/2 (B.6)
1/2 1 3/2 5/4 3/4
1/2 1 3/2 3/4 5/4

The relevant representations and their properties are collected in Tab. [BI] The decomposition of

—d

Figure B.2: Dynkin diagram of Ds 22 50(10).

representations in terms of their subgroups is shown in Tab. [B:2]

In Tab. [B.3] all tensor product which are used in the main part are summarized. There are two
convenient ways to calculate the results which are presented in the tables besides the general one by
ladder operators. Depending on the symmetry breaking chain, it is either more convenient to do the
calculation in terms of the subgroup SU(5) [242] or in terms of the PS subgroup SO(4) x SO(6) =
SU(2) x SU(2) x SU(4) [243]. We used the decomposition in terms of SU(5) which is extensively
discussed in [244,245|.
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Table B.1: SO(10) representations. Real representations are denoted by

label N | type | 1

(10000) | 10 r 2

(00001) | 16 ¢ 4
(01000) | 45 T 16
(20000) | 54 T 24
(00100) | 120 r 56
(00002) | 126 ¢ 70
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“r” and complex ones by “c”.

SO(10) > SU(5) x U(1)
10 =5(2) ®5(2)
16 =1(5) @ 5(3) ® 10(1)
45 = 1(0) ® 10(4) ® 10(4) @ 24(0)
54 = 15(4) ® 15(4) @ 24(0)
120 = 5(2) © 5(2) ® 10(6) & 10(6) @ 45(2) & 45(2)
126 = 1(10) © 5(2) @ 10(6) @ 15(6) & 45(2) & 50(2)
SO(10) D SU(2) x SU(2) x SU(4)
10=(2,2,1)®(1,1,6)
16 =(2,1,4)®(1,1,4)
45 =(3,1,1) ®(1,3,1) & (1,1,15) & (2,2,6
54 =(1,1,1)®(3,3,1) @ (1,1,20') & (2,2,6)
120 =(2,2,1) @ (1,1,10) ® (1,1,10) ® (3,1,6) ® (1,3,6) & (2, 2,15)
126 = (1,1,6) @ (3,1,10) @ (1,3,10) ® (2, 2,15)

Table B.2: Decomposition of some representations of SO(10) in terms of subgroups. Barred U(1) charges g are

understood as —q.

B.1.2 E

The Dynkin diagram of Eg is shown in Fig. The corresponding Cartan matrix is

2 -1
-1 2
0 -1
0 O
0 0
0 O

(B.7)
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Table B.3: Tensor products of SO(10) representations
which are used in the main text.

Figure B.3: Dynkin diagram of Fs.

which leads to the metric tensor

4/3 5/3 2 4/3 2/3 1
5/3 10/3 4 8/3 4/3 2
2 4 6 4 2 3
G=1 43 83 4 10/3 5/3 2 (B8)
2/3 4/3 2 5/3 4/3 1
1 2 3 2 1 2

The relevant representations and their properties are collected in Tab. Note, that we do not
follow the notation of Slansky [240] in the main text. In order to distinguish the symmetric and
antisymmetric 351-plets, we assign to the symmetric one the index S and to the antisymmetric one
the index A. The decomposition of the representations in terms of their subgroups is shown in Tab.
Besides the general method for group-theoretical calculations in Fg, tensor products of small
representations are most easily performed in terms of maximal subgroups. In Sec. [£.4] we use the
trinification subgroup SU(3)3: upper indices are SU(3), indices in the fundamental 3 representation
and the lower ones belong to SU(3)g. The irreducible representation 6 of SU(3) is represented by
symmetric 3 X 3 matrices and described by two symmetrized indices. Dotted indices belong to the
complex conjugate representation 3.

label ‘ N ‘ type ‘ 1
(100000) 27 ¢ 6
(000001) 78 T 24
(000100) | 3514 =351 ¢ 150
(000020) | 351g = 351 ¢ 168

Table B.4: Eg representations. Real representations are denoted by “r” and complex ones by “c”.

In Tab. [B:6] all tensor products which are used in the main part are summarized.
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(
351, =351 = 10(2) © 16(5) © 16(1) @ 45(4) © 120(2) © 144(1)
) ) ) @ 144(1)

Es O SU(3) x SU(3) x SU(3)
27=(3,3,1)©(3,1,3) ®(1,3,3)
78 =(8,1,1)©(1,8,1)®(1,1,8)®(3,3,3) ®(3,3,3)
351, =351 =(3,3,1)®(3,6,1)®(6,3,1)® (3,1,3)® (6,1,3)  (3,8,3) ® (1,3,3)
®(1,6,3)®(8,3,3)®(3,1,6)®(1,3,6)® (1,3,6)®(3,3,8
3513>~351'=(3,3,1)®(6,6,1)®(3,1,3) ® (3,8,3)® (1,3,3) ® (8,3,3) ® (6,1,6)
®(1,6,6) D (3,3,8)

Table B.5: Decomposition of representations of Fs in terms of their subgroups. Barred U(1) charges g stand for
—q.

27 ®27 =27 ® 351, © 3514
27 ®27 =1® 78 ¢ 650

Table B.6: Tensor products of Fg representations.
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classes

Ci C C3 Cy Cs
G 1 B B2 A A3
°C; 1 7 7T 3 3
°he, | 1 3 3 T T
1, 1 1 1 1 1
1, 1 w w1 1
1, 1 w? w 1 1
3 3 0 0 ¢ &
3" 3 0 0 & ¢

Table B.7: Character table of T7. w = ezgi = —% + ig and & = %(—1 + 1\ﬁ)

Furthermore & = p + p? + p* where p = ¢ 7 . C; denotes the different classes which
make up the group. The elements of a class C; are related by an inner group auto-
morphism, i.e. G1 = T_1G2T7 where G1,G2 € C; and T is an element of the group.
G is a representative of the corresponding class, °C; is the order of the class, i.e.
the number of elements and °h ¢, is the order of the elements in the class, i.e. the
smallest integer with G “he; = 1. The characters x of a group are defined as the
trace over the matrix D(G) which represents the group element G in representation

D: x =trD(G).

B.2 Discrete Groups

Here, we collect the relevant group-theoretical details which are used in Sec.

B.2.1 17

T7 is group of order 21 which is very similar to A4 with the crucial difference that A4 contains one
real three-dimensional representation and 7 has two complex three-dimensional representations.
Ty as well as Ay contain the subgroup Zs. The character table is presented in Tab. [B-7] The used
generators for the three-dimensional representations are:

e 0 0 010
3:A= 0 7 ,B=|[ 0 0 1
0 0 7 1 0 0
and .
e 0 0 010
3 1A= 0 e % 0 ,B=[0 0 1
0 0 e 7 1 00

They fulfill the generator relations:
A"=1, B> =1, AB=BA*.

The Kronecker products are

1L, xL=1;, 1, x13=1,, Bx3=3+3", {3x3}=3"
lQXl2:l37 l3><l3:l27 [§*X§* :§+§*a {§*x§*}:§
1, x3=3, 1;x3"=3" 3x3" =1, +1,+13+3+3"

with [ X u] being the symmetric part of the product g x p and {u x pu} being the anti-symmetric
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part. The non-trivial Clebsch-Gordan coeflicients are for (al,ag,ag)T ~ 3, (bl,bQ,bg)T ~ 3* and
cr~ l]_a C/ ~ 127 C// ~ l3:

3x1; : (a1c,az2c,a3¢) ~3 3" x1; : (bic,bac,bgc) ~3*
3x1, : (a1 d wasd,w?as c') ~3 3 x1, (bl d,wby ', w? bs CI) ~ 3"
3x15: ((11 dwasd’ wasg c”) ~3 3" x 15 : (b1 ' Wbyl whs c") ~ 3"

T

For (aq,az, a3)T ,(al,ab,a8)” ~ 3:

* *

/ / T / / T / / T
(azas,a1 ay,a2a5)” ~3, (agas,azal,a;ay) ~ 3 and (azah,a;as,azay) ~3

T T
For (b17b27b3) ’( /17 évbé) ~ §*i
(bo by, by by, by b)) ~ 3, (bybly, by by, by b)) ~3 and (bsbl, by b, baby)" ~ 3%
For (ay,as, CL3)T ~ 3, (b1, ba, bg)T ~ 3* the T, covariant combinations are:

arby +agby +azbs~1;, a;b +w?asby +wazbs ~1,,
a1 by Fwagby +wazbsy ~ 15,

(a2 b1, a3 b2, a1 bs)T ~ 3, (a1b,asbs3,a3 b1)T ~ 3%,

In Tab. [B:§| the leading order contributions of the higher-dimensional operators are presented.
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B.2.2 (81)

¥(81) is a group of order 81 which has nine one-dimensional representations and eight three-
dimensional ones. The irreducible representations are 1; withi=1,...,9 and 3; withi=1,...,8. All
representations are complex besides the trivial one 1;. The complex conjugate pairs are presented
in Tab. Six of the eight three-dimensional representations are faithful, i.e. have as many
distinct representation matrices as there are elements of the group.

Rep. |1; |1, 1, 15 1|3y 33 35 37
Rep.* 1, |13 1, 13 19|35 3, 3¢ 35

Table B.9: The representations of the group X(81) and their complex conjugates.

The character table can be found in [214] together with a choice of representation matrices for the
representation 3; which has been called 3, in the cited work. The generators are given in Tab.

B.11
Some of the Kronecker products are already shown in [215]. In Tab. we show the Kronecker

products which we need to discuss the lowest order.

(a) Kronecker  products

with one dimensional (b) Kronecker products of three dimensional represen-
representations tations
Rep. | 1; 1, 15 Product 3; x 3;:

1, |1, 1, 13
1, 1, 15 1, 81 X 34] =35+ 34 and {31 x3:} =34

1, |1, 1, 1, [B2 x32] =3, +33  and {35 x3,} =33
31 §1 31 31
32 |32 32 3o

31 x3y = 1;+1,+153+3;+ 3¢

Table B.10: Relevant Kronecker products of ¥(81).

The non-trivial Clebsch-Gordan coefﬁcient are for (a1, as, ag)T ~ 3; and ¢ ~ 1;:

3; x1y : (a1c,az2c,a3c) ~ 3
3, x 1,y ¢ (alc,wagc,w2a30)~§i for i=1,...,6

3; x 15 : (alc,wQagc,wa30)~§i for i=1,...,6

For (a1,as,a3)” ~ 3, and (b1, ba, b3)” ~ 3, the structure of the Clebsch-Gordan coefficients is:

(a1 b1, asba,azbs)’ ~ 3y, (agbs,azbi,arba)’ ~ 3,4, (azbs,a1bs,asby)’ ~ 3,

For (a1, as, CL3)T ~ 35 and (b1, bo, bg)T ~ 3, the structure of the Clebsch-Gordan coefficients is:

(a1 b1, a2 b2, a3 bS)T ~3;, (a2bs,a3bi,ar bz)T ~ 33, (agba,a1bs, a: b1)T ~ 33

'The remaining Clebsch-Gordan coefficients can be obtained via the formulas given in [246].
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For (a1, as, ag)T ~ 3, and (b1, be, bg)T ~ 35 we arrive at the covariant combinations:

arby +agby+azby ~1;, arb +w?asby+wazby ~1y,a1b +wasby +w?azgbs ~1g,

(azba,as by, a1 b3)” ~ 3, and (agbs,a; by, azby)’ ~ 3g .
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We show three generators A, B and C for the

Table B.11: Generators of 3(81).

2w

representation, although it is enough to take the generators A and C in order to
reproduce the whole group. Note that w =e 3
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Order in € Operator Structure Representation
o) x5 (x3)" ™" (m=0,..,n) 1,55 for 2m—mn) mod3=0
3" comp. of 8, for (2m —n) mod 3 =1
3" comp. of 8, for (2m —n) mod 3 = 2
O(€%) X5 03)" " x1 (m=0,..,n—1) 15" comp. of 3, for (2m +1—n) mod 3 =0
274 comp. of 35 for (2m +1—n) mod 3 =1
3" comp. of 84 for (2m +1—n) mod 3 = 2
X5 03)" " xt (m=0,..,n—1) 15 comp. of 3, for 2m —n+1) mod 3=0
3* comp. of 8, for (2m —n+1) mod 3=1
224 comp. of 3, for (2m —n +1) mod 3 = 2
O(e) X2 O3) " T xe (m=0,...,n—1) 2° comp. of 3, for (2m —n + 1) mod 3 =0
1% comp. of 35 for 2m —n+1) mod 3=1
1°* comp. of 3, for (2m —n+1) mod 3 =2
X5 O3 ™ xs (m=0,..,n—1) 2% comp. of 3, for 2m —n+1) mod 3 =0
1% comp. of 3g for (2m—n+1) mod 3=1
1% comp. of 3, for (2m —n+1) mod 3 =2
O(e%) X2 O3) " ™ x1x2 (m=0,...,n—2) 3'1 comp. of 35 for 2m —n+2) mod3=0
1,56 for 2m—n+2) mod3=1
3* comp. of 34 for (2m —n +2) mod 3 =2
X5 O3)" T " xix2 (m=0,...,n—2) 2% comp. of 34 for (2m —n +2) mod 3 =0
1% comp. of 34 for (2m —n+2) mod 3=1
2" comp. of 3 for (2m —n +2) mod 3 = 2
X5 03) " " x1xs (m=0,..,n—2) 2"% comp. of 3, for (2m —n+2) mod 3 =0
2"4 comp. of 34 for (2m —n +2) mod 3 =1
1% comp. of 34 for (2m —n +2) mod 3 =2
X5 (X3 T xixs (m=0,..,n—2) 3" comp. of 3, for 2m —n+2) mod 3 =0
3" comp. of 8 for (2m —n+2) mod 3 =1
1,4 for 2m—n+2) mod 3 =2
O(e?) X5 ()" X3 (m=0,...,n—2) 2"7 comp. of 3, for (2m —n +2) mod 3 =0
1% comp. of 3g for (2m —n+2) mod 3=1
1% comp. of 3, for (2m —n +2) mod 3 =2
X5 03)" 7 " x2xs (m=0,..,n—2) 1, ,5for 2m—n+2) mod3=0
3* comp. of 8, for (2m —n +2) mod 3 =1
3™ comp. of 3, for (2m —n +2) mod 3 =2
X5 O3 T (x3)? (m=0,..,n—2) 2T comp. of 3, for (2m —n+2) mod 3 =0
1% comp. of 3, for (2m —n+2) mod 3=1
1% comp. of 3, for (2m —n +2) mod 3 = 2
O(€%) X3 O3) "™ x3 (m=0,..,n —3) 1,55 for 2m —mn) mod 3 =0
3* comp. of 3, for (2m —n) mod 3 =1
3* comp. of 3, for (2m —n) mod 3 =2
X5 O3)" " x3xs (m=0,...,n—3) 2" comp. of 3, for (2m —n) mod 3 =0
1°* comp. of 33 for (2m —n) mod 3=1
1% comp. of 3, for (2m —n) mod 3 =2
X2 O x2 (x3)? (m=0,...,n—3) 2" comp. of 3, for (2m —n) mod 3 =0
1% comp. of 8 for (2m —n) mod 3 =1
1%° comp. of 3, for (2m —n) mod 3 =2
X5 03)" " (x3)° (m=0,...,n—3) 1,55 for 2m—n) mod 3=0
3* comp. of 3, for (2m —n) mod 3 =1
3* comp. of 3, for (2m —n) mod 3 =2

Table B.12: Higher-dimensional Operators of ¥(81). Analogously to 7%, the higher-dimensional operators
can be identified by three representation matrices S; = C?, So = A2C? A and S;3 = AB? C A% which are
products of the three given generators A, B and C. The resulting relations are shown in the third column.
The number of operators is about [%] for larger values of n.
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B.3 Anomalies

After the correct interpretation of the decay 7 — 7 by Adler [247] as well as Bell and Jackiw [248]
in terms of a breakdown of the symmetry on the quantum level, which is denoted the Abelian
anomaly. Many more anomalies in quantum field theory have been discovered [249], like the non-
Abelian chiral anomaly, the gravitational anomaly, the conformal anomaly and the global anomaly.
As we are especially interested in gauge theories and flavor symmetries, we summarize which gauge
groups are safe and the main facts about discrete anomalies.

B.3.1 Anomalies of Gauge Theories

Any sensible gauge theory has to be anomaly-free. Here, we concentrate on chiral gauge anomalies
which are given by

Agpe = tr (’75 {Fm Fb} Fc) , (B'13)

where 5 denotes the chirality operator of the Lorentz ~y-algebra and I', = PrT, + PRTX, Pr 1 =
%(1 +45). T is the generator of the gauge group in the given representationﬂ In an Abelian
theory T. is replaced by the charge g of the particle. The anomaly constraints have been discussed
in [250]. Vector representations are automatically free of anomalies, since the anomaly is related to
~5. All other chiral representations have to fulfill the anomaly constraint

tr ({T5, T} TF) = 0. (B.14)

All real representations are anomaly-free. Hence, Lie algebras which contain only real represen-
tations are safe. Those include Ay, By,N > 2, Cn,N > 3, Doy, N > 2, Go, Fy, E7 and Eg.
AN, N > 2, Dyny1), N > 1 and Eg can have complex representations. However, it can be shown
by an explicit calculation that the series so(N), N > 7 is also safe. Therefore models based on
SO(10) are automatically anomaly-free. Models based on Eg are also anomaly-free, independent of
which representation is associated to the fermions, since the anomaly in Eq. is an Fg singlet
and on the other hand I', are in the adjoint representation. However, the tensor product

(78 ® 78], ® 78 = [1 ® 650 & 2430] ® 78 (B.15)

does not contain a singlet. Hence, all chiral anomalies have to vanish. The only semi-simple Lie
algebras, which can lead to anomalies are Ay, N > 2, where every representation has to be checked.
Let us note two important examples. In SU(5), 1065, which is assigned to fermions is anomaly-free.
In the SM, the fundamental representations and its complex conjugate one as well as the adjoint
representation of SU(3) are anomaly-free. However, Abelian anomalies from U(1)y, as well as the
mixed Abelian — non-Abelian anomalies have to be cancelled, which leads to the constraints

Yo Q= ). Q=0 (B.16)

1€SM particle 1€SM particle

B.3.2 Discrete Anomalies

Discrete symmetries [251] can be broken by quantum effects like continuous symmetries. In the case
of Abelian Zy symmetries, it was argued [252,253| that the discrete symmetries have to fulfill the
anomaly constraints of U(1) “mod N”, which can be understood when they are embedded into U(1).

2If there are more representations, there are also mixed anomalies which have to be cancelled. This can be seen
if all particles are in one reducible representation.
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Anomalies of non-Abelian symmetries have first been discussed in examples [254] and Araki [255]
derived an anomaly constraint by the Fujikawa method, which was further extended in [256]. The
main result of the work by Araki is that only the maximal Abelian subgroups of the non-Abelian
group G are relevant for the anomaly. Therefore a non-Abelian discrete group is anomaly-free if it

satisfies
> gy =0modN;, (B.17)

i € particles

where the Abelian subgroups of G are [[; Zn, < G and g, is the charge of particle ¢ with respect
to Z Ng-



Appendix C

Renormalization Group

C.1 General RG Equations for Mixing Parameters

We show the RG equations for the lepton mixing parameters obtained from the derivation discussed
above. We give the first order of the expansion in the small CHOOZ angle 615.
The results are presented in the form of tables which list the coefficients of

Piy = (C.Y]Y. + C, YY), or
Fyq = (De YeTYe + D, YJYV)fg

in the RG equations. Thus, if only a single element of P, is dominant, the derivatives of the mixing
parameters are found from the corresponding rows in the tables. Of course, if several entries of
Py, are relevant, their contributions simply add up. While the complete RG equations are basis-
independent, the entries of the table depend on the choice of the basis, since P is basis-dependent.
We use the basis where Y, is diagonal and where the unphysical phases in the MNS matrix are zero.

167211 /my | 1672 mhg/ma | 1672 s /ms

oy 1 1 1

Py 2¢2, 2s2, 0

Py 255C33 2¢1,¢33 253
Ps3 25535 2¢i,533 2¢3
ReP21 —2sin 2912023 2sin 2912023 0
R6P31 2sin 2912523 —2sin 2912 5923 0
RePsy | —2sin 209352, | —2sin20a3¢3, | 2sin 2093
ImP21 0 0 0
ImP31 0 0 0

Im P39 0 0 0

1672 11 /me = Re ae + F1y
1672 11, /my,, = Re ave + Fao

1672 1, /m, = Re a, + Fs3

Table C.1: (-functions of neutrino and charged lepton masses for 613 = 0.
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+ _ |mzEmyet¥i)? . _ mimasing
A3 = “Amd,(170 13 = A, (140)
oo |2 o
Qé% = |m3iATZi2j2w2| 523 = m27An;nS§;1 P2
+ _ |moe'2dmqetP1)? _ mimasin(p1—p2)
Q12 _ 2 Amgll Spp = ™ zAmgll 2
.A:t . (m%+m§)cos5i2m1m3 cos(0—p1) Bi o (m%+m§)sin§i2m1m3 sin(d—p1)
13 = Am2,(1+¢) 13 — Am2,(14¢)
.A:t o (m%—l—m%)cos&:ﬁﬁmgmg cos(6—p2) Bi N (mg-l—mg)siné:lﬁmzmg sin(d—p2)
2 Am3, 23— Am3,
Ci2 = % [(1 4 ¢)masin (p1 — p2) — (mgsin (26 — ¢1)]
C = A, (17ey (M sin (20 — 1) + (1 4 ¢) ma sin ¢y
Ci2 = A”T%I [mq sin (@1 — @2) — (mgsin (20 — ¢2)]
Ci3 = m [m1sin g1 + (14 ¢) masin (26 — ¢2)]
D, = W [micos (0 — 1) — (1 + ¢)macos(d — p2)]sind
Dy = % [m cos (20 — 1) — (1 4 ¢) ma cos (20 — p2) + (m3]
Table C.2: Definition of the abbreviations used in Tab. Tab.
3212 019 6472 013 3212 fo3
Pll Q;E sin 2012 0 0
Py — 9, sin 2012¢3, (Ag; — Af;) sin 2615 sin 263 (9333, + Qf5s%,) sin 2693
P33 —QB sin 2912353 — (.A;r?) — AE) sin 20715 sin 2053 | — (Q;r?)cfg + QES%Q) sin 2093
RePs; QQIE cos 2012¢93 4 (.AI%C%Q + ./4;38%2) 593 (92+3 — Ql+3) sin 26019893
RePs; —QQE cos 2012593 4 (.AEC%Q + .A;_SS%Q) C23 (Q;}) — QE) sin 201203
RePs9 QTQ sin 2619 sin 2093 2(.,4;3 — Afg) sin 26015 cos 2093 2(Q§r30%2 + QES%Q) c0s 26093
ImP21 4812023 4 (8;36%2 + 82735%2) 5923 2 (523 — 813) sin 2012523
ImP31 —4812823 4 (81_30%2 + 82_38%2) C23 2 (823 — 813) sin 2912623
Im P39 0 2 ( 23 — 81_3) sin 26012 4 (8236%2 + 8138%2)

Table C.3: Coefficients of Py, in the RG equation of the mixing angles 8;; in the limit 813 — 0. The abbreviations
A;—Lj, Biﬂ;, Si; and Q;tj depend on the mass eigenvalues and phases only, and enhance the running for a degenerate

mass spectrum, since they are of the form f;;(ms, m;, phases)/(m? —m?). They are listed in Tab.
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Im P39

109

647261
Py 0
Py — (B;é — BE) sin 2615 sin 2053
Pss (B;r3 — BE) sin 2615 sin 2653
RePy —4 (By3¢is + Byzsty) s23
RePs; 4 (Bfgcm + 823312) C23
RePso 2 (B;E,, — Bf%) sin 2615 cos 2653
Im Py 4 (Afscty + Asssty) s03
Im Py 4 (Afzety + Aggsty) cos
ImPsy 2 (A — Af) sin 261,
64725(0)
P —8 ((CH5 + S12 — S23) ety + (C3f + S12 — Si3) 57)
P 8 (((S12 — S23) €35 + Ci§s33) cio + ((S12 — Si3) ¢35 + Cais33) 57)
Ps3 8 ((CHc3s + (S12 — Sag) s33) ety + (Cafcds + (S12 — Si3) s33) 515)
RePs; —16812¢23 cot 2012 + 4 (2D c23 + (S23 — S13) S23 tan fa3) sin 2619
RePs; 16812523 cot 2019 — 4 (2D1 823 + (Sa23 — S13) a3 cot Oa3) sin 2612

RePs9 —16 (8236%2 + 3138%2) cos 2653 cot 26053 — 8 (C 6%2 + C23 812) sin 2653
ImPs; | —8Q 5ce3csc2019 — 2 (2@2023 + (Q2_3 —
ImPs; | 8Q7,s23csc2012 + 2 (2D2s23 — (Qa3 —

-8 (QZ_SC%Q + Q1_35%2) cot 2093

Q1_3) cos 2053 sec 623) sin 2619

Qf3) cos 2053 csc 923) sin 2619

Table C.4: Coeflicients of Pyy in the derivative of the Dirac CP phase.
6 =073'00Y +6© 4 0(613). The abbreviations A%, B, QF, CF

only, and are listed in Tab. [C.2}

137 13 137

The complete RG equation is given by

and D; depend on the mass eigenvalues and phases
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1672,
Py —4812¢3,
Py 48126%2653 —4 (5230%2 + 8135%2) cos 2053
Ps3 4812639533 + 4 (Sa3ciy + S13575) cos 2023

ReP21 —4812623 COS 2912 cot 912 -2 (523 — 813) COS 2023 secC 023 sin 2912

ReP31 4812823 COS 2312 cot 912 -2 (823 - 313) COS 2923 CSC (923 sin 2312

RePsy -8 (8230%2 + 8133%2) cos 2053 cot 2093 — 48120%2 sin 2693
ImPy; —20Q75ca3 cot b2 — (Q53 — Qf3) cos 2053 sec O3 sin 2619
ImP3; 207,523 cot b2 — (Q2_3 — Q1_3) cos 2053 csc O93 sin 26019
Im P3y —4 (Qa3¢y + Q13s7,) cot 2623

1672y
Py —48125%,
Py 4819633575 — 4 (Sa3cty + S13575) cos 2023
P33 4812535515 + 4 (Sazcy + Si3s7,) cos 2093

R6P21 —4812623 COS 2912 tan 012 -2 (523 — 813) COSs 2923 sec 023 sin 2912

ReP31 4812823 COS 2912 tan 912 -2 (823 - 813) COS 2023 CSC 923 sin 2912

RePso -8 (8230%2 + 8133%2) cos 26093 cot 2693 — 48128%2 sin 2093
Im Py —2Q 5co3tan g — (Q§3 — Qf3) cos 2093 sec O93 sin 26019
ImPs; 295523 tan t1o — (Q2_3 — Ql_B) cos 2053 csc O3 sin 2619
ImPso —4 (933635 + Q13575 cot 2623

Table C.5: Coefficients of Py, in the RG equation of the Majorana phases for 613 = 0.

1672015 | 1672613 | 1672 6a3
1 0 0 0
Foo 0 0 0
F33 0 0 0
ReF21 —C23 —S893 COS ) 0
ReF31 5923 —C23 COS 1) 0
RGF32 0 0 -1
ImF21 0 —S923 sin ¢ 0
ImFs; 0 —c938in o 0
ImFgg 0 0 0

Table C.6: Coefficients of Fy, in the Ue contribution to the slope of
the mixing angles for 613 = 0 and ye, y, < y-.
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C.2 RG Factors in the Standard Seesaw Model

The Z factors describing the LL approximation are obtained from the counterterms in [63]. The
notation is described in Sec. 5.1l

C.21 SM

In the SM extended by RH neutrinos, the wave function renormalization of the RH neutrinos is
given by

(n) 1 ™
Zn= —— Y,V In " C.1
Y (167T2 7 M (€1
and collecting the contributions from the renormalization of the left-handed doublets
PR B 5 (R
By, = 39,2 Y)Y, +Y/'Y. | , (C.2)
the Higgs doublet
O i f 9 2 90
By, = 59,2 2tr | VY, +Y Y, +3Y]Y, +3Y, Y, | — 109 3% (C.3)
and the vertex correction to Y, )
ﬁ?y = —@YJYE ) (C.4)

the external renormalization in the effective theory with n RH neutrinos yields

(n) 1 (Mm (") (n)
Zt= €XD Y}Y, =3YJY, +2tr [ VY, +YIV. +3Y)y, +3Y] v,

3272
9 , 9,\. M,
——g] — = 1 . (C.b
ot - a8 ) ) - (€9)

Neglecting the thresholds in the charged lepton sector and the quark sector, the expression for the
external renormalization factor Z5N describing the total external renormalization can be further
approximated to

3
1
S
Zei\é[ = ©Xp (3271’2 Z
n=0
1

+ 3272

M,
Mn+1

In

(") () () (n)
Y]Y, +2tr [ V1Y,
[—3YJY6 + 2t (Yte 1 3YIY, + 3Yij) . %gf . ggg] In &’”) . (C.6)

Here, we have denoted
Mo = <¢> s M4 =A

for uniformity of the presentation. The renormalization effect due to the additional vertex correc-
tions to the D5 operator is given by

(n) 1 9 3 M,
Z= —— A+ —gi+g3 | In—" | . C.7
= e (1o (A ot + 38 1)
The mass of RH neutrinos receives only corrections from the wave function renormalization to
arbitrary loop order.
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C.2.2 MSSM

In the MSSM extended by RH neutrinos, there are no vertex corrections due to the non-renormalization
theorem and the wave function renormalization yields

(n) ™) m) 3 M,
7= VY, +2Y1Y, —Z¢? — 342 | 1 n .

L= €Xp (3271’2 ( e + v 591 392 n Mn+1 (C 8)
(n) 1 W™ A

— . Ty 221

ZN=exp (8772 YY) In Moo (C.9)
(n) 1 M\ 3, M,
Zy=exp (3%2 <tr <6YJYu +2V) Yy> —£0i — 3¢5 | In o) (C.10)

The external renormalization factor Zg{tSSM is given by the product of the wave function renormal-

ization of the left-handed doublet with the Higgs doublet

() () (n)
Zoxt=21,24 (C.11)

because the two wave function renormalization factors commute. As the neutrino Yukawa couplings
only change at the thresholds (up to 1 loop order), the external renormalization factor can be further
approximated by

MSSM t ¥ M,
Lot~ = €Xp <16 3 nEZO (YZ,Y,, +tr (YV Y,,)) In Moo

! 3 ()
v 2.2 9.2 1
T (YeYe “o1 — 343+ 3ur (YuYu)>ln A) . (C12)
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