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Zusammenfassung

Diese Doktorarbeit beschäftigt sich mit den Mysterien des leptonischen Sektors des Standard-
modells der Elementarteilchenphysik. Nach einem kurzen Überblick über das Standardmodell
beginnt der Text mit einer Einführung der so genannten “GSI-Anomalie”, der Beobachtung einer
periodischen Modullierung des exponentiellen Zerfallsgesetzes, welche noch immer unerklärt ist
und fälschlicherweise Neutrinooszillationen zugeschrieben wurde. Es wird argumentiert wes-
halb diese Interpretation falsch ist und einige weitere Apekte des Phänomens werden disku-
tiert. Danach werden zwei Themen der Neuen Physik jenseits des Standardmodells behandelt,
Doppel-beta-Prozesse und Leptonfamilienzahlverletzung. Einige wichtige phänomenologische
Aspekte des ersteren Punktes werden diskutiert, bevor eine detaillierte Berechnung des ra-
diativen Prozesses des neutrinolosen Doppel-Elektroneneinfangs durchgeführt wird. Trotz der
winzigen Raten ist ein detailliertes Verständnis dieses Prozesses wichtig, um korrekte experi-
mentelle Untergrenzen festzulegen. Der letzte Teil der Arbeit beginnt mit sehr allgemeinen (und
fast modellunabhängigen) Bedingungen für die Erhaltung der Leptonfamilienzahl. Daraufhin
wird das Zusammenspiel von Struktur und Freiheit im Yukawa-Sektor eines Modells in Kon-
frontation mit der Phänomenologie untersucht. Schließlich kommentieren wir noch einen neuen
Mechanismus, der in der Tat realistische Strukturen erzeugen kann, welche zu leptonfamilien-
zahlverletzenden Effekten führen.

Abstract

This doctoral thesis deals with the mysteries of the leptonic sector of the Standard Model of
Elementary Particle Physics. After giving a short overview about the Standard Model itself,
the text starts with introducing the so-called “GSI anomaly”, the observation of a periodic
modulation of the exponential decay law, which is still unexplained and has erroneously been
attributed to neutrino oscillations. It is argued why this interpretation is incorrect and several
further aspects of the phenomenon are discussed. Afterwards two topics of New Physics be-
yond the Standard Model are treated, double beta processes and lepton flavour violation. Some
important phenomenological aspects of the former are discussed before performing a detailed
calculation of the radiative process of neutrino-less double electron capture. In spite of the
tiny rates, a detailed understanding of this process is important for setting proper experimental
limits. The last part of the thesis starts with very general (and nearly model-independent) con-
straints for lepton flavour conservation, before discussing the interplay of structure and freedom
in the Yukawa sector when a model is confronted with phenomenology. We also comment on
a new mechanism that can indeed introduce some realistic structures leading to lepton flavour
violating effects.
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Chapter 1

Introduction

Already Goethe’s Faust wanted to know in the legendary German drama “what the world
contains, In its innermost heart and finer veins” [1]. But he also doubted if science actually can
provide such an insight – and it indeed could not at that time.

Meanwhile, we have made a lot of progress in our understanding of Nature. One of the
most fundamental branches in science is Elementary Particle Physics, which has contributed
significantly to this progress in the last and present century. Amazingly, our theories in the sub-
nuclear domain seem to be among the most successfull descriptions of phenomena we observe,
although it is in some sense far beyond the limits of our imagination. Still, scientists have found
ways to describe and explain the outcome of very many exciting experiments and we seem to
be on the right track towards a real understanding of what is going on.

In fact, we have a working model which is suitably called Standard Model. Among the great
predictions of this model that have later on been verified experimentally are the existence of
the Z0-boson [2], the existence of the t-quark [3], or the extremely precise calculation of the
anomalous magnetic moment of the electron, that agrees with experiments at the level of 10
decimals [4] – an agreement which is one of the most precise in all of physics!

Still we know that some building blocks are missing and that our praised Standard Model
cannot be the end of the story: For example, it gives us no candidate particle for the so-
called Dark Matter that has been observed in our Universe [5], it cannot explain the baryon
asymmetry [6], and no mechanism to stabilize the Higgs mass against radiative corrections is
provided [7]. Part of these questions may be solved by the upcoming LHC experiment [8],
among them hopefully the discovery of the last particle of the Standard Model that has not
been seen yet, the famous Higgs boson.

In this thesis, some of the mysteries of the leptonic sector of the Standard Model are dis-
cussed. Leptons are the “light” fermions, i.e., the charged leptons (electron, muon, and tau)
as well as the neutral leptons (neutrinos). The leptonic sector is especially well-suited for the
quest of finding New Physics beyond the Standard Model, as leptons can (different from quarks)
appear as free particles and, since they do not take part in strong interactions, more or less all
relevant processes can (at least in principle) be calculated in perturbation theory. Especially
neutrinos turn out to have very interesting properties, as we will see in the course of the text.
However, also charged leptons may well serve as window to the world of New Physics.

The text is structured as follows: After giving a short overview of the Standard Model and
theories beyond in Chapter 2, we start in Chapter 3 with a phenomenon that is currently still
unexplained, namely the observation of a non-exponential decay law in single Electron Capture
decays that has erroneously been attributed to neutrino oscillations. After that we investigate
radiative neutrino-less double Electron Capture in Chapter 4, which will clearly lead us beyond
the Standard Model since it is related to the possible identity of the neutrino to its anti-particle.
Then, in Chapter 5, we will extend our considerations to the charged lepton sector by discussing
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12 CHAPTER 1. INTRODUCTION

lepton flavour violation, which results in other rare processes different from neutrino-less double
beta decay modes. We finally conclude in Chapter 6.

Note that parts of this thesis have already been published in Refs. [9–14].



Chapter 2

The Standard Model and beyond

Let us start with a short introduction to the Standard Model of Elementary Particle Physics
(SM) [15].

Essentially, the SM is a Quantum Field Theory model based in the gauge group SU(3)C ×
SU(2)L × U(1)Y , where C stands for color, L for left, and Y is the so-called hypercharge. All
particles in the SM are parts of different representations of this gauge group, which obey certain
transformation laws. Gauge invariance means that the full Lagrangian density of the SM has
to be invariant under all gauge transformations, which then imposes many restrictions onto its
form and hence onto the possible interactions that can appear between particles.

As an SU(N)-group has (N2 − 1) generators (and a U(1) has one), we have eight so-called
gluons (Ga, with a = 1, ..., 8) from SU(3)C , three W -bosons (Wc, with c = 1, 2, 3) from SU(2)L,
and one B-boson (B0) from U(1)Y , which are the mediators of the strong and electroweak
interactions. These mediators are called gauge bosons. Gauge invariance forces the gauge
bosons, which all have a spin of 1, to be massless. Furthermore, we have certain fermions (with
a spin of 1

2) in the SM, the so-called quarks and leptons. Both these groups of fermions can
be divided further: We know three generations of up-type quarks (u, c, t) and three down-type
quarks (d, s, b), as well as three neutral leptons called neutrinos (νe, νµ, ντ ) and three charged
leptons (e, µ, τ), known as electron, muon, and tau. The left- and right-handed fermions sit in
different representations of the gauge group SU(3)C × SU(2)L × U(1)Y :

qL =
(

uL

dL

)
,

(
cL

sL

)
,

(
tL
bL

)
∼ (3,2, +

1
3
),

uR, cR, tR ∼ (3,1, +
4
3
),

dR, sR, bR ∼ (3,1,−2
3
),

lL =
(

(νe)L

eL

)
,

(
(νµ)L

µL

)
,

(
(ντ )L

τL

)
∼ (1,2,−1),

(νe)R, (νµ)R, (ντ )R ∼ (1,1, 0), and
eR, µR, τR ∼ (1,1,−2). (2.1)

Note that in Eq. (2.1), we have already done a first step beyond the SM, as it does not contain
right-handed neutrinos in its pure version.

There is one more part of the SM that has not been detected directly yet, the well known
scalar (spin 0) Higgs boson H ∼ (1,2, 1). This particle is somehow special, because it is the
key point for matching the SM with many of the experiments we have done. The problem is
that, according to gauge invariance, not only the gauge bosons but also all particles in Eq. (2.1)

13



14 CHAPTER 2. THE STANDARD MODEL AND BEYOND

should be massless.1 We indeed know that the gluons are massless and we have found one
colorless gauge boson (namely the photon) which is massless, but it does not correspond to one
of the two neutral bosons W 0 and B0. Furthermore, the quark and charged lepton masses have
been determined to be

mu = 2.55+0.75
−1.05 MeV, mc = 1.27+0.07

−0.11 GeV, mt = 171.3+1.1
−1.1 GeV,

md = 5.04+0.96
−1.54 MeV, ms = 105+25

−35 MeV, mb = 4.20+0.17
−0.07 GeV,

me = 0.510998910+0.000000013
−0.000000013 MeV, mµ = 105.6583668+0.0000038

−0.0000038 MeV,

and mτ = 1776.84+0.17
−0.17 MeV. (2.2)

For neutrinos, there are just upper limits (. 1 eV) known on the masses (cf. Chapter 4), but we
can still be sure that they are massive, as we will see in a moment. Furthermore, we know two
electrically charged massive vector bosons W± and the electrically neutral Z0, which is massive
as well:

MW = (80.398 ± 0.025) GeV and MZ = (91.1876 ± 0.0021) GeV. (2.3)

The reason for these mysterious masses is the Higgs boson: It can couple to the other particles
of the model in a gauge-invariant way (like, e.g., (−qLHYuuR + h.c.) or (−qLH̃YddR + h.c.)
with H̃ = iσ2H∗ and the so-called Yukawa matrices Yi). By obtaining a vacuum expectation
value (VEV)

√
〈H†H〉 (which is often sloppily denoted 〈H0〉), these couplings result in effective

(Dirac-) mass terms for the fermions and also in mass terms for some of the bosons in the
model. Since these mass terms are, however, still not invariant under the SM-gauge group
SU(3)C ×SU(2)L ×U(1)Y but just under the smaller group SU(3)C ×U(1)em, the Higgs-VEV
leads to a phenomenon called spontaneous symmetry breaking. This breaking serves a double
purpose: It gives masses to certain particles, but it also yields a residual symmetry U(1)em
which still needs one massless gauge bosons. This is a certain superposition of W 0 & B0 and is
just the particle that we know as photon.

There is one more point about all that: Since the mass terms of, e.g., the up-like and the
down-like quarks are both built using the same quark SU(2)L doublet qL, the corresponding
mass matrices Mu = vYu and Md = vYd cannot be diagonalized simultaneously. This means
when, e.g.,

−qLMuuR + h.c. = −(uL, cL, tL)

mu 0 0
0 mc 0
0 0 mt

 uR

cR

tR

 + h.c., (2.4)

then Md cannot have the form Md = diag(md,ms,mb). This is what is called quark mixing.
One can, e.g., go into the mass basis of the up-like quarks, like in Eq. (2.4). But then the
states (d, s, b) have no definite masses. The mass eigenstates (d′, s′, b′) can be obtained by a
transformation with the so-called CKM-matrix VCKM (Cabibbo-Kobayashi-Maskawa) by the
formula d′

s′

b′

 = V †
CKM

d
s
b

 . (2.5)

A common parameterization for this matrix is

VCKM =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 , (2.6)

1Note, however, that the right-handed neutrinos could actually form a mass term. We will discuss this
possibility in a minute.
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with sij = sin θij and cij = cos θij . The parameters are three so-called mixing angles θij and
one Dirac CP-phase δ. The values of the quark mixing parameters are approximately given by

θ12 = 13.0◦, θ13 = 0.2◦, θ23 = 2.4◦, and δ = 59.7◦. (2.7)

Note that all three mixing angles are quite small, so that VCKM is actually close to unity. There
exists an analogous matrix in the lepton sector, which is called Pontecorvo-Maki-Nagakawa-
Sakata (PMNS-) matrix (see Eq. (4.4)).

Giving masses to neutrinos is a more subtle issue: Glancing at Eq. (2.2), we see that all
fermion masses are roughly of the order of GeV or MeV. The reason for this is the scale of the
Higgs-VEV, which is v = 174 GeV. The neutrinos are, however, at least six orders of magnitude
lighter than the electron, which is the lightest of all other fermions. This leads us to the question
if the neutrinos obtain their masses at all from the same Higgs mechanism as the other fermions.
Indeed, there might be more options: The right-handed neutrino is a total singlet under the
SM gauge group, so for this field we have the unique opportunity to form an allowed mass term
which is given by

LMajorana = −(νR)CMRνR. (2.8)

This term is called Majorana mass term, and it is possible for fermions which are identical to
their anti-particles after electroweak symmetry breaking. The charge conjugation C allows for
the correct chiral structure of this term and since νR is a total singlet, this term is automatically
gauge-invariant. Furthermore, since there is the same field to the left and to the right of the
mass matrix MR, it must actually be real and symmetric.2 The entries of MR are not generated
by the Higgs mechanism, so they can have any values. But that makes the small neutrino masses
even more puzzling, since MR could be extremely large and could very well be much higher
than the scale of the electroweak VEV v. There is a very elegant way out of this dilemma,
which is known as seesaw mechanism [16–20]. In this framework, one allows for left-handed
neutrinos νL (which are part of the lepton SU(2)L doublets in Eq. (2.1)), as well as for singlet
right-handed neutrinos NR (which are capitalized in order to make clear that they obtain large
masses). The most general mass term is then a combination of a Dirac and a Majorana mass
term,

Lmass = −(νLmDNR + h.c.) − (NR)CMRNR = −(νL, (NR)C)
(

0 mD

mT
D MR

) (
(νL)C

NR

)
. (2.9)

Note that mD obtains its entries from the Higgs mechanism, so they have to be around the
electroweak scale, while MR can have arbitrarily large entries. The resulting mass eigenstates
are superpositions of νL and (NR)C with mass matrices for the light and heavy neutrinos that
are given by

mL = −mDM−1
R mT

D and MH ≈ MR. (2.10)

If the entries of mD are, e.g., of O(100 GeV), while the entries of MR are of O(1016 GeV), the
masses of the light neutrinos will naturally be around 1 meV.

How do we actually know that neutrinos are indeed massive? From a phenomenon called
neutrino oscillations [21–24]. These oscillations are periodic transitions between the three types
of neutrinos, which depend on the so-called baseline L, the distance between production and
detection of the neutrino. In a simplified 2-flavour picture, where only two flavour-eigenstate
neutrinos (νe, νµ) exist (and also two mass eigenstates (ν1, ν2), which are non-trivial superpo-
sitions of the flavour eigenstates that are parameterized by a mixing angle θ), the oscillation
probability is given as

P (νe → νµ, L) = sin2(2θ) sin2

(
∆m2L

4E

)
, (2.11)

2Strictly speaking, it does not have to be real, as long as one also adds the Hermitian conjugate of the mass
term as well. It can, however, always be rearranged to look exactly like Eq. (2.8).
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where ∆m2 = m2
2 − m2

1 and E is the energy of the neutrino. Since this probability is only
sensitive to the mass square difference ∆m2, an observation of neutrino oscillations yields the
information that neutrinos are indeed massive, but it gives no clue about their absolute mass
scale. We have measured two mass square differences in neutrino oscillation experiments, the
solar ∆m2

¯ = m2
2 − m2

1 and the atmospheric ∆m2
A = m2

3 − m2
1, from which we can conclude

that there are three active neutrinos in Nature (in accordance with the measurement of the
Z0-boson decay width, see Ref. [25]). Note further that, different from the quark sector, some
neutrino mixing angles in the PMNS-matrix turn out to be relatively large, one is even maximal
(cf. Sec. 4.2).

Although the SM is a very nicely working and consistent description of the particles in
Nature, it must be incomplete, unfortunately. As briefly mentioned in Chapter 1, there are
several observations that the SM cannot explain, and it has inherent problems, too. Apart from
the things already mentioned, these are for example the hierarchies of the masses (which seem
to become larger with the generation number without a reason) or the values of the mixing
angles, for which there is also no explanation (this belongs to the so-called flavour sector of
the SM). If one takes all these quantities as input parameters, one can still make a lot of
predictions which are consistent with experiments, so the structure of our interactions seems
to be well described by the SM. Nevertheless, the current situation is somehow unsatisfying
and a working extension of the model is desirable. The only problem is that no one knows at
the moment in which direction one should extend the SM. Common possibilities are extensions
of the scalar sector (see, e.g., Ref. [26]), the gauge sector (see, e.g., Ref. [27]), the spatial
dimensions (see, e.g., Ref. [28]), or the global symmetries (the most popular being the so-called
Supersymmetry (SUSY), see Ref. [7]). Several such models and their connection to the flavour
sector will be treated in Chapter 5.

Having reviewed some of the most important points in what concerns the SM and its ex-
tensions, we are prepared to enter some of the mysterious aspects of the leptonic sector in more
detail. This is what will be done in the next three chapters.



Chapter 3

The GSI anomaly

The first phenomenon that we discuss is currently still unexplained. At GSI (GSI Helmholtzzen-
trum für Schwerionenforschung; before: Gesellschaft für Schwerionenforschung) in Darmstadt,
Germany, the life-time of several highly charged (in fact hydrogen-like) ions with respect to
single electron capture (EC) decay has been measured [29]. What has been found there was
not the expected purely exponential decay law, but rather an additional superimposed periodic
modulation, as can be seen from Fig. 3.1. After that, a huge debate arose about whether it
could be related to neutrino mixing [30–40], or not [10, 13, 41–51]. Alternative attempts for
an explanation involve spin-rotation coupling [52–54], the interference of the final states [55],
or hyperfine excitation [56]. From the experimental side, two test-experiments (with, however,
different systematics [57]) have been performed [58,59].

In the following, we first discuss the experiment at GSI and the results that have been
obtained. We will then shortly comment on experimental difficulties and oddities associated
with the experiment, before we calculate the process using the methods of Quantum Field
Theory (QFT). Afterwards, we will prove that several approaches indeed justify our treatment
of the EC process and also comment on the discussion of Quantum Beats (QBs), which have
been mentioned as possible cause of the phenomenon. Finally, we will briefly discuss several
articles, in which this treatment has not been done correctly.

3.1 The experiment at GSI

Let us start by briefly explaining the measurement at GSI. For a more detailed explanation
of the experiment, the original paper (Ref. [29]) should be consulted. As shown schematically
in Fig. 3.2, Sm-projectiles hit a Be-target and produce a bunch of ions from several isotopes
(actually, most of them are completely stripped [60]). The next stage is the so-called Fragment
Separator (FRS): A suitable magnetic field selects ions of a certain mass over charge ratio M/Q,
that are then separated in flight. Note that the latter separation is done by sending the ions
through an aluminum foil, inside of which the energy loss of the respective ions is proportional
to Q2. Then, by using another magnetic field for one more M/Q-selection, in average two
ions are injected into the Experimental Storage Ring (ESR), which is drawn in more detail
in Fig. 3.3. After applying stochastic cooling in the first few seconds and also by applying a
permanent electron cooling, the velocity spread ∆v

v of the ions is reduced to only about 10−7.
Then the revolution frequency is only a function of M/Q and can be used as an identification
of the respective ion.

The frequency is monitored by using so-called Schottky pickups [61]. The strength of the
Schottky signal is proportional to the number of ions of the same frequency, and for up to three
ions, the number of ions can be read off from diagrams like the ones in Fig. 3.4 (for larger

17
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Figure 3.1: The periodic modulation of the exponential decay law, as measured at GSI. The
left panel shows only the data from the first 33 seconds, which exhibits the oscillatory behavior.
If one looks at the full data set, however, which is presented on the right, the oscillations are
much less pronounced and the amplitude seems to shrink considerably for less statistics. (Plots
taken from Ref. [29].)
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Figure 3.2: The way to the ESR (cf. Fig. 3.3) at GSI. (Picture taken from Ref. [60].)

numbers, the fluctuations of the signal get too large to do that).1 By time-resolved monitoring
of these signals for a certain band of frequencies, the disappearance times of the mother ions as
well as the appearance times of the daughter nuclei can be determined very accurately.

3.2 The results of the measurements

The results for 142Pm60+ can be found in Fig. 3.1. If fitted with a cos-modulation, the corres-
ponding oscillation period has been determined to be T = (7.10± 0.22) s [29,39]. Further data
has been taken for 140Pr58+, which resulted in T = (7.06± 0.08) s [29,39]. The zero hypothesis
of a purely exponential decay is rejected at 99% C.L. [29]. There is also preliminary data on
122I52+, which has, however, not been fully analyzed yet. The current status seems to confirm
the oscillatory behavior with a period of T = (6.11 ± 0.03) s [39].

In the original work, this puzzling result has been attributed to neutrino oscillations [29],
which was also claimed as cause of the measurement by several other authors [30, 31, 33–35,
37–39]. This approach was, however, criticized by several authors and shown to be physically
incorrect [10, 13, 13, 41–50]. Furthermore, the corresponding neutrino mass square difference
as believed to be extracted from the data has been determined to be ∆m2 = (2.18 ± 0.03) ·

1Actually, the strength of the signal is below the thermal noise by a factor of ∼ 10−4, which means that
∼ 104 circulations are necessary to see a signal.
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Figure 3.3: The Experimental Storage Ring (ESR) at GSI. (Picture taken from Ref. [60].)

Figure 3.4: The monitoring of the ions. The revolution frequency is clearly a function of the
mass over charge ratio, which makes the identification of the respective ions possible. An EC
decay slightly changes the mass of the ion, which causes a small jump in the frequency. A β+

decay in turn changes the mass and the charge, which causes a much larger jump in the opposite
direction. (Pictures taken from Ref. [29].)

10−4 eV2 [31], a value which is in conflict with the solar, as well as with the atmospheric ∆m2,
both well-known from neutrino oscillation experiments [23].

If one tries to relate the oscillation period of roughly 7 s to a level splitting in the initial
state of the decay (see Sec. 3.8.2), the resulting energy difference is about 10−15 eV! This
scale is extremely tiny, and it is not at all clear where such a splitting should originate from.
Furthermore, it seems that the oscillation frequency scales with 1/M , where M is the mass of
the ion [39]. This is one more puzzling feature, since everything that has to do with, e.g., a
magnetic moment (such as hyperfine splitting) should scale with Q/M rather than 1/M . The
charge over mass ratio Q/M is, however, nearly the same for all three isotopes considered and
it is highly non-trivial to find suitable effects that indeed scale with 1/M .
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Figure 3.5: Statistical oddities in the Pm-data. It seems that, after subtracting the oscillatory
fit, the data would cluster too much around zero.

3.3 Experimental difficulties and oddities

Of course, the first response to such a puzzling observation would be to check the functionality
of all ingredients of the experiment, which has been done extensively [62]. We do not want to
go into experimental details here, but there is one peculiarity about the Pm-run that should be
mentioned.

Looking at the upper left panel of Fig. 3.5 (which is a reproduction of the left panel in
Fig. 3.1, where the same features are visible), one can get the impression that the errors of data
points seem to nearly always include the fitting curve. Of course, this is just an observation
by eye, but one can go further an subtract the best-fit curve for the oscillatory fit (upper
right panel) as well as for the exponential fit (lower left panel). The spread of the resulting
data points should then be distributed as a Gaussian (actually: Poisson) around zero, with a
standard deviation of

√
N for a bin with N events. As comparison, such a random list is plotted

in the lower right panel of Fig. 3.5. Again, it seems that the data points after subtraction of
the oscillatory fit lie too often inside the error bars (which can be seen in all of the plots).

The question is, how such an observation can be quantified. One possibility is the so-called
Mann-Whitney test [63]. This test essentially compares two data lists and gives a statement
about the probability that these two lists arise from the same distribution. The main point is
that the lists are combined, the result is ordered, and by this ordering one can assign a rank
to the combined list. By this rank, one can obtain a probability for how well the two lists fit
together.

We have tried to compare the data with the fit (oscillatory or exponential) subtracted with
a list of random numbers that was indeed generated by Gaussian distributions in every bin with
standard deviations given by

√
N . The result does, of course, depend on the random list, but

not too much. The essential outcome is that the probability for the data with the oscillatory
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Figure 3.6: The Feynman diagrams for neutrino oscillations (left) and for the process at GSI
(right).

fit subtracted to be consistent with a random list turns out to be roughly 3-7%. The data with
the exponential fit subtracted gives about 15-20%, while the test, comparing two random lists,
yields about 30%.

There might be even better statistical tests than Mann-Whitney, but the principle feature is
clear: While the χ2-fit is only sensitive to an overall agreement of a data set with a certain fit, it
cannot resolve correlations between points, since it only sums over all data points. Accordingly,
it might well be that, even if the χ2-fit looks good (or even too good), more information is
hidden in the data points.

To be fair, we should also mention that this statistical peculiarity is not present for the
cases of Pr and I. So it might be that what looks like something odd is indeed just a random
fluctuation of the data points, which could occur with a probability of 1 out of 20.

But let us come back to facts harder than statistics and think about the actual situation at
GSI, before performing a detailed calculation of the EC process.

3.4 Intuitive thoughts

We start with a general argument why the GSI anomaly is distinct from neutrino oscillations.
A possible Feynman diagram for neutrino oscillations is drawn on the left panel of Fig. 3.6,
where we look in that case at the νe → νe-channel. In order to get a valid and unambiguous
description of the process, it is necessary to include the production as well as the detection
process of the neutrino. In that way, there is no need to assume a certain form for an external
wave packet that describes the neutrino, but one can rather treat it as virtual particle with a
Dirac propagator,

i(p/ + mi)
p2 − m2

i + iε
. (3.1)

Important features of the above diagram are the following: At the production vertex, the neu-
trino is produced by weak interaction, which couples to flavour eigenstates. Since the outgoing
charged lepton is a positron e+ (or, equivalently, an anti-electron), the corresponding neutrino
has to have electron flavour, too. If neutrino and anti-neutrino are indeed distinct (a ques-
tion that will re-arise in Chapter 4), then the corresponding neutrino is an electron-neutrino,
νe. The next point is the propagation of the neutrino: Because of Eq. (3.1), we need a mass
eigenstate to propagate (only such a state can have a definite 4-momentum and the particle’s
mass is explicitly included in the propagator). The νe is, however, no mass eigenstate. There
is nothing like a “νe-mass”, but an electron neutrino is rather a superposition of different mass
eigenstates νi (which are orthogonal, since they correspond to different mass eigenvalues), from
which we currently know that there are three,

|νe〉 =
3∑

i=1

U∗
ei|νi〉. (3.2)
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Category Double Slit e+e− → µ+µ− GSI-experiment
1 No slit-monitoring e+e−- N/A

at all collider
2A Monitoring & New Physics GSI-like experiment with

read out required more kinematical accuracy
2B Monitoring New Physics, Actual GSI-experiment

without read out but no read out

Table 3.1: The classification of the three examples.

Here, Uei is an element of the unitary leptonic mixing matrix that we will discuss in more detail
later on (cf. Eq. (4.4)). At the detection vertex, the neutrino is detected in connection with an
electron, so it is again a νe. Obviously, there are three possible ways to reach the same final
state from the same initial state – and hence we have to sum the partial amplitudes before
squaring the total amplitude (coherent summation):

Aee =
∑

i

|Uei|2e−ipµ
i xµ . (3.3)

Since there was propagation in between, the different mass eigenstates will, however, have
obtained different phases, and interference terms appear when calculating the square of the
total amplitude. These phases depend on the space-time coordinates of the detection, and
accordingly this procedure will lead to the standard formula for neutrino oscillations.

But how is the situation at the GSI-experiment? This is drawn in the right panel of Fig. 3.6.
The production process is essentially the same: Since there was an electron in the initial state,
the neutrino produced is again a νe. There is, however, a clear difference in the process: The
neutrino that is produced escapes undetected, and there is no second flavour measurement.
Feynman diagrams describe transitions between states of definite energy and momentum. Thus
the final state neutrino must be a mass eigenstate νi due to energy-momentum conservation.
In a hypothetical situation where the energies and momenta of the mother and daughter ions
are measured with infinite precision, it would even be possible to tell from kinematics which
neutrino mass eigenstate has been produced. Only this mass eigenstate, i.e., only one Feynman
diagram would contribute and the rate would be proportional to

|Ueie
−ipµ

i xµ |2 = |Uei|2, (3.4)

but there would be no oscillations. However, this is far from the real kinematical situation in
the setup at GSI.

Realistic values for the energy and momentum uncertainties imply that it is not possible to
tell which mass eigenstate was produced, so that all of them have to be taken into account, and
they must be treated as distinct final states. They contribute to the total rate as an incoherent
sum of the amplitudes (which is just a sum over probabilities), since the mass eigenstates are
orthogonal vectors in Hilbert space. The total rate is then proportional to

∑
i |Ueie

−ipix|2 = 1,
implying that in principle there cannot be any mixing effects. Of course, this cannot change in
a quantum mechanical approximation of QFT. This orthogonality can also not be changed by
a large energy uncertainty [22], since the only feature that is relevant is the fact that the mass
eigenstates are in principle distinguishable.

3.5 Comparisons to other processes

Let us again go through these arguments is greater detail. The starting point for the discussion
is the superposition principle in QM. One common formulation is [64]: “When a process can
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happen in alternative ways, we add the amplitudes for each possible way.” The problem in the
interpretation arises in the term “alternative ways”, because it is not a priori clear what the
word way actually means. A second problem of interpretation is connected to the word process,
which exhibits similar ambiguities.

Let us use the following terminology: Process means a reaction with a well-defined initial
and final state, whereas way is a particular intermediate state of a process. E.g., the scattering
reaction e+e− → µ+µ− is one single process, no matter by which way (γ-, Z0-, or H0-exchange
at tree-level in the Standard Model (SM) of elementary particles) it is mediated. Z0 → νeνe

and Z0 → νµνµ are, however, two distinct processes.
Using this terminology, the superposition principle can be formulated in the following way:

1. If different ways lead from the same initial to the same final state in one particular process,
then one has to add the respective partial amplitudes to obtain the total amplitude. The
probability of the process to happen is then proportional to the absolute square of this
total amplitude (coherent summation).

2. If a reaction leads to physically distinct final states, then one has to add the probabilities
for the different processes (incoherent summation).

If a certain situation belongs to category 1, an interference pattern will be visible (or oscillations,
in case the interfering terms have different phases as functions of time), while if it belongs
to category 2, there will be no interference. The remaining question is at which point the
measurement comes in. This can be trivially said for point 2: Either the experimental apparatus
is sufficiently good to distinguish between the different final states (2A) – then no summation
whatsoever is necessary simply because one can divide the data set into two (or more), one for
each of the different final states. If this is not the case (2B), the experiment will be able to lead
to either of the final states, but one would not know which one had been the actual result –
then the probabilities for the different final states to occur have to be added in order to obtain
the total probability.

What if we do such a measurement for category 1? If we can indeed distinguish several
ways that a process can happen, then this has to be done by some measurement. Since this
measurement then has selected one particular way, we have actually transformed a situation
belonging to category 1 into a situation of category 2. However, then there would be no terms
to interfere with – the interference would have been “killed”.

Let us now turn to Table 3.1, that illustrates how our three examples fit into the categories 1,
2A, and 2B. These three examples will be discussed one by one in the following.

3.5.1 The Double Slit experiment with photons

This is the “classical” situation of an experiment that reveals the nature of QM. It has first been
performed by Thomas Young [65] and has later been used as the major example to illustrate
the laws of QM. It works as follows: Light emitted coherently by some source (e.g., a laser) hits
a wall with two slits, both with widths comparable to the wavelength of the light. If it hits a
screen behind the wall, one will observe an interference pattern, as characteristic for wave-like
objects (category 1). There is, however, the interpretation of light as photons, i.e., quanta of a
well-defined energy. Naturally, one could ask which path such a photon has taken, i.e., through
which of the two slits it has travelled. The amazing observation is that, as soon as one can
resolve this by monitoring the slits accurately enough, the interference pattern will vanish, no
matter if one actually reads out the information of the monitoring (2A), or not (2B). The reason
is that, regardless of using the information or not, the measurement itself has disturbed the
QM process in a way that the interference pattern is destroyed [66].
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Figure 3.7: The diagrams contributing to e+e− → µ+µ− in the SM.

The key point is that one cannot even say that the photon takes only one way: In the
QM-formulation, amplitudes are added (and not probabilities), and hence the photon does
not take one way or the other (and we simply sum over the results), but it rather has a
total amplitude that includes way 1 as well as way 2. By taking the absolute square of this
amplitude interference terms appear. A QFT-formulation involving elementary fields only would
be completely different: One would sum over the amplitudes for the photon to interact with
each electron and each quark in the matter the slits are made of, after having propagated to this
particular particle and before propagating further to a certain point on the screen. Of course,
by using an effective formulation of the theory, one can find a much more economical description
and the easiest one is to simply comprise all possible interactions into two amplitudes, one for
going through the first and one for going through the second slit.

If there is monitoring, one actually “kills” one of these two amplitudes, the other one remains,
and the interference pattern is destroyed. Whenever there has been such a measurement, the
interference will vanish. As we will see, the question is if in a certain situation a measurement
has been performed (or is implicitly included in the process considered), no matter if the
corresponding information is read out or not.

The situation at GSI can actually be compared to the double slit experiment: They key
point for dividing the situations described above into category 1 and 2 was that we need a
screen (or any other apparatus) to measure the photons after the double slit. In the GSI case,
this “screen” would be the second flavour tag (the right vertex in the diagram on the left panel
of Fig. 3.6). Since this is missing, however, there can be no interference terms (and hence no
oscillations in the lifetime), no matter if the “slits” are monitored or not.

3.5.2 e+e− → µ+µ− scattering at a collider

Let us now consider the scattering of e+e− to form a pair of muons. This is, differently from
the Double Slit experiment, a fundamental process where only a small number of elementary
particles is involved. If one wants to calculate the scattering probability, the amplitude for the
process is again decisive. In the SM, there are only three possibilities for this process to happen
at tree-level and in all three of them the e+e− pair annihilates to some intermediate (virtual)
boson which in the end decays again, but this time into a µ+µ− pair. The intermediate particle
can either be a photon, a Z0-boson, or a Higgs scalar, see Fig. 3.7.

Here, we have three different ways to form the process. The difference to the Double Slit
experiment, however, is that these three ways cannot be separated easily. In a real collider-
experiment we are not able to say that the reaction e+e− → µ+µ− has taken place by the
exchange of, e.g., a photon only, but it will always be the sum of the three diagrams (and a lot
more, in case we include higher orders). Hence, this process will always fall into category 1 and
interference terms will appear.

This might be different once we postulate New Physics: If, e.g., there were three strong
background fields that couple only to the photon, to the Z0-boson, and to the Higgs, respectively,
and do not disturb each other, then one could (by a suitable experimental device) distinguish
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the three diagrams and would end up in category 2. Depending on whether the corresponding
information is read out or not, the experiment could belong to 2A or 2B, but in both cases
interference would be lost.

3.5.3 The situation in the GSI-experiment

The remaining question is what the situation looks like for the GSI-experiment. Even though the
QFT-calculation of what happens is pretty straightforward, fitting everything in the language
used above might be a bit more subtle. We will, however, see in Sec. 3.6 that the formulation
in terms of amplitudes leads to the same result anyway.

Let us go back to the Feynman diagram (right panel of Fig. 3.6): Here, in the absence
of extreme kinematics, the neutrino is produced as electron neutrino. What happens to this
neutrino? Since it is not detected, it escapes to infinity in the view of QFT (in the picture
of second quantization). Physically, it loses its coherence after some propagation distance and
travels as a unique mass eigenstate.

The key point is the following: Since the neutrino will not interact before it loses its coher-
ence, it must be asymptotically a mass eigenstate. This can be shown easily: The coherence
length of a (relativistic) neutrino is given by [67]

Lcoh = 2
√

2σx · 2p2

(∆m2)¯
, (3.5)

where σx is the size of the neutrino wave packet, p is the mean value neutrino momentum in the
limit mν = 0, and (∆m2)¯ = 7.67 · 10−5 eV2 [23] is the solar neutrino mass square difference
as known from neutrino oscillation experiments. The question is how to obtain an estimate for
σx: If the nucleus that undergoes the EC was inside a lattice, one could estimate a width like
the typical interatomic distance, σx ∼ 1Å, which would lead to Lcoh ∼ 2 · 108 m. Of course,
this precision cannot be reached in the GSI-experiment. However, at least during the electron
cooling [68], the nucleus will be localized to some precision. Since the velocity of the nucleus is
known, this information could in principle be extrapolated for each run. A fair estimate would
then be the average distance between two electrons in the cooling process, which is roughly
given by 1/ 3

√
n ∼ 0.1 mm, where n is the electron density [69]. This would lead to a more

realistic coherence length of Lcoh ∼ 2 ·1014 m. The pessimistic case, where σx is taken to be the
approximate diameter 108.36 m/π [70] of the ESR produces Lcoh ∼ 6 · 1019 m. The mean free
path of a neutrino in our galaxy, however, is roughly 1 · 1040 m (for an assumed matter density
in the Milky Way of 1 · 10−23 g/cm3), so the assumption that the neutrino does not interact
before losing its coherence is completely safe.

Even if we do not know in which of the three mass eigenstates it actually is, we know that
it has to be in one of them. This knowledge is somehow obtained “a posteriori”, since the
mass eigenstate only reveals its identity after some propagation. But, by conservation of energy
and momentum, one could treat the process as if the kinematical selection had already been
present at the production point of the neutrino. This “measurement” is enforced by the physical
conservation laws.

An analogous reasoning is given by Feynman and Hibbs [66], using the example of neutron
scattering: Neutrons prepared to have all spin up scatter on a crystal. If one of the scattered
neutrons turns out to have spin down, one knows by angular momentum conservation that it
must have been scattered by a certain nucleus. In principle, by noting down the spin state of
every nucleus in the crystal before and after the measurement, one could find the corresponding
scattering partner of the neutron without disturbing it. No matter if this would be difficult
practically, by a physical conservation law one knows that a particular scattering must have
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been present, even if the corresponding nucleus is not “read out”. Accordingly, the correspon-
ding interference vanishes and the neutrons that have spin down after the scattering come out
diffusely in all directions.

This can also be formulated in the language of wave packets: We have complete 4-momentum
conservation for each single component (which is a plane wave!) of the wave packets, but if we
consider the whole wave packet, its central momentum does not have to be conserved [22, 71].
However, all the different components can produce both possible neutrino mass eigenstates,
but for a certain kinematical configuration of mother and daughter components only one of the
mass eigenstates will actually be produced.

The rest is easy: If the GSI-experiment had infinite kinematical precision, one could read
out which of the mass eigenstates has been produced and it would clearly fall into category 2A.
Since, however, this information is not read out but could in principle have been obtained (e.g.
by detecting the escaping neutrino), the GSI-experiment falls into category 2B and one has
to sum over probabilities. This logic works because we know that the neutrino is, after some
propagation, no superposition of mass eigenstates anymore, but just one particular eigenstate
with a completely fixed mass.

A viewpoint closer to the amplitude formulation would be: If the neutrino finally interacts,
it has to “decide” which mass eigenstate it has, even if it was a superposition of several mass
eigenstates before. This is then equivalent to the image of having produced one particular mass
eigenstate from the beginning.

3.6 Amplitudes - probably the easiest language to use

In this section, we use time-dependent amplitudes for the different basis states to describe
another example, namely charged pion decay, which is then compared to neutrino oscillations
(referring again to the actual situation in the GSI-experiment). This description is clear enough
to account for very different situations, and allows for an easy and nearly intuitive understanding
of the various cases.

3.6.1 Charged pion decay

It is well-known that a charged pion (e.g. π+) can decay into either a positron in combination
with an electron neutrino, or into the corresponding pair of µ-like particles. Let us consider the
case of a pure (and normalized) initial state pion |π+〉. As this state evolves with time (and
is not monitored), it will become a coherent superposition of the mother-state, as well as all
possible daughter states:

|π+(t)〉 = Aπ(t)|π+〉 + Aµ(t)|µ+νµ〉 + Ae(t)|e+νe〉, (3.6)

where all time-dependence is inside the partial amplitudes Ai. Of course, this state has to be
normalized correctly:

|Aπ(t)|2 + |Aµ(t)|2 + |Ae(t)|2 = 1, (3.7)

with Aπ(0) = 1 and Aµ(0) = Ae(0) = 0. One can understand Eq. (3.6) in the following way:
The state at time t is a coherent superposition of the basis states {|π+〉, |µ+νµ〉, |e+νe〉} with
time-dependent coefficients. Note that the basis states are orthogonal, since they are clearly
distinguishable. The outcome of a certain measurement is some state |Ψ〉. If one wants to
know the probability for measuring that particular state, one has to calculate it according to
the standard formula,

P (Ψ) = |〈Ψ|π+(t)〉|2. (3.8)

The question is what |Ψ〉 looks like. To make that clear, let us discuss several cases:
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• The (trivial) case is that there has been no detection at all: Then we have gained no
information. This means that the projected state is just the time-evolved state itself (we
do not know anything except for the time passed since the experiment has started), and
we get

|〈Ψ|π+(t)〉|2 = |〈π+(t)|π+(t)〉|2 = 1. (3.9)

This result is trivial, since the probability for anything to happen always has to be equal
to 1.

• The next situation is when our experimental apparatus can give us only the information
that the pion has decayed, but we do not know the exact final state. This can be either
|µ+νµ〉 or |e+νe〉 and we remain with a superposition of these two states. The only
information that we have gained is that the amplitude for the initial pion to be still there
is now zero, Aπ = 0 in Eq. (3.6). Then, the properly normalized state |Ψ〉 is given by

|Ψ〉 =
Aµ(t)|µ+νµ〉 + Ae(t)|e+νe〉√

|Aµ(t)|2 + |Ae(t)|2
. (3.10)

The absolute value square of the corresponding projection is

|〈Ψ|π+(t)〉|2 =

∣∣∣∣∣ |Aµ(t)|2〈µ+νµ|µ+νµ〉 + |Ae(t)|2〈e+νe|e+νe〉| + 0√
|Aµ(t)|2 + |Ae(t)|2

∣∣∣∣∣
2

=

= |Aµ(t)|2 + |Ae(t)|2. (3.11)

If there is any oscillatory phase in the amplitudes, Ak(t) = Ãk(t)eiωkt, it will have no
effect due to the absolute values.

• What if we know that the initial pion is still present? This sets Aµ(t) = Ae(t) = 0, and
|Ψ〉 is just Aπ(t)|π+〉/

√
|Aπ(t)|2. The projection yields

|〈Ψ|π+(t)〉|2 = |Aπ(t)|2, (3.12)

which again does not oscillate.

• If one particular final state, let us say |e+νe〉, is detected, then we have Aπ(t) = Aµ(t) = 0
and we get another term free of oscillations:

|〈Ψ|π+(t)〉|2 = |Ae(t)|2. (3.13)

The question remains when we indeed get oscillations. The answer is: It depends on what our
detector measures. If the detector, e.g., measures not exactly the state |µ+νµ〉 or |e+νe〉, but
instead some (hypothetical) superposition (e.g., some quantum number which is not yet known,
under which neither µ+ nor e+ is an eigenstate, but some superposition of them), then one
could, e.g., measure the following (correctly normalized!) state:

|Ψ〉 =
1√
2

(
|µ+νµ〉 + |e+νe〉

)
. (3.14)

The squared overlap is

|〈Ψ|π+(t)〉|2 =
1
2

[
|Aµ(t)|2 + |Ae(t)|2 + 2<

(
A∗

µ(t)Ae(t)
)]

, (3.15)

where the 2<
(
A∗

µ(t)Ae(t)
)
-piece will, in general, contain oscillatory terms.

What has been done differently than before? This time we have done more than simply
killing one or more amplitudes in Eq. (3.6), and this is the cause of oscillations: Whenever
we are in a situation, in which the state playing the role of |Ψ〉 in Eq. (3.14) is physical, the
corresponding projection will yield oscillatory terms.
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3.6.2 Neutrino oscillations and the GSI-experiment

Let us now turn to neutrino oscillations. Here, as we will see, a state like |Ψ〉 in Eq. (3.14)
can indeed be physical in some situations. To draw a clean analogy to the experiment done at
GSI, we consider a hydrogen-like ion as initial state |M〉 that can decay to the state |Dνe〉 via
electron capture. Since there was an electron in the initial state, we know that the amplitude
for producing the mass eigenstate |νi〉 is just proportional to Uei. If there is no relative phase
between the two mass eigenstates, the neutrino produced in the decay is exactly the particle that
we call electron neutrino. In any case, due to different kinematics, the two mass eigenstates
will develop different phases in the time-evolution. This means that, in spite of the mixing
matrix elements Uei being time-independent, there will be a phase between the two neutrino
mass eigenstates.

Completely analogous to Eq. (3.6), the time-evolution of the initial state will be given by:

|M(t)〉 = AM (t)|M〉 + Ue1A1(t)|Dν1〉 + Ue2A2(t)|Dν2〉, (3.16)

with |AM (t)|2 + |Ue1A1(t)|2 + |Ue2A2(t)|2 = 1 and AM (0) = 1. We can immediately look at
different cases:

• The mother is seen: This kills all daughter amplitudes, A1,2(t) = 0. With the proper
normalization for |Ψ〉 one gets no oscillation again:

|〈Ψ|M(t)〉|2 = |AM (t)|2. (3.17)

• The next case corresponds to the actual GSI-experiment: One sees only the decay, but
cannot tell which of the two neutrino mass eigenstates has been produced. This leads to
AM (t) = 0 and hence

|Ψ〉 =
Ue1A1(t)|Dν1〉 + Ue2A2(t)|Dν2〉√

|Ue1A1(t)|2 + |Ue2A2(t)|2
. (3.18)

Projecting this state on |M(t)〉 from Eq. (3.16) yields

|〈Ψ|M(t)〉|2 =

∣∣∣∣∣ |Ue1A1(t)|2 · 1 + |Ue2A2(t)|2 · 1√
|Ue1A1(t)|2 + |Ue2A2(t)|2

∣∣∣∣∣
2

= |Ue1A1(t)|2 + |Ue2A2(t)|2, (3.19)

which exhibits no oscillation, but is rather an incoherent sum over probabilities.

• The GSI-experiment with infinite kinematic precision: In this case, one could actually
distinguish the states |Dν1〉 and |Dν2〉. If one knows that |Dν1〉 is produced (e.g., by
having very precise information about the kinematics), one will again have no oscillation,

|〈Ψ|M(t)〉|2 = |A1(t)Ue1|2. (3.20)

These are in principle all cases that can appear. One can, however, have a closer look at the
realistic situation in the GSI-experiment. Let us re-consider Eq. (3.16): In reality, the mother
ion will be described by a wave packet with a finite size or, equivalently, a finite spreading
in momentum space, due to the Heisenberg uncertainty relation. If this wave-packet is broad
enough that each component can equivalently decay into |Dν1〉 or |Dν2〉, then both of the
corresponding amplitudes will actually have the same phase (A1(t) = A2(t)), since they have
the same energy, and one can write Eq. (3.16) as

|M(t)〉 = AM (t)|M〉 + A(t) [Ue1|Dν1〉 + Ue2|Dν2〉]︸ ︷︷ ︸
=|Dνe〉

. (3.21)
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Since the knowledge of the momentum of the mother ion is not accurate enough at the GSI-
experiment to make a distinction between both final states |Dνk〉, this is a realistic situation.
Of course, this does not at all change the above argumentation, since the final state |Ψ〉 will
experience the same modification. The neutrino produced is an electron-neutrino, as expected.

The question remains, why some authors come to the conclusion that there should be os-
cillations? The answer is simple: If the correspondence between time-evolved initial state and
detected state is wrong, then oscillations may appear. As example we will consider the situation
that the kinematics of the mother and daughter are fixed so tightly, that indeed the production
amplitudes for |Dν1〉 and |Dν2〉 are not equal. This would correspond to an extremely narrow
wave packet in momentum space. Let us, e.g, have in mind the extreme case when by kine-
matics only the production of the lightest mass eigenstate ν1 is possible. This is no problem
in principle and we would be used to it if neutrinos had larger masses, so that the Q-value
of the capture was only sufficient to produce the lightest neutrino. If only the disappearance
of the mother is seen, the corresponding state |Ψ〉, which is detected, is given by Eq. (3.18)
(with A2(t) = 0 in the extreme case, but in any case with A1(t) 6= A2(t)). The corresponding
neutrino is, however, no electron-neutrino anymore (which would be Ue1|ν1〉 + Ue2|ν2〉, with
the same phase for both states)! Indeed this is no surprise at all, since the kinematics in the
situation considered is so tight that it changes the neutrino state which is emitted. This is a
clear consequence of quantum mechanics, since for obtaining the necessary pre-knowledge (the
very accurate information about the kinematics), one has to do a measurement that is precise
enough to have an impact on the QM state.

If one now projects onto an electron neutrino instead of correctly projecting onto the state
which is emitted, oscillations will appear:

|〈D, νe|M(t)〉|2 = |(U∗
e1〈Dν1| + U∗

e2〈Dν2|) · (AM (t)|M〉 + Ue1A1(t)|Dν1〉 + Ue2A2(t)|Dν2〉)|2 =
= |A1(t)|2 + |A2(t)|2 + 2<(A1(t)A∗

2(t)). (3.22)

This is, however, wrong: One has not used all the information that one could in principle have
obtained! But Nature does not care about if one uses information or not, so this treatment
does simply not correspond to what has happened in the actual experiment. The oscillations,
however, only arise due to the incorrect projection, and have no physical meaning.

The remaining question is if the neutrino that is emitted in the GSI-experiment oscillates.
The answer is yes, of course. But to see that, we will have to modify our formalism a bit.
Knowing that the neutrino that has been emitted corresponds to AM (t) = 0 in Eq. (3.21), the
remaining (normalized) state is:

|Ψ〉 =
A(t)
|A(t)|

[Ue1|Dν1〉 + Ue2|Dν2〉] . (3.23)

Rephasing this state and measuring the time from t on gives as initial state:

|Ψ〉 = Ue1|Dν1〉 + Ue2|Dν2〉. (3.24)

This is the state which will undergo some evolution in time according to

|Ψ(t′)〉 = A′
1(t

′)Ue1|Dν1〉 + A′
2(t

′)Ue2|Dν2〉, (3.25)

with |A′
1(t

′)Ue1|2 + |A′
2(t

′)Ue2|2 = 1 and A′
1(0) = A′

2(0) = 1. If we ask what happens to this
neutrino if it is detected after some macroscopic distance, it is necessary to take into account
what has happend to the daughter nucleus that has been produced together with the neutrino,
due to entanglement. The daughter nucleus, which is accurately described by a wave packet, is
detected, but not with sufficient kinematical accuracy to distinguish the different components
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|D〉 of the wave packet. The effect of such a non-measurement is studied most easily in the
density matrix formalism. The density matrix ρ′ corresponding to Eq. (3.25) is given by

|Ψ(t′)〉〈Ψ(t′)| = |B1(t′)|2|D〉|ν1〉〈ν1|〈D|+|B2(t′)|2|D〉|ν2〉〈ν2|〈D|+[B1(t′)B∗
2(t

′)|D〉|ν1〉〈ν2|〈D|+h.c.],
(3.26)

where Bk(t′) = A′
k(t

′)Uek. If the exact kinematics of the daughter is not measured, then one
has to calculate the trace over the corresponding states. That gives

ρ ≡
∫

dD〈D|ρ′|D〉 = |B1(t′)|2|ν1〉〈ν1| + |B2(t′)|2|ν2〉〈ν2| +
(
B1(t′)B∗

2(t
′)|ν1〉〈ν2| + h.c.

)
. (3.27)

If we want to know the probability to detect, e.g., a muon neutrino, |νµ〉 = Uµ1|ν1〉 + Uµ2|ν2〉,
then the corresponding projection operator is given by

Pµ = |νµ〉〈νµ|, (3.28)

and the probability to detect this state is

Pµ = Tr(Pµρ) = 〈ν1|Pµρ|ν1〉 + 〈ν2|Pµρ|ν2〉. (3.29)

Note that, however, the neutrino states |ν1,2〉 will always be orthogonal, since they correspond
to eigenstates of different masses (like an electron is in that sense orthogonal to a muon). The
result is

Pµ = |Uµ1|2|B1(t′)|2 + |Uµ2|2|B2(t′)|2 + [Uµ1U
∗
µ2B∗

1(t
′)B2(t′) + c.c.], (3.30)

where the term in brackets contains oscillatory contributions in general.

3.7 The correct Quantum Field Theory treatment of EC decay

After having argued in great detail why one indeed needs an incoherent sum over probabilities,
it is time to perform a detailed calculation of the process at GSI, using the density matrix
formalism for a proper theoretical treatment of the detection process. This calculation will
show explicitly that no interference terms can appear in the EC decay, as long as there is just
one initial state and no coherent superposition of more than one.

First we have to take into account that the GSI detector is sensitive to the daughter ion,
but not to the neutrino. Using again the density matrix formalism, the detection of a daughter
state |ψD,k〉 is described by the operator

P̂ (k) =
3∑

j=1

∫
d3pν |ψD,k; νj ,pν〉〈ψD,k; νj ,pν |. (3.31)

The sum and the integral run over a complete set of neutrino mass eigenstates |νj〉 with momenta
pν . With the density matrix for the time-evolved mother state |ψM 〉, given by ρ = |ψM 〉〈ψM |,
the probability for the observation of |ψD,k〉 becomes

Pk = Tr
[
P̂ (k)ρ

]
=

3∑
j=1

∫
d3pν

∣∣∣〈ψD,k; νj ,pν |ψM 〉
∣∣∣2. (3.32)

The sum over neutrino states is incoherent. Therefore, if Pk contains oscillatory interference
terms, they cannot be due to neutrino mixing, but must originate from somewhere else. Ac-
cordingly, they would even occur in a hypothetical model with only one neutrino flavour. All
attempts to explain the GSI anomaly in terms of neutrino mixing are thus invalid.
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One might, however, imagine that different components of the mother wave packet |ψM 〉
obtain relative phase differences during the propagation. If several such components could decay
into the same daughter state |ψD,k; νj ,pν〉, they would induce interference terms in Pk. This
would correspond exactly to a situation of category 1 in the language of Sec. 3.5: Different ways
lead to the same final state. To see under which conditions such a mechanism could explain the
GSI anomaly, we will now compute the matrix element 〈ψD,k; νj ,pν |ψM 〉 in the wave packet
formalism [22]. This is necessary, since the mother and daughter ions are constrained to be
inside the ESR. Accordingly, they cannot be described by plane waves (that would have equal
probability to appear anywhere in space), but rather by a more complicated function. In turn,
they also cannot be momentum eigenstates, but will have some certain spreading.

The states |ψM 〉 and |ψD〉 of the mother and daughter ions are described by Gaussian wave
packets

ψA(x, t) =
(

2π

σ2
A

)3/4 ∫
d3pA

(2π)3
√

2EA
exp

[
− (pA − pA0)2

4σ2
A

− iEA(t− tA)+ ipA(x−xA)
]
, (3.33)

where A = M,D. Here, pM0 and pD0 are the central momenta of the wave packets, and σM,D

are their momentum space widths.2 The energies are given by EA =
√

p2
A + m2

A. Furthermore,
the wave packets are defined such that at the injection time tM , the peak of ψM is located at
xM (and analogous for the detection time tD and ψD).

Using coordinate space Feynman rules, one can easily write down the decay amplitude into
a specific final state |ψD; νj ,pν〉:

i〈ψD; νj ,pν |ψM 〉 =
∫

d3xdt UejMEC
j (EM , ED, Eν)ψ∗

νj
(x, t)ψ∗

D(xD, tD)ψM (xM , tM ), (3.34)

where Uej is an element of the PMNS-matrix and MEC
j (EM , ED, Eν) is the transition amplitude

between plane wave states, as computed in [72, 73]. Inserting Eq. (3.33) for the ions and
describing the neutrino as plane wave, we obtain

i〈ψD; νj ,pν |ψM 〉 =
∫

d3pM

(2π)3
√

2EM

∫
d3pD

(2π)3
√

2ED

∫
d3xdt

(
2π

σMσD

) 3
2

UejMEC
j (EM , ED, Eν)

· exp
[
− (pD − pD0)2

4σ2
D

+ iED(t − tD) − ipD(x − xD)
]

· exp
[
− (pM − pM0)2

4σ2
M

− iEM (t − tM ) + ipM (x − xM )
]

exp
[
iEν,jt − ipνx

]
, (3.35)

where Eν,j is the energy of the mass eigenstate νj . Now we apply several approximations that
will simplify the calculation considerably, but will not affect the general argumentation:

• First, we expand the energies EA up to first order in the momentum difference (pA−pA0),
which leads to

EA ≈ EA0 +
pA0

EA0
(pA − pA0) = EA0 + vA0(pA − p0A), (3.36)

where vA0 is the group velocity of the wave packet and EA0 =
√

p2
A0 + m2

A.

2Note that is not always easy to assign an exact value to these widths, but the argumentation in this section
is not changed for any of the plausible assumptions about the σ’s, cf. Sec. 3.5.3.
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• Furthermore, we assume the pre-factors 1√
2EA

to vary slowly over the width of the wave
packet, which leads to the replacement

1√
2EA

→ 1√
2EA0

. (3.37)

• Finally, we also assume the matrix element MEC
j (EM , ED, Eν) to vary slowly with energy:

MEC
j (EM , ED, Eν) ≈ const. (3.38)

As we will see in Sec. 3.8.2, these approximations cannot destroy an oscillatory behavior and are
indeed simply a technical simplification of the computation. We then have to evaluate integrals
of the following form:∫

d3pA

(2π)3
√

2EA
exp

[
− (pA − pA0)2

4σ2
A

± iEA(t − tA) ∓ ipA(x − xA)
]
≈

≈ e±iEA0(t−tA)∓ipA0

∫
d3pA

(2π)3
√

2EA
exp

[
− (pA − pA0)2

4σ2
A

]
e∓i(pA−pA0)[x−xA−vA0(t−tA)] =

= e±iEA0(t−tA)∓ipA0

(
σ2

A

2π

)3/2 2√
EA0

e−σ2
A[x−xA−vA0(t−tA)]2 , (3.39)

where we have used the formula∫
d3x e−xT Ax+bT x =

π3/2

√
det A

ebT A−1b/4. (3.40)

Having done that, Eq. (3.35) becomes

i〈ψD; νj ,pν |ψM 〉 =
4√

EM0ED0

(σMσD

2π

)3/2
∫

d3xdt UejMEC
j (EM0, ED0, Eν) · (3.41)

· exp
[
−iEM0(t − tM ) + ipM0(x − xM ) − (x − xM − vM0(t − tM ))2 σ2

M

]
·

· exp
[
+iED0(t − tD) − ipD0(x − xD) − (x − xD − vD0(t − tD))2 σ2

D

]
exp [iEν,jt − ipνx] .

The remaining integrals over x and t are Gaussian as well. Doing the x-integral first yields for
i〈ψD; νj ,pν |ψM 〉:

2√
2EM0ED0

(
σMσD

σ2
M + σ2

D

)3/2 ∫
dt UejMEC

j (EM0, ED0, Eν)e−At2+(BR+iBI,j)t+(CR+iCI), (3.42)

where

A =
−τ 2

σ2
M + σ2

D

+ τ2,

BR =
2στ

σ2
M + σ2

D

+ 2σ2,

BI,j = − pτ

σ2
M + σ2

D

− Ej ,

CR =
1

σ2
M + σ2

D

(
σ2 − p2

4

)
− υ2,

CI =
−σp

σ2
M + σ2

D

+ (zM − zD), (3.43)
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and

σ = σ2
MyM + σ2

DyD,

τ = σ2
MvM0 + σ2

DvD0,

σ2 = σ2
Mv2

M0tM + σ2
Dv2

D0tD,

τ2 = σ2
Mv2

M0 + σ2
Dv2

D0,

υ2 = σ2
Mv2

M0t
2
M + σ2

Dv2
D0t

2
D,

yM,D = xM,D − vM0,D0tM,D,

zM,D = EM0,D0tM,D − pM0,D0xM,D,

p = pM0 − pD0 − pν , Ej = EM0 − ED0 − Eν,j . (3.44)

Performing the t-integration in Eq. (3.42) yields the final result:

i〈ψD; νj ,pν |ψM 〉 = CUejMEC
j (EM0, ED0, Eν)efjeiφj , (3.45)

where

C =
2√

2EM0ED0

(
σMσD

σ2
M + σ2

D

)3/2 √
π

A
,

fj =
B2

R − B2
I,j

4A
+ CR, and φj =

BRBI,j

2A
+ CI . (3.46)

The real factor efj enforces sufficient overlap of the wave packets, but is non-oscillatory for
Gaussian wave packets (it might be oscillatory for pathological forms of the wave packet, but
then this oscillation would be extremely fast and always averaged out in any real physical
situation [74]; in particular, the frequency would not match the scale obtained in the GSI-
experiment). The complex phase factor eiφj is oscillatory, but is irrelevant for the modulus of
the matrix element appearing in Eq. (3.32). Accordingly, there can be no oscillatory terms in
the final result.

3.8 Quantum Beats and the GSI anomaly

The last point to discuss are the so-called Quantum Beats (QBs) [75]. There, atomic levels
are considered for the discussion, and we will stick to that here and give the relation to the
GSI-experiment at the end of each case.

As has been pointed out in Refs. [10,41,42,45], the only possibility where QBs might explain
the GSI anomaly, is a splitting in the initial state. We will argue (using the language of Ref. [75]),
why this is true and also give a short derivation of the explicit expression for the one successfull
case. This case, however, has its problems, too.

3.8.1 Single atom of type I

Let us start with the classical example of QBs, namely one atom in a coherent superposition of
three states |a〉, |b〉, and |c〉, where the first two states are above and closely spaced compared
to |c〉. This setting is drawn on the left panel of Fig. 3.8 and is referred to as type I. First note
that the three levels correspond to different (but fixed) eigenvalues of the energy and are hence
orthogonal vectors in Hilbert space. This is not at all changed by an energy uncertainty which,
however, makes it possible to have a coherent superposition of the three states. Initially, we
assume the atom to be in such a superposition of these states, but having emitted no photon
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Figure 3.8: Type I (left) and type II (right) of the Quantum Beats settings.

yet. Accordingly, the photon state can only be the vacuum |0〉γ . Then, the initial state of this
system can be written as

|Ψ(0)〉 = A0|a〉|0〉γ + B0|b〉|0〉γ + C0|c〉|0〉γ , (3.47)

where |A0|2 + |B0|2 + |C0|2 = 1. If this system undergoes a time-evolution, the lower state might
be populated by de-excitation of the upper ones, which is done by photon emission.3 If the
state |1x〉γ = a†x|0〉γ is assumed to describe a state with one photon of frequency ωx, then the
state at time t can be written as

|Ψ(t)〉 = A(t)|a〉|0〉γ + B(t)|b〉|0〉γ + C(t)|c〉|0〉γ + C1(t)|c〉|1ac〉γ + C2(t)|c〉|1bc〉γ , (3.48)

where A(0) = A0, B(0) = B0, C(0) = C0, C1,2(0) = 0, and |A(t)|2 + |B(t)|2 + |C(t)|2 + |C1(t)|2 +
|C2(t)|2 = 1. Under the assumption that all levels are equally populated, the radiated intensity
will be proportional to

〈Ψ(t)|E2(0, t)|Ψ(t)〉, (3.49)

where
E(x, t) =

∑
k,λ

εk,λ

(
ak,λe−ikx + a†k,λe+ikx

)
(3.50)

is the electric field operator and εk,λ is the electric field per photon of momentum k and
polarization λ. Note that the creation and annihilation operators have only one non-trivial
commutation relation, namely [ak,λ, a†k′,λ′ ] = δk,k′δλ,λ′ . In our case we obtain effectively:

E2(0, t) = ε2ac(1 + 2a†acaac) + ε2bc(1 + 2a†bcabc) + 2εacεbc(a†acabce
i∆t + a†bcaace

−i∆t), (3.51)

where ∆ = ωac −ωbc. Here, we have already used that terms like, e.g., a2
ac give no contribution

with |Ψ〉 from Eq. (3.48). Remember now, that the atomic states are orthonormal. This means
that one can, e.g., combine a term proportional to 〈b| in 〈Ψ(t)| only with the corresponding term
|b〉 in |Ψ(t)〉. The corresponding combination of amplitudes |B(t)|2 does, however, not oscillate,
since any phase will be killed by the absolute value. This is also true for every term involving one

3Note that we neglect transitions from |a〉 to |b〉 due to the different energy of the corresponding photons.
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of the time-independent parts of Eq. (3.51): E.g., the term proportional to C∗(t)C1(t) involves
a factor

γ〈0|a†acaaca
†
ac|0〉γ = 0, (3.52)

because of a†ac acting on the left. There are, however, remaining oscillatory terms such as
C∗

1(t)C2(t)ei∆t, which is proportional to

γ〈0|aaca
†
acabca

†
bc|0〉γ = γ〈0|(1 + a†acaac)(1 + a†bcabc)|0〉γ = γ〈0|0〉γ = 1. (3.53)

These terms cause the Quantum Beats for a type I atom. Actually, one could have expected
this result intuitively: Both of the coherently excited upper levels can decay into the same state
|c〉 via the emission of a photon. Hence, one cannot in any way determine the photon energy
without measuring it directly. Without such a measurement, interference terms will appear.

The relation to the GSI-experiment is simple: One just has to replace the photon by the
neutrino, which is also undetected, and interference terms will show up, too.

3.8.2 A hypothetical splitting in the initial state

We will explicitly calculate the hypothetical situation introduced in Sec. 3.8.1, in which the GSI
oscillations can be explained by quantum beats of the mother ion. This has been mentioned in
Refs. [10, 41,42,45].

Let us assume that the state of the mother ion is split into several sublevels |ψ(n)
M 〉, and that,

for some reason, the production process creates the mother ion in a superposition

|ψM 〉 =
∑

n

αn|ψ(n)
M 〉, (3.54)

where the coefficients αn have to fulfill the normalization condition
∑

n |αn|2 = 1. With this
modification, Eq. (3.45) turns into

i〈ψD; νj ,pν |ψM 〉(n) = αnCUejMEC
j (EM0, ED0, Eν)ef

(n)
j eiφ

(n)
j (3.55)

where f
(n)
j and φ

(n)
j are defined as in Eq. (3.46), but including an upper index (n) for the

quantities E0M , p0M , v0M , Ej , p, σ, τ , σ2, τ2, υ2, yM , and zM . For simplicity, we have
neglected the n-dependence of the normalization factors and of the matrix element. Typically,
also the wave packet overlap factor exp[f (n)

j ] will be almost independent of n, so we can safely
omit it in the following, assuming it to be absorbed in the overall normalization constant.

Upon squaring |〈ψD; νj ,pν |ψM 〉|, we now obtain interference terms proportional to

exp
[
i(φ(n)

j − φ
(m)
j )

]
. (3.56)

To simplify this expression, we can go to the rest frame of the daughter nucleus, in which
v0D = 0 and p0D = 0, and we can freely set xM = 0 and tM = 0. Moreover, we can choose
σD = σM ≡ σ and expand

(
φ

(n)
j − φ

(m)
j

)
up to first order in the small quantities

∆E
(nm)
M0 ≡ E

(n)
M0 − E

(m)
M0 ' ξ

∆m2
nm

2E
(m)
M0

, ∆p(nm)
M0 ≡ p(n)

M0 − p(m)
M0 ' −(1 − ξ)

∆m2
nmp(m)

M0

2|p(m)
M0 |2

. (3.57)

Here, ξ is a real parameter that is determined by the details of the production process and
∆m2

nm = (mn −mm)(mn + mm) is the squared energy difference between different components
in the initial state from Eq. (3.54). If we finally neglect all higher order corrections, we find

|〈ψD; νj ,pν |ψM 〉|2 ∝
∑
n,m

αnα∗
m exp

[
−ixD

(
∆m2

nmp(m)
M0

2|p(m)
M0 |2

)]
. (3.58)
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Using the relation xD ' v(m)
M0 tD, which is a good approximation for sufficiently well localized

wave packets, the phase factor can equivalently be written as

exp

[
−itD∆m2

nm

2E
(m)
M0

]
, (3.59)

which indeed leads to an oscillatory behavior [10].
The splitting, however, would have to be tiny, ∼ 10−15 eV, a value which can hardly be

explained. As has been pointed out in [76], there is also no known reason why the production
process should create a coherent superposition of substates at all. Furthermore, there exists
preliminary data on the lifetimes of 142Pm60+ with respect to β+ decay that shows no oscillatory
behavior [39]. An initial splitting in the nucleus will lead to an oscillatory rate in this case, too.
Accordingly, if such a splitting is present in the initial state, it could be in the levels of the single
bound electron, since this would then effect EC decays while leaving β+ decays untouched.

3.8.3 Single atom of type II

Let us go on and study a similar setting as in Sec. 3.8.1, namely and atom of type II, shown
on the right panel of Fig. 3.8. The corresponding initial state would again be described by
Eq. (3.47), but its time-evolution would now look like

|Ψ(t)〉 = A(t)|a〉|0〉γ + B(t)|b〉|0〉γ + C(t)|c〉|0〉γ + B′(t)|b〉|1ab〉γ + C′(t)|c〉|1ac〉γ , (3.60)

where A(0) = A0, B(0) = B0, C(0) = C0, B′(0) = 0, C′(0) = 0, and |A(t)|2 + |B(t)|2 + |C(t)|2 +
|B′(t)|2 + |C′(t)|2 = 1. The square of the electric field has again the form of Eq. (3.51), just with
bc → ab. Due to the orthogonality of the atomic states, there are not too many combinations
which are possible:

• 0-photon state coupled with itself:
If we take, e.g., the term |A(t)|2, it does not oscillate anyway. Hence, only the time-
dependent parts in Eq. (3.51) (with bc → ab) could lead to oscillations. But they are
proportional to

γ〈0|a†acaab|0〉γ = γ〈0|a†abaac|0〉γ = 0.

• 1-photon state coupled with itself:
|B′(t)|2 does not oscillate, too, and the time-dependent terms from the electric field yield

γ〈1ab|a†acaab|1ab〉γ = γ〈0|aaba
†
acaaba

†
ab|0〉γ = 0 and

γ〈1ab|a†abaac|1ab〉γ = γ〈0|aaba
†
abaaca

†
ab|0〉γ = 0,

which follows immediately from the action of a†ac to the left and of aac to the right,
respectively.

• 0-photon state coupled with 1-photon state:
This is the only possibility, which is left. If we take for instance the term B∗(t)B′(t), this
will oscillate in any case, so we will also have to check the constant terms in Eq. (3.51).
The ones proportional to 1 are naturally zero, γ〈0|1ab〉γ = γ〈0|a†ab|0〉γ = 0. The other
terms are

γ〈0| a†ac︸︷︷︸
0←

aac|1ab〉γ = 0, γ〈0| a†ab︸︷︷︸
0←

aab|1ab〉γ = 0, γ〈0| a†ac︸︷︷︸
0←

aab|1ab〉γ = 0, and

γ〈0| a†ab︸︷︷︸
0←

aac|1ab〉γ = 0, (3.61)
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where the action of the operators to give zero is always indicated by the arrow. The
argumentation is analogous for the complex conjugated term.

Hence, there can be no Quantum Beats for a single atom of type II! The intuitive reason is
that, by waiting long enough, one could reach an accuracy in energy that is good enough to
distinguish the possible final states |b〉 and |c〉. This would then be a way to determine the
energy of the emitted photon without disturbing it.

To give an analogous reasoning for the GSI-experiment, one has to turn the comparison
given in Sec. 3.8.1 around and replace the atom by the neutrino and the photon by the ion. The
reason is that what is claimed to interfere in this situation is the neutrino states themselves
(see, e.g., Ref. [30]). This neutrino is not expected to interact before losing its coherence (cf.
Sec. 3.5.3). However, once it interacts it has to “decide” for a certain mass eigenstate. By
monitoring this interaction, it would be no principle problem to determine the neutrino’s mass
(e.g., by exploiting the spatial separation of the mass eigenstates far away from the source) and
from this one could easily reconstruct the kinematics of the daughter ion in the GSI-experiment.
Accordingly, no QBs are to be expected.

3.8.4 Two atoms of type II

On the other hand there is a situation in which we can expect QBs even for atoms of type II,
namely if we have two of them. If these two atoms are separated by a distance which is smaller
than the wavelength of the emitted photons, there is no way to resolve their separation in space
and we have to write down a combined initial state for both atoms, 1 and 2:

|Ψ(0)〉 = A0|a〉1|a〉2|0〉γ + B0|b〉1|b〉2|0〉γ + C0|c〉1|c〉2|0〉γ + D1,0|a〉1|b〉2|0〉γ + D2,0|b〉1|a〉2|0〉γ +
+E1,0|a〉1|c〉2|0〉γ + E2,0|c〉1|a〉2|0〉γ + F1,0|b〉1|c〉2|0〉γ + F2,0|c〉1|b〉2|0〉γ . (3.62)

The corresponding time-evolution |Ψ(t)〉 looks a bit complicated:

A(t)|a〉1|a〉2|0〉γ + B(t)|b〉1|b〉2|0〉γ + C(t)|c〉1|c〉2|0〉γ + D1(t)|a〉1|b〉2|0〉γ + D2(t)|b〉1|a〉2|0〉γ +
+E1(t)|a〉1|c〉2|0〉γ + E2(t)|c〉1|a〉2|0〉γ + F1(t)|b〉1|c〉2|0〉γ + F2(t)|c〉1|b〉2|0〉γ +
+G1(t)|b〉1|a〉2|1ab〉γ + G2(t)|a〉1|b〉2|1ab〉γ + H1(t)|c〉1|a〉2|1ac〉γ + H2(t)|a〉1|c〉2|1ac〉γ +
+I1(t)|b〉1|b〉2|1ab〉γ + I2(t)|c〉1|c〉2|1ac〉γ + J1(t)|b〉1|c〉2|1ab〉γ + J2(t)|c〉1|b〉2|1ab〉γ +
+K1(t)|b〉1|c〉2|1ac〉γ + K2(t)|c〉1|b〉2|1ac〉γ . (3.63)

One oscillatory term would then be, e.g., J ∗
1 (t)K1(t)e−i∆t, which is proportional to

γ〈1ab|a†abaac|1ac〉γ = γ〈0|aaba
†
abaaca

†
ac|0〉γ = γ〈0|(1 + a†ab︸︷︷︸

0←

aab)(1 + a†ac aac︸︷︷︸
→0

)|0〉γ = γ〈0|0〉γ = 1.

(3.64)
An simple picture is that one cannot determine the photon energy, because one does not know
which atom has emitted the radiation – which holds only if the spatial separation is indeed less
than the photon’s wavelength. Accordingly, we expect QBs.

For the GSI-case, this possibility has to be taken into account, because even for runs with one
single EC only, there can have been more ions in that ring that were lost or decayed via β+. In
this case (comparing the neutrino again with the photon), one has to replace the wavelength of
the photon by the de Broglie wavelength of the neutrino. The neutrino energy should be of the
same order as the Q-value of the EC-reaction, which is roughly 1 MeV [29]. The corresponding
wavelength is, however, λ = 2π~c

Ec ∼ 10−12 m, while the average distance between two ions
should be of the order of the diameter of the storage ring [77], which is roughly 100 m [70].
Hence, this possibility is excluded for the GSI-experiment.
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3.9 Wrong and doubtful approaches in the literature

Let us finally have a look at why several papers on the GSI anomaly that have appeared in the
last months do not agree with the above results. More detailed comments are given in Ref. [10],
but here we only want to mention the main points.

The main point where we disagree with Refs. [30, 32–35, 76] is Eq. (3.32), the incoherent
summation, while coherent summation over amplitudes appears in the references cited. As
we have argued in great detail in Secs. 3.6 and 3.7, this cannot be the case and incoherent
summation is the correct treatment.

Furthermore, if one believes the neutrino oscillation explanation for a moment, to match
the observed oscillation period T ∼ 7 s, a value of ∆m2

21 ∼ 2.18(3) ·10−4 eV2 is required for the
solar mass squared difference, in conflict with KamLAND results (cf. Sec. 3.2). In Ref. [31], the
authors relate this discrepancy to loop-induced Coulomb interactions of the neutrino, but give
no explanation why the same effect does not appear in ordinary neutrino oscillation experiments.

Similar arguments have also been given by Giunti [41, 42], by Burkhardt et al. [44], and
by Peshkin [45].4 Moreover, Giunti has shown another problem, namely that the decay rate
computed in [30] does not reduce to the Standard Model result if the neutrino masses are set
to zero [42].

Finally, it has been claimed in Ref. [39] that a splitting in the initial state cannot explain
the GSI-oscillations at all. As has been pointed out in Secs. 3.8.1 and 3.8.2, this mechanism
indeed has its problems, but is still far from being excluded.

4Note that Ivanov et al. have replied to some of Giunti’s remarks in [76,78].



Chapter 4

Neutrino-less double Electron
Capture

The next topic that we will treat is the rare process of neutrino-less double electron capture.
This process is one of several possible double β decay modes that might occur if, and only if, the
neutrino is a Majorana particle, meaning that it is identical to its anti-particle. This property
is peculiar to SU(3)C × U(1)em-singlets and the neutrino has exactly the right gauge quantum
numbers. This is, however, not only the case for SM-particles. If we, e.g., look at the MSSM,
then the neutralinos (which are the SUSY-partners of the neutral electro-weak gauge and Higgs
bosons) would also be Majorana fermions [7].

An observation of any double β process would always prove the Majorana nature of the
neutrino, since in Fig. 4.1, the external electrons could always be combined with the external
quarks by W -bosons, yielding a Majorana mass term for the neutrinos. This observation is well
known under the name Schechter-Valle theorem [79]. Hence, such an observation would clearly
prove the existence of Physics beyond the Standard Model, which has not been seen directly
yet.1

4.1 Neutrino-less double beta decay

The generic double β process is neutrino-less double β− decay (0νββ), as seen in Fig. 4.1, which
might be observable for (even-even) nuclei, where single β decay is forbidden. The net reaction
is

(A,Z) → (A,Z + 2) + e− + e−, (4.1)

while the exact underlying mechanism is actually unknown [81]. The option mostly considered
is the so-called 2-nucleon mechanism [82], where a Majorana neutrino propagator connects two
SM-vertices for ordinary β− decay. One can interpret this as follows: An electron anti-neutrino
νe is emitted in an ordinary β− decay, n0 → p++e−+νe. Since it is identical to its anti-particle,
it can also play the role of a neutrino νe and can induce a second β− decay as νe+n0 → p++e−.
In order to do this it has, however, to flip its helicity/chirality which is the key feature of a
mass term and leads to the proportionality of the decay rate to the square of the (effective)
neutrino mass mee. The “problem” is that neutrino masses are small and accordingly the
rate for the above process will be small, too, which makes it hard to observe (in fact, it has
not been observed yet). Current limits on the half-life are T1/2 ≥ 1.9 · 1025 y for Ge-76 [83],

1Actually, the existence of non-zero neutrino masses already points quite strongly into a direction beyond the
SM. Since they might, however, still be Dirac fermions and the extension of the SM by only right-handed Dirac
neutrinos does not add any new concept to the SM, we consider it here as not being strictly beyond the SM.

39
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Figure 4.1: A schematic view of neutrino-less double β decay. Note the the exact mechanism
of the process is actually unknown, which is indicated by the box called “Nuclear Physics”.
(Figure taken from Ref. [80].)

T1/2 ≥ 3.0 · 1024 y for Te-130 [84], T1/2 ≥ 5.8 · 1023 y for Mo-100, and T1/2 ≥ 2.1 · 1023 y for
Se-82 [85], all at 90 % C.L.

In general, the decay rate for the above process will have the form [86]

Γ = G0|M0ν |2|mee|2, (4.2)

where G0 is a phase space factor that also contains all constants, mee is the effective mass,
and M0ν is the so-called nuclear matrix element (NME), which is an O(1)-number that is
the essential remnant of the underlying nuclear physics involved. A calculation of the NME
involves very complicated nuclear physics and there is still some debate in literature how to
do it best (see for example Refs. [87–90]). Fortunately, the calculated values for the NME in
case of 0νββ seem to converge meanwhile [88]. A generic cross-check of the methods applied
is to calculate the NME for the related process of 2-neutrino double beta decay, which has
already been observed [91]. One should, however, keep in mind that this decay mode contains
different systematics, so it is not a priori clear how well the validity of the methods applied can
be extrapolated to the neutrino-less case.

4.2 Phenomenology of the effective neutrino mass

Let us now consider the phenomenology of the effective neutrino mass a bit closer. This quantity
is given by [92]

mee =
3∑

i=1

U2
eimi, (4.3)

where mi are the (light) neutrino mass-eigenvalues and U is the PMNS-matrix (Pontecorvo-
Maki-Nagakawa-Sakata matrix), which is given by

U =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 · diag(1, eiα, ei(β+δ)). (4.4)

Here, α and β are the so-called Majorana phases, while sij = sin θij and cij = cos θij . Recent

values of these mixing angles are, e.g., θ12 =
(
34.5+1.4,+4.8

−1.4,−4.0

)◦
, θ13 =

(
0.0+7.9,+12.9

−0.0,−0.0

)◦
, and

θ23 =
(
42.3+5.1,+11.3

−3.3,−7.7

)◦
[23], where the best-fit values as well as the 1σ- and 3σ-errors are given.

The Dirac CP -phase δ is currently unknown.
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Figure 4.2: The dependence of the effective neutrino mass on the smallest neutrino mass eigen-
values for |Ue3|2 = 0.0 and |Ue3|2 = 0.05. The blue bands stand for normal mass ordering while
the yellow ones stand for inverted ordering. In both cases, the dark parts are allowed for vari-
ation of the Majorana phases only, while for the light bands all oscillation parameters involved
(except θ13) have been varied within their 3σ-ranges as well. The reach for the different phases
of the upcoming GERDA experiment is taken from Refs. [94, 95].

4.2.1 Special regions in the parameter space

As can be seen from Fig. 4.2, the variation of |mee| with Ue3 (and hence θ13) is not too strong
for most of the curve [93]. There is, however, one feature that changes considerably for a larger
value of this mixing angle, namely the region where |mee| can become zero. Unfortunate values
of the Majorana phases can indeed pull the effective mass down to zero [92], which would lead,
according to Eq. (4.2), to a zero rate for 0νββ, even if the neutrino was indeed a Majorana
particle. This would of course be disastrous when searching for such a decay. Fortunately, this
region of the parameter space seems to be a very peculiar one and one would expect it to be
relatively unnatural, if the Majorana phases had indeed just the values to yield a zero rate.
However, even in that case, there might be possible cross-checks with cosmology. They could
still give information about whether the neutrino can be a Dirac particle, or not [92]. This leads
us to an important point in the interpretation of 0νββ-results, namely to the question of how to
combine several pieces of information on the neutrino mass coming from different experiments
and observations.

4.2.2 The interplay with other future data: Statistical analysis

Apart from 0νββ, the major information on the neutrino mass comes from cosmology [96],
where the sum Σ of all neutrino masses is measured,

Σ = m1 + m2 + m3, (4.5)

as well as from single β decay measurements [97], which measure the kinematic neutrino mass

mβ ≡

√√√√ 3∑
i=1

|Uei|2m2
i . (4.6)

The future KATRIN experiment has a 5σ discovery potential of 0.35 eV for mβ , and a null result
will lead to a 90 % C.L. limit of 0.2 or 0.17 eV [98], while the next cosmological limit will probe Σ
down to the 0.1 eV range [96]. As one can see from Fig. 4.3, the dependences of these variables on
the smallest neutrino mass eigenvalue also clearly differ for normal (m1 < m2 < m3) or inverted
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Figure 4.3: The dependence of the sum of neutrino masses and the kinematic neutrino mass on
the smallest neutrino mass eigenvalue for Ue3 = 0. The color code is the same as in Fig. 4.2.

Scenario m3 [eV] mee [eV] mβ [eV] Σ [eV]
QD 0.3 0.11 − 0.30 0.30 0.91
INT 0.1 0.04 − 0.11 (0.11) 0.32
IH 0.003 0.02 − 0.05 (0.05) (0.10)

Table 4.1: The three different scenarios that we consider for our statistical analysis.

mass ordering (m3 < m1 < m2). From this figure as well as from Fig. 4.2, one can see that in
the near future the only region that we will be able to test in the next generation of experiments
is the one for inverted mass ordering, where m3 is the smallest mass eigenvalue. Therefore we
will concentrate on this region in the following analysis. If one uses m3 to parameterize the
neutrino masses, the other mass eigenvalues are given by

m1 =
√

m2
3 + |∆m2

A| and m2 =
√

m2
3 + |∆m2

A| + ∆m2
¯, (4.7)

where ∆m2
¯ = (7.67+0.22,+0.67

−0.21,−0.61) ·10−5 eV2 and |∆m2
A| = (2.37+0.15,+0.46

−0.15,−0.43) ·10−3 eV2 (for inverted
mass ordering) are the mass square differences that can be obtained from neutrino oscillation
experiments [23], again with their 1σ- and 3σ-errors.

Now we perform a statistical analysis [11] to investigate how well different realistic physical
scenarios can be reconstructed by future experiments. For definiteness, we consider three differ-
ent scenarios called QD (quasi-degenerate), INT (intermediate), and IH (inverted hierarchy),
which are defined by different values of the smallest neutrino mass m3. The corresponding
values for the observables are given in Tab. 4.1 and are fixed except for |mee|, where one still
has the freedom of varying the Majorana phases. Note that some values are put in paratheses,
which indicate that these cannot be measured with the next generation of experiments. E.g.,
the upcoming KATRIN experiment will be able to measure mβ for the case of the QD-scenario,
while for the others, it will only provide an upper limit.

The next step is to explain the analysis that we are doing. At first, there are several
uncertainties involved in the respective observables and the question is how to deal with them.
Let us therefore start with the effective mass |mee|. As already explained in Sec. 4.1, experiments
measure only a rate Γobs. Since this rate depends quadratically on the effective mass, cf.
Eq. (4.2), one can express the experimental error σ(Γobs) on this rate by

σ(|mee|exp) =
|mee|exp

2
σ(Γobs)

Γobs
, (4.8)
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where |mee|exp is the measured value of |mee|. If we look at the future GERDA experiment,
the ratio that can be achieved will be about σ(Γobs)

Γobs
' 23.3% [94]. There is, however, also a

“theoretical uncertainty” on the NME involved, which has to be included as well. A possible
procedure is to parameterize this error by a quantity ζ ≥ 0 and write the total error on the
effective mass as

σ(|mee|) = (1 + ζ) (|mee| + σ(|mee|exp)) − |mee|. (4.9)

Following Ref. [99], we can define a covariance matrix

Sab ≡ δabσ
2(a) +

∑
i

∂Ta

∂xi

∂Tb

∂xi
σ2

i , (4.10)

where T1 = |mee|, T2 = Σ, and T3 = m2
β . Furthermore, σ2(a) is the error on Ta, and (a,b)

label the entries in the covariance matrix. xi are the oscillation parameters (mixing angles and
mass square differences) that enter |mee| (and mβ , though in the observable range of mβ they
have basically no influence). The errors on T2,3 are given by σ(m2

β) = 0.025 eV2 [97, 98] and
σ(Σ) = 0.05 eV [96].

Defining va = Ta − (Ta)exp, where (Ta)exp denotes the experimental value of Ta, our χ2-
function to be minimized is

χ2 = vT S−1v. (4.11)

All oscillation parameters are set to their best-fit values and their (symmetrized) standard
deviations are determined from their 1σ-ranges, which is a good approximation for future 3σ-
ranges. Anyway, the impact of different numerical values here would not lead to qualitatively
different results. Assuming different values for |mee|exp, we first have to minimize the χ2-function
with respect to the Majorana phases α and β, which results in a new function χ2

res = minα,β χ2.
We can then further minimize with respect to m3 to obtain its best-fit point and determine the
corresponding 1σ-, 2σ-, and 3σ-ranges by setting ∆χ2 = χ2

res − χ2
res,min equal to 1, 4, and 9.

The minimum in the |mee|exp-m3 plane is then fixed such that ∆χ2 is zero in the true region
of the respective scenario. Note that these plots are no two-dimensional χ2-plots, but rather
many one-dimensional plots next to each other, one for each value of |mee|exp.

4.2.3 The interplay with other future data: Numerical results

The numerical results of our analysis are shown as the solid lines in the upper rows of Figs. 4.4,
4.5, and 4.6. In all cases, we have calculated the result for a consistent measurement (i.e., mβ

and Σ are measured at their true values in the corresponding scenarios, cf. Tab. 4.1) and the
NME uncertainties are ζ = 0 (which corresponds to the case of no uncertainty), 0.25, and 0.5.
We have checked that large values of ζ > 0.5 will lead to results which are not too different from
the ones for ζ = 0.5. In either case, the 1σ-, 2σ-, and 3σ-ranges are shown in green, yellow, and
red, respectively.

The true values of |mee| and m3 for all three scenarios are marked by the vertical black
lines. The plots illustrate how well we can reconstruct the different scenarios for the certain
values of the NME uncertainty. Looking at Fig. 4.4, one can see that the QD scenario can be
reconstructed quite well. This is no surprise since in that case the KATRIN experiment as well
as the cosmological observation will provide a non-trivial signal. E.g., for |mee|exp = 0.20 eV,
the 1σ-, 2σ-, and 3σ-ranges for m3 are 0.28 − 0.32 eV, 0.27 − 0.33 eV, and 0.25 − 0.35 eV,
while the true value is 0.30 eV. Therefore, the reconstruction is adequate. This remains true
when the uncertainty in NME is non-zero. Still, the reconstructed regions are narrow around
the true value of m3 (the numerical values suffer nearly no change) even though, with a larger
NME uncertainty, higher values of |mee|exp are also plausible. This is true for all three scenarios
under consideration.
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Figure 4.4: 1σ, 2σ and 3σ regions in the m3-|mee|exp plane for the QD scenario. The upper
row shows the correct (solid line) as well as two possible incorrect cosmological measurements
(dashed lines). The less desirable case, i.e. only taking into account a KATRIN measurement,
is shown in the plots in the lower row. The area denoted HDM is the range of |mee| from the
claim of part of the Heidelberg-Moscow collaboration.

Similar statements hold for the INT scenario shown in Fig. 4.5, even though mβ cannot
be measured anymore. However, there will still be a measurement of Σ, so we have sufficient
information on the neutrino mass in order to make the reconstruction work. In case the mea-
sured central value is |mee|exp = 0.08 eV and ζ = 0, the ranges are 0.08 − 0.12 eV at 1σ and
0.05 − 0.15 eV at 3σ. In case of ζ = 0.5, we find 0.08 − 0.12 eV at 1σ and 0.04 − 0.15 eV at
3σ, which illustrates that the numerical values barely change. The mass scale has now a 3σ
uncertainty of 50 %, to be compared with roughly 15 % in the QD scenario.

For IH, in turn, there is no measurement at all that gives information on m3. Hence, it
is only possible to give an upper limit on the smallest neutrino mass, as illustrated by the
long horizontal band in the upper left of Fig. 4.6. Note that this band corresponds directly
to the yellow band marking the inverted mass ordering in Fig. 4.2. This upper limit is almost
trivial, i.e., it corresponds to the neutrino mass limit obtainable from 0νββ alone. To give some
numerical values, for |mee|exp = 0.04 eV one would have the 1 (3)σ ranges m3 < 0.03 (0.07) eV
for ζ = 0 and for ζ = 0.5. Due to the bound on Σ, there is very little dependence on ζ.

Up to now, the discussion has focused on the case in which all measurements are compatible.
This might, however, just be a physicist’s dream, and it might well be that some inconsistencies
will be seen. As example for such an inconsistency, we discuss here a possible clash between
results from KATRIN and from cosmology. To show this, we leave (mβ)exp equal to the true
value of the corresponding scenario (new physics is not expected to influence mβ too much [100]).
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Figure 4.5: Same as Fig. 4.4 for the INT scenario.

For Σexp, we take example values that are smaller or larger than the true value in the respective
scenario. There are many models in the literature which can indeed lead to wrong values of Σ,
see, e.g., Refs. [101,102]. The result is shown by the areas within the dashed lines in the upper
rows of Figs. 4.4-4.6. Having a look at the QD-scenario first, we can see immediately that the
physical range of m3 is reconstructed incorrectly! Hence, if there are systematic errors in the
cosmological measurement, or unknown features in cosmology which we are currently unaware
of, a wrong neutrino mass could be reconstructed. In the QD-case there is still information from
the KATRIN-experiment available, which leads to a reconstructed neutrino mass at most one
order away from the true value, even if a relatively bad value of Σ is taken into account. For the
INT scenario, however, there is no information from KATRIN. Consequently, it might be that
one derives a wrong upper limit on m3! This is illustrated by the long band for Σexp = 0.05 eV
in the upper left plot of Fig. 4.5. This is an example for the case when one could draw a wrong
conclusion by taking the cosmological measurement at face value. Even worse cases may exist
for the IH scenario. E.g., in the upper left plot of Fig. 4.6 one would, for Σexp = 0.3 eV,
reconstruct an m3 of roughly 0.1 eV, while the true value is 0.003 eV. For the IH scenario, one
might not even realize that there is an inconsistency, since in that case the KATRIN experiment
can only provide an upper limit which is too far away from the true value of m3, in case there
is no further information from another source.

One possible cross-check (or the possible consequence if one indeed discovers inconsistencies
between the results from KATRIN and from cosmology) would be to dismiss the cosmological
data completely. We have analyzed this case, too. Here, Sab from Eq. (4.10) as well as va

would change from 3-dimensional to 2-dimensional objects (since the part that corresponds to
the sum of neutrino masses Σ is simply kicked out) while the rest of the procedure remains
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Figure 4.6: Same as Fig. 4.4 for the IH scenario.

the same. The results for this analysis are plotted in the lower rows of Figs. 4.4-4.6, again for
different values of the NME uncertainty. For QD, the most optimal scenario in what concerns
the next generation experiments, neglecting cosmology, would simply increase the errors in the
determination of m3: E.g., for |mee|exp = 0.20 eV and ζ = 0, the ranges are 0.26−0.34 eV at 1σ
and 0.16−0.41 eV at 3σ, while for ζ = 0.5, we find 0.26−0.34 eV at 1σ and 0.13−0.41 eV at 3σ.
This was to be expected, since the KATRIN experiment will in that case yield a measurement
of the neutrino mass. However, the NME uncertainty has a slightly bigger impact, and the
error on m3 increases by a factor of three (now it is about 50 % while it was roughly 15 % when
cosmology had been included in the analysis). For the INT -scenario, however, there is a major
difference to the former case: Now there is no other measurement besides |mee|exp providing
information on m3. Accordingly, one can only derive an upper limit instead of determining a
certain range for m3. This is indicated by the band in the lower left plot of Fig. 4.5. Finally
for IH, the limit on m3 gets only slightly worse compared to the case of a Σ which is too small
to be measured. Then there would not even be a real drawback in taking into account the
KATRIN result only, since here cosmology can also only yield an upper limit on the neutrino
mass. It remains to be said that (in all cases) an uncertainty higher than ζ = 0.5 for the NME
would not significantly modify the conclusions concerning the value of m3, which makes clearly
visible how important the improvements of these highly non-trivial calculations of the NME
will be to extract the essential physics from future experiments. Finally, it is worth mentioning
that if, in the QD-scenario, the error on Σ is decreased (increased), the resulting error on the
neutrino mass is decreased (increased) by approximately the same factor.

With our analysis we can also compare the compatibility of our three benchmark scenarios
with the range 0.15 − 0.46 eV for m3, calculated as the (global fit) 2σ range in Refs. [103,104]
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from the claim in Ref. [105]. The implied range for m3 is given by the gray band labeled by
“HDM” (Heidelberg-Moscow) in Figs. 4.4, 4.5, and 4.6. We see that scenario QD is consistent
with the claim, even for a measurement of Σ = 0.6 eV, to be compared with the true value
Σ = 0.9 eV. The INT scenario (IH scenario) is slightly (very) incompatible for measured
“true” values. However, an exceedingly high value of Σexp can lead again to compatibility. This
shows that, depending on the actual results of future experiments, it might be very difficult to
test or verify the above claim.

4.3 Alternative double beta processes

Let us now turn our focus to double β processes other than neutrino-less double β− decay. Of
course, there can also be isotopes which might undergo the corresponding double β+ decay, both
with [106] and without [82] the emission of neutrinos. Since electron capture (EC) is always a
competing process to β+-emission, the double β+-modes can actually not only be β+β+, but
also ECβ+ and ECEC. If the latter process occurs without the emission of neutrinos, we
will have no particle in the final state except for the daughter atom. Since this can, however,
not work due to energy and momentum conservation, we need (at least) one more particle to
be emitted in that case. The obvious choice is the emission of one single photon (ECECγ).
This particular decay mode will, however, have its problems: In a calculation for ordinary EC,
one assumes the contribution of the 1s-electrons to the capture as largest, since these have
the highest probability to be found inside the nucleus. However, if both 1s1/2-electrons are
captured and only one photon is emitted, this can only work if the photon gets orbital angular
momentum, so this process is forbidden. The reason is that a real photon always has a spin of
1, but the two electrons in the 1s1/2-orbital couple to a spin of zero. Accordingly, if one electron
is captured from the 1s-shell, the other electron has to come from a different orbital, which will
then, in turn, have a smaller probability to be found inside the nucleus. This might, however,
change for the next possible mode, ECECγγ. Naively, one expects this process to be suppressed
by a factor of α ≈ 1/137, but since the emission of only one photon has disadvantages, this
naive expectation might be incorrect.

We will investigate the ratio between these two processes for the first time. Note that, in
spite of having the generic problem of uncertainties in the NME of such processes (cf. Sec. 4.2),
the ratio between the two should (at least to a certain extent) be independent of the NME. The
reason is that, as we will see, the angular momentum as well as the energy balances are the
same for the nucleus, no matter if one or two photons are emitted. In that sense, the nucleus
should not “care” about which of the two decay modes (ECECγ or ECECγγ) is chosen. This
is something peculiar about the double EC mode and might be different for the others. We
will, however, not go into details about the calculation of the NMEs, so this quasi-equality of
the NMEs will have to be tested elsewhere.

We will exemplify in Sec. 4.5.6 why this ratio is decisive for setting accurate experimental
limits on the half-life. There, we also comment on the perspectives to really detect neutrino-less
double electron capture in an experiment.

4.4 The one-photon mode

Let us first focus on the emission of only one photon when capturing two electrons without
emitting a neutrino. The corresponding Feynman diagrams under the assumption of the 2-
nucleon mechanism (which is always assumed here) are depicted in Fig. 4.7. Two electrons are
captured by the nucleus and connected by a Majorana neutrino propagator in a way that no
neutrino is emitted in the end. This, however, would violate energy conservation, which is why
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Figure 4.7: The two Feynman diagrams contributing to ECECγ under the assumption of the
two-nucleon mechanism.

one needs to attach an additional photon to the diagram. This photon can be attached to one
of the captured electrons or to the nucleus itself. The latter process is, however, subdominant
for 0+ → 0+-transitions that we want to consider [107] (mainly due to angular momentum
conservation, but also to the high mass of the nucleus [108]), so we neglect this possibility and
consider only the diagrams of Fig. 4.7.

We use the formalism of Quantum Field Theory to calculate these diagrams. The nuclear
physics part will be factored out (leading to the decay amplitude being proportional to the
NME) and we will be left with the essential γ-structure of the process times a form factor
originating from the bound electron wave functions.

In the whole rest of this section we use, unless stated otherwise, the chiral representation
for γ-matrices (and spinors):

γµ =
(

0 σµ

σµ 0

)
and γ5 = γ5 = −iγ0γ1γ2γ3 = iγ0γ1γ2γ3 =

(
−1 0
0 1

)
, (4.12)

where σµ = (1, σ1, σ2, σ3) and σµ = (1,−σ1,−σ2,−σ3). These matrices fulfill the Clifford-
algebra:

{γµ, γν} = 2gµν
1. (4.13)

Adjoint γ-matrices are given by

(γµ)† = γ0γµγ0 ⇒ (γ0)† = γ0, (γi)† = −γi, (γ5)† = γ5, (4.14)

the σ-matrices are defined as
σµν ≡ i

2
[γµ, γν ], (4.15)

and projection operators for left- and right-handed states are

PL ≡ 1
2
(1 − γ5) =

(
1 0
0 0

)
, PR ≡ 1

2
(1 + γ5) =

(
0 0
0 1

)
. (4.16)

The charge conjugate ΨC of a spinor Ψ is given by ΨC = CΨT , with the charge conjugation
matrix

C ≡ iγ0γ2 =
(
−iσ2 0

0 iσ2

)
, C−1 = CT = C† = iγ2γ0 =

(
iσ2 0
0 −iσ2

)
. (4.17)

Finally, we often use transposed and complex conjugated γ-matrices, which obey the relations

γ2(γµ)∗γ2 = γµ, C−1(γµ)T C = −γµ, (γ5)∗ = (γ5)T = γ5. (4.18)
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Whenever we use spherical coordinates for a vector r = (x, y, z)T in Cartesian coordinates, we
define spherical coordinates (r, θ, φ) such that x = r sin θ cos φ, y = r sin θ sin φ, and z = r cos θ,
where r = |r|.

4.4.1 The basics of the calculation

Let us start by writing down the basic Hamiltonians that are required to describe ECECγ. The
processes involved are the emission of a photon by a bound electron, which has the Hamiltonian

Heγ = −eēB(x)γαeB(x)Aα(x), (4.19)

and the capture of a single bound electron,

HEC =
GF√

2

{
[ν̄L(x)γµ(1 − γ5)eB(x)]J †

µ(x) + h.c.
}

. (4.20)

Here, eB denotes an electron bound in a shell of the atom, while the rest of the notation follows
standard conventions. Using Feynman rules, we can immediately write down the S-matrix
element corresponding to Fig. 4.7:

〈A′|S(3)|A〉 = (−i)
(−i)2

2!
(−e)

(
GF√

2

)2 ∫
d4x1d

4x2d
4x3 ·

·
[
eT
B(x1, Ẽa)(γα)T eT

B(x1)eT
B(x2)(1 − γ5)T (γµ)T νT

L(x2)νL(x3)γν(1 − γ5)eB(x3, Ẽb) ·

·Aα(x1)〈A′|T
{
J †

µ(x2)J †
ν (x3)

}
|A〉 − (Ẽa ↔ Ẽb)

]
. (4.21)

Here, Ẽa,b are the absolute values of the binding energies of the electrons, the J ’s are the (time-
ordered) nuclear currents, and Aα denotes the outgoing photon. A and A′ are the atomic initial
and final state. Note that, due to the Pauli principle, there has to be a minus sign between
both diagrams. In a consistent formulation, no additional factors are required [109].

The internal fermion propagators will be treated as follows: The bound electron propagators
can be approximated by free electron propagators,

eT
B(y,E)eT

B(x,E) ≈ eT (y,E)eT (x,E) = iST
F (x − y), (4.22)

which are given by

SF (x − y) =
∫

d4p

(2π)4
p/ + m

p2 − m2 + iε
e−ip(x−y). (4.23)

For the transposed propagator, one can make use of C−1ST
F (x − y)C = SF (y − x).

The neutrino propagator has to be written down for a superposition of the neutrino mass
eigenstates, because an electron neutrino is given by ν ≡ νe =

∑3
i=1 Ũeiνi, where νi are the

mass eigenstates and Ũ is the leptonic mixing matrix with all Majorana phases set to zero
(cf. Eq. (4.4)). These come in by inserting 1 = C−1C and applying the Majorana condition
CνT

i e−iφi
!= νi, with φ1 = 0, φ2 = 2α, and φ3 = 2β in our conventions. This allows to write the

contraction of electron neutrinos as

νT
L(x)νL(y) = PRC−1

3∑
i,j=1

Ũ∗
eiŨ

∗
eje

iφi νT
i (x)νj(y)︸ ︷︷ ︸

=iSF (x−y)δij

PR. (4.24)
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Inserting the propagator for each mass eigenstate, neglecting m2
i with respect to q2 in the de-

nominator, and realizing that the projection operators kill the q/-contribution in the numerator,
one ends up with

νT
L(x)νL(y) ≈ −imee

∫
d4q

(2π)4
e−iq(x−y)

q2 + iε︸ ︷︷ ︸
≡Sν(x−y)

CPR, (4.25)

where mee is just given by Eq. (4.3). Note that, after having done this (and making use of
Eq. (4.18)), it is easy to put the two γ-matrices γµ and γν next to each other in Eq. (4.21).

4.4.2 Factoring out the nuclear part

In this section, we factor out the nuclear physics part from the γ-structure, as done, e.g., in
Ref. [110]. Then, it will be possible to do all those computations that involve spinors and
matrices separately.

First, one can write out the time-ordered product of the nuclear currents explicitly and
insert a complete set {|n〉} of intermediate states:

〈A′|T
{
J †

µ(x2)J †
ν (x3)

}
|A〉 =

= θ(t2 − t3)
∑

n

〈A′|J †
µ(x2)|n〉〈n|J †

ν (x3)|A〉 + θ(t3 − t2)
∑

n

〈A′|J †
ν (x3)|n〉〈n|J †

µ(x2)|A〉 =

= θ(t2 − t3)
∑

n

eit2(En−Ef )〈A′|J †
µ(t2 = 0,x2)|n〉〈n|J †

ν (t3 = 0,x3)|A〉 eit3(Ei−En) +

+ θ(t3 − t2)
∑

n

eit3(En−Ef )〈A′|J †
ν (t3 = 0,x3)|n〉〈n|J †

µ(t2 = 0,x2)|A〉 eit2(Ei−En). (4.26)

Ei, Ef , and En denote the energies of the nuclear initial, final, and intermediate states. We
then make use of the following approximations:

• the closure approximation: En → 〈En〉
The energies En of the intermediate states are replaced by some average value 〈En〉, which
allows us to use

∑
n |n〉〈n| = 1 in Eq. (4.26).

• we assume the 2-nucleon mechanism and use the non-relativistic approximation for the
nuclear currents:

J †
µ(x) ≈

∑
m

(gV gµ0τ
+
m + gAgµjτ

+
mσj

m)δ(3)(x − rm), (4.27)

where the sum runs over all nucleons. rm denotes the position of the m-th nucleon.
Details on the nuclear operators can be found in Ref. [111]. This approximation renders
the integrations over x2 and x3 trivial and allows for the evaluation of part of the bound
electron wave functions at the origin.2

• the long-wavelength approximation: e±ipx ∼ 1
The value of x, which points into the nucleus (due to the δ-functions), should be roughly
of the order of the nuclear radius R, whose inverse is much larger than the size of typical
internal momenta |p| (p is the momentum from the electron propagator over which we
integrate in the end).

2Note that at this point we have actually lost the covariance of our expressions, since by this approximation, we
have chosen a certain frame (namely the rest frame of the atom). Hence, whenever we make some approximations
in the following that rely on a certain frame, we will have to check if the respective frame is identical to the rest
frame chosen for this simplification.
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Using J †
ν (x3)J †

µ(x2) = J †
µ(x2)J †

ν (x3) [110] allows us to write Eq. (4.26) as

〈A′|T
{
J †

µ(x2)J †
ν (x3)

}
|A〉 ≈ (4.28)

≈
[
θ(t2 − t3)eit2(〈En〉−Ef )eit3(Ei−〈En〉) + θ(t3 − t2)eit2(Ei−〈En〉)eit3(〈En〉−Ef )

]
·

·〈A′|
∑
m,m′

(gV gµ0τ
+
m + gAgµjτ

+
mσj

m)(gV gν0τ
+
m′ + gAgνkτ

+
m′σ

k
m′)|A〉 · δ(3)(x2 − rm)δ(3)(x3 − rm′).

Note that rm and rm′ can also be exchanged due to the summation over both indices. Writing
γµγν = gµν+ 1

2 [γµ, γν ] after having simplified Eq. (4.21) allows us to divide the sum over Lorentz
indices into a symmetric and an anti-symmetric part. We are left with only two parts, one
proportional to the square of the vector-coupling g2

V (Fermi part) and the other one proportional
to g2

A (Gamow-Teller part), as long as we restrict ourselves to the case of 0+ → 0+ transitions.
The reason is that the mixed parts, using gµ0gνjg

µν = 0 and 1
2gµ0gνj [γµ, γν ] = γjγ0, lead to a

term proportional to (
∑

m,m′ τ+
mτ+

m′σm′γ). The operator σm′ changes the spin for only one of
the two states (either the initial or the final one), but this is not allowed in a pure 0+ → 0+

transition (which is the dominant contribution) and hence these operators yield zero when
sandwiched between 〈A′| and |A〉. The remaining two terms are:

Fermi part: g2
V 〈A′|

∑
m,m′ τ+

mτ+
m′ |A〉δ(3)(x2 − rm)δ(3)(x3 − rm′), and

Gamow-Teller part: −g2
A〈A′|

∑
m,m′ τ+

mτ+
m′σmσm′ |A〉δ(3)(x2 − rm)δ(3)(x3 − rm′).

Now we have already reached our goal, since only the gµν-part of γµγν survives, which can
simply be factored out from Eq. (4.21). The final expression looks like

γµγν〈A′|T
{
J †

µ(x2)J †
ν (x3)

}
|A〉 →

→
∑
m,m′

〈A′|τ+
mτ+

m′(g2
V − g2

Aσmσm′)|A〉δ(3)(x2 − rm)δ(3)(x3 − rm′) ·

·
[
θ(t2 − t3)eit2(〈En〉−Ef )eit3(Ei−〈En〉) + θ(t3 − t2)eit3(〈En〉−Ef )eit2(Ei−〈En〉)

]
. (4.29)

4.4.3 The nuclear matrix element

The next step is to perform the integrations over t1, t2, and t3. This will also allow us to check
if the condition for energy conservation that we get is indeed correct. In order to do this, we
first perform the momentum integrations over the 0-components, which leads to

SF (x1 − x2) =
−i

24π3

∫
d3p

E − iε′

[
θ(t1 − t2)(p/ + me)e−i(E−iε′)(t1−t2)e+ip(x1−x2) +

+θ(t2 − t1)(−p/ + me)e+i(E−iε′)(t1−t2)e−ip(x1−x2)
]

(4.30)

and

Sν(x2 − x3) =
−i

24π3

∫
d3q

|q| − iε′
e+iq(x2−x3)

[
θ(t2 − t3)e−i|q|(t2−t3) + θ(t3 − t2)e+i|q|(t2−t3)

]
,

(4.31)
where ε′ always indicates the correct ε-prescription. Furthermore, the time-dependence can be
factored out from the bound electron wave functions,

eB(x, Ẽ) = e+i(me−Ẽ)teB(x, Ẽ), (4.32)
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and the outgoing photon with 4-momentum k = (k0,k) can be written as

Aα(x1) =
√

1
2k0V

ε∗α(k)e−ik0t1e+ikx1 , (4.33)

where ε∗α(k) is the polarization vector. Note that the photon wave is normalized such that
Aα has exactly the energy k0. Furthermore, the identities k2 = 0 (zero mass) and kε = 0
(transversality) hold for real photons. This leads to ε∗0 = ε∗3 = 0, which reflects the fact that
time-like and longitudinal polarizations are forbidden for real photons. Having done all this
yields

〈A′|S(3)|A〉 =
ieG2

F mee

28π6
√

2k0V

∫
d3x1dt1dt2dt3

∫
d3p

E − iε′
d3q

|q| − iε′

∑
m,m′

g̃mm′e+iq(rm−rm′ ) ·

·
{

ε∗α(k)e−ik0t1e+ikx1e+i(me−Ẽa)t1e+i(me−Ẽb)t2
[
θ(t2 − t3)eiẼf t2eiẼit3︸ ︷︷ ︸

→N1

+ θ(t3 − t2)eiẼf t3eiẼit2︸ ︷︷ ︸
→N2

]
·

·
[
θ(t1 − t2)e−i(E−iε′)(t1−t2)e+ipx1 · eT

B(x1, Ẽa)Cγα(+p/ + me)PLeB(0, Ẽb)︸ ︷︷ ︸
→L1

+

+ θ(t2 − t1)e+i(E−iε′)(t1−t2)e−ipx1 · eT
B(x1, Ẽa)Cγα(−p/ + me)PLeB(0, Ẽb)︸ ︷︷ ︸
→L2

]
−

−(Ẽa ↔ Ẽb)
}

, (4.34)

where g̃mm′ = 〈A′|τ+
mτ+

m′(g2
V − g2

Aσmσm′)|A〉, Ẽi = |q| + Ei − 〈En〉, Ẽf = 〈En〉 − Ef − |q|, and
eB(0, Ẽ) is the spatial part of the bound electron wave function, evaluated at the origin.

To proceed, one only needs to write the θ-functions in their Fourier representation,

θ(t − t′) =
i

2π

∫
da0

a0 + iε
e−ia0(t−t′), (4.35)

and then evaluate the integrals over t1, t2, and t3 first to get δ-functions. We will do this
explicitly for N1L1 and just list the results for the rest. The whole contribution reads:∫

dt1dt2dt3
dr0

r0

ds0

s0
e−ir0(t2−t3)eiẼf t2eiẼit3e−is0(t1−t2)e−i(E−iε′)(t1−t2)e−ik0t1e+i(me−Ẽa)t1e+i(me−Ẽb)t3 .

(4.36)
The integration over the t’s gives (2π)3 times

δ(m−k0−Ẽa−(E−iε′)−s0)δ(Ẽb−me−Ei+〈En〉−|q|−r0)δ(−r0+〈En〉−Ef−|q|+s0+(E−iε′)).
(4.37)

Using these δ-functions to evaluate the integrals over r0 and s0, one obtains, altogether,

N1L1 =
2πδ[(Ei + 2me − Ẽa − Ẽb) − (Ef + k0)]

(me − k0 − Ẽa − (E − iε′))(|q| + me + Ei − Ẽb − 〈En〉)
. (4.38)

The other 3 contributions are

N2L1 =
2πδ[(Ei + 2me − Ẽa − Ẽb) − (Ef + k0)]

(me − k0 − Ẽa − (E − iε′))(|q| − me + Ef + Ẽb − 〈En〉)
,

N1L2 =
2πδ[(Ei + 2me − Ẽa − Ẽb) − (Ef + k0)]

(k0 + Ẽa − (E − iε′) − me)(|q| + me + Ei − Ẽb − 〈En〉)
, and

N2L2 =
2πδ[(Ei + 2me − Ẽa − Ẽb) − (Ef + k0)]

(k0 + Ẽa − (E − iε′) − me)(|q| − me + Ef + Ẽb − 〈En〉)
. (4.39)
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By this, we have indeed obtained the desired energy denominators. One can have a closer
look at the energy conservation, enforced by the δ-functions in the numerators in Eqs. (4.38)
and (4.39). The energy conservation looks like

δ((Ei + 2me − Ẽa − Ẽb) − Ef − k0), (4.40)

where Ei,f are the initial and final state energies. A short calculation leads to

Ei = Mi+(Z−2)me−BE(Z)+Ẽa+Ẽb and Ef = Mf +(Z−2)me−BE(Z−2)+Ẽ′
a+Ẽ′

b, (4.41)

where Mi,f are the masses of the initial and final nucleus, BE(Z) is the absolute value of the
binding energy of the electrons for a neutral atom with atomic number Z (where we neglect
correlation effects of the electrons), and Ẽ′

a,b are the binding energies for electrons in the same
orbitals as the captured electrons, but for the daughter nucleus. The connection to the Q-value
of the reaction is simply that the photon energy k0 has to be equal to

Q̃ ≡ (Q − Ẽ′
a − Ẽ′

b). (4.42)

The Q-value has to be corrected by the binding energies that correspond to the holes in the
electron shell of the final state [112]. This is because the characteristic time-scale for the
atomic shell to react and re-arrange itself is much longer than the time-scale for the nucleus
to decay. Thus, the final state atom will not be in its ground state, but will rather have holes
corresponding to the orbitals of the captured electrons. The binding energies of the captured
electrons in the mother state do not affect the overall energy conservation; they are, however,
important for the internal dynamics (as, e.g., for the calculation of the corresponding NME).

Then, by using neutrino “potential” functions [110],

H(|x|, a) ≡ 1
2π2

∫
eiqxd3q

|q|(|q| + a)
, (4.43)

we can define the Fermi and Gamow-Teller NMEs:

MF ≡ 〈A′|
∑
m,m′

h(|rm − rm′ |)τ+
mτ+

m′ |A〉 and MGT ≡ 〈A′|
∑
m,m′

h(|rm − rm′ |)τ+
mτ+

m′σmσm′ |A〉,

(4.44)
where h(|rm − rm′ |) ≈ ha,b(|rm − rm′ |), with

ha,b(|rm−rm′ |) ≡ R

2
H(|rm−rm′ |, Ei +me− Ẽa,b−〈En〉)+H(|rm−rm′ |, Ef −me− Ẽa,b−〈En〉),

(4.45)
and R being the nuclear radius. Note that we assume the NMEs to vary slowly with energy, so
that a small difference in the energy of the bound electron is not important. Finally, one can
factor out the NME

M0ν ≡ MGT −
g2
V

g2
A

MF (4.46)

and define the function
A(k0, Ẽ) = me − k0 − Ẽ (4.47)

to obtain

〈A′|S(3)|A〉 =
−ieG2

F meeg
2
AM0ν

25π3
√

2k0V R
δ(k0 − Q̃)

∫
d3x1ε

∗
α(k)e+ikx1

∫
d3p

E − iε′
· (4.48)

·
{[ e+ipx1

A(k0, Ẽa) − (E − iε′)
· eT

B(x1, Ẽa)Cγα(+Eγ0 − pγ + me)PLeB(0, Ẽb) +

+
e+ipx1

−A(k0, Ẽa) − (E − iε′)
· eT

B(x1, Ẽa)Cγα(−Eγ0 − pγ + me)PLeB(0, Ẽb)
]
− (Ẽa ↔ Ẽb)

}
,
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where we have used p → −p in the second summand. The notation eB(x, Ẽ) means that the
structure of the bound electron wave, implicitly contained in the symbolic writing “Ẽ”, still has
to be taken into account.3

4.4.4 The low Q region

In this section, we illustrate the dependence of the process on the magnitude of the Q-value of
the reaction. As we shall see, the calculation proceeds differently, depending on whether the
Q-value is small or large (and we will also specify what that means in this case).

In order to do this, we start with the integration over p in Eq. (4.48). Clearly, we have
three parts, one with a factor E, one with p, and one with me inside the γ-structure:

• Let us start with the E-part, which is proportional to

ΓE = eT
B(x1, Ẽa)Cγαγ0PLeB(0, Ẽb). (4.49)

The part which is relevant for the integration is given by∫
d3p

E
e+ipx1E

[
1

A − (E − iε′)
− 1

−A − (E − iε′)

]
= 2A ·

∫
d3p e+ipx1

A2 − E2 + iε′
. (4.50)

Writing out E2 in the denominator leads to the following expression for the E-part (where
p = |p|):

−2AΓE

∫
d3p e+ipx1

p2 + (m2
e − A2) − iε′

. (4.51)

From this, one can clearly see that the p-integration depends on (m2
e −A2) being larger or

less than zero. Using Eq. (4.47), one can easily see that (m2
e −A2) > 0 for k0 < 2me − Ẽa

and (m2
e − A2) < 0 otherwise. Because of k0 = Q̃, the first case corresponds to the

low Q region, while the second one stands for a high Q-value. The physical difference
between both cases comes from the fact that emitting the photon decreases the energy
of the electron. For a photon momentum smaller than (2me − Ẽa), the “rest” energy of
the bound electrons is enough to create the photon – the electron that emits the photon
(electron a for the first diagram in Fig. 4.7) and the other captured electron do not lose
their full energy. A higher Q-value in turn requires a higher virtuality of the electrons (they
will have negative energy after having emitted the photon), which causes the difference
in the integration.

To simplify the notation, we can define the following auxiliary quantities:

B2 ≡ m2
e − A2 for k0 < 2me − Ẽa (small Q, m2

e − A2 > 0) and
D2 ≡ A2 − m2

e for k0 > 2me − Ẽa (high Q, A2 − m2
e > 0). (4.52)

For low Q, this allows us to write the integral in Eq. (4.51) as

I1(x1) ≡
∫

d3p e+ipx1

p2 + B2(k0, Ẽa) − iε′
. (4.53)

Evaluating this integral is easy: One can write px1 = px1 cos θ and then integrate over
the angles φ and θ, which yields

I1(x1) =
−2πi

x1

 +∞∫
p=0

dp pe+ipx1

p2 + B2
−

−∞∫
p=0

dp pe−ipx1

p2 + B2

 =
−2πi

x1

+∞∫
p=−∞

dp pe+ipx1

p2 + B2
, (4.54)

3Actually, the bound electron wave does not depend on Ẽ anymore, since this dependence has been factored
out in Eq. (4.32). Still, one should keep in mind that the γ-structure of the corresponding spinor will depend on
the orbital that contains the electron. This is accounted for by using the notation “eB(x, Ẽ)”.
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with poles at p = ±iB. Since x1 = |x1|, it is possible to close the integration contour in
the upper half-plane (which leads to a mathematically positive orientation of the integral)
and use the residue theorem for the pole at +iB. The simple result is

I1(x1) =
2π2

x1
e−B(k0,Ẽa)x1 , (4.55)

which gives

E-part : −2AΓEI1(x1) =
−4π2A

x1
e−Bx1ΓE . (4.56)

• The p-part is proportional to

Γp = eT
B(x1, Ẽa)CγαγPLeB(0, Ẽb), (4.57)

and the integration reads

2
∫

d3p e+ipx1

p2 + B2
p = −2i∇x1I1(x1), (4.58)

which leads to (neglection higher order corrections that are suppressed by the exponential)

p-part :
4π2i

x2
1

e−Bx1 x̂1Γp, (4.59)

where x̂1 is the unit vector in x1-direction. Here, we have also used ∇x1 = x̂1
∂

∂x1
+ ...

• The me-part finally is proportional to

Γm = eT
B(x1, Ẽa)CγαPLeB(0, Ẽb), (4.60)

and leads to

me-part :
−4π2me

x1
e−Bx1Γm. (4.61)

Finally, all our efforts yield

〈A′|S(3)|A〉 =
ieG2

F meeg
2
AM0ν

23π
√

2k0V R
δ(k0 − Q̃)

∫
d3x1

x1
ε∗α(k)e+ikx1e−Bx1 ·

·
[
eT
B(x1, Ẽa)Cγα

(
Aγ0 − i

x1
x̂1γ + me

)
PLeB(0, Ẽb)

]
− (Ẽa ↔ Ẽb). (4.62)

Next we look at the structure of the bound electron wave functions. Note that the spinors
in this part are first written down in the Dirac representation for economical reasons and will be
transformed into the corresponding expressions in the chiral representation later. We restrict
ourselves here to electrons from the 1s1/2 (abbreviated “1s”), from the 2s1/2 (abbreviated
“2s”), and from the 2p1/2 (abbreviated “2p”) shells, since those can be treated analogously. In
principle, there could also be contributions like, e.g., one 1s1/2-electron and one 2p3/2-electron
for the emission of one single photon. We neglect those in the following, since they require a
much more complicated mathematical apparatus. In principle, it might however be that they
also contribute in a non-negligible way.

According to Ref. [113], the structure of the bound electron waves close to the nucleus in
the Dirac representation is approximately given by

eB(x1, Ẽa) = Ra(|x1|)CaY00Γa, (4.63)
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Schrödinger Dirac

1s 2
(

Z
a

)3/2
e−Zr/a N+

√
Γ(2γ + 1) [Z+F (0, 2γ + 1, 2λr)]

2s 2
(

Z
2a

)3/2 (1 − Zr
2a )e−Zr/(2a) N+

√
Γ(2γ + 2) [Z+F (−1, 2γ + 1, 2λr) − F (0, 2γ + 1, 2λr)]

2p 1√
3

(
Z
2a

)3/2 Zr
a e−Zr/(2a) N−

√
Γ(2γ + 2) [Z−F (−1, 2γ + 1, 2λr) + F (0, 2γ + 1, 2λr)]

Table 4.2: The radial parts of the wave functions that we use, both normalized such that
the integral over the radial part gives 1. r is the radial coordinate and a is the Bohr radius.
The abbreviations used above are N± = (2λ)3/2

Γ(2γ+1)

√
(me±ε)λ

4Zαm2
eZ±

(2λr)γ−1e−λr, Z± = Zαme
λ ± 1,

λ =
√

m2
e − ε2, ε = me − Ẽ, and γ =

√
1 − Z2α2 with the fine structure constant α and the

atomic number Z. Γ is the Euler Γ-function and F is the confluent hypergeometric Kummer
function.

where Ra(|x1|) contains all the radial dependence, Ca is a constant (with C1s = C2s = 1 and
C2p = 1√

3
), Y00 is the lowest spherical harmonic, and Γa is the spinor part. Actually, this spinor

part involves spherical spinors Ωjlmj
to account for spin-orbit coupling, but if one neglects the

subdominant component of the spinor, the bound electron waves reduce to the form given in
Eq. (4.63). Close to the origin, the spinors are

Γ1s,2s =
(

χmj

0

)
and Γ2p =

(
0

σ3χmj

)
, (4.64)

where mj = ±1
2 is the projection of the total spin (1

2 in all three cases). The explicit form of
the 2-spinors is

χ+1/2 =
(

1
0

)
and χ−1/2 =

(
0
1

)
. (4.65)

Note that neglecting the smaller spinor-component (whose relative important would increase
further away from the nucleus) in Eq. (4.64) is well justified by Eq. (4.55): If the bound electron
wave is not evaluated at the origin (as for eB(0, Ẽb) in Eq. (4.62)), the exponential function
e−Bx1 suppresses all contributions which are far away from the nucleus. The “decay length”
of this exponential is 1/B, which corresponds to about 100 fm (B = O(me)), and this is still
far below the Bohr radius. This might be different for a larger Q-value, so our approximation
might be worse for that case. We will, however, further use it keeping in mind that it might be
less suited for the high Q region.

Let us go back to the present case now: We have not specified yet what the radial wave
function Ra in Eq. (4.63) actually is. We will use two different versions for this function:
First, we approximate it by the solution of the non-relativistic Schrödinger equation for the
corresponding orbital, but we also use the exact solution of the Dirac equation in a Coulomb
potential for the corresponding component [113], summarized in Tab. 4.2. The former has the
advantage that in this approximation, we will obtain fully analytical results. In contrast, the
Dirac case can only be solved numerically, but will yield more accurate results. Furthermore,
the comparison with the Schrödinger case is also a confirmation of the numerics. In case these
wave functions are evaluated at the origin, one can simply set the radial coordinate equal to
1
V

∫
d3r r = 3

4R, which is the mean radial value of r and is of the order of the nuclear radius
(and hence essentially zero if compared to the Bohr radius). The values of the wave functions at
the origin are shown in Fig. 4.8. One can see nicely that the Schrödinger waves approximately
reproduce the Dirac results for 1s and 2s, while they clearly underestimate the 2p-contribution.

We can now proceed as follows: The exact way would be to simply evaluate the integrations
and γ-structure arising from Eq. (4.63). One can, however, also make use of an approxima-
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Figure 4.8: The solutions of the Schrödinger and Dirac equation, evaluated at the origin for
several isotopes.

tion: Since the Q-values involved are small and k0 = Q̃, one can perform a long wavelength
approximation in Eq. (4.62), e+ikx1 ≈ 1. We will do both to be able to check the validity
of this approximation that way. We are left with four cases in total: Either with or without
long wavelength approximation, and for each way we use the Schrödinger and the Dirac wave
functions.

Let us first do the evaluation in the easiest case, applying the long wavelength approximation.
The x1-integration in Eq. (4.62) is then actually trivial: For the E- and me-part, there is no
angular dependence at all in the integrand and what remains is the function

fa
S(k0, Ẽa) = 4πCa

∞∫
x1=0

dx1 x1Ra(x1)e−B(k0,Ẽa)x1 . (4.66)

For the Schrödinger wave functions, these integrals can be performed analytically, yielding

f1s
S =

8π
√

aZ3

(aB + Z)2
, f2s

S =
8
√

2π(2B(aZ)3/2 − 3
√

aZ5)
(2aB + Z)3

, and f2p
S =

16
√

2π
√

aZ5

3(2aB + Z)3
. (4.67)

The p-part is killed by the integration, since
2π∫
0

sinφdφ =
2π∫
0

cos φdφ =
π∫
0

cos θdθ = 0.

The calculation without the long wavelength approximation is a bit more elaborate, but
can be simplified considerably using several tricks: First, we can expand the exponential into
spherical Bessel functions and spherical harmonics,

eikx1 = 4π

∞∑
l=0

+l∑
m=−l

iljl(k0x1)Y ∗
lm(Ωk)Ylm(Ωx1). (4.68)

Exploiting the orthogonality relation
∫

dΩ Y ∗
lm(Ω)Yl′m′(Ω) = δll′δmm′ with the Y00 from Eq. (4.63),

one can use j0(r) = sin r
r to arrive at a function

f̃a
S(k0, Ẽa) =

4π

k0
Ca

∞∫
x1=0

dx1 sin(k0x1)Ra(x1)e−B(k0,Ẽa)x1 (4.69)
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instead of Eq. (4.66), which is still solvable analytically for the Schrödinger wave functions.
This leads to

f̃1s
S =

8π
√

aZ3

a2k2
0 + (aB + Z)2

, f̃2s
S =

8
√

2π(4(aZ)3/2(a(B2 + k2
0) − BZ) − 3

√
aZ7)

(4(B2 + k2
0)a2 + 4BZa + Z2)2

, and

f̃2p
S =

16
√

2π
√

aZ5(2aB + Z)
3(4(B2 + k2

0)a2 + 4BZa + Z2)2
. (4.70)

The corresponding function for the p-part can be obtained by an analogous calculation. The
remaining angular dependence gives a vector4

vT = (Y11(Ωk) − Y1,−1(Ωk), i(Y11(Ωk) + Y1,−1(Ωk)),
√

2Y10(Ωk)), (4.71)

to be multiplied with γ. The radial part can be written as

f̃a
V (k0, Ẽa) = (4π)3/2Ca

∞∫
x1=0

dx1 j1(k0x1)Ra(x1)e−B(k0,Ẽa)x1 , (4.72)

where j1(r) = sin r
r2 − cos r

r . The analytic solutions for the case of Schrödinger wave functions are

f̃1s
V =

−
[
16

(
Zπ
a

)3/2 ((B + Z
a ) arctan

(
ak0

aB+Z

)
− k0

]
k2

0

,

f̃2s
V =

4
√

2(Zπ)3/2
[

ak0(4a2(B2+k2
0)+8BZa+3Z2)

4a2(B2+k2
0)+4BZa+Z2 − 1

2(2aB + 3Z) arctan
(

2ak0
2aB+Z

)]
a5/2k2

0

, and

f̃2p
V =

2
√

2π3/2
(

Z
a

)5/2
[
arctan

(
2ak0

2aB+Z

)
− 2ak0(2aB+Z)

4(B2+k2
0)a2+4BZa+Z2

]
3k2

0

. (4.73)

It is easy to show that all three functions in Eq. (4.73) tend to zero for k0 → 0, which is
consistent with them being absent in the long wavelength approximation. All functions are
plotted for the 1s-example in Figs. 4.9 and 4.10. One can immediately see that the long
wavelength approximation is good for small k0, but in total the non-relativistic approximation
does not seem to work very well (it does, however, reproduce the correct order of magnitude
and is suited for a cross-check).

Finally, we can now also write down the exchange term corresponding to (Ẽa ↔ Ẽb) in
Eq. (4.62). For the E-part (cf. Eq. (4.56)), this gives

Aaf
a
SCbRb(0) · ΓT

a Cγαγ0PLΓb − Abf
b
SCaRa(0) · ΓT

b Cγαγ0PLΓa. (4.74)

The second γ-structure yields

ΓT
b Cγαγ0PLΓa ≡ (ΓT

b Cγαγ0PLΓa)T = ΓT
a Cγαγ0PLΓb, (4.75)

so the pre-factor in front of the structure ΓT
a Cγαγ0PLΓb will simply be

F−(k0) ≡ Aa(k0)fa
S(k0)CbRb(0) − Ab(k0)f b

S(k0)CaRa(0). (4.76)

One can perform an analogous calculation for the me-part yielding

mef
a
SCbRb(0) · ΓT

a Cγαγ0PLΓb − (Ẽa ↔ Ẽb) = f−(k0)ΓT
a CγαΓb − f+(k0)ΓT

a Cγαγ5Γb, (4.77)
4This can again be shown by expanding the exponential function like in Eq. (4.68) and applying orthogonality.
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Figure 4.9: The form of the f -functions (for the 1s-orbital as example) for the Schrödinger
(left panel) and Dirac (right panel) wave functions in the long wavelength approximation. This
approximation reproduces the exact solution (cf. Fig. 4.10) very well for k0 . 0.25 MeV. As
expected, the contributions are larger for a higher value of the atomic number Z.
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Figure 4.10: The form of the f -functions (for the 1s-orbital as example) for the Schrödinger (left
column) and Dirac (right column) wave functions without the long wavelength approximation.
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where
f±(k0) ≡

me

2

[
fa

S(k0)CbRb(0) ± f b
S(k0)CaRa(0)

]
. (4.78)

The γ-structure of the p-part is of the form ΓT
a Cγα(vγ)γ0PLΓb, which effectively reduces to

v3ΓT
a Cγαγ3γ0PLΓb, (4.79)

as we shall see later, with a pre-factor

F̃−(k0) ≡ fa
V (k0)CbRb(0) − f b

V (k0)CaRa(0). (4.80)

We are now ready to insert explicit expressions for the spinors from Eq. (4.64). First, we
transform them into the chiral representation, which is done by the unitary transformation [114]

Ψchiral =
1√
2

(
1 −1
1 1

)
ΨDirac, (4.81)

in order to be able to use the explicit γ-matrices from Eq. (4.12). This leads to

Γ1s,2s →
1√
2

(
χmj

χmj

)
and Γ2p → 1√

2

(
−σ3χmj

σ3χmj

)
= −γ3 1√

2

(
χmj

χmj

)
, (4.82)

which suggests the replacement Γc → γc
shellΓc in Eqs. (4.74), (4.77), and (4.79), where γ1s,2s

shell = 1

and γ2p
shell = −γ3.

These explicit forms can now be inserted directly. Furthermore, we make use of the actions
of Pauli matrices on 2-spinors,

1χmj = χmj , σ1χmj = χ−mj , σ2χmj = 2imjχ−mj , and σ3χmj = 2mjχmj . (4.83)

For capturing two s-electrons a and b, this leads to

ΓT
a Cγαγ0PLΓb = −1

2
zα, ΓT

a CγαΓb = −zα, and ΓT
a Cγαγ5Γb = 0, (4.84)

where
zα ≡ χT

−ma
σαχmb

. (4.85)

Capturing one s- and one p-electron gives

ΓT
a Cγαγ0PLΓb =

1
2
zα, ΓT

a CγαΓb = 0, and ΓT
a Cγαγ5Γb = zα, (4.86)

where we have explicitly verified that it does not matter which electron (a or b) is taken to
be s and which to be p. We still lack the part with γ. For both cases, it yields a structure
proportional to vχT

−ma
σασχmb

. Since ε∗0 = 0, one can write this as vjδ
αiχT

−ma
σiσjχmb

and use
σiσj = δij + iεijkσk. The first part leads to a term proportional to χT

−ma
χmb

= δ−ma,mb
, which

is forbidden by angular momentum conservation. We are left with ivjδ
αiεijkχT

−ma
σkχmb

. For a
real photon, we can only have i = 1 or i = 2, leading to

ivj(δα1ε1jk + δα2ε2jk)(δk1χT
−ma

σ1χmb
+ δk2χT

−ma
σ2χmb

+ δk3 χT
−ma

σ3χmb︸ ︷︷ ︸
∝δ−ma,mb

→0

). (4.87)

The only possible combinations are (2mav3δ
α1δmamb

) and (iv3δ
α2δmamb

). Since v3 is pro-
portional to cos θk, the phase space integration kills all interference terms with Eqs. (4.84)
and (4.86). This is still true for the terms proportional to v1,2 that appear in the quadratic
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contribution originating from that term. Therefore, we set γ → γ3 in the p-part. Effectively,
this leads to a structure of

vχT
−ma

σασχmb
→ v3 ·

zα

2
, (4.88)

where we have dropped a factor with absolute value 1, since it does not matter in the absence
of interference terms.

Finally, we can define the following form factors:

g±(k0) ≡ f±(k0) +
1
2
F−(k0) and g̃− ≡ 1

2
√

3
F̃−(k0). (4.89)

The numerical factor in the latter definition allows for a convenient way of writing down the
final decay rate in the end. The final matrix element is

〈A′|S(3)|A〉 = Mδ(k0 − Q̃) = ∓iCδ(k0 − Q̃)ε∗α(k)[g∓(k0) +
√

3 cos θkg̃−(k0)]zα, (4.90)

where the upper sign is valid for the capture of two s-electrons, while the lower one holds for
the capture of one s- and one p-electron. The constant is given by

C =
eG2

F g2
AmeeM

0ν

25π2
√

2k0V R
. (4.91)

Note that g̃−(k0 → 0) → 0, and that there will be no interference terms between g∓ and g̃−.
Having done all that, one can square the amplitude in Eq. (4.90), where we apply the usual

trick for the δ-function, [
δ(k0 − Q̃)

]2
→ T

2π
δ(k0 − Q̃). (4.92)

The result then has to be summed over the possible photon polarizations, where we can use∑
(i)

ε(i)∗α ε
(i)
β → −gαβ . (4.93)

This leads to a proportionality to (cf. Eq. (4.83))

|z3|2 + |z2|2 + |z1|2 − |z0|2 = 2δma,mb
. (4.94)

As it should be, the contributions coming from longitudinal and time-like photon polarizations
exactly cancel each other and the final result requires the two captured electrons to have parallel
spins, as required by angular momentum conservation. Finally, the square of the amplitude has
to be summed over all possible electron pairs that can be captured in a certain decay mode [107].

In the end, one can use Fermi’s Golden Rule to obtain the decay width,

Γ = 2π
V/T

(2π)3

∫
d3k|M|2 · T

2π
δ(k0 − Q̃). (4.95)

The final expression for the decay rate reads:

Γ1s&2s =
αG4

F g4
A

28π5R2
|M0ν |2|mee|2Q̃

[
|g−(Q̃)|2 + |g̃−(Q̃)|2

]
and

Γ1s(2s)&2p =
αG4

F g4
A

28π5R2
|M0ν |2|mee|2Q̃

[
|g+(Q̃)|2 + |g̃−(Q̃)|2

]
, (4.96)

where Q̃ = Q − Ẽ′
a − Ẽ′

b is the corrected Q-value and α = e2

4π is the fine structure constant.
The actual dependence of the decay rate on Q̃ and the form factors is plotted in Fig. 4.11 for
the Schrödinger case. As expected, the contribution to the rate grows with the atomic number
Z and is largest for the capture of two s-electrons. The variation with Q̃ is relatively moderate
for generic photon energies. We have furthermore plotted a more detailed comparison of the
exact calculation with the long wavelength approximation in Fig. 4.12. For very small Q̃, the
long wavelength approximation turns out to be extremely good, too, as we shall see later when
looking at the numerical values.
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Figure 4.11: The actual dependence of the decay rate from Eq. (4.96) on Q̃ and on the form
factors (for the Schrödinger solutions as example). The left column shows the long wavelength
approximation, while the right one shows the exact calculation, each for two exemplary isotopes.
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Figure 4.12: Example plots for Er-168 for a hypothetical Q-value to demonstrate the validity
of the long wavelength approximation for small k0. On the left, one can find the hypothetical
half-life for the exact calculation (gray) and the long wavelength approximation (black). On
the right panel, one can see that the ratio between both is exactly 1 in the domain where the
approximation works. For k0 . 0.25 MeV, the approximation differs from the exact calculation
by at most 50%.
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4.4.5 The high Q region

Let us now turn to the region of larger Q-values. For this, we go back to Eq. (4.52) and repeat
the analysis using the real and positive quantity D2.

Of course, the structure is all the same for the high Q-region. The major physical difference
is that here, of course, it makes no sense to use the long wavelength approximation, since the
photon energies are too large for that. In the calculation, the integral from Eq. (4.53) will,
however, look differently:

I2(x1) ≡
∫

d3p e+ipx1

p2 − D2(k0, Ẽa) − iε′
. (4.97)

The contour can still be closed above the real axis, but the pole which is now decisive is the
one at p = D + iε′. Apart from this, the calculation remains the same and the result for the
integral is

I2(x1) =
2π2

x1
eiD(k0,Ẽa)x1 , (4.98)

so the only difference from the formulae in Sec. 4.4.4 is the replacement e−B(k0,Ẽa)x1 → eiD(k0,Ẽa)x1 .
The functions from Eq. (4.70) now change to

f̃1s
S =

8π
(

Z
a

)3/2

k2
0 −

(aD+iZ)2

a2

, f̃2s
S =

8
√

2aπZ3/2
(
4(k2

0 − D2)a2 + 4iDZa − 3Z2
)

(4(k2
0 − D2)a2 − 4iDZa + Z2)2

, and

f̃2p
S =

16
√

2aπZ5/2(Z − 2iaD)

3
(
4(k2

0 − D2)a2 − 4iDZa + Z2
)2 , (4.99)

and the ones from Eq. (4.73) now look like

f̃1s
V =

−16
(

Zπ
a

)3/2
[(

D + iZ
a

)
arctan

(
ak0

aD+iZ

)
− k0

]
k2

0

,

f̃2s
V =

4
√

2(Zπ)3/2

[
ak0(4(k2

0−D2)a2−8iDZa+3Z2)
4(k2

0−D2)a2−4iDZa+Z2 − 1
2(2aD + 3iZ) arctan

(
2ak0

2aD+iZ

)]
a5/2k2

0

, and

f̃2p
V =

2
√

2π3/2
(

Z
a

)5/2 (i arctan
(

2ak0
2aD+iZ

)
− ak0

(
1

Z−2ia(D−k0) + i
2a(D+k0)+iZ

)
3k2

0

, (4.100)

both once again for the Schrödinger wave functions. Apart from that, all formulae stay the
same and the final decay rate in Eq. (4.96) will look exactly the same, too.

4.4.6 Numerical results

Finally, we present the results of the numerical analysis of Eq. (4.96). One major difficulty is, of
course, the exact value of the nuclear matrix element |M0ν |. Since we do not want to enter this
discussion, we simply present our results as functions of this value, i.e., we simply calculate the
rate Γ/|M0ν |2 and the half-life T1/2 · |M0ν |2 (where we use T1/2 = ln 2

Γ and me = 0.511 MeV =
2.45 · 1028/years). The nuclear radii are calculated according to R ≈ 1.4 fm · 3

√
A, where A is

the atomic mass number. The Q-values for the different reactions are taken from Ref. [91].
Our numerical input is summarized in Tab. 4.3. We have listed everything in units of MeV

and have assumed typical values for the quantities used that are no Constants of Nature. The
exemplary isotopes and their characteristic values are given in Tab. 4.4. The atomic binding
energies are taken from Ref. [115].
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Quantity Symbol Value
Electron mass me 0.511 MeV
Bohr radius a 5.29 · 10−11 m = 268.53/MeV

Fermi constant GF 1.166 · 10−11/MeV2

Fine structure constant α 1/137
Axial vector coupling gA 1.25

Effective neutrino mass |mee| 1 eV = 1.0 · 10−6 MeV

Table 4.3: The numerical input and physical constants we use. Note that we write everything
in units of MeV.

Element Z E1s(E′
1s) [MeV] E2s(E′

2s) [MeV] E2p(E′
2p) [MeV]

Ar-36 18 0.003(0.002) 0.0003 (<0.001) 0.0003 (<0.001)
Ca-40 20 0.004(0.003) 0.0004 (<0.001) 0.0004 (<0.001)
Cr-50 24 0.006(0.005) 0.0007 (0.001) 0.0006 (<0.001)
Fe-54 26 0.007(0.006) 0.0008 (0.001) 0.0007 (0.001)
Ni-58 28 0.008(0.007) 0.001 (0.001) 0.0009 (0.001)
Zn-64 30 0.010(0.008) 0.001 (0.001) 0.001 (0.001)
Se-74 34 0.013(0.011) 0.002 (0.001) 0.001 (0.001)
Kr-78 36 0.014(0.013) 0.002 (0.002) 0.002 (0.001)
Sr-84 38 0.016(0.014) 0.002 (0.002) 0.002 (0.002)
Mo-92 42 0.020(0.018) 0.003 (0.003) 0.003 (0.002)
Ru-96 44 0.022(0.020) 0.003 (0.003) 0.003 (0.003)
Pd-102 46 0.024(0.022) 0.004 (0.003) 0.003 (0.003)
Cd-106 48 0.027(0.024) 0.004 (0.004) 0.004 (0.003)
Cd-108 48 0.027(0.024) 0.004 (0.004) 0.004 (0.003)
Sn-112 50 0.029(0.027) 0.004 (0.004) 0.004 (0.004)
Te-120 52 0.032(0.029) 0.005 (0.004) 0.005 (0.004)
Xe-124 54 0.035(0.032) 0.005 (0.005) 0.005 (0.005)
Xe-126 54 0.035(0.032) 0.005 (0.005) 0.005 (0.005)
Ba-130 56 0.037(0.035) 0.006 (0.005) 0.006 (0.005)
Ba-132 56 0.037(0.035) 0.006 (0.005) 0.006 (0.005)
Ce-136 58 0.040(0.037) 0.007 (0.006) 0.006 (0.005)
Ce-138 58 0.040(0.037) 0.007 (0.006) 0.006 (0.006)
Sm-144 62 0.047(0.044) 0.008 (0.007) 0.007 (0.006)
Gd-152 64 0.050(0.047) 0.008 (0.008) 0.008 (0.007)
Dy-156 66 0.054(0.050) 0.009 (0.008) 0.009 (0.007)
Dy-158 66 0.054(0.050) 0.009 (0.008) 0.009 (0.008)
Er-162 68 0.057(0.054) 0.010 (0.009) 0.009 (0.008)
Er-164 68 0.057(0.054) 0.010 (0.009) 0.009 (0.009)
Yb-168 70 0.061(0.057) 0.010 (0.010) 0.010 (0.010)
Hf-174 72 0.065(0.061) 0.011 (0.010) 0.011 (0.009)
W-180 74 0.070(0.065) 0.012 (0.011) 0.012 (0.011)
Os-184 76 0.074(0.070) 0.013 (0.012) 0.012 (0.012)
Pt-190 78 0.078(0.074) 0.014 (0.013) 0.013 (0.012)
Hg-196 80 0.083(0.078) 0.015 (0.014) 0.014 (0.013)

Table 4.4: The atomic number Z and the binding energies [115] for one electron in the 1s1/2-,
2s1/2-, and 2p1/2-shell in MeV (Ref. [91]) for the isotopes considered.
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Schr. Dirac
Element Q [MeV] long exact long exact
Ar-36 0.434 7.8736 3.9937 2.6537 1.1138

Ca-40 0.194 1.1836 2.4236 3.6136 6.4936

Fe-54 0.680 8.9335 4.7736 2.2136 1.0037

Cd-108 0.269 5.5833 1.2534 7.7733 1.2134

Xe-126 0.897 7.6833 1.5134 9.0433 1.9234

Ba-132 0.840 6.3633 1.5034 6.8133 1.4834

Ce-138 0.693 4.9333 1.7534 4.6733 1.1234

Gd-152 0.056 3.2132 3.2232 6.5634 6.6134

Dy-158 0.283 7.7432 1.5233 7.5032 9.4432

Er-164 0.024 1.1134 1.1134 2.3135 2.3135

W-180 0.146 1.2832 1.4632 2.9432 2.8932

Hg-196 0.820 7.9632 1.4733 3.4232 5.1232

Table 4.5: The total half-lives (for all three combinations) in years (modulo their dependence
on the NME) for the isotopes in the low Q region. The notation xy always stands for x · 10y.

Let us start with the low Q-region, where we have 12 exemplary isotopes. The half-lives
in years, modulo their dependence on the nuclear matrix element, are given in Tab. 4.5, where
the notation xy always stands for x · 10y. The first thing to observe is that, as expected, the
half-lives are generically smaller for larger atomic number Z, which is simply a reflection of the
electrons being closer to the nucleus in average for higher Z. The only exception is Er-164.
This can, however, be explained by its extremely small Q-value: If one corrects that value by
the energies of the holes in the atomic final states, one will see that capture from the 1s-shell
is actually forbidden, so there is only one contribution for this element instead of three (1s2s,
1s2p, and 2s2p). It can also be seen that the long-wavelength approximation works well for
really small Q-values, especially for Gd-152 and Er-164, but also for Ca-40 and W-180. The
non-relativistic approximation gives fair estimates that differ from the Dirac results by a factor
of O(1). Turning this around, they confirm the results that have been obtained from numerics.

In general, the half-lives are extremely high. This is partially a reflection of the fact that
the emission of only one photon might be disfavored, but in general double EC is a very rare
process, so one could not have expected really nice numbers. This might, however, considerably
change for other, more exotic, mechanisms that could potentially mediate this decay.

For completeness, we also list the results for the high Q region in Tab. 4.6. The general
tendencies seem to be the same, but it is important to keep in mind that our method of
calculation might not be as accurate in this sector as it is for low Q (due to the absence of the
factor e−Bx1 in the integral, cf. Eqs. (4.55) and (4.98)).

4.5 The two-photon mode

The next task is to do the corresponding calculation for the case of two photons emitted
(ECECγγ). This calculation is much more involved than the last one, which is why we will
restrict ourselves to the long wavelength approximation, as used in Sec. 4.4.4. This approxima-
tion is valid for low Q-values and we have shown that, for the 1γ-case, the region Q̃ . 0.25 MeV
is reproduced well. Since in the present case two photons are emitted, we can expect this ap-
proximation to be applicable also for slightly higher values of the effective Q-value up to about
Q̃ ∼ 0.5 MeV. Furthermore, also in the region below 0.25 MeV it should work better than for
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Element Q [MeV] Schrödinger Dirac
Cr-50 1.171 3.1135 6.5436

Ni-58 1.926 1.7635 3.0536

Zn-64 1.096 1.3235 9.1035

Se-74 1.209 9.6734 3.6235

Kr-78 2.866 7.1234 2.6335

Sr-84 1.787 7.2234 1.8235

Mo-92 1.649 6.5834 7.2834

Ru-96 2.719 3.9634 4.3934

Pd-102 1.172 1.0735 2.2334

Cd-106 2.771 3.1034 1.9134

Sn-112 1.922 6.2334 1.4434

Te-120 1.698 1.1135 1.0134

Xe-124 2.866 2.2034 6.0833

Ba-130 2.611 2.5134 4.7733

Ce-136 2.400 2.7934 3.4933

Sm-144 1.781 2.1534 1.8733

Dy-156 2.011 7.4133 1.0033

Er-162 1.845 4.0833 7.3932

Yb-168 1.422 1.5933 4.6732

Hf-174 1.101 4.1332 2.2732

Os-184 1.452 4.5332 2.0232

Pt-190 1.383 2.8232 1.4632

Table 4.6: The same as Tab. 4.5 for the high Q region.

Figure 4.13: The different Feynman diagrams contributing to ECECγγ under the assumption
of the two-nucleon mechanism. The left diagram is referred to as “A”, while the right one is
called “B”.
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ECECγ. Glancing at Tab. 4.5, we expect the approximation to work well for Ca-40, Gd-152,
Er-164, and W-180, but it should also be applicable to Ar-36, Cd-108, and Dy-158.

In the following we will perform the calculation and give in the end the ratio of ECECγγ
to ECECγ for the seven isotopes for which we expect the approximation to work.

4.5.1 The Feynman diagrams and the starting point of the calculation

We start with the Feynman diagrams for the process. Assuming the 2-nucleon mechanism again,
one can draw two topologically different diagrams, which are depicted in Fig. 4.13: Either one
of the captured electrons emits both photons (diagram of type A, left panel) or both of the
captured electrons emit one photon each (diagram of type B, right panel).

Using Eqs. (4.19) and (4.20), the corresponding S-matrix elements are given by

〈A′|S(4)
A |A〉 =

(
(−i)2

2!

)2

(−e)2
(

GF√
2

)2 ∫
d4x1d

4x2d
4x3d

4x4 ·

·eT
B(x1, Ẽa)(γα)T eT

B(x1)eT
B(x2)(γβ)T eT

B(x2)eT
B(x3)(1 − γ5)T (γµ)T νT

L(x3)νL(x4)γν ·

·(1 − γ5)eB(x4, Ẽb) · 〈A′|T
{
J †

µ(x3)J †
ν (x4)

}
|A〉 · N {Aα(x1)Aβ(x2)} + (rest), (4.101)

and

〈A′|S(4)
B |A〉 =

(
(−i)2

2!

)2

(−e)2
(

GF√
2

)2 ∫
d4x1d

4x2d
4x3d

4x4 ·

·eT
B(x1, Ẽa)(γα)T eT

B(x1)eT
B(x2)(1 − γ5)T (γµ)T νT

L(x2)νL(x3)γν(1 − γ5) eB(x3)eB(x4) ·

·γβeB(x4, Ẽb) · 〈A′|T
{
J †

µ(x2)J †
ν (x3)

}
|A〉 · N {Aα(x1)Aβ(x4)} + (rest), (4.102)

using the same notation as in Sec. 4.4. Note that the normal ordering has no effect on the
photon creation operators (they commute anyway). The term “+(rest)” means that we still
have to add (subtract) the diagrams with the two photon (electron) lines exchanged to ensure
obedience to the Pauli principle. Schematically, this means

+(rest) = −(Ẽa ↔ Ẽb) + (k1 ↔ k2) − (Ẽa ↔ Ẽb, k1 ↔ k2). (4.103)

Eqs. (4.101) and (4.102) can be simplified using Eqs. (4.17) and (4.18). For the propagators, we
make use of Eqs. (4.22), (4.23), and (4.25). The nuclear physics part can again be factored out
as in Sec. 4.4.2 and we use Eqs. (4.30), (4.31), (4.32), (4.33), and (4.35) to be able to integrate
over the times. This calculation again yields an energy-conserving δ-function for both types of
diagrams, which is given by

δ
[
(Ei + 2me − Ẽa − Ẽb) − (Ef + ω1 + ω2)

]
, (4.104)

where ω1,2 = (k1,2)0 = |k1,2|. Using arguments very similar to the ones that led us to Eq. (4.41),
one can rewrite this as

δ(ω1 + ω2 − Q̃), (4.105)

where Q̃ is defined exactly as in Eq. (4.42). Having done all that and having defined an NME
analogously to Eqs. (4.44) and (4.46), one obtains

〈A′|S(4)
A |A〉 = −

iαG2
F g2

AmeeM
0ν

210π5V R
√

ω1ω2
δ(ω1 + ω2 − Q̃)ε∗α(k1)ε∗β(k2)

∫
d3x1d

3x2
d3p1

E1

d3p2

E2
·

·eik1x1eik2x2 · eT
B(x1, Ẽa)CγαΓβ

APLeB(0, Ẽb) + (rest) (4.106)
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for diagram A, where

Γβ
A ≡ e−ip1(x1−x2)e−ip2x2

(ω1 + Ẽa − me − E1)(ω1 + ω2 + Ẽa − me − E2)
· (−p/1 + me)γβ(−p/2 + me) −

− e−ip1(x1−x2)e+ip2x2

(ω1 + Ẽa − me − E1)(ω1 + ω2 + Ẽa − me + E2)
· (−p/1 + me)γβ(+p/2 + me) −

− e+ip1(x1−x2)e−ip2x2

(ω1 + Ẽa − me + E1)(ω1 + ω2 + Ẽa − me − E2)
· (+p/1 + me)γβ(−p/2 + me) +

+
e+ip1(x1−x2)e+ip2x2

(ω1 + Ẽa − me + E1)(ω1 + ω2 + Ẽa − me + E2)
· (+p/1 + me)γβ(+p/2 + me). (4.107)

The analogous expression for diagram B is given by

〈A′|S(4)
B |A〉 = +

iαG2
F g2

AmeeM
0ν

211π6V R
√

ω1ω2
δ(ω1 + ω2 − Q̃)ε∗α(k1)ε∗β(k2)

∫
d3x1d

3x4
d3p1

E1

d3p2

E2
·

·eik1x1eik2x4 · eT
B(x1, Ẽa)CγαΓBγβeB(x4, Ẽb) + (rest), (4.108)

with

ΓB ≡ e−ip1x1e+ip2x4

(ω1 + Ẽa − me − E1)(me − ω2 − Ẽb − E2)

[
p/1PLp/2 − me(p/1PL + PLp/2) + m2

ePL

]
+

+
e−ip1x1e−ip2x4

(ω1 + Ẽa − me − E1)(ω2 + Ẽb − me − E2)

[
−p/1PLp/2 + me(p/1PL − PLp/2) + m2

ePL

]
+

+
e+ip1x1e+ip2x4

(me − ω1 − Ẽa − E1)(me − ω2 − Ẽb − E2)

[
−p/1PLp/2 + me(−p/1PL + PLp/2) + m2

ePL

]
+

+
e+ip1x1e−ip2x4

(me − ω1 − Ẽa − E1)(ω2 + Ẽb − me − E2)

[
p/1PLp/2 + me(p/1PL + PLp/2) + m2

ePL

]
(4.109)

As already argued, we now make use of the long wavelength approximation,

e+ik1x1 ≈ e+ik2x2,4 ≈ 1. (4.110)

4.5.2 The low Q region for diagram A

Let us first apply Eq. (4.110) to Eqs. (4.106) and (4.107). The first point to realize is that
the integration over x2 is actually trivial and leads to a δ-function δ(p2 ± p1). We can further
use the substitution p1 → −p1 in the third and fourth line of Eq. (4.107) to obtain a common
factor e−ip1x1 . Defining

A(ω1, Ẽa) ≡ ω1 + Ẽa − me and B(ω1, ω2, Ẽa) ≡ ω2 + A(ω1, Ẽa) (4.111)

we arrive a the following integral:∫
d3p1

e−ip1x1

(A2 − E2
1)(B2 − E2

1)
eT
B(x1, Ẽa)Cγα(−Aγ0+p1γ+me)γβ(−Bγ0+p1γ+me)PLeB(0, Ẽb).

(4.112)
This integral will again split into different parts, just as the ones in Secs. 4.4.4 and 4.4.5. Let us
first discuss the parts that will vanish in the integration. From Eq. (4.112), we can get a contri-
bution which is proportional to (p1γ)γβ(p1γ), which can also be written as 2δβi(p1)i(p1γ) +
(p1)2γβ . Exactly as in Eq. (4.58), we can trade the factor p1 for a i∇x1 in front of the integral.
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Since there is one more factor with directional information (which will be proportional to k1

(or k2) in the end) included in this term, it will give a subdominant contribution after the
phase-space integration (as the functions in Eq. (4.100) in the long wavelength approximation),
and we skip it here. What remains is the effective replacement (p1γ)γβ(p1γ) → (p1)2γβ . The
terms in Eq. (4.112) which are proportional to p1 will cancel out in the integration. Effectively,
we can set

(−Aγ0 + p1γ + me)γβ(−Bγ0 + p1γ + me) → (−Aγ0 + me)γβ(−Bγ0 + me) + p2
1γ

β , (4.113)

and remain with two types of integrals,

I1(x1) ≡
∫

d3p1
e−ip1x1

(A2 − E2
1)(B2 − E2

1)
and I2(x1) ≡

∫
d3p1

p2
1e

−ip1x1

(A2 − E2
1)(B2 − E2

1)
. (4.114)

In either case, the integration is quite similar to the one leading from Eq. (4.53) to Eq. (4.55).
Defining the two quantities

Ã2 ≡ m2
e − A2 and B̃2 ≡ m2

e − B2, (4.115)

which are both positive in the low Q̃ region, we have the four poles ±iÃ and ±iB̃, from which
only the ones above the real axis are relevant. Applying the residue theorem leads to

I1(x1) =
−iπ

x1(A2 − B2)

(
e−B̃x1 − e−Ãx1

)
and I2(x1) =

+iπ

x1(A2 − B2)

(
B̃2e−B̃x1 − Ã2e−Ãx1

)
.

(4.116)
Using Eq. (4.63), we can define the following two functions:

fa
1,2(ω1, ω2) ≡ 4πCa

∞∫
x1=0

dx1x
2
1I1,2(x1)Ra(x1). (4.117)

Just as in Sec. 4.4.4, these functions can be calculated analytically if one uses the Schrödinger
wave functions from Tab. 4.2 as approximation, which results in

f1s
1 (ω1, ω2) =

8i(Ã − B̃)π2(aZ)3/2
(
a(Ã + B̃) + 2Z

)
(A2 − B2)(aÃ + Z)2(aB̃ + Z)2

,

f2s
1 (ω1, ω2) = −

8i
√

2aπ2Z3/2
[
4Z

(
1

(2aÃ+Z)3
− 1

(2aB̃+Z)3

)
− 1

(2aÃ+Z)2
+ 1

(2aB̃+Z)2

]
B2 − A2

, and

f2p
1 (ω1, ω2) = −

16i
√

2aZ5π2
(

1
(2aÃ+Z)3

− 1
(2aB̃+Z)3

)
3(A2 − B2)

, (4.118)

and also in

f1s
2 (ω1, ω2) =

8i(Ã − B̃)π2
√

aZ5
(
2aÃB̃ + (Ã + B̃)Z

)
(A2 − B2)(aÃ + Z)2(aB̃ + Z)2

,

f2s
2 (ω1, ω2) =

8i
√

2aπ2Z3/2
[

(3Z−2aÃ)Ã2

(2aÃ+Z)3
+ B̃2(2aB̃−3Z)

(2aB̃+Z)3

]
B2 − A2

, and

f2p
2 (ω1, ω2) =

16i
√

2aZ5π2
(

Ã2

(2aÃ+Z)3
− B̃2

(2aB̃+Z)3

)
3(A2 − B2)

. (4.119)
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To cope with the γ-structure in the amplitude, we can further define

ga
0(ω1, ω2) ≡ A(ω1, Ẽa)B(ω1, ω2, Ẽa)fa

1 (ω1, ω2),
ga
1(ω1, ω2) ≡ m2

ef
a
1 (ω1, ω2) + fa

2 (ω1, ω2),
ga
A(ω1, ω2) ≡ −meA(ω1, Ẽa)fa

1 (ω1, ω2), and
ga
B(ω1, ω2) ≡ −meB(ω1, ω2, Ẽa)fa

1 (ω1, ω2). (4.120)

This allows us to write Eq. (4.106) as

〈A′|S(4)
A |A〉 = −

iαG2
F g2

AmeeM
0ν

27π3V R
√

ω1ω2
δ(ω1 + ω2 − Q̃)ε∗α(k1)ε∗β(k2) ·

·CbRb(0)Γ̃T
a Cγα[ga

0γ0γβγ0 + ga
1γβ + ga

Aγ0γβ + ga
Bγβγ0]Γ̃b + (rest), (4.121)

where Γ̃a ≡ γa
shellΓa.

The remaining task is to write down the term “(rest)” and we start with the electron anti-
symmetrization. Realizing that β = 0 gives no contribution due to ε∗0 = 0, one can effectively
anti-commute γβ and γ0, which simplifies the γ-structure. We also define

ha
1(ω1, ω2) ≡ ga

1(ω1, ω2) − ga
0(ω1, ω2) and ha

2(ω1, ω2) ≡ ga
B(ω1, ω2) − ga

A(ω1, ω2). (4.122)

The anti-symmetrization can be done as, e.g., in Eq. (4.74). It is again useful to define functions
that will later on translate into the form factors. These functions are

k1
±(ω1, ω2) ≡ CbRb(0)ha

1(ω1, ω2) ± CaRa(0)hb
1(ω1, ω2) and

k2
±(ω1, ω2) ≡

1
2

(
Cbh

a
2(ω1, ω2) ± Cah

b
2(ω1, ω2)

)
. (4.123)

The final form of the S-matrix element is

〈A′|S(4)
A |A〉 = −

iαG2
F g2

AmeeM
0ν

27π3V R
√

ω1ω2
δ(ω1 + ω2 − Q̃)ε∗α(k1)ε∗β(k2) ·

·
[
gαβ

(
k1

+Γ̃T
a CPLΓ̃b + Γ̃T

a Cγ0(k2
− − k2

+γ5)Γ̃b

)
−

−i
(
k1
−Γ̃T

a CσαβPLΓ̃b

)
+ Γ̃T

a Cσαβγ0(k2
+ − k2

−γ5)Γ̃b

]
+ (k1 ↔ k2). (4.124)

Before we add the photon-exchange term, too, we first revisit diagram B and try to bring the
corresponding S-matrix element into a similar form.

4.5.3 The low Q region for diagram B

Let us go back to Eq. (4.108) and bring it to a form similar to the one of 〈A′|S(4)
A |A〉 in

Eq. (4.124). We again start by applying Eq. (4.110) and define

Ac
i = ωi + Ẽc − me. (4.125)

To clean up the γ-structure a bit, it is useful to remark that also in this case all contributions,
which are proportional to only p1,2 will vanish, as in the long wavelength approximation in
Sec. 4.4.4. Furthermore one can include substitutions p1,2 → −p1,2 to have a common pre-
factor e−ip1x1e−ip2x4 . Doing all that and performing some cumbersome algebra, one finally
arrives at an effective expression for ΓB from Eq. (4.109):

ΓB → 4e−ip1x1e−ip2x4

[(Aa
1)2 − E2

1 ][(Ab
2)2 − E2

2 ]

[
−E1E2A

a
1A

b
2PR + E1E2m

2
ePL − E2

1meA
b
2γ

0PL + E2
2meA

a
1γ

0PR

]
.

(4.126)
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Starting again with the integration over p1,2, this leads to three different integrals that we have
to compute:

I3(x,A)
I4(x,A)
I5(x,A)

 ≡
∫

d3p

E

e−ipx

A2 − E2
·


1
E
E2

(4.127)

To evaluate these integrals, we use once again the residue theorem. Performing the integra-
tion over the angular part first and writing E2 = p2 + m2

e, all these integrals have poles at
±i

√
m2

e − A2, from which only the one above the real axis is relevant. This is, however, not all,
since I3 also has singularities at ±ime. We can make use of the following theorem: If a complex
function f(z) is of the form g(z)

h(z) and h(z) is zero at z = z0, then the corresponding residue is
given by

resz0f(z) =
g(z0)
h′(z0)

. (4.128)

Comparing this to Eq. (4.127), we can simply set

g(p) =
pe+ipx

p2 + (m2
e − A2)

and h(p) =
√

m2
e + p2, (4.129)

which leads immediately to 1/h′(+ip) = 0, so we do not have to care about this pole. Then,
the rest of the integration is done easily and we end up with

I3(x, A)
I4(x, A)
I5(x, A)

 =
−2π2

x
e−

√
m2

e−A2x ·


1/A
1
A

(4.130)

The integration over the spatial coordinates leads to one more form factor, which can be defined
as

φa(ωi) ≡ 4πCa

∞∫
x=0

dx xRa(x)e−
√

m2
e−(Aa

i )2x. (4.131)

This can again be calculated analytically for the Schrödinger wave functions from Tab. 4.2
yielding

φ1s
a (ωi) =

8π
√

aZ3(√
m2

e − (Aa
i )2a + Z

)2 , φ2s
a (ωi) =

8
√

2aπ
(
2a

√
m2

e − (Aa
i )2 − 3Z

)
Z3/2(

2
√

m2
e − (Aa

i )2a + Z
)3 , and

φ2p
a (ωi) =

16π
√

2aZ5

3
(
2
√

m2
e − (Aa

i )2a + Z
)3 . (4.132)

Using two more abbreviations,

Mab
± (ω1, ω2) ≡

1
2

(
m2

e ± Aa
1A

b
2

)
and N ba

± (ω1, ω2) ≡
me

2
(Ab

2 ± Aa
1), (4.133)

we can write down Eq. (4.108) as

〈A′|S(4)
B |A〉 = +

iαG2
F g2

AmeeM
0ν

29π3V R
√

ω1ω2
δ(ω1 + ω2 − Q̃)ε∗α(k1)ε∗β(k2)φa(ω1)φb(ω2) ·

·Γ̃T
a Cγαγβ

[
Mab

− + Mab
+ γ5 − N ba

− γ0 + N ba
+ γ0γ5

]
Γ̃b + (rest). (4.134)

Using Eqs. (4.13) and (4.15) allows us to write γαγβ = gαβ − iσαβ , which makes it possible to
decompose Eq. (4.134) into parts which are symmetric and anti-symmetric under the exchange
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of the Lorentz indices α and β. This renders the calculation of the electron exchange term
trivial. Abbreviating

l1±(ω1, ω2) ≡ φa(ω1)φb(ω2)Mab
− ± φb(ω1)φa(ω2)M ba

− ,

l2±(ω1, ω2) ≡ φa(ω1)φb(ω2)Mab
+ ± φb(ω1)φa(ω2)M ba

+ ,

l3±(ω1, ω2) ≡ φb(ω1)φa(ω2)Nab
− ± φa(ω1)φb(ω2)N ba

− , and

l4±(ω1, ω2) ≡ φb(ω1)φa(ω2)Nab
+ ± φa(ω1)φb(ω2)N ba

+ , (4.135)

one can write

〈A′|S(4)
B |A〉 = +

iαG2
F g2

AmeeM
0ν

29π3V R
√

ω1ω2
δ(ω1 + ω2 − Q̃)ε∗α(k1)ε∗β(k2) ·

·
[
gαβΓ̃T

a C(l1− + l2−γ5)Γ̃b − iΓ̃T
a Cσαβ(l1+ + l2+γ5)Γ̃b +

+gαβΓ̃T
a Cγ0(l3− + l4−γ5)Γ̃b + iΓ̃T

a Cσαβγ0(l3+ + l4+γ5)Γ̃b

]
+ (k1 ↔ k2). (4.136)

4.5.4 The final form of the decay rate

Finally, we have to calculate the total amplitude from Eqs. (4.124) and (4.136). The total
S-matrix element is given by

〈A′|S(4)|A〉 = 〈A′|S(4)
A |A〉 + 〈A′|S(4)

B |A〉, (4.137)

since both amplitudes lead to the same final state (cf. Secs. 3.4, 3.5, and 3.6). To write every-
thing with one constant factor in front, it is useful to define

r1(ω1, ω2) ≡ −k1
+(ω1, ω2) +

1
2
l1−(ω1, ω2), r2(ω1, ω2) ≡ k1

+(ω1, ω2) +
1
2
l2−(ω1, ω2),

r3(ω1, ω2) ≡ 2k2
+(ω1, ω2) −

1
2
l1+(ω1, ω2), r4(ω1, ω2) ≡ −2k2

−(ω1, ω2) −
1
2
l2+(ω1, ω2),

r5(ω1, ω2) ≡ −2k2
−(ω1, ω2) +

1
2
l3−(ω1, ω2), r6(ω1, ω2) ≡ 2k2

+(ω1, ω2) +
1
2
l4+(ω1, ω2),

r7(ω1, ω2) ≡ 2k2
+(ω1, ω2) +

1
2
l3+(ω1, ω2), and r8(ω1, ω2) ≡ −2k2

−(ω1, ω2) +
1
2
l4−(ω1, ω2).

(4.138)

Furthermore, we need to symmetrize (or anti-symmetrize) these functions,

rs
1,2,5,6(ω1, ω2) ≡ r1,2,5,6(ω1, ω2)+r1,2,5,6(ω2, ω1), ra

3,4,7,8(ω1, ω2) ≡ r3,4,7,8(ω1, ω2)−r3,4,7,8(ω2, ω1),
(4.139)

in order to write down the final version of the S-matrix element:

〈A′|S(4)|A〉 = +
iαG2

F g2
AmeeM

0ν

28π3V R
√

ω1ω2
δ(ω1 + ω2 − Q̃)ε∗α(k1)ε∗β(k2) ·

·
[
gαβΓ̃T

a C(rs
1 + rs

2γ5)Γ̃b + iΓ̃T
a Cσαβ(ra

3 + ra
4γ5)Γ̃b +

+gαβΓ̃T
a Cγ0(rs

5 + rs
6γ5)Γ̃b + iΓ̃T

a Cσαβγ0(ra
7 + ra

8γ5)Γ̃b

]
. (4.140)

The next step is to square this expression and to sum over polarizations. Starting with the
summation over the polarizations of the photons, one can immediately see that there are now
interference terms between the parts proportional to gαβ and to σαβ . Using Eq. (4.92) and
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taking into account that only the physical photon polarizations can matter in the end (which
we have checked explicitly for the 1-photon case in Eq. (4.94)), we arrive at

|〈A′|S(4)|A〉|2 → |C̃|2 T

2π
δ(ω1 + ω2 − Q̃)2[|Γ1|2 + |Γ12

2 |2], (4.141)

where C̃ ≡ αG2
F g2

AmeeM0ν

28π3V R
√

ω1ω2
,

Γ1 ≡ Γ̃T
a C(rs

1 + rs
2γ5)Γ̃b + Γ̃T

a Cγ0(rs
5 + rs

6γ5)Γ̃b, and

Γ12
2 ≡ Γ̃T

a Cσ12(ra
3 + ra

4γ5)Γ̃b + Γ̃T
a Cσ12γ0(ra

7 + ra
8γ5)Γ̃b

]
. (4.142)

We still have to sum over the electron polarizations in Eq. (4.141). Using Γ∗
a = Γa, this will

always lead to the expression

∑
s=±1/2

ΓsΓT
s =

1
2
·




1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 0

 +


0 0 0 0
0 1 0 1
0 0 0 0
0 1 0 1


 =

1
2
(1 + γ0), (4.143)

where we have used Eqs. (4.82) and (4.65). Doing this explicitly for Γ1, one arrives at

|Γ1|2 → 1
4
·
(
−T 1 + T 2 − T 3 + T 4

)
, (4.144)

where

T 1 ≡ Tr
[
(1 + γ0)(γa

shell)
T C(rs

1 + rs
2γ5)γb

shell(1 + γ0)(γb
shell)

T C(rs∗
1 + rs∗

2 γ5)γa
shell

]
,

T 2 ≡ Tr
[
(1 + γ0)(γa

shell)
T C(rs

1 + rs
2γ5)γb

shell(1 + γ0)(γb
shell)

T C(rs∗
5 − rs∗

6 γ5)γa
shell

]
,

T 3 ≡ Tr
[
(1 + γ0)(γa

shell)
T C(rs

5 + rs
6γ5)γb

shell(1 + γ0)(γb
shell)

T C(rs∗
1 + rs∗

2 γ5)γa
shell

]
, and

T 4 ≡ Tr
[
(1 + γ0)(γa

shell)
T C(rs

5 + rs
6γ5)γb

shell(1 + γ0)(γb
shell)

T C(rs∗
5 − rs∗

6 γ5)γa
shell

]
.(4.145)

The other contribution is given by

|Γ12
2 |2 → 1

4
·
(
T 5 + T 6 − T 7 − T 8

)
, (4.146)

where

T 5 ≡ Tr
[
(1 + γ0)(γa

shell)
T γ0γ1(ra

3 + ra
4γ5)γb

shell(1 + γ0)(γb
shell)

T C(ra∗
3 + ra∗

4 γ5)γa
shell

]
,

T 6 ≡ Tr
[
(1 + γ0)(γa

shell)
T γ0γ1(ra

3 + ra
4γ5)γb

shell(1 + γ0)(γb
shell)

T C(ra∗
7 − ra∗

8 γ5)γa
shell

]
,

T 7 ≡ Tr
[
(1 + γ0)(γa

shell)
T γ0γ1(ra

7 + ra
8γ5)γb

shell(1 + γ0)(γb
shell)

T C(ra∗
3 + ra∗

4 γ5)γa
shell

]
, and

T 8 ≡ Tr
[
(1 + γ0)(γa

shell)
T γ0γ1(ra

7 + ra
8γ5)γb

shell(1 + γ0)(γb
shell)

T C(ra∗
7 − ra∗

8 γ5)γa
shell

]
.

We can capture the two electrons either both from s-shells (γa,b
shell = 1), both from the 2p-shell

(γa,b
shell = −γ3), or one from an s-shell and one from a p-shell (γa

shell = 1 and γb
shell = −γ3, or

vice versa, which leads to the same result).
Let us do this calculation explicitly for one example, namely for T 1 in case of capturing two

s-electrons. Then, γa,b
shell = 1 leads from Eq. (4.145) to

T 1 = Tr[(1 + γ0)C(rs
1 + rs

2γ5)(1 + γ0)C(rs∗
1 + rs∗

2 γ5)]. (4.147)
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Since C(rs
1 + rs

2γ5) and C(rs∗
1 + rs∗

2 γ5) contain an even number of γ-matrices, only the contri-
butions with both factors 1 or with both γ0 will survive,

T 1 = Tr[C(rs
1 + rs

2γ5)C(rs∗
1 + rs∗

2 γ5)] + Tr[γ0C(rs
1 + rs

2γ5)γ0C(rs∗
1 + rs∗

2 γ5)]. (4.148)

Bringing all γ0 to the left in the second trace gives a minus sign when anti-commuting with γ5

or C and nothing else, since (γ0)2 = 1. All C’s can also be brought to the left and be eliminated
using C2 = −1. Tr(γ5) = 0 and (γ5)2 = 1 then yields

T 1 = −Tr[(|rs
1|2 + |rs

2|2)1] + Tr[(|rs
1|2 − |rs

2|2)1] = −8|rs
2|2. (4.149)

Computing the remaining traces for all cases can be done in a long but finite time-interval, and
the result is

|Γ1|2 →


2|rs

2 − rs
6|2

2|rs
1 − rs

5|2
2|rs

2 + rs
6|2

 and |Γ12
2 |2 →


2|ra

4 − ra
8 |2

2|ra
3 − ra

7 |2
2|ra

4 + ra
8 |2

 for capture of


2 × s
s & p
2 × p

(4.150)

This allows us to define the final form factor for ECECγγ, which is given by

|Fab(ω1, ω2)|2 ≡


|rs

2(ω1, ω2) − rs
6(ω1, ω2)|2 + |ra

4(ω1, ω2) − ra
8(ω1, ω2)|2 for 2 × s

|rs
1(ω1, ω2) − rs

5(ω1, ω2)|2 + |ra
3(ω1, ω2) − ra

7(ω1, ω2)|2 for s & p
|rs

2(ω1, ω2) + rs
6(ω1, ω2)|2 + |ra

4(ω1, ω2) + ra
8(ω1, ω2)|2 for 2 × p

(4.151)

Finally, we can again make use of Fermi’s Golden Rule,

Γ =
2π

T

(
V

(2π)3

)2 ∫
d3k1d

3k2 |M|2 T

2π
δ(ω1 + ω2 − Q̃)

∣∣∣∣∣
ω1+ω2≤Q̃

. (4.152)

The final result for the decay rate is

Γab =
α2G4

F g4
A

216π10R2
|mee|2|M0ν |2

Q̃∫
ω1=0

dω1 ω1(Q̃ − ω1)|Fab(ω1, Q̃ − ω1)|2, (4.153)

where the remaining integral has to be calculated numerically. The dependence of the integrand
on ω1 is plotted exemplary in Fig. 4.14 for all s-wave contributions of Ca-40. Also there it
is clearly visible that the Schrödinger bound electron wave functions indeed reproduce the
qualitative form of the Dirac waves, whereas the numerical values differ.

4.5.5 The numerical results and the ratio to the 1-photon case

Finally, we can also perform a numerical analysis of Eq. (4.153) for the Schrödinger and the
Dirac case. As input we again use the values from Tab. 4.3. The resulting half-lives in years
are given in Tab. 4.7. These numbers are also not very promising, as expected. As already
discussed, we expect the long wavelength approximation to work very well for Ca-40, Gd-152,
Er-164, and W-180. For Ar-36, Cd-108, and Dy-158, it should at least be okay to use it, which
is why we have written these values in parantheses. It can be seen clearly from the table,
that a very low Q-value is disadvantageous. This is partially because some captures involving
1s-electrons might be forbidden energetically (e.g., capture of both 1s-electrons is forbidden for
Gd-152), but partially also because the phase space dependence should favor two photons for a
larger Q-value, which will, however, be considerably more difficult to calculate.

In Tab. 4.8, we also give the ratios of the rates for ECECγγ to the ones for ECECγ. Note
that we have always used the exact calculation (without the long wavelength approximation)
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Figure 4.14: The actual dependence of the integrand in Eq. (4.153) for the s-electron contri-
butions. Again, the form of two results is very similar if one compares the Schrödinger to the
Dirac case, while the numerical values differ.

Element Q [MeV] Schrödinger Dirac
Ar-36 0.434 (3.9636) (1.0837)
Ca-40 0.194 3.0937 9.5337

Cd-108 0.269 (1.1137) (3.6337)
Gd-152 0.056 1.0939 3.0140

Dy-158 0.283 (1.2437) (3.1937)
Er-164 0.024 2.3740 6.2543

W-180 0.146 1.1738 5.3938

Table 4.7: The half-lives for ECECγγ in the long wavelength approximation (modulo their
dependence on the nuclear matrix elements). For those elements for which we expect the
approximation to work just as an estimation, we have written the results in brackets.

for ECECγ, because for that process this approximation is already expected to break down
for Q̃ ≈ 0.25 MeV, while it should be useful also for slightly larger Q-values in the case of
ECECγγ. One general tendency is that (at least in the low Q region), the ratio is larger for
small Z. This is because of Eq. (4.42): For smaller Z, the capture of two electrons from the
1s-shell is not yet energetically disfavored, while for larger Z the corrected Q-value Q̃ is small
enough to suppress the rate for the two-photon process. Except for Ar-36 the emission of one
photon is, however, always dominant by far. This might change considerably as soon as we go to
larger Q-values, where we can expect ECECγγ to win because of the stronger Q̃-dependence.
A further observation is that this ratio is in most cases very similar, no matter if we use the
Schrödinger or the Dirac wave functions. This is one more sign that uncertainties should tend
to cancel out in this ratio, as already discussed for the uncertainties in the NME (cf. Sec. 4.3).
Note that this ratio is also independent of GF , gA, R, and |mee| (cf. Eqs. (4.96) and (4.153)).

Summing up, one can say that at least for some isotopes, it can be the case that the emission
of two photons is advantageous compared to the 1-photon process. This is encouraging for
further investigations, which might be especially interesting for higher Q-values which have,
however, to be treated in a more advanced way in what regards the bound electron wave
functions.

4.5.6 Comments on the experimental situation

The question if the process with emission of one or two photons dominates might be an impor-
tant one from the experimental point of view, even if it may never be actually observed. Let
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Element Schrödinger Dirac
Ar-36 10.1 10.3
Ca-40 0.078 0.068
Cd-108 0.0011 0.00033
Gd-152 2.9 · 10−7 2.2 · 10−6

Dy-158 1.2 · 10−4 3.0 · 10−5

Er-164 4.7 · 10−7 3.7 · 10−9

W-180 1.2 · 10−6 5.4 · 10−7

Table 4.8: The ratios of the rate for ECECγγ to the rate for ECECγ. As argued in Sec. 4.3,
this ratio should be independent of the NME. Furthermore, the dependences on GF , gA, R,
and |mee| cancel out, and hence this ratio is also independent of uncertainties related to those
quantities (the most dramatic of which arise from |mee|). Note that for ECECγ, we have always
used the exact calculation (without long wavelength approximation), since the approximation
is expected to break down for even lower Q-values in that case.

us briefly discuss a recent measurement on the half-life of Ar-36 with respect to neutrino-less
double electron capture [116, 117]. In this measurement, no photon has been seen above the
background in the region of interest. The limit that has been obtained is

T1/2(0
+ → 0+)

∣∣
1γ

≥ 1.85 · 1018 y at 68% C.L. (4.154)

This limit is directly proportional to the full energy peak detection efficiency ε, which is, at the
position of the peak, equal to 0.26%.

Let us do an easy estimation of the limit that could be obtained for the dominance of the
2γ-process. According to Tab. 4.8, this mode is indeed dominant by a factor of about 10. We
will assume here for simplicity that this is the only possible decay mode. If ε is the probability
to see a photon, the probability to miss it is (1 − ε). For dominance of the 2γ-mode, the
probability to see one photon is even a bit higher, because of the lower photon energy [116],
but let us assume for simplicity that it is still equal to ε. Then, the probability to see anything
if two photons are emitted is given by 2ε(1 − ε) + ε2 ≈ 2ε instead of ε. This would increase the
limit from Eq. (4.154) by a factor of 2. If the efficiency also increases to ε′, which is roughly
3.5
2.6ε, then the increase would even be a factor of roughly 3.

In any case, it will be useful to know the dominant decay mode well. Note, however, that
these considerations will change if some other process than the 2-nucleon mechanism dominates
the decay rate. Unfortunately, pinning down the exact mechanism will involve measurements
for different isotopes and will be a major task in the future research on double β processes [118].
In general, an experimental detection of neutrino-less double electron capture will be very tough
(if not impossible), unless some more exotic mechanism is involved that causes the decay (which
might well be). Nevertheless, experiments in this direction have been done and are going on
(see, for example, Refs. [119–123]), and current best limits for the half-life are around 1020 years
[124], which may further improve in the next years.



Chapter 5

Lepton Flavour Violation

The last topic that we discuss is Lepton Flavour Violation (LFV). The term flavour essentially
means the generation of a fermion. In the SM, the up-like quarks appear in three flavours,
(u, c, t), exactly as the down-like quarks, (d, s, b). The same is true for the charged leptons
(e, µ, τ), as well as for the neutrinos (νe, νµ, ντ ). From the experimental side, it seems to be
pretty clear that fermions indeed appear in three generations, whereas from the theory side a
reason for that is still lacking [64].

In the neutrino sector, lepton flavour violating processes are well-known and are called
neutrino oscillations [24], cf. Chapter 2. These transitions like νe ↔ νµ can indeed, e.g.,
transform a state of electron-flavour into one with muon-flavour. So far, so good. The amazing
point is that this flavour change does not change the charge of the particle, but rather only
its flavour. In the charged current sector, flavour changing processes are well-known [125], but
in the neutral current sector, the SM actually does not provide any flavour changing neutral
current (FCNC) interaction at tree-level.

Even more amazing, there is actually no deeper reason for that in the SM! The absence
of FCNCs is only a so-called accidental symmetry: When we take the SM gauge group and
particle content and impose constraints like Lorentz or gauge invariance, we automatically
end up with flavour conserving neutral currents only. This is also confirmed by experiments:
A decay like, e.g., µ → eγ would be perfectly allowed by energy, momentum, and angular
momentum conservation, but nevertheless we have not observed it yet (the current best limit
for the branching ratio of this decay compared to ordinary muon decay µ− → e−νµνe comes
from the past MEGA-experiment [126], and amounts to Br(µ → eγ) < 1.2 · 10−11). This
branching ratio will be probed by the upcoming MEG experiment that is expected to reach a
sensitivity of 1.2 · 10−13 at 90% C.L. and a single event sensitivity of even 3.7 · 10−14 [127].

Since there is no reason for the absence of LFV, models beyond the SM will generically
violate lepton flavour [9]. In the SM with massive neutrinos, one can actually draw a 1-loop
diagram for µ → eγ (cf. Fig. 5.1), but even an optimistic prediction (with rather large values
for the neutrino masses) will only lead to a branching ratio of about 10−47 [128].1 In turn, if
we can observe LFV in the near future, this will be an unambiguous signal of Physics beyond
the Standard Model (BSM) and will be a major discovery.

5.1 The rare decay µ → eγ and other lepton flavour violating
processes

Let us now discuss the diagram in Fig. 5.1 for µ → eγ a bit closer, before we turn to other
LFV-processes. An extensive treatment of this process in the SM with massive neutrinos (and

1The reason why this value is so tiny will become clear in a moment.

77
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ΜHpL eHp-kL

ΓHkL

WW

Νi

UΜi Uei
*

Figure 5.1: The diagram for µ → eγ in the SM with massive neutrinos. It is a higher order
process, which is additionally suppressed by the GIM-mechanism. The flavour violation happens
on the neutrino line, since the neutrino mass eigenstates are no flavour eigenstates.

also beyond) can be found in Refs. [128–130]. Furthermore, there exists an excellent paper on
the general process f1 → f2γ [131], which can also be used, e.g., for the calculation of an electric
dipole moment of the neutrino. We will here only mention the most important points in the
calculation of µ → eγ.

First, when making a general ansatz for the amplitude, one can immediately see by applying
electromagnetic gauge invariance as well as by the properties of a physical photon that the
resulting transition amplitude is of magnetic type:

M(µ → eγ) = ε∗µ(k)e(p − k) [ikνσ
µν(A + Bγ5)]µ(p), (5.1)

with some functions A and B. In the approximation me ≈ 0 (which is always fine for the above
process), one additionally obtains A = B and the amplitude can be written as

M(µ → eγ) = Ae(p − k) [2(pε) − mµε/]µ(p), (5.2)

where we have used the Gordon decomposition and the Dirac equation. As will become impor-
tant later, there will always be a chirality flip somewhere on the fermion line.2

The most important point in the calculation for the case of the SM with massive neutrinos
is that terms of the following form come in:

3∑
i=1

U∗
eiUµif

(
m2

i

M2
W

)
, (5.3)

where Uαj are elements of the PMNS-matrix (cf. Eq. (4.4)), mi is the mass of the virtual
neutrino mass eigenstate νi, MW is the W -boson mass, and f is some loop function that arises
in the computation. They key point is that in the SM we have mi ¿ MW , and we can hence
expand the function f as

f

(
m2

i

MW

)
= f(0) + f ′(0) · m2

i

M2
W

+ ..., (5.4)

where the first term is independent of mi. Then, in Eq. (5.3), this leading term will be killed
by the unitarity of the PMNS-matrix U and we end up with a suppressed amplitude. This
theorem is commonly known as Glashow-Iliopoulos-Maiani- (GIM-) mechanism [132].

2This is necessary since the photon carries away one unit of angular momentum.
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Note that this logic can also be turned around: By a non-observation of µ → eγ (and similar
processes), one can also obtain limits on the unitarity of the PMNS-matrix [133].

The final result for the decay rate in the SM with massive neutrinos can be written as

Γ(µ → eγ) =
m3

µ

8π

(
|A|2 + |B|2

)
, with A = B =

eg2mµ

256π2M2
W

·

(
3∑

i=1

U∗
eiUµi

m2
i

M2
W

)
. (5.5)

Relating this to the muon decay rate for ordinary muon decay,

Γ(e−νµνe) =
m5

µG2
F

192π3
, (5.6)

which is essentially equal to the total decay rate of the muon, leads to a branching ratio of

Br(µ → eγ) =
3α

32π

(
3∑

i=1

U∗
eiUµi

m2
i

M2
W

)2

. (5.7)

Of course, there can also be LFV-processes different from µ → eγ. The τ -lepton might
undergo similar decays, τ → µγ or τ → eγ, where the current best limits are Br(τ → µγ) <
4.5 ·10−8 at 90% C.L. (BELLE experiment, Ref. [134]) and Br(τ → eγ) < 1.1 ·10−7 at 90% C.L.
(Babar experiment, Ref. [135]), respectively. Further possibilities are, e.g., µ+ → e+e−e+ (with
Br(µ → 3e) < 1.0 · 10−12, SINDRUM experiment, Ref. [136]) or µ-e conversion on nuclei (with
Br(µTi → eTi) < 4.3 · 10−12, SINDRUM II experiment, Ref. [137]). Numerous other processes
and limits can be found in Refs. [138] and [139].

5.2 The necessity of general conditions for flavour violation

Up to now, only upper limits for branching ratios of LFV-processes can be given. If one
tries to parameterize the bounds for their rates using effective field theory, the corresponding
numerical coefficients are already quite small [140]. Especially if MEG does not observe any
LFV decay, this will lead to the question whether lepton flavour conservation (at least at the
tree- or 1-loop level) needs to be imposed as a general condition on extensions of the SM, too.
Therefore it is useful to give such criteria, i.e., to determine sufficient and necessary conditions
for the conservation of lepton flavour in a general theory which incorporates the SM. By giving
necessary conditions for lepton flavour conservation, the results can also be applied if MEG
does in fact observe lepton flavour violating decays: As lepton flavour violation occurs in many
extensions of the SM, no single theory can be considered to be proven by such a result. By
applying the criteria developed here, one can determine what is exactly necessary to obtain
LFV-processes, and which features a minimal lepton flavour violating extension of the SM has
to contain.

The groundbreaking paper on FCNCs has been written by Glashow and Weinberg [141],
already in the late 70’s. This paper only dealt with flavour violation in the quark sector and
of course at that time, it was e.g. not known how many quark flavours indeed exist in our
world, or what the exact structure of the weak interaction actually is. Another interesting work
on this topic was done by Paschos [142]. A first application of these criteria to leptons has
been performed shortly afterwards by Lee and Shrock [143]. In the light of the development of
particle physics within the last three decades it is, however, worth reconsidering such criteria
for flavour violation in the lepton sector. Here, general conditions necessary in order for LFV
not to occur will be given. If these conditions are not fulfilled it will – in general – be possible to
have LFV-processes, assuming that there are no accidental cancellations or further suppressions
in the theory. Many of these results are known, or at least often used implicitly. However, a
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Particle SU(2)L T3 Y Q γ5-EV

eL, (eL)C 2 −1
2 −1 −1 −1

eR, (eR)C 1 0 −2 −1 1

(eL)C , eL 2 1
2 1 1 1

(eR)C , eR 1 0 2 1 −1

Table 5.1: The quantum numbers of the charged leptons. SU(2)L-representation, weak isospin
T3, hypercharge Y , electric charge Q as obtained by Q = T3 + Y

2 , and γ5-eigenvalue.

concise overview of these criteria and their consistent application to different extensions of the
SM has not been given until recently [9].

We will only investigate renormalizable interactions and not consider higher-dimensional
operators, since in a non-renormalizable theory explicit lepton flavour violating operators, such
as

1
Λ2

(µe)(ee), (5.8)

where Λ is the energy scale at which lepton flavour is violated, can simply be added to the
Lagrangian. In addition to the general criteria, we will investigate in each section several
examples and use our general results to give concrete conditions for the parameters in the
respective models. For a better overview, the quantum numbers of the charged leptons are
listed in Tab 5.1. A summary table of the results can be found in the Appendix.

5.3 Neutral bosons at tree-level

In general, a neutral current interaction that changes the flavour of a fermion fi (we here speak
of general fermions, as the results of this general section can also be applied to quarks) can be
mediated by a neutral scalar or a neutral vector boson that couples to a fermion fi as well as to
a fermion fj with a different flavour index j 6= i. Writing down the most general Lagrangians
for both cases, the scalar interaction looks like

Lscalar = Sf (CLPL + CRPR) f + h.c., (5.9)

and the vector interaction has the form

Lvector = Vµfγµ (CLPL + CRPR) f + h.c., (5.10)

where f = (f1, f2, ..., fN )T is a vector and CL and CR are numerical coefficients (matrices), all
in flavour space, which obviously do not have to be the same as in the scalar case.

A mass term for a general vector of Dirac fermions in an N -dimensional flavour space is
given by

LDirac = −fRMDfL − fLM †
DfR, (5.11)

where MD ∈ CN×N is an arbitrary matrix in the N × N flavour space. Hence, it can be
diagonalized by a bi-unitary transformation leading to

DD = diag(m1,m2, ...,mN ) = ULM †
DU †

R = URMDU †
L, with mi > 0, (5.12)

where U †
L,R = U−1

L,R and ULM †
DMDU †

L = URMDM †
DU †

R = D2
D. Accordingly, the transformation

of f (which in this work will – unless stated differently – be an eigenstate of the respective
interaction) to the mass eigenstate f ′ is given by

fR = URf ′
R & fL = ULf ′

L. (5.13)
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Note that in general UR 6= UL. The mass basis is always the most useful basis to work with, as
it is always uniquely defined.

The question is, how the interaction terms Eqs. (5.9) and (5.10) will look like after trans-
forming the interaction eigenstates f into the corresponding mass eigenstates f ′:

S) S is a neutral scalar by assumption, hence we can define it as real by absorbing any phase
in the coupling matrices. In the flavour space vector notation, the scalar interaction as
written in Eq. (5.9) can be simplified giving

Lscalar = Sf (CLPL + CRPR) f + h.c. = S(fRCLfL + fLCRfR) + h.c. =

= SfR

[
CL + C†

R

]
︸ ︷︷ ︸

≡C

fL + h.c. = SfRCfL + h.c., (5.14)

where C is some matrix in flavour space.

The transformation to mass eigenstates leads to (viewing Ψ as vector in flavour space and
keeping in mind that, e.g., γ-matrices that act on spinors and hence on the components
of Ψ must commute with a matrix U in flavour space, since for such a matrix U they only
look like scalars):

Ψ = UΨ′,

ΨC = U∗Ψ′C ,

Ψ = Ψ′U †, and

ΨC = Ψ′CUT . (5.15)

Then, the scalar interaction looks like:

Lscalar = SfRCfL + h.c. = Sf ′
RU †

RCULf ′
L + h.c. (5.16)

Thereby the condition for complete flavour conservation is:

U †
R

[
CL + C†

R

]
UL

!= diagonal. (5.17)

This condition can be understood as demanding that the interaction basis is the same
as the mass basis. We will refer to such basis identities as alignment. For the neutral
scalars considered here, CL and CR can simultaneously be non-zero. To incorporate this
interaction into an SM-invariant Lagrangian, the corresponding neutral scalar needs to
be a component of an SU(2)L doublet with hypercharge (+1) or (−1), i.e., a copy of the
SM Higgs boson or its charge conjugate (with the possible difference of a CP phase – e.g.
for the A of a two-Higgs doublet model this phase is just (−1)).

V) Here, we discuss a neutral intermediate vector boson which can again be defined as real.
If it can only couple to left-handed fermions, it must be the T3 = 0 component of an
SU(2)L triplet, i.e., a (massive) copy of the SM W 0. If it couples to both left- and right-
handed charged leptons it must be an SU(2) singlet, and in fact a total singlet under
the SM gauge group, i.e., a (massive) copy of the SM B0. A vector that only couples to
right-handed charged leptons is also a total singlet under the SM gauge group, and the
fact that it does not couple to left-handed charged leptons needs to be explained in the
full BSM theory. The interaction Lagrangian is given by

Lvector = Vµfγµ(CLPL + CRPR)f = Vµ[ fLγµCLfL + fRγµCRfR] =

= Vµ[ f ′
Lγµ(U †

LCLUL)f ′
L + f ′

Rγµ(U †
RCRUR)f ′

R], (5.18)
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where CL and CR are necessarily Hermitian. To forbid tree-level flavour change, one can
demand

U †
LCLUL

!= diagonal,

U †
RCRUR

!= diagonal. (5.19)

A special case arises if both coefficients, CL and CR, are proportional to a unit matrix 1F

in flavour space:
CL = cL · 1F & CR = cR · 1F . (5.20)

This is the flavour universality condition, as fulfilled, e.g., for the neutral current weak and
electromagnetic interactions in the SM. In that case, one gets natural flavour conservation
due to the unitarity of the transformation matrices. In case of flavour universality, align-
ment is automatic, as the identity matrix is the same in all bases. Flavour universality
was not an option in the scalar case, as the scalar interaction connects different fermion
fields (namely left- and right-handed one, which are, in general, components of different
representations of the gauge group).

As the only renormalizable theories of vector bosons are gauge theories [144], in general we
need to consider these hypothetical, additional vector bosons as gauge particles correspon-
ding to broken generators of some gauge group. Additional vector bosons transforming as
an SU(2)L triplet must therefore be the gauge bosons of the gauge group which is broken
down to SU(2)L at some high energy scale. The minimal model in which this is possible
uses an SU(2)×SU(2) gauge group, which is then broken down to its diagonal subgroup.
This subgroup is then identified with SU(2)L. None of the models we discuss introduce
such vector bosons. They are, however, a possible extension of the SM.

Indeed, there are only three kinds of neutral particles which can transmit tree-level LFV:

S) A copy of the SM Higgs boson (or its charge conjugate), with an interaction basis different
from the physical mass basis.

Va) A massive copy of the SM photon with flavour non-universal couplings that may or may
not discriminate between left- and right-handed particles (which is often called Z ′).

Vb) A copy of the SM Z boson, which is the gauge boson of a gauge group, that is broken
down to SU(2)L.

In the following we discuss the SM and several of its extensions, applying the criteria we
have obtained. We do not explicitly mention the cases which are equivalent to the SM case
when discussing BSM models. For the discussion, we switch to denoting the involved flavoured
fermions by e, as most of the results are only applicable to charged leptons. e = (e, µ, τ)T

still denotes a vector in flavour space, whose components are Dirac spinors. l = (ν, e)T denotes
lepton doublets, whose components are vectors in flavour space with 4-spinors as their respective
components.

5.3.1 The Standard Model with massive neutrinos

Standard Model: lepton flavour conservation

As none of the necessary particles is present in the Standard Model of elementary particle
physics, we expect no lepton FCNCs at all at tree-level, as we know is the case. To illustrate
why this is true and what is exactly “missing” in the SM, we give a short discussion.
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The only neutral scalar in the SM is the usual Higgs boson H0, while for neutral vectors,
one has the photon γ, the Z0 of weak interactions, as well as all the gluons Ga from QCD, but
the latter ones do not couple to leptons. Accordingly, the following possibilities remain:

S) The only neutral scalar particle in the Standard Model is the physical Higgs boson H0.
Its interaction Lagrangian looks like [15]

L = − gH

2MW

∑
i

ΨimiΨi, (5.21)

which, e.g., for charged leptons becomes

LH = − gH

2MW
e(me)e. (5.22)

Here, e = (e, µ, τ)T and (me) is the mass matrix for the charged leptons. Other combina-
tions, like ν(m)e cannot occur since the physical Higgs in the SM is electrically neutral
and hence such terms are forbidden by charge conservation.

Here, the flavour conservation follows trivially: In principle, the mass matrix (me) could
have non-diagonal elements. However, since we demand to write everything in the mass
basis, which is defined in a way that it diagonalizes the mass matrix, the diagonal structure
of (me) is mandatory. As expected, the Standard Model has no scalar interaction that
can cause flavour non-conservation at tree-level.

V) According to Ref. [15], the interactions of SM fermions with the photon or the Z-boson
are:

L = −e
∑

i

qiΨiγ
µΨiAµ − g

2 cos θW

∑
i

Ψiγ
µ(gi

V − gi
Aγ5)ΨiZµ. (5.23)

As usual, qi is the electrical charge of the fermion i in units of the elementary charge e,
Aµ describes the photon field, Zµ the Z-boson, g is the weak coupling, θW the Weinberg
angle, and gi

V and gi
A are the strength of the vector and axial vector coupling, respectively,

that depend on the weak isospin of the corresponding particle.

Considering charged leptons, one can easily see why no flavour changes arise: Since neutral
currents are, as their name suggests, neutral, they cannot mix a ν- and an e at one vertex.
Now, since all charged leptons have the same weak isospin t3L = −1

2 , for all of them one
gets

gV ≡ gi
V = t3L(i) − 2qi sin2 θW = −1

2
+ 2 sin2 θW ,

gA ≡ gi
A = t3L(i) = −1

2
. (5.24)

Then the Lagrangians for interaction of fermions Ψ (= u, d, e) with a common electrical
charge Q(Ψ) (= 2

3 ,−1
3 ,−1) with a photon and a Z-boson, respectively, look already

diagonal in flavour space:

LA = −QeΨγµ
1F Ψ Aµ, LZ = − g

2 cos θW
Ψγµ(gV (Q) − gA(Q)γ5)1F Ψ Zµ. (5.25)

Hence, according to Eqs. (5.19), one trivially has no tree-level FCNCs in the SM, as
expected.

We have here implicitly retrieved the original Glashow-Weinberg criteria [141]: Criterion
1 (natural conservation of all flavours by neutral currents) and 2 (the same conservation
at 1-loop level) can be understood as demanding flavour universality in the electroweak
interactions, while criterion 3 (the Higgs coupling conserves all flavours) can be reformu-
lated as demanding automatic alignment in the Yukawa sector, which is guaranteed if all
fermions receive their mass from one scalar VEV only.
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5.3.2 Multi Higgs Doublet Models

Multi Higgs models: ∀k : C̃k
!= diagonal

As we have seen, there are no tree-level FCNCs in the SM. The simplest extensions of the
SM are those, where we simply add particles to the SM spectrum. Of the three types of particles
which can transmit tree-level lepton FCNCs, a copy of the SM Higgs is the easiest one to add,
as it does not require an extension of the SM gauge group. If we add an arbitrary amount
of copies of the Higgs boson to the SM, our model is called for obvious reasons a Multi Higgs
Doublet Model. It is easiest to add only one Higgs boson – this is then referred to as a Two
Higgs Doublet Model (THDM) [26].

S) We can in principle add an arbitrary amount n of additional Higgs doublets to the SM
particle spectrum. These will in general have arbitrary Yukawa couplings to the fermions.
The Yukawa Lagrangian for the neutral scalars and charged leptons will therefore be

L =
2n+1∑
k=1

Hke
′
RCke

′
L + h.c., (5.26)

as we have a total of (2n+2) neutral scalar degrees of freedom (including pseudoscalars),
one of which is eaten by the Z-boson. One linear combination of all these Hk will have
the couplings of the SM Higgs, but this linear combination does not necessarily need to
be a mass eigenstate, i.e., it will include several different k. There is in general no basis
where all the Ck’s are diagonal, so we consider the above Lagrangian to be written in the
mass basis of the charged leptons. The condition for absence of tree-level FCNCs is then:

Ck
!= diagonal, (5.27)

for all but one k in the mass basis. The last matrix is then automatically diagonal, since
we know that one linear combination must be diagonal in the mass basis. This condition
leads to well-known constraints such as the THDM I and II, where an additional Z2

symmetry is imposed, as first discussed in Ref. [141]. Our more general condition for the
absence of tree-level FCNCs given above can be rephrased in the following way: We write
the Lagrangian in its explicitly SU(2)L invariant form,

L =
n+1∑
k=1

e′RYkl
′
Lφk + h.c., (5.28)

where l′L is the left-handed lepton SU(2)L doublet, φk is a copy of the SM Higgs doublet,
and we are in the mass basis of the charged leptons. Then Ck is diagonal for all k if and
only if Yk is diagonal for all k, i.e., all Yukawa matrices are diagonal in the mass basis.
In an arbitrary basis this means that, given the structure of one Yukawa matrix Yk, all
other Yukawa matrices are defined, except for their eigenvalues. So, if we want to forbid
tree-level FCNCs, the only new parameter in the Yukawa sector compared to the SM
is, for each pair of Higgs boson and fermion, the fraction of the fermion’s mass which is
generated by the Higgs boson’s VEV.

In summary one can say that the alignment which occurs automatically in the SM is lost
in Multi Higgs models and must be postulated separately to exclude tree-level LFV.
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5.3.3 Z ′-models

Z ′-models: U †
Lε′(L)UL

!= diagonal & U †
Rε′(R)UR

!= diagonal

Z ′-type models are also just a very moderate modification of the Standard Model. The
general idea is the introduction of an additional flavour non-universal gauge interaction, different
from the interactions of the SM, which are flavourblind. The easiest example to consider is the
case of one additional gauge boson, corresponding to a new Abelian gauge symmetry U(1)′ [27].
Of course, this may lead to further complications, such as gauge anomalies and the necessity for
additional scalars which break the U(1)′-symmetry. However, since we here only concentrate on
the lepton flavour violation sector for SM charged leptons, we assume these things to be taken
care of.

From our three cases, only Va) is of relevance:

Va) One introduces a gauged non-SM symmetry U(1)′, under which at least two generations
of charged leptons with identical chirality have different charges. This leads to a change
in the gauge-covariant derivative, creating an interaction term in the Lagrangian of the
form

L = −g′eγµ
[
ε′(L)PL + ε′(R)PR

]
eZ ′

µ. (5.29)

Here, g′ is the coupling constant for the Z ′-interaction and the charges are absorbed
in the coupling matrices. Compared to Eq. (5.18), we have Vµ = Z ′

µ and real matrices
CL,R = ε′(L,R), adopting the notation of Ref. [27]. The actual vector boson mass eigenstate
can in general be a superposition of electroweak and non-SM gauge bosons. Flavour
violating couplings can arise when going to the leptonic mass eigenbasis, if the interactions
are flavour non-universal. We start in the eigenbasis of the Z ′-interaction, and hence the
couplings are diagonal. Then, the coupling matrices are given by

ε
′(L,R)
ij = ε

′(L,R)
i δij , (5.30)

which is flavour non-universal, as long as the ε
′(L,R)
i are not equal. Let UL and UR denote

the unitary matrices that transform the 3-vectors eL,R in flavour space into their mass
eigenstates, e′L,R = U †

L,ReL,R. For the Z ′-interaction, the Lagrangian then looks like:

L = −g′e′γµ
[
U †

Lε′(L)ULPL + U †
Rε′(R)URPR

]
e′Z ′

µ. (5.31)

The conditions for flavour conservation are:

U †
Lε′(L)UL

!= diagonal & U †
Rε′(R)UR

!= diagonal. (5.32)

We can understand these conditions in the following way: If a gauge interaction is no longer
flavour universal, the automatic alignment associated with flavour universality is lost, and we
need to demand alignment separately in order to conserve lepton flavour.

In the next two sections, we briefly discuss two further extensions of the SM gauge group.
Such theories in general lead to additional vector bosons from the extended gauge groups and
additional scalars needed to break them down to the SM.

5.3.4 The 331-model

331-model: U †
LhsUR

!= diagonal
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The 331-model is one possible extension of the SM, extending the gauge group to SU(3)C ×
SU(3)L × U(1)X , which is then broken down to the SM gauge group [145,146].

S) To break the extended gauge group and give realistic masses to all fermions, three Higgs
SU(3)L-triplets (Φ, φ, and φ′) are needed, together with one sextet H. Decomposed into
SM representations, we are left with three copies of the SM Higgs, out of which only two
can couple to leptons: Φ0

1, which is part of the φ-triplet, and Φ0
3, which is part of the

sextet H. In the lepton sector, one is thereby dealing with an effective THDM. In the
notation of Ref. [145], the Yukawa interaction for charged leptons is:

L = −eL

(
Φ0

3hs + Φ0
1ha

)
eR + h.c. = −e′LU †

L

(
Φ0

3hs + Φ0
1ha

)
URe′R + h.c., (5.33)

where hs is a symmetric and ha is an anti-symmetric 3×3-matrix in flavour space. As in a
general THDM, one linear combination of these coupling matrices will always be diagonal
in the mass basis, so we only need to demand:

U †
LhsUR

!= diagonal. (5.34)

to prevent tree-level LFV. It should also be noted that, in the 331-model, flavour changing
processes via additional neutral scalars are suppressed due to the smallness of the Yukawa
couplings [147].

Va) To cancel the appearing anomalies, one has to choose one generation of quarks (the third
one) to have a transformation behavior different from the other two. The corresponding
flavour-changing gauge boson is called Z ′ and transforms as an SM singlet. No such flavour
non-universality is present in the lepton sector, however, and therefore no tree-level LFV
can occur.

5.3.5 LR-symmetric models

LR-symmetric models: U †
LfUR

!= diagonal

Another possible extension of the SM gauge group are Left-Right(LR)-symmetric mod-
els [148,149] with the gauge group SU(2)L ×SU(2)R ×U(1)B−L. Here, R stands for right, B is
the baryon, and L is the lepton number. Then, SU(2)R × U(1)B−L is broken down to U(1)Y ,
which gives the SM. Again, we end up with additional gauge bosons and additional scalars
needed to break the enlarged symmetry group.

S) In order to give masses to the SM fermions, one needs to introduce a Higgs field Φ
transforming as a bi-doublet under SU(2)L × SU(2)R. Decomposed into SU(2)L this
results in an adjoint Higgs boson in addition to the SM Higgs. The Yukawa interaction,
in the charged lepton mass eigenbasis, is then (applying the notation of Ref. [148]):

L = −e′LU †
L(fΦ0

2 + gΦ0∗
1 )URe′R + h.c., (5.35)

which is again effectively a THDM. Comparing with Sec. 5.3.2, a sufficient condition for
the absence of lepton FCNCs in LR-symmetric models is

U †
LfUR

!= diagonal, (5.36)

as one linear combination of Yukawa coupling matrices must be diagonal in the mass basis.

Va) All gauge interactions are in general assumed to be flavour-universal, so we will not
encounter tree-level LFVs transmitted by vector bosons here.
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5.3.6 Vector-like isosinglets

Vector-like isosinglets: Ũ †
LC̃ŨL

!= diagonal

This section shows that our criteria also apply in cases which may, at the first glance, not
look suitable for them. This is actually the strength of these criteria, since one can transform
very many cases into a form where our conditions are useful.

To show this, we discuss an extension of the SM by 2n vector-like (their left- and right-
handed particles sit in identical representations of the gauge group) isosinglet (they have no
SU(2)-charge) fermions LL,R. According to Ref. [150], the most general mass term for such a
setup is given by

Lmass = −(lL, LL)
(

ml J

0 M

)(
lR
LR

)
+ h.c. (5.37)

We have used the freedom to rotate the right-handed leptons to reach at the zero in the lower
left corner. The components ml and J are related to the VEV of the SM-Higgs, so they should
acquire masses of the same order as 〈H〉. There is, however, also the lower right component
M . This component is invariant under SU(2)L × U(1)Y and is hence not protected by gauge-
symmetry. Accordingly, it can be much larger than the other components.

Applying our criteria is easy:

Vb) If we first perform the SM-rotations, lL,R = UL,Rl′L,R, we will get

Lmass = −(l′L, LL)
(

U †
LmlUR U †

LJ

0 M

)(
l′R
LR

)
+ h.c. (5.38)

This is the basis in which we can write down the interaction with the SM Z0-boson:

LZ ∝ Zµ(l′L, LL)γµ

(
13×3 03×n

0n×3 Cn×n

)
︸ ︷︷ ︸

≡C̃

(
l′L
LL

)
(5.39)

The zero in the upper right corner arises because of the combination 2⊗ 3 + 1 in SU(2).
Eq. (5.38) is, however, not written in the physical mass basis yet. To arrive there, we
have to do one more rotation, (

l′L
LL

)
= ŨL

(
l′L
LL

)′
. (5.40)

In this basis, the condition for the absence of LFV reads

Ũ †
LC̃ŨL

!= diagonal. (5.41)

Now it is easy to see that the case of vector-like isosinglets is just another one of the
examples where flavour universality has to be demanded.

5.4 Doubly charged bosons at tree-level

For a singly charged scalar or vector with a tree-level LFV-vertex, there will be external neu-
trinos. We will not consider this case here, since we are interested in processes such as µ → 3e,
where the flavour violation is present for charged leptons. There is only one further way differ-
ent from FCNCs to mediate such processes already at tree-level, namely by exchanging doubly
charged bosons, where again either scalar or vector particles can do the job:
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S) For a doubly charged scalar, we will have either CL = 0 or CR = 0, because otherwise
hypercharge would not be conserved. For CL 6= 0, the scalar will be the T3 = 1 component
of an SU(2)L triplet with hypercharge Y = 2, i.e. of a triplet Higgs. For CR 6= 0 the scalar
will be an SU(2)L singlet with hypercharge Y = 4. Obviously, a given field cannot have
both transformation properties at the same time.

The Lagrangian reads:

Lscalar = S++(fL)CCLfL + h.c. = S++(f ′
L)CUT

L CLULf ′
L + h.c., (5.42)

where L can be replaced with R. Note that the “left-handed Lagrangian” given above
arises from a triplet Higgs model designed to give mass to the neutrinos, and the corres-
ponding doubly charged scalar is in general assumed to be very heavy, giving a further
suppression. The condition for absence of tree-level flavour changing diagrams is:

UT
L CLUL

!= diagonal, or UT
RCRUR

!= diagonal, respectively. (5.43)

Note that in the case of doubly charged scalars, we connect the same fermion field (e.g. fL

with (fL)C), and therefore we could achieve automatic alignment by demanding flavour
universality. For this to work, we would, however, need UL/R to be real.

If these conditions are not fulfilled, one can still fulfill Eq. (5.43) by demanding the
corresponding type of alignment, i.e., alignment for a real U .

V) We can also have doubly charged intermediate vector bosons. These will be SU(2)L

doublet vector bosons with a hypercharge of Y = +3. The Lagrangian is:

Lvector = V ++
µ [ (fR)CγµCLfL + (fL)CγµCRfR] + h.c. =

= V ++
µ [ (f ′

R)CγµUT
RCLULf ′

L + (f ′
L)CγµUT

L CRURf ′
R] + h.c. (5.44)

The conditions for the absence of tree-level lepton flavour violation look like:

UT
RCLUL

!= diagonal,

UT
L CRUR

!= diagonal. (5.45)

Flavour universality is of no advantage in this case, so we can only demand the type of
alignment defined in the above equation. It is important to note that, apart from leading to
tree-level LFV, all the above cases actually produce lepton number violating vertices, or, in
other words, the exchange boson has to carry lepton number. In this case we can list three
distinct types of particles, which can mediate doubly charged tree-level LFV:

Sa) An SU(2)L triplet with hypercharge 2. This particle does not couple to right-handed
particles and is equivalent to the triplet Higgs which is often used for neutrino mass
generation.

Sb) An SU(2)L singlet with hypercharge 4. Of the SM fields, this particle can only couple to
right-handed charged leptons.

V) An SU(2)L doublet with hypercharge 3. To ensure renormalizability, we must again
demand that this vector is a gauge boson. Its gauge group will then have to contain both,
SU(2)L and U(1)Y , as it is charged under both gauge groups. The smallest gauge group
which can contain SU(2) × U(1) is SU(3). A simple realization is the 331-model, where
the electroweak gauge group is embedded in an SU(3) × U(1).

Note that, after electroweak symmetry breaking, scalar particles of type Sa and Sb can mix.
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5.4.1 Triplet Higgs Models

Triplet Higgs: UPMNS
!= 1 (not fulfilled)

Sa) The simplest models exhibiting tree-level LFV transmitted by doubly charged bosons are
again those, where the necessary particles are simply added to the SM. In Triplet Higgs
models, an SU(2)L scalar triplet with hypercharge 2 is added to give Majorana masses
to the left-handed neutrinos. To keep the Lagrangian SU(2)L-invariant, this scalar also
couples to the left-handed charged fermions,

L = S++(eL)CCLeL + h.c., (5.46)

which is exactly the Lagrangian of Eq. (5.42). The interaction basis in which CL is diagonal
is that in which the neutrino Majorana mass matrix is diagonal, i.e., the neutrino mass
basis. To avoid tree-level LFV, CL should be diagonal in the charged lepton mass basis,
i.e., the neutrino and charged lepton mass bases have to coincide. This would imply
that UPMNS is just the unit matrix, which is excluded by experiments. We can therefore
say that alignment is experimentally excluded and Triplet Higgs models always induce
tree-level LFV, which is, however, in general strongly suppressed by the large mass of the
scalar SU(2)L triplet.

5.4.2 The 331-model

331-model: UT
L hsUL

!= diagonal & UT
RhsUR

!= diagonal (scalars)

UT
RUL

!= diagonal (vectors)

In this model, the nearly minimal extension of the SM gauge group, that can generate doubly
charged gauge bosons which in turn can mediate LFV, is incorporated. We also encounter
doubly charged scalars.

Sab) In the 331-model, in general four different doubly charged scalars arise that can couple
to leptons and carry a lepton number of ∓2, namely the T±± and the η±± (note that
in the Higgs triplet φ′, another bi-lepton3 exists, ρ±±, which does, however, not couple
to leptons and gets its lepton number assignment via terms in the Higgs potential that
couple e.g. a ρ++ and a ρ−− with a T++ and an η−−, cf. Ref. [145]).

Their couplings to charged leptons look like

L = − 1√
2
eLhs(eL)CT++ − 1√

2
(eR)ChseRη++ + h.c. (5.47)

hs has already been introduced in Sec. 5.3.4. Here, the T++ is equivalent to the corres-
ponding Sa-particle in a triplet Higgs model, while the η++ has a hypercharge of 4 and
corresponds to the case Sb. In the mass basis, this gives

L = − 1√
2
e′L (U †

LhsU
∗
L)︸ ︷︷ ︸

=(UT
L hsUL)†

(e′L)CT++ − 1√
2
(e′R)C(UT

RhsUR)e′Rη++ + h.c. (5.48)

One can read off the following conditions for flavour conservation:

UT
L hsUL

!= diagonal (Sa),

UT
RhsUR

!= diagonal (Sb). (5.49)
3A bi-lepton is a particle that carries a lepton number of ±2.
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Figure 5.2: A schematic view of the cores of LFV-diagrams at 1-loop level

V) Doubly charged massive vector bosons Y ±±
µ , which get their masses from the ΦY Higgs-

doublet, also exist in this model. Their interaction Lagrangian with charged leptons is
given by [151]

L = − g√
2

[
(eR)CγµeLY ++

µ + h.c.
]
, (5.50)

which reads for mass eigenstates

L = − g√
2

[
Y ++

µ (e′R)Cγµ(UT
RUL)e′L + h.c.

]
. (5.51)

The condition for the absence of flavour change is

UT
RUL

!= diagonal. (5.52)

Due to the fact, that this gauge interaction couples left- and right-handed charged fermion
fields, flavour universality is no longer sufficient for lepton flavour conservation.

5.4.3 LR-symmetric models

LR-models: UT
L,RhL,RUL,R

!= diagonal

Sab) In LR-symmetric models, doubly charged Higgses H±±
L,R arise. Their Yukawa couplings

are given by [149]

L = H++
L eChLPLe + H++

R eChRPRe + h.c. = H++
L (eL)ChLeL + H++

R (eR)ChReR + h.c.
(5.53)

Performing the transformations into mass eigenstates and using Eq. (5.15), one obtains:

L = H++
L (e′L)C(UT

L hLUL)e′L + h.c. + (L ↔ R). (5.54)

Hence, the conditions for the absence of flavour change are:

UT
L,RhL,RUL,R

!= diagonal. (5.55)

One needs to note here an important difference compared to neutrino mass generation
using only a Higgs-triplet: As neutrinos also have Dirac mass terms, due to the presence of
right-handed neutrinos, the Yukawa couplings to the Higgs-triplet containing H++

L need
not necessarily be diagonal in the neutrino mass basis.

5.5 Lepton flavour violation at 1-loop level

Let us now again think about the 1-loop process from Sec. 5.1. One of the results obtained
there is, that a chirality flip has to take place during the process, i.e., the final electron must
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have the opposite chirality than the one of the incoming muon. This result has been obtained
without making any assumptions on the masses of the leptons involved, so that it trivially
generalizes to arbitrary flavours and the process ei → ekγ (cf. Ref. [131]). For our purposes, the
only interesting question is, whether this chirality flip happens on one of the external fermion
lines, or arises as net effect of the loop.4

The first case to consider is the schematic 1-loop diagram that is depicted on the left panel
of Fig 5.2 (type A: LL, type B: RR). Note that this diagram is only very schematic and does
not contain several things: First of all, the outgoing photon is missing, that can in general
couple either to the internal boson b or to the internal fermion f . The diagrams with photons
connected to external particles exactly cancel, as discussed in Ref. [128]. This result is again
independent of the smallness of the electron mass and of the model the process originates
from, and hence generalizes to arbitrary flavours. As we are dealing with leptons of the same
chirality at both vertices, we also have the same coupling constants (or matrices, in case several
distinct particles can appear in the loop) at both vertices. We adopt the general convention
that P denotes a coupling matrix involving left-handed leptons, while Q denotes a coupling
matrix involving right-handed leptons. We will in the following refer to diagrams of the above
type, i.e., with an implicit external helicity flip, as diagrams of type A (if they have external
left-handed leptons) and as diagrams of type B (if they have external right-handed leptons).

The other possibility is having the chirality flip as net effect of the loop. The 1-loop LFV
diagram then takes the schematic form that is depicted on the right panel of Fig. 5.2 (type C):
Again, we have omitted the outgoing photon, as it can couple to either of the internal lines.
The chirality flip is now explicitly shown, as a cross on the internal fermion line. We will refer
to such diagrams as diagrams of type C. We do not distinguish according to the chirality of the
incoming lepton, as in general, if a process where the helicity flips from left to right is possible,
the reverse process will be possible as well.

Let us now try to order the conditions under which a flavour change does not occur: First
of all, one needs exactly one fermion and one boson in the loop to ensure Lorentz invariance. In
general this means that we will have one spin-1

2 -fermion and either a scalar or a vector boson in
the loop, as no renormalizable theories for particles with a higher spin are known. Furthermore,
SM leptons only carry charge of the gauge groups SU(2)L and U(1)Y . Hence, this must also
be the case for the particle pair in the loop. The internal fermion f may carry, e.g., a color
charge under SU(3)C (or some “exotic” charge in a theory beyond the SM), as long as this can
be compensated by the corresponding internal boson b, so that they form a singlet under every
gauge group except SU(2)L ×U(1)Y (× possible other groups under which the charged leptons
are no singlets). Therefore, another sufficient condition for the absence of flavour change at
1-loop level is

b ⊗ f + 1 (under one gauge group except SU(2)L × U(1)Y ). (5.56)

These are the obvious criteria for the absence of flavour change. The question remains which
more subtle conditions can be found. Let us consider the three cases we discussed above:

A) External flip, left-handed charged lepton at both vertices:

In this case we have, at both vertices, a lepton which is the T3 = −1
2 component of an

SU(2)L doublet and has hypercharge Y = −1. As the photon does not carry away any
of these quantum numbers, the tensor product of the internal particles must mimic the
transformation properties of the left-handed SM lepton, i.e., b ⊗ f ⊇ (2L, Y = −1). If no
pair of boson and fermion exists with these transformation properties, diagrams of type
A are forbidden.

4A nice treatment of flavour changing loop diagrams can be found in Ref. [152].
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B) External flip, right-handed charged lepton at both vertices:

Here, the situation is similar to the former case, with the only difference, that the leptons
at each vertex are now right-handed. Accordingly, the quantum numbers of the internal
particles must (at both vertices) fulfill b ⊗ f ⊇ (1L, Y = −2).

C) Internal flip:

At first sight, this situation seems to be much less straightforward than the other two. At
one vertex (the one involving a left-handed external lepton) the boson and the fermion
must fulfill the conditions of type A, at the other vertex they must fulfill the conditions
of type B. This is naturally only possible after electroweak symmetry breaking. The
difference in quantum numbers can only be brought about by a coupling to the Higgs
VEV. This can correspond to the mass insertion in the diagram. In that case, the mass
insertion serves a double purpose: Inducing the necessary chirality flip and the necessary
change in quantum numbers. The chirality flip and the quantum number change can also
be independent of each other, that is if the Higgs VEV couples to the boson line, e.g.,
through a dimension three term. All we definitely need is a coupling to the VEV of an
SM-like Higgs somewhere in the loop.

We conclude that, for diagrams of type C to occur, a theory needs a boson and a fermion
which fulfill the condition for type A diagrams and another boson-fermion pair that fulfills
the condition for type B diagrams. After electroweak symmetry breaking, a superposition
of the two fermions gives the mass eigenstate f which appears in the diagram, while
a superposition of the two bosons gives the mass eigenstate b. Hence, one can say in
general that diagrams of type C are allowed only if both diagrams of type A and of type
B are allowed. Note that this condition is necessary, but not sufficient: The mixing of
the relevant fermions and bosons is another necessary condition for diagrams of type C
to occur.

Realizing that these are really the only cases that matter, a third sufficient condition for
the absence of flavour change at 1-loop level is

∀b, f : b ⊗ f + (2L, Y = −1) & b ⊗ f + (1L, Y = −2). (5.57)

Loop diagrams of the type discussed above even arise in the Standard Model with neutrino
masses. They are, however, strongly suppressed by the GIM-mechanism [132] (as discussed in
Sec. 5.1 for the case of the SM with massive neutrinos), which we will generalize in the following.

Let b and f be the two particles in the loop. Now let there be m copies of b and n copies
of f , where copies means that they differ only by their mass. Let ei denote the SM charged
leptons, as before. We need to make no assumptions concerning the number of generations,
but we do assume three generations for simplicity. To produce all the above loop diagrams, the
Lagrangian must contain the term

bA(eL)iPiAjfj + bA(eR)iQiAjfj + h.c. (5.58)

For a fixed A, the PiAj and QiAj are in general 3 × n-matrices, while for a fixed j they are
3 × m-matrices. As they cannot necessarily be diagonalized, since they do not even need to be
square matrices, we assume the above term to be written in the mass basis of the SM fermions,
the bA and the fj .

This interaction now in general leads to 1-loop flavour-changing diagrams. By a GIM-
mechanism, we understand a cancellation of these diagrams, such that the matrix

Γik = Γ(ei → ekγ) (5.59)

is approximately diagonal.5 If it were exactly diagonal, this would imply, that the matrices
5Actually, its diagonal elements are strictly zero due to energy conservation.
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PiAj and QiAj have at most one non-zero entry per column (both for fixed A and fixed j). This
means explicit conservation of lepton flavour in the interaction, or, equivalently, that we can
assign a specific lepton flavour number to any given boson-fermion pair bA and fj . Through
unitary transformations, any matrices PiAj and QiAj can be brought to such a form, where
they have at most one non-zero entry per column. If they have this form in the respective mass
bases of the involved particles, it is another incidence of basis alignment.

GIM-mechanism means, that we can expand Γij in some small parameter and the zeroth
order coefficient in this expansion is diagonal. This is a slight deviation from our method up to
now, as we have so far only considered explicit lepton flavour conservation. However, as this is
the mechanism which suppresses LFV in the SM with neutrino masses, and as it relies heavily
on the flavour structure of a given model, it is necessary to discuss it here, too.

We give the discussion for left-handed (Qij = 0) and fermionic (fixed A = A0, with bA0 = b)
GIM, where the summation runs over all possible internal fermions fj . This is the case in
the SM with massive neutrinos, with b being the W -boson, and the fj being the light massive
neutrinos. It is then straightforward to generalize both to the case of bosonic GIM and to the
case of both right-handed and left-handed leptons taking part in the process, i.e., Qij 6= 0. The
partial decay width for the decay ei → ekγ in the case of left-handed fermionic GIM is [131]:

Γik =
(m2

i − m2
k)

3

16πm3
i

∣∣∣∣∣∣
n∑

j=1

PijP
†
jkF (mi,mk,mfj

,mb)

∣∣∣∣∣∣
2

, (5.60)

where F is some loop function, similar as in Sec. 5.1. To obtain the desired result, i.e., Γik

being approximately diagonal, we need two conditions to be fulfilled. First, we need

PP † != diagonal (5.61)

and second

F (mi,mk,mfj
,mb) ≈ F (mi,mk,mfj′ ,mb) ∀j, j′ ∈ {1, ..., n} and j 6= j′. (5.62)

This condition is necessary, so that in a first approximation F can be taken out of the sum and
we can use the first condition to diagonalize Γ. It can be considered as a condition demanding
approximate mass degeneracy. What approximate mass degeneracy exactly means is, of course,
ill-defined. The light neutrinos for example are not necessarily approximately degenerate in
mass. However, their relative mass differences are small compared to other mass scales in the
amplitude, such as the W -boson mass, because their absolute mass scale is small. We will not
enter further into this discussion, as it is not connected to the main focus, namely the flavour
structure and the particle content of models. It is, however, important to keep in mind, that,
apart from the flavour structure, this approximate mass degeneracy is a necessary condition for
the GIM-mechanism to work and thereby for the suppression of 1-loop LFV to occur.

Let us also consider the first condition in some more detail. By singular value decomposition,
we can write

P = UP ′V †, (5.63)

where U is a 3 × 3 unitary matrix, V is n × n and also unitary, and P ′ is a “diagonal” 3 × n-
matrix, that is its only nonzero entries are P ′

11, P ′
22, and P ′

33. Our first condition can then be
rewritten as

UP ′P ′†U † != diagonal. (5.64)

Our first observation is, that the basis change for the fermions in the loop, given by the matrix
V , drops out. This is in keeping with the second condition, as for exactly degenerate masses,
there would be no uniquely defined mass basis anyhow. Secondly, we observe that P ′P ′† is of
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course diagonal. So, we are again faced with two possibilities: One is that the basis change
U defined by Eq. (5.63) is trivial, that is the mass basis of the charged leptons coincides with
the interaction basis, another case of alignment. The other possibility is that P ′P ′† is in fact
the unit matrix, in which case the above condition is automatically fulfilled – this is the 1-loop
equivalent of flavour universality, as the interaction leading to the loop-diagram needs to be
just that – flavour universal.

The generalization is then straightforward. In case of the most general interaction, Eq. (5.58),
we need to demand

PP † != diagonal,

QQ† != diagonal, and

PQ† != diagonal (5.65)

in the mass basis, where the matrix multiplication is to be understood in such a way, that in
each case we either keep A or j fixed.

A noteworthy special case is when f = e: The above condition will then automatically be
fulfilled if there is no tree-level LFV (where we assign a separate lepton flavour number to each
generation), i.e., if P and Q are diagonal in the mass basis.

The SM with neutrino masses only has GIM-suppressed LFV. In the following discussion,
we will not only check for the presence of 1-loop LFV, but we will also discuss whether they
are GIM-suppressed in the general sense we just have defined.

5.5.1 The Standard Model with massive neutrinos

Standard model: Diagram A (f = νL & b = W−
µ ) and PP † = U †

PMNSUPMNS = 1 (GIM)

Let us start once more with the well-known process reviewed in Sec. 5.1 in order to get the
connection to the generalized formalism in this section more easily. The only possibility for a
1-loop level lepton flavour violation µ → eγ in the SM (with massive neutrinos) is diagram A
with b being a W−, which also emits the photon, and with f being a neutrino.

The corresponding interaction Lagrangian looks like [15]

L = − e√
2 sin θW

W−
µ eLγµνL + h.c. = − e√

2 sin θW

W−
µ e′LγµU †

PMNSν
′
L + h.c. (5.66)

Now let us go through our criteria: We know that W− ∼ (3L, Y = 0) and νL ∼ (2L, Y = −1)
with νL 6= ν ′

L, while they are singlets under all other gauge groups in the SM (which is just
SU(3)C), so the trivial sufficient condition for the absence of flavour change is not fulfilled.
Also the second condition is not fulfilled, due to the quantum numbers of the internal particles.
Now, in SU(2), it holds that 3 ⊗ 2 = 2 (⊕ 4), so that the left-handed neutrino can serve as
f , since also the hypercharge balance, namely Y (W−) − Y (νL) = 0 − 1 = −1 turns out to be
correct. Hence there exists, as expected, lepton flavour violation in the SM, since the mixing
matrix P † = UPMNS is not diagonal. So, in the SM, neutrino mixing directly leads to processes
like µ → eγ at loop-level.

However, the same mixing matrix also leads to GIM-suppression: Since UPMNS is unitary,
PP † = U †

PMNSUPMNS = 1 and hence trivially diagonal, which exactly fulfills our condition,
Eq. (5.65). This is of course again due to the fact that the weak interaction is flavour universal.
As already mentioned, the condition of approximate mass degeneracy is also fulfilled due to the
smallness of the absolute neutrino mass scale.
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5.5.2 Multi Higgs models

Multi Higgs models:

A (f = νR or νM
heavy & b = H−

k ), GIM for PkP
†
k

!= diagonal;
B (f = νL or νM

light & b = H−
k ), GIM for QkQ

†
k = diagonal;

C (f = νDirac & b = H−
k ), GIM for QkU

†
PMNSP

†
k

!= diagonal

If we have tree-level LFV in a Multi Higgs model, we can easily obtain LFV at the 1-loop
level by connecting two of the external arms of the tree-level diagram with a mass insertion,
giving a diagram of type C. This mass insertion can then also be moved to the two external
arms giving diagrams of type A and B. This is a generic statement in models where tree-level
LFV is present, so we will not consider the case of neutral scalars and charged leptons in the
loop further.

We can, however, also get additional contributions with a charged scalar and a neutrino in
the loop. If we do not add right-handed neutrinos to the model, the Lagrangian will contain
one relevant interaction, the SU(2)-counterpart to the interaction given in Sec. 5.3.2,

L =
n∑

k=1

H−
k e′RQkνL + h.c. (5.67)

Formulated using the general conditions, we have that the additional Higgs bosons transform
as (2L, Y = −1) and νL ∼ (2L, Y = −1), and again they are color singlets, thereby not
satisfying the second sufficient condition for the absence of LFV. Taking the product of the
representations, we find that (2L, Y = −1) ⊗ (2L, Y = −1) = (1L, Y = −2)[⊕ (3L, Y = −2)],
allowing for diagrams of type B, with f = νL and b = H−

k . As indicated in Eq. (5.67) we will have
n negatively charged scalars: Out of the (2n+2) charged degrees of freedom, half are negative,
one of which is eaten by the W−. This implies that in the mass basis no linear combination of Qk

is necessarily diagonal, as that linear combination for neutral scalars corresponds to the eaten
scalar in the charged case. As the mass eigenstates of the charged scalars do not necessarily
coincide with those of the neutral scalars, Qk and the Ck of Sec. 5.3.2 (cf. Eq. (5.26)) are in
general not equal. They are, however, related, since if the original Yukawa coupling matrices
Yl are diagonal for all l, then both Ck and Qk are diagonal for all k.

This interaction is written in the charged lepton mass basis. This does not coincide with
the neutrino mass basis, as we know from the fact that the PMNS-matrix is not diagonal. If
we rotate the neutrinos to their mass basis, the interaction reads:

L =
n∑

k=1

H−
k e′RQkU

†
PMNSν

′
L + h.c. (5.68)

So we find that our coupling matrix QkU
†
PMNS is not diagonal, i.e., diagrams of type B are

allowed, even if tree-level LFV is forbidden. The condition for GIM-suppression then reads:

QkU
†
PMNSUPMNSQ

†
k = QkQ

†
k

!= diagonal. (5.69)

This means that, if tree-level LFV is forbidden, and thereby Qk is diagonal, these processes will
always be GIM-suppressed. As in the SM this is also due to the fact, that the absolute mass
scale of the light neutrinos is small compared to the mass of the scalars involved.

If we add three right-handed neutrinos to the model, there are two possibilities: One can
either write down a Majorana mass term for the right-handed neutrinos and apply the Type I
seesaw mechanism or one can consider neutrinos as Dirac particles.
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In the first case, the mass eigenstates will be Majorana particles, a superposition of left-
handed and right-handed neutrinos. We will write these as νM

light for the predominantly left-
handed light neutrinos and as νM

heavy for the predominantly right-handed heavy neutrinos. As
we have so far always assumed a unitary PMNS-matrix, i.e., a “perfect” seesaw, we will assume
that the light neutrinos are purely left-handed and that the heavy ones are purely right-handed.
We then still have the interaction of Eq. (5.68), with ν ′

L replaced by νM
light, and the same

conditions for LFV and GIM-suppression in diagrams of type B. The right handed or heavy
neutrinos transform as total singlets under the SM gauge group, so that the product of their
representations with that of the Higgs bosons is (2L, Y = −1), allowing for diagrams of type A,
with f = νM

heavy and b = H−
k .

The corresponding couplings are then the Yukawa couplings which give the neutrinos their
Dirac mass:

L =
n∑

k=1

H−
k e′LPkν

M
heavy + h.c. (5.70)

As the matrices Pk play no role for tree-level LFV, we make no further assumptions concerning
their form. One however needs to pay close attention in which basis the above interaction is
written: We have chosen the basis in which the charged lepton and the right-handed neutrino
Majorana matrices are diagonal. If we had written the interaction in another basis, one would
here also have to introduce a PMNS-type matrix, as was the case for the light neutrinos. LFV-
processes will then occur if Pk is not diagonal and the condition for GIM-suppression is then
simply

PkP
†
k

!= diagonal. (5.71)

This GIM-suppression of course demands, that the heavy neutrinos are approximately degen-
erate in mass. Such processes are, however, strongly suppressed anyway as the heavy neutrinos
decouple in the seesaw limit. Even though diagrams of type A and B are allowed, no diagrams
of type C can be generated for Majorana neutrinos, as the necessary condition that the fermions
of diagrams A and B mix after electroweak symmetry breaking is not fulfilled in the seesaw
limit.

Things are different for the case of Dirac neutrinos. One again has the interactions of
Eq. (5.68) and of Eq. (5.70), where νM

heavy must be replaced by ν ′
R, the right-handed neutrinos

in the neutrino mass basis. This means that diagrams of type A and type B can occur under the
same conditions as above. As left- and right-handed neutrinos mix in this case to form a Dirac
fermion after electroweak symmetry breaking, diagrams of type C will also be possible, if either
QkU

†
PMNS or Pk is not diagonal. As we assume no tree-level LFV, QkU

†
PMNS is automatically

non-diagonal and such processes can occur. The condition for GIM-suppression is then

QkU
†
PMNSP

†
k

!= diagonal. (5.72)

We reach the conclusion that, if tree-level LFV is forbidden in a Multi Higgs model, then 1-loop
LFV including left-handed neutrinos will always be GIM-suppressed. Observable LFV therefore
necessitates the introduction of right-handed neutrinos. As these will approximately decouple
in the Majorana case, only Dirac neutrinos lead to observable 1-loop LFV-processes. A GIM-
suppression of such processes could then only be brought about by demanding the alignment
conditions of Eqs. (5.71) and (5.72).
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5.5.3 Universal Extra Dimensions

Universal Extra Dimensions:
A (f = νL(n) & b = W−

µ(n)), as for SM (GIM);

A (f = νR(n) & b = a−(n)), where P = U †
PMNScR and PP † ∝ 1 (GIM);

B (f = νL(n) & b = a−(n)), where Q = U †
PMNScL and QQ† ∝ diag(m2

e,m
2
µ,m2

τ ) (GIM);
C (f = νR/L(n) & b = a−(n)), PQ† ∝ diag(me,mµ,mτ ) (GIM)

A different type of models where lepton flavour violation can occur are theories with extra
spatial dimensions. There is a huge variety of them – we will only be considering the ACD-
model [28], which is also often called Universal Extra Dimensions (UEDs). A key feature of this
model is that the particles of the SM propagate in all 5 dimensions, where the 5th dimension
is compactified.

We adopt the notation of Ref. [153]. In this model, there are two types of particles that can
play the role of the boson b. First of all we have the vector bosons W−

(n), where n denotes the
(Kaluza-Klein) (KK-) number. These KK-modes of the W -boson transform in the same way
as the zero mode, which is just the SM W , under all SM gauge groups. Hence, we know from
Sec. 5.5.1 that a particle transforming as a left-handed neutrino can here be used as the fermion
f . UEDs lead to an additional symmetry which needs to be conserved, the conservation of the
KK-number n. To ensure that the particles in the loop form a total singlet under all non-SM
symmetries, we need to demand that the neutrino-like particle in the loop has the same KK-
number as the boson W(n). Therefore the only particle that can play the role of f is the n-th
KK-mode of the neutrino, ν(n). Otherwise, nothing changes compared to the SM with massive
neutrinos: Diagrams of type A will be allowed and GIM-suppression will always occur due to the
unitarity of UPMNS. The n-th KK-mode of a given neutrino νi will have mass m2

(n) = m2
i + n2

R2 ,
where mi is the zero-mode mass of the neutrino and R is the compactification radius of the
extra dimension. Hence, the mass degeneracy is even more explicit here, as the mass differences
of neutrino KK-modes are small compared to their mass, which is approximately n

R .
UEDs also lead to scalars that can play the role of b: The higher KK-modes of the charged

and pseudoscalar Higgs fields are not entirely eaten by the corresponding vector bosons, they
also mix with the 5th component of those vector bosons to form physical scalars, both charged
(a−(n)) and neutral (a0

(n)). As these scalars transform as the SM Higgs, they can form a loop with
particles transforming as neutrinos or as charged leptons, as discussed in Sec. 5.5.2. Again, we
need to observe conservation of KK-number, so f can only be ν(n) or the n-th KK-mode of the
charged lepton, e(n), respectively. So, we will have the same types of diagrams as in a Multi
Higgs model, with the particles in the loop replaced by their higher KK-modes. As opposed
to a Multi Higgs model, the additional scalars can be considered as excitations of the same
particle, and therefore all couple in the same way. They will, however, couple differently from
the SM Higgs, as they also have a gauge boson contribution. All gauge interactions remain
flavour universal, so we find for the coupling of left-handed charged leptons to e(n) and a0

(n):

P ∝ (Ye + flavour universal contributions). (5.73)

For the coupling of the right-handed charged leptons we have no further complications from
gauge interactions and the coupling matrices Q will just be proportional to the regular charged
lepton Yukawa couplings Ye. One can then see that all coupling matrices are diagonal in the
charged lepton mass basis, which is also the mass basis for the KK-modes e(n), and we therefore
have no LFV for diagrams with e(n) in the loop.
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For neutrino KK-modes in the loop, we obtain the following Lagrangian [154]:

L = − g2n√
2MW (n)

[
νR(n)cRe′L + νL(n)cLe′R

]
a−(n) + h.c. (5.74)

= − g2n√
2MW (n)

[
ν ′

R(n)U
†
PMNScRe′L + ν ′

L(n)U
†
PMNScLe′R

]
a−(n) + h.c., (5.75)

with cL = diag(me, mµ, mτ ) and cR = MW ·1. Note that, in principle, there can be a correction
to cR coming from the neutrino Yukawa coupling matrix, but we have assumed neutrinos to be
purely Dirac. In that case their masses are negligible compared to MW and can be ignored in
Eq. (5.75). For comments on different methods of neutrino mass generation and their effect on
LFV, see Sec. 5.5.2. The right-handed neutrinos in Eq. (5.75) are KK-modes of the left-handed
neutrino and arise independently of the origin of neutrino mass. We find that the relevant
coupling matrices P and Q are both the product of a flavour-diagonal matrix and the non-
diagonal but unitary UPMNS. We can therefore construct LFV diagrams of all types; all such
processes will however be GIM-suppressed, as the mass degeneracy of the ν(n) is again explicit.
See Ref. [154] for a discussion of the effect of summing over a large number of GIM-suppressed
amplitudes.

5.5.4 The Minimal Supersymmetric Standard Model

MSSM+νR:
A (f = (χ̃−/0

A,R)′ & b = ν̃ ′/ẽ′), where P = (C/N)R(l)
A , and PP † = diagonal (GIM);

B (f = (χ̃−/0
A,L)′ & b = ν̃ ′/ẽ′), where Q = (C/N)L(l)

A , and QQ† = diagonal (GIM);

C (f = (χ̃−/0
A )′ & b = ν̃ ′/ẽ′), where PQ† = diagonal (GIM)

The Minimal Supersymmetric Standard Model (MSSM) itself can only lead to 1-loop LFV
diagrams (or higher), since all tree-level vertices are forbidden due to R-parity conservation.
The discussion is somewhat similar to that of Sec. 5.5.3, as we again take the diagrams of the
SM and Multi Higgs models, and replace the particles in the loop by other particles which
transform in the same way under the SM gauge groups, thereby delegating a large part of the
discussion concerning the general LFV-conditions to Secs. 5.5.1 and 5.5.2. In the case of the
MSSM, the particles in the loop will be replaced by their superpartners, thereby also ensuring
that there is always one boson and one fermion in the loop.

We begin by considering the supersymmetric analogon of the LFV diagrams with neutrinos
in the loop. The neutrinos will be replaced by sneutrinos, which are then the bosons in the loop,
b = ν̃. In the MSSM, the LFV diagrams with a W in the loop (Sec. 5.5.1) and with a charged
Higgs scalar in the loop (Sec. 5.5.2 – they arise as the MSSM is a THDM) are both replaced
by diagrams with charginos, which are then the fermions in the loop, f = χ̃−

A (A = 1, 2).
This is because the two χ̃−

L ’s are superpositions of the wino W̃−
L (the superpartner of the W )

and the Higgsino H̃−
uL (the superpartner of one Higgs boson), and conversely the two χ̃−

R’s are
superpositions of W̃−

R and H̃−
dR. The sneutrinos will be massive, even if the neutrinos are not,

due to soft SUSY breaking, so we do not need to worry about the origin of neutrino mass. The
sneutrino mass basis does not need to coincide with that of the charged leptons and we expect
LFV to occur. The interaction Lagrangian is6

Lchargino =
2∑

A=1

e′LC
R(l)
A (χ̃−

A,R)′ν̃ ′ + e′RC
L(l)
A (χ̃−

A,L)′ν̃ ′ + h.c. (5.76)

6For more details, see Refs. [155] and [156].
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Here, all fields (also the bosonic ones) are written as mass eigenstates, and C
R/L(l)
A denote the

coupling matrices of the right- and left-handed chargino (χ̃−
A,R/L)′, respectively, to the charged

leptons e and the sneutrino mass eigenstates ν̃ ′. The C
R/L(l)
A are thereby 3× 3-matrices. These

matrices contain all rotations to mass eigenstates, for the left- and right-handed charginos as
well as for the sneutrinos. For diagram A, one then needs f = (χ̃−

A,R)′, and P = C
R(l)
A has to

be non-diagonal. Diagram B is possible with f = (χ̃−
A,L)′ and Q = C

L(l)
A non-diagonal, and

diagram C with f flipping from (χ̃−
A,L)′ to (χ̃−

A,R)′, or vice versa, with the same P and Q as

before. If all C
R/L(l)
A turn out to be diagonal there will be no LFV at 1-loop level – this is of

course a case of alignment, a term which has actually first been used for the supersymmetric
case [157]. If the C

R/L(l)
A are not diagonal, there is still the possibility of GIM-suppression, for

which the conditions are

C
R(l)
A C

R(l)†
A

!= diagonal (A),

C
L(l)
A C

L(l)†
A

!= diagonal (B), and

C
R(l)
A C

L(l)†
A

!= diagonal (C). (5.77)

These conditions are in fact always fulfilled: Since the chargino is a superposition of Higgsino
and wino, we need to invoke the natural alignment of mass and Yukawa interaction basis as
well as the flavour universality of the weak interaction. LFV only arises due to the non-trivial,
unitary transformations to mass eigenstates. The critical question is therefore the approximate
mass degeneracy, which can be achieved by giving approximately universal soft masses to the
sneutrinos. Their mass differences, corresponding to the mass differences of the neutrinos, then
become negligible. This is commonly referred to as the Super-GIM-mechanism [158] and is, in
fact, covered by the generalized GIM-mechanism from the beginning of this section.

In general, LFV diagrams with charged leptons in the loop will only be allowed if tree-
level LFV is also allowed (cf. Sec. 5.5.2). In UEDs, the KK-modes of the charged leptons
necessarily have the same mass basis as the charged leptons themselves, which is why the
“partner” diagrams do not lead to LFV (cf. Sec. 5.5.3). These things are different in the
MSSM, as the superpartners of the charged leptons, the charged sleptons ẽ, do not necessarily
have the same mass basis, because their mass also arises from soft SUSY breaking terms. Basis
alignment can be achieved by imposing conditions on the soft SUSY breaking terms, such as
the popular mSUGRA (minimal Supergravity) boundary conditions, but in general one can
construct diagrams with charged sleptons in the loop taking the role of b. The part of f is
then taken by a superposition of the superpartners of the neutral electroweak gauge bosons and
the neutral Higgs bosons. The mass eigenstates of these superpositions are the neutralinos χ̃0

A

(A = 1, ..., 4), where the χ̃0
A is a superposition of the bino B̃, the neutral wino W̃ 0, and the two

neutral Higgsinos H̃0
u and H̃0

d). The corresponding interaction Lagrangian is

Lneutralino =
4∑

A=1

e′LN
R(l)
A (χ̃0

A,R)′ẽ′ + e′RN
L(l)
A (χ̃0

A,L)′ẽ′ + h.c., (5.78)

where the matrices N
R/L(l)
A now contain the rotations of (B̃, W̃ 0, H̃0

u, H̃0
d)T to mass eigenstates

((χ̃0
1)

′, ..., (χ̃0
4)

′)T for both cases, R and L, and the rotations of the charged sleptons to mass
eigenstates, too. The cases that can appear here are completely analogous to the ones for
charginos, just with (χ̃−)′ → (χ̃0)′, ν̃ ′ → ẽ′, and C → N for the mixing matrices. The only
difference is that there exist four different neutralinos compared to only two negatively charged
charginos and six charged sleptons, making the N

R/L(l)
A 6 × 3-matrices. Again the condition

for GIM-suppression is automatically fulfilled, while the mass degeneracy can be achieved by
approximately universal soft masses.
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5.6 Constraining Models with Flavour Symmetries

As already explained at the beginning of this chapter, LFV arises very generically in BSM-
Theories. In order to explain the apparent patterns in the flavour sector, so-called Discrete
Flavour Symmetries are often used [159]. These symmetries impose certain relations on the
otherwise in most of the cases arbitrary Yukawa matrices that couple fermions to scalars (dif-
ferently from the gauge sector there is normally no symmetry principle behind Yukawa matrices
– and this is exactly what is changed by imposing a certain flavour symmetry). By this relation,
e.g., alignment of certain couplings could be achieved.

In this section, we turn this logic around and investigate how strongly a model with a discrete
flavour symmetry can be constrained by LFV-processes. As we will see, it is generically difficult
to apply conditions like Eq. (5.17), due to the remaining freedom in the Yukawa matrices.
This, in turn, implies the generic existence of LFV-processes, whose limits can then be used to
powerfully constrain the models in question.

5.6.1 The general arguments

A natural way to extend the SM is to add further scalar particles, which have not been discovered
yet. These could, e.g., be additional SU(2)-singlets [160], doublets (THDM), or triplets [26].
Depending on the model, it can then be the case that more than one Higgs field contribute
to the masses of all particles or that certain Higgses only give masses to a particular choice of
particles [161]. These models will then, however, generically lead to flavour changing neutral
currents [162] and hence to LFV-processes [9], which are quite strongly constrained [139]. It
is, however, also not easy to rule out these models that way, since they will in general yield
complex 3 × 3 Yukawa coupling matrices, which hold a lot of freedom in their 18 parameters.
So, in most of the cases, such a model will be able to fit all neutrino data without any problems,
even if it is strongly constrained.

On the other hand, there are also ways to impose more structure onto the SM in order to get
an understanding of quantities like mixing angles, or so. This is usually done by discrete flavour
symmetries under which the SM-fermions (and, depending on the model, also (additional)
scalars) are charged in a certain way. If, e.g., the two generations of SU(2)L doublets are
components of the same doublet representation of a discrete flavour symmetry (such as the
dihedral groups D3 ' S3 [163] or D4 [164–166]), then this property will generically lead to µ-τ
symmetry [167], by which two mixing angles are predicted: θ23 = π/4 and θ13 = 0. Moreover, in
order to increase the predictivity, one can also assign the three generations of SU(2)L doublets
to form a triplet of a discrete flavour symmetry (such as A4 [168–172]). This can lead to
tri-bimaximal mixing [173,174], in which also θ12 is fixed to be tan θ12 = 1/

√
2.

Imposing such symmetries adds more structure to the model in the sense that one obtains
relations between different entries of the Yukawa matrices. By that way, one can obtain the
neutrino oscillation parameters as well as the charged lepton masses as functions of only a few
parameters, which can then be checked on whether they are in accordance with data, or not.
However, such models generically need a lot of scalars in order to break the flavour symmetry
in a valid way. In case the normal Higgses are not charged under the flavour symmetry, these
are additional SM-singlet scalars (flavons), which are only charged under the discrete symmetry
and can hence break it by obtaining a VEV. These scalars will, again, lead to horribly large
FCNCs, which crashes with phenomenology.

One way out is to decouple the flavons by giving them masses associated with the breaking
scale of the flavour symmetry, which can be much higher than the electroweak scale. This is,
of course, somehow only hiding the problem, but it will make the model fit better.

We now apply the following logic:
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1. We impose a flavour symmetry and decouple the flavons in order to end up with an
effective low energy model with a scalar sector that is slightly extended compared to the
SM. This could, e.g., be a THDM or something similar.

2. This procedure should make the model fit better, because the possible problems that could
arise by the flavons are avoided.

3. Since we have gained predictivity by imposing the flavour symmetry, we can fit the model
to neutrino data, which allows us to extract certain ranges for the model parameters.

4. The model, however, still has additional scalars compared to the SM, which will be able
to mediate LFV-processes, whose branching ratios can be predicted using the fitted pa-
rameter values.

5. If this prediction does not fit with present (future) LFV-bounds, we are (will be) able to
exclude the particular flavour symmetry imposed (in a certain scenario). Note that this
logic will also hold in the non-decoupling case if no extreme fine-tuning is involved.

In principle, this could work for any model with a slightly extended scalar sector. If the
structure of the model is not extremely peculiar, which is rarely the case in the scalar sector of
a theory, the additional scalars (compared to the SM) will unavoidably lead to LFV-processes,
which are already strongly constrained. The key point is that these constraints are so strong that
imposing some more structure by adding a flavour symmetry can easily destroy the consistency
of the model with all data.

Here, we want to present such an analysis for one particular example, namely for Ma’s
scotogenic model [175], as this consists of a very minimal extension of the SM. Furthermore,
it has not too many possible LFV-diagrams, so that our logic is not shadowed by a heavy
calculational apparatus. In this model, one can see immediately the effect of certain symmetries:
Without imposing a flavour symmetry, one constrains quantities like

|h∗
11h21 + h∗

12h22 + h∗
13h23| (5.79)

by LFV-processes like µ → eγ [176], where h is the Yukawa coupling matrix involved. Such
a combination can easily become zero for unfortunate values of some phases, exactly as the
effective neutrino mass in neutrino-less double beta processes [92], cf. Sec. 4.2.1. Imposing
relations between certain elements of h hinders such cancellations to appear, and the term in
Eq. (5.79) will generically be much larger than zero.

We want to stress, however, that this particular model is just an example and that our idea
may work for a much wider class of models.

5.7 The Ma-model

There are a lot of different models for neutrino mass generation on the market [177]. A difficult
task for all of them is to explain the smallness of neutrino masses compared to other particles
in Nature that we know.

One way is to forbid a tree-level mass term for neutrinos and generate neutrino masses only
by radiative corrections, as done in several models [175,177–181]. Out of those, Ma’s scotogenic
model [175] (that we call Ma-model for simplicity) is particularly attractive: By adding only
one additional Higgs doublet and heavy right-handed neutrinos to the SM, as well as imposing
an additional Z2-symmetry, it allows for sufficiently small neutrino masses. These masses are
generated radiatively, because the additional neutral Higgs does not obtain a VEV that could
lead to a tree-level neutrino mass term. Furthermore, due to the Z2-symmetry, this model also
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Figure 5.3: The radiative generation of a light neutrino mass term in the Ma-model.

provides a stable Dark Matter candidate, namely the lightest of the heavy neutrinos [182] or
the lightest neutral scalar [183] (essentially, this Z2-symmetry plays the same role as R-parity
in SUSY). Constraints on the model arise from various different sources as, e.g., lepton flavour
violation or the Dark Matter abundance [176]. In that sense, this model is very “complete”.
Furthermore, this model arises very naturally in a left-right symmetric framework [14].

The basic ingredients of the Ma-model apart from the SM are:

• 3 heavy right-handed (Majorana) neutrinos Nk, which are singlets under SU(2) and have
no hypercharge

• a second Higgs doublet η with SM-like quantum numbers that does not obtain a VEV

• an additional Z2-parity under which all SM-particles are even, while Nk as well as η are
odd

The corresponding Higgs potential looks like

V = m2
1φ

†φ+m2
2η

†η+
λ1

2
(φ†φ)2 +

λ2

2
(η†η)2 +λ3(φ†φ)(η†η)+λ4(φ†η)(η†φ)+

λ5

2

[
(φ†η)2 + h.c.

]
,

(5.80)
where φ is the SM-Higgs. If m2

1 < 0 and m2
2 > 0, then only φ0 will obtain a VEV v = 174 GeV,

while 〈η0〉 = 0. The Yukawa Lagrangian is given by

LY = fij

(
φ−νi + (φ0)∗li

)
ec
j + hij(η0νi − η+li)Nj + h.c., (5.81)

which does not lead to a tree-level neutrino mass term, due to the vanishing VEV of the η0.
The neutrino masses can, however, be generated radiatively, which gives a natural suppression
of the scale of the neutrino mass eigenvalues and can exploit the heaviness of the Nk (with
masses Mk) as well. The mass matrix of the light neutrinos is generated from the diagram in
Fig. 5.3 and reads

(Mν)ij =
3∑

k=1

hikhjkΛk, (5.82)

where

Λk =
Mk

16π2

[
m2(H0)

m2(H0) − M2
k

ln
(

m2(H0)
M2

k

)
− m2(A0)

m2(A0) − M2
k

ln
(

m2(A0)
M2

k

)]
. (5.83)

Note that we have named the Higgses like in a general THDM [184], with

α = β = m12 = λ6,7 = 0. (5.84)
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Field l1,2,3 ec
1 ec

2 ec
3 N1,2,3 φ η ϕS ϕT χ

A4 3 1 1′′ 1′ 3 1 1 3 3 1
Zaux

4 i i i i −1 1 1 i −1 i

Table 5.2: The particle content of Model 1. The SM particles are the
three left-handed lepton SU(2)L doublets li, the right-handed charged
leptons ec

i , and the SM-Higgs φ. The BSM particles are the right-handed
neutrinos Ni, the second Higgs doublet η (which does not obtain a VEV),
and the flavons ϕS , ϕT , and χ, that only transform under A4 × Zaux

4 .

The physical Higgs masses are given by

m2(h0) = 2λ1v
2, m2(H0) = m2

2 + (λ3 + λ4 + λ5)v2, m2(A0) = m2
2 + (λ3 + λ4 − λ5)v2,

and m2(H±) = m2
2 + λ3v

2. (5.85)

5.8 Imposing discrete flavour symmetries

In the following, we will present two models which constrain the structure of the Yukawa
coupling matrix h in Eq. (5.81), without discussing a particular mechanism for vacuum align-
ment.7 The first one, based on Refs. [185, 186], represents the class of models which predicts
tri-bimaximal mixing. The second one represents the class which predicts µ-τ symmetry. Details
on the group theory of A4 and D4 can be found in Ref. [12].

5.8.1 The A4-model (Model 1)

The particle content of this model is given in Tab. 5.2. The Lagrangian which is invariant under
the flavour symmetry A4 × Zaux

4 reads8

Ll = ye
1

φ

Λ
(l1ϕT1 + l2ϕT3 + l3ϕT2)ec

1 + ye
2

φ

Λ
(l3ϕT3 + l1ϕT2 + l2ϕT1)ec

2

+ye
3

φ

Λ
(l2ϕT2 + l1ϕT3 + l3ϕT1)ec

1 +
η

Λ

[
y1[(2l1N1 − l2N3 − l3N2)ϕS1

+(2l3N3 − l1N2 − l2N1)ϕS3 + (2l2N2 − l1N3 − l3N1)ϕS2]

+y2(l1N1 + l2N3 + l3N2)χ
]

+ M(N1N1 + N2N3 + N3N2). (5.86)

Let us assume that the flavons obtain their VEVs as follows, 〈ϕS1〉
〈ϕS2〉
〈ϕS3〉

 = wS

 1
1
1

 ,

 〈ϕT1〉
〈ϕT2〉
〈ϕT3〉

 = wT

 1
0
0

 , and 〈χ〉 = u , (5.87)

and the SM Higgs gets the VEV 〈φ0〉 = v. Then, the Yukawa coupling matrix and the right-
handed neutrino mass matrix for Model 1 can be written as

h =

2a + b −a −a
−a 2a b − a
−a b − a 2a

 and MR = M

1 0 0
0 0 1
0 1 0

 , (5.88)

7In general, the vacuum alignment can be achieved by a minimization of the scalar potential.
8Here, we neglect the anti-symmetric part of the coupling between l and N or assume that the anti-symmetric

coupling vanishes, which is done similarly in Ref. [186].
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where a = y1
wS
Λ and b = y2

u
Λ .

The charged lepton mass matrix in this model is diagonal,

me =
v

Λ
ye
1wT , mµ =

v

Λ
ye
2wT , mτ =

v

Λ
ye
3wT . (5.89)

Here, the hierarchies in the charged lepton masses are determined by the Yukawa couplings.
Assuming that the Yukawa coupling of the τ , ye

3, is of O(1) and the Higgs VEV v is 174 GeV,
we can determine the ratio of the flavon over the cutoff scale Λ ( 〈f〉Λ ) as being of the order of
the Cabibbo angle squared, λ2 ∼ 0.04.

In order to simplify the discussion, we go to the basis where the right-handed neutrino mass
matrix is diagonal. The matrix MRM †

R is diagonalized by the unitary matrix Ur

Ur =

0 0 1
0 1 0
1 0 0

 . (5.90)

Note that the right-handed neutrino masses are degenerate, M1,2,3 = M .
The Yukawa coupling in this basis reads

h′ = hUr =

 −a −a 2a + b
b − a 2a −a
2a b − a −a

 . (5.91)

Using Eq. (5.82), the neutrino mass matrix can be written as

Mν = Λ1,2,3

(6a2 + 4ab + b2) −a(3a + 2b) −a(3a + 2b)
−a(3a + 2b) (6a2 − 2ab + b2) a(−3a + 4b)
−a(3a + 2b) a(−3a + 4b) (6a2 − 2ab + b2)

 , (5.92)

where Λ1,2,3 = Λ1 = Λ2 = Λ3, and the squared neutrino masses are given by the eigenvalues of
MνM

†
ν :

m2
1 = (3a + b)4Λ2

1,2,3, m2
2 = b4Λ2

1,2,3, and m2
3 = (−3a + b)4Λ2

1,2,3, (5.93)

which correspond to the eigenvectors (−2, 1, 1)T /
√

6, (1, 1, 1)T /
√

3, and (0,−1, 1)T /
√

2, respec-
tively. In this model, the neutrino masses obey normal mass ordering.

The neutrino mixing observables look like:

∆m2
¯ = (b4−(3a+b)4)Λ2

1,2,3, ∆m2
A = −24ab(9a2+b2)Λ2

1,2,3, tan θ12 =
1√
2
, θ13 = 0, and θ23 =

π

4
.

(5.94)
In this model, we have only three free parameters (a, b,M) to fit all observables. Therefore,
this model is quite predictive (and hence harder to fit).

5.8.2 The D4-model (Model 2)

The particle content of this model is given in Tab. 5.3. The Lagrangian which is invariant under
the flavour symmetry D4 × Zaux

2 reads

Ll = ye
1l1e

c
1

φ

Λ
ϕe + ye

2(l2e
c
2 + l3e

c
3)

φ

Λ
ϕe + ye

3(l2e
c
2 − l3e

c
3)

φ

Λ
χe

+y1l1N1
η

Λ
ϕν + y2(l2ψ1 + l3ψ2)N1

η

Λ
+ y3(l2ψ2 − l3ψ1)N2

η

Λ
+ y4(l2ψ1 − l3ψ2)N3

η

Λ

+
1
2
M1N1N1 +

1
2
M2N2N2 +

1
2
M3N3N3. (5.95)
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Field l1 l2,3 ec
1 ec

2,3 N1 N2 N3 φ η ϕe χe ϕν ψ1,2

D4 11 2 13 2 13 12 14 11 11 13 14 13 2
Zaux

2 1 1 1 1 −1 −1 −1 1 1 1 1 −1 −1

Table 5.3: The particle content of Model 2. Th SM particles are the
three left-handed lepton SU(2)L doublets li, the right-handed charged
leptons ec

i , and the SM-Higgs φ. The BSM particles are the right-handed
neutrinos Ni, second Higgs doublet η (which does not obtain a VEV),and
the flavons ϕe, χe, ϕν , and ψi, that only transform under D4 × Zaux

2 .

Let us assume that the flavons obtain their VEVs as follows:

〈ϕe〉 = ue, 〈χe〉 = −we, 〈ϕν〉 = u , and
(

〈ψ1〉
〈ψ2〉

)
= w

(
1
−1

)
, (5.96)

and the SM Higgs gets the VEV 〈φ0〉 = v. Then, the Yukawa coupling matrix for Model 2 can
be written as

h =

 a 0 0
b −c d
−b −c d

 , (5.97)

where a = y1
u
Λ , b = y2

w
Λ , c = y3

w
Λ , and d = y4

w
Λ .

The charged lepton and right-handed neutrino mass matrices in this model are diagonal,

me =
v

Λ
ye
1ue, mµ =

v

Λ
(ye

2ue − ye
3we), mτ =

v

Λ
(ye

2ue + ye
3we). (5.98)

Here, the hierarchy between the masses of e and (µ, τ) arises from the smallness of the Yukawa
coupling ye

1. As we did for Model 1, we assume that the ratio ( 〈f〉Λ ) is of order λ2 ∼ 0.04. Using
Eq. (5.82), the neutrino mass matrix can be written as

Mν =

 a2Λ1 abΛ1 −abΛ1

abΛ1 b2Λ1 + c2Λ2 + d2Λ3 −b2Λ1 + c2Λ2 + d2Λ3

−abΛ1 −b2Λ1 + c2Λ2 + d2Λ3 b2Λ1 + c2Λ2 + d2Λ3

 . (5.99)

The squared neutrino masses are given by the eigenvalues of MνM
†
ν ,

m2
1 = 0, m2

2 = (a2 + 2b2)2Λ2
1, and m2

3 = 4(c2Λ2 + d2Λ3)2, (5.100)

which correspond to the eigenvectors

a√
2(a2 + 2b2)

(2b/a,−1, 1)T ,
b√

2(a2 + 2b2)
(−b/a, 1, 1)T , and (0, 1, 1)T /

√
2, (5.101)

respectively. In this model, the neutrino masses will obey normal ordering.
The neutrino mixing observables look like:

∆m2
¯ = (a2+2b2)2Λ2

1, ∆m2
A = 4(c2Λ2+d2Λ3)2, tan θ12 =

a√
2b

, θ13 = 0, and θ23 =
π

4
. (5.102)

In this model, we have 7 free parameters (a, b, c, d,M1,M2,M3) to fit all neutrino observables.
This makes Model 2 much easier to fit, but we of course pay the price of losing predictivity.
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5.9 The numerical analysis

5.9.1 The general procedure

In this section, we describe the analysis procedure that has been applied. The first point to
mention is that there are constraints that are required for a THDM like in Eq. (5.80) (λ1 > 0,
λ2 > 0, λ3 > −

√
λ1λ2, and λ3 + λ4 − |λ5| > −

√
λ1λ2; they essentially keep the Higgs potential

stable) as well as consistency conditions for a Ma-like model (m2
1 < 0 and m2

2 > 0; these are
necessary in order for φ0 to obtain a VEV, while η0 obtains none). Furthermore, there are limits
from direct searches at collider experiments [187]: m(h0) > 112.9 GeV and m(H±) > 78.6 GeV,
both at 95% C.L.9 Further constraints arise from the W - and Z-boson decay widths, namely
m(H±) + m(H0) > MW , m(H±) + m(A0) > MW and 2m(H±) > MZ , m(H0) + m(A0) >
MZ , as well as from the requirement of perturbativity for the Higgs potential, λ2 < 1 and
λ2

3 + (λ3 + λ4)2 + λ2
5 < 12λ2

1 [183].
Strong constraints also come from the correction to the ρ-parameter [188]. The explicit

formula for this correction reads

∆ρ =
α(MZ)

16πs2
W M2

W

·
[
F

(
m2

2,m
2(H0)

)
+ F

(
m2

2,m
2(A0)

)
− F

(
m2(H0),m2(A0)

)]
, (5.103)

where

F (x, y) =
{x+y

2 − xy
x−y ln x

y , for x 6= y,

0, for x = y,
(5.104)

and α(MZ) = 1/127.9. The experimental constraint is [15]

∆ρ = −0.0006 ± 0.0008, (5.105)

which cuts the allowed parameter space for the Ma-model. Since we want to focus on neutrino
physics and lepton flavour violation, we do not try to fit the Higgs sector as well, but rather
use four different benchmark scenarios that all fulfill the consistency conditions, as well as the
experimental bounds from direct searches and from the measurement of the correction to the
ρ-parameter (at 3σ). In the form (m1,m2, λ1, λ2, λ3, λ4, λ5), these scenarios are:

α : (100iGeV, 75GeV, 0.24, 0.10, 0.10,−0.15,−0.10)
β : (100iGeV, 98.5GeV, 0.24, 0.30, 0.09,−0.18,−0.11)
γ : (100iGeV, 950GeV, 0.24, 0.50, 0.02,−0.12,−0.10)
δ : (100iGeV, 550GeV, 0.24, 0.30, 0.02,−0.05,−0.01) (5.106)

The corresponding Higgs masses are given in Tab. 5.4. Note that these four scenarios are also
consistent with the 3σ-range of WMAP-data for H0 being the Dark Matter candidate [183],
which is why we have chosen them that way. This also leads to some more consistency condi-
tions, as H0 has to be the lightest of all scalars and it also has to be lighter than the heavy
right-handed neutrinos.

For all these scenarios, we do the following:

1. First, the models are fitted to neutrino oscillation data, i.e., mixing angles and mass
square differences [23]. This is done by the χ2-function

χ2 =
N∑

i=1

(qi − qexp
i )2

σ2
i

, (5.107)

9Note that these constraints do not apply to the inert Higgses H0 and A0. They are constrained much less
severely by the current limits, differently from a normal THDM.
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Scenario m(h0) m(H0) m(A0) m(H±)
α 120.0 32.9 84.5 93.0
β 120.0 60.4 101.5 111.5
γ 120.0 946.8 950.0 950.3
δ 120.0 548.9 549.4 550.6

Table 5.4: The Higgs masses (in GeV) for the different scenarios defined in Eq. (5.106).

Quantity ∆m2
¯ (∆m2

A)nor. θ12 θ13 θ23

Best-fit 7.67 · 10−5 eV2 2.46 · 10−3 eV2 34.5◦ 0.0◦ 42.3◦

1σ 2.15 · 10−6 eV2 0.15 · 10−3 eV2 1.4◦ 7.9◦ 4.2◦

Table 5.5: The neutrino mixing parameters (best-fit values and symmetrized 1σ-ranges) ob-
tained by a global fit [23].

where qi are the observables obtained from neutrino oscillations (θ12, θ13, θ23, ∆m2
A,

∆m2
¯), which are calculated in terms of the model parameters (cf. Sec. 5.8). qexp

i are their
measured counterparts and σi are the corresponding (symmetrized) standard deviations.
The best-fit model parameters are determined by a minimization of the χ2-function. By
projection onto the different directions in the parameter space, we determine the 1σ- and
3σ-ranges of the model parameters.

2. Next, we calculate the maximum and minimum values of the quantities measured in
different LFV-experiments (µ → eγ, τ → µγ, τ → eγ, and µ-e conversion for four
different nuclei) by varying the model parameters within their 1σ- and 3σ-ranges.

3. Finally, we compare how well different past and future LFV-experiments are able to
constrain or exclude the particular model in the four scenarios.

5.9.2 The χ2-fit

After outlining the general points, we will explain the procedure in more detail using scenario
α (cf. Eq. (5.106)) in connection with Model 1 (cf. Sec. 5.8.1) as example.

The χ2-function has already been given in Eq. (5.107) and the experimental values and
errors of the neutrino observables are summarized in Tab. 5.5. These observables in terms of
model parameters have been given in Eq. (5.94). The minimization of the χ2-function then
yields the following best-fit values for the three parameters:

a = 0.0189, b = −0.691, M = 2.42 · 106 GeV. (5.108)

Note that the parameter b is negative to fit the normal mass ordering, cf. Eq. (5.94). In the
minimization we have required M1,2,3 > m(H0) and M1,2,3 > MZ/2 for consistency reasons.

The 1σ-(3σ-) values for the model parameters are obtained by inserting all values from
Eq. (5.108) into the χ2-function, except for the one parameter that is to be constrained, and by
determining the intersections of the remaining 1-dimensional function ∆χ2 ≡ χ2 − χ2

min with
1(9). For the above parameters, this yields in the form +1σ,+3σ

−1σ,−3σ:

a : +0.0003,+0.0009
−0.0003,−0.0009,

b : +0.003,+0.009
−0.003,−0.009,

M : +0.02,+0.05
−0.02,−0.05 · 106 GeV. (5.109)
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Figure 5.4: The diagrams for µ → eγ and µ-e conversion in the Ma-model.

These are the ranges that we will use in the subsequent analysis. Note that in this model, they
are already quite narrow, which is a manifestation of the fact that this model holds a lot of
structure.

5.9.3 Predictions for various LFV-experiments

The most important types of LFV-experiments are rare lepton decays, ei → ejγ, as well as
conversions of a bound muon to an electron for some nucleus N , µN → eN . In a Ma-like
model, the processes of µ → eγ and µ-e conversion are essentially given by the same diagram, cf.
Fig. 5.4, which is in one case simply attached to a nucleus. Accordingly, the decisive quantities
for both types of processes are given by [131] (ij = ei → ejγ/ei-ej-conversion):

σij ≡
−i

2m2(H±)

3∑
k=1

h∗
jkhik

[
(mi + mj)Ia

(
M2

k

m2(H±)

)
+ MkIb

(
M2

k

m2(H±)

)]
, (5.110)

where

Ia(t) =
1

16π2

[
2t2 + 5t − 1
12(t − 1)3

− t2 ln t

2(t − 1)4

]
and Ib(t) =

1
16π2

[
t + 1

2(t − 1)2
− t ln t

(t − 1)3

]
. (5.111)

Using these, the branching ratios are obtained as

Br(ei → ejγ) =
m3

i

8π

|σij |2

Γ(ei → ejνiνj)
and Br(µN → eN) =

π2

25m2
µ

D2
N

ωcapt(N)
|σµe|2. (5.112)

Note that, in the first formula, we have neglected the final state lepton mass. The quantities
DN and ωcapt(N), as well as a general expression for the second formula are given in Ref. [189].

We then use the parameter ranges from Eq. (5.109) to make predictions with Eq. (5.112).
The result is included in Fig. 5.5. Furthermore, we have put in the limits/sensitivities of several
past/future experiments, all listed in Tab. 5.6. A further discussion of the results will be given
in the next section.

5.9.4 Results

We will now discuss how the general conflict between an extended scalar sector and flavour
symmetries looks in our example models.
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Experiment Status Process BR-Limit/Sensitivity
MEGA Past µ → eγ 1.2 · 10−11

MEG Future µ → eγ 1.0 · 10−13

BELLE Past τ → µγ 4.5 · 10−8

Babar Past τ → eγ 1.1 · 10−7

MECO Cancelled µAl → eAl 2.0 · 10−17

SINDRUM II Past µTi → eTi 6.1 · 10−13

PRISM/PRIME Future µTi → eTi 5.0 · 10−19

SINDRUM II Past µAu → eAu 7.0 · 10−13

SINDRUM II Past µPb → ePb 4.6 · 10−11

Table 5.6: Limits on the branching ratios for several past and future LFV-experiments [139].
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Figure 5.5: The numerical results of our analysis for Model 1.

Let us start with Model 1. The numerical results can be seen in Fig. 5.5: On the left panel,
we present the 1σ (black) and 3σ (gray) predictions of Model 1 for the processes µ → eγ,
τ → µγ, and τ → eγ, as well as different present and future bounds from several experiments,
cf. Tab. 5.6. The right panel shows the same for µ-e conversion on the elements Al, Ti, Au, and
Pb.

Model 1 is the prime example that our logic works: As explained in Sec. 5.8.1, there are only
three free parameters in the model. Still, it is able to fit the neutrino data well. Actually, the
only deviations from a perfect fit arise from the very accurate prediction of the mixing angles
(e.g., the experimental best-fit value of θ23 is not exactly maximal; cf. Eq. (5.94) and Tab. 5.5).
The obtained parameter ranges are, however, quite narrow, as can be seen from the example
given in Sec. 5.9.2. This is exactly the point, where the experimental limits on LFV-processes
get really powerful: Due to the stiffness in the model parameter space, the prediction of, e.g.,
the branching ratio µ → eγ is so clear, that only a very narrow window is left for parameter
variations. Accordingly, this model is actually already excluded by the past MEGA experiment
(cf. Fig. 5.5) for all four Higgs scenarios from Eq. (5.106). We want to stress again that these
four scenarios belong to the few regions in parameter space that are indeed consistent with all
the data and constraints mentioned in Sec. 5.6.1. The branching ratios for µ-e conversion are
in general lower, and pass all current constraints. However, in this sector PRISM/PRIME will
provide another future bound that will be able to exclude this model.
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Figure 5.6: The numerical results of our analysis for Model 2.

The remaining question is how far we can stretch this logic for models with less and less
predictivity. As example for that case we can use Model 2, which has seven free parameters to
fit the data (cf. Sec. 5.8.2). This more than doubles the degrees of freedom in the fit.

The numerical results for this model are given in Fig. 5.6. First of all, it may look odd
that here, all 1σ and 3σ regions are somehow narrow, except for τ → µγ. This is simply
because all branching ratios are essentially functions of the product |ab| (where a and b are
model parameters), while the one for τ → µγ is given by the sum of three contributions,
which are proportional to |b|2, |c|2, and |d|2, respectively. This numerical example nicely shows
how more freedom blows up the regions which are predicted by a certain model. Turning this
argumentation around, a certain limit on some observable is weaker the more free parameters
there are that influence the observable in question.

However, even this model with much less predictivity than the one before can be excluded for
some scenarios: Scenario δ has already been excluded by the MEGA-experiment and scenario γ
can be tested by MEG. This shows the strength of our considerations: Even for a model that
has a lot of freedom our logic still applies in suitable settings, which are here given by the
scenarios γ and δ. Actually, even the scenarios α and β are not that far below the future
MEG-bound, and especially a hypothetical future experiment aiming at τ → µγ might be very
suitable to exclude this particular model.

5.10 Radiative transmission of lepton flavour hierarchies

Finally, we also present a natural explanation of the patterns in the flavour sector that can
arise in the framework of the Ma-model, when it is embedded into an LR-symmetry [14], cf.
Secs. 5.3.5 and 5.4.3.

5.10.1 The basics of the model

Our model is based on the left-right (LR) symmetric group [148,149,190–192] SU(2)L×SU(2)R×
U(1)B−L, supplemented by a discrete symmetry Z4. Quarks and leptons are assigned as in the
minimal LR-model to left-right symmetric doublets. The symmetry breaking is implemented
as in the minimal LR model by the Higgs fields Φ(2, 2, 0) and ∆R(1, 3, +2) ⊕ ∆L(3, 1, +2).
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Fields Z4 charge
QR −i
LR +i
Φ +i

Φ̃ ≡ σ2Φ∗σ2 −i
∆R −1

Table 5.7: The non-trivial Z4-charges in the model.

In the leptonic sector, the SU(2)R × U(1)B−L breaking by the right handed triplet with
B − L = 2 gives large Majorana masses to the heavy neutrinos [193]. Unlike in the usual
implementation of the seesaw formula however, the Dirac mass for neutrinos vanishes to all
orders in perturbation theory due to the Z4 symmetry, whose effect on the various fields is
given in the Tab. 5.7. This already points in the direction that the Z4-symmetry plays a similar
role like the Z2 in the pure Ma-model, cf. Sec. 5.7. The other fields are assumed to be singlets
of Z4. The most general potential for the left-right model has been discussed in Ref. [148]. The
presence of the Z4 symmetry in our model forbids, e.g., terms linear in Tr(Φ̃†Φ) for the potential,
so that the minimum energy configuration corresponds to the following special VEV-structure
for the Φ field:

〈Φ〉 =
(

κ 0
0 0

)
. (5.113)

For the ∆L,R fields we have

〈∆0
R〉 =

(
0 0
vR 0

)
, and 〈∆0

L〉 =
(

0 0
0 0

)
. (5.114)

The gauge invariant Yukawa couplings of the above Z4 supplemented LR-model look like

LY = hqqLΦqR + hllLΦ̃lR +
[
f(lTR∆RlR + lTL∆LlL) + h.c.

]
. (5.115)

By an appropriate choice of the basis, we can choose hq,l to be diagonal without loss of generality
in this. It is easy to see that, with the above assignment, we get a zero Dirac neutrino mass mD.
The diagonal Yukawa coupling matrix hl (cf. Eq. (5.81)) is given by hl = diag(me,mµ,mτ )/v.
We also note that there is no type II seesaw [194–197] contribution to the neutrino masses, unlike
in usual left-right models. The minimum of the potential is stable under radiative corrections,
because after symmetry breaking, there is a remnant Z2-symmetry present under which all
fields are even except for η and NR [14]. Hence, below the SU(2)R × U(1)B−L-breaking scale,
the model is a just an effective Ma-model with the correct Z2-assignment, cf. Sec. 5.7.

5.10.2 A seesaw-like formula for Neutrino masses

At tree-level both, neutrino Dirac masses and the down quark masses vanish. As far as neutrinos
are concerned, they pick up just the correct mass from the diagram in Fig. 5.3. We can first
write Eq. (5.82) as

(Mν)ij = hl,iΛijhl,j , (5.116)

where hl = diag(me,mµ,mτ )/v, and Λij is given by Eq. (5.83) with Mk → Mij (in this basis, the
heavy neutrino mass matrix is not diagonal anymore). Under the assumption m2(H0) ¿ M2

k ,
we effectively have

Λij(λ′,MN,ij) '
2

16π2

λ5v
2

Mij
ln

(
M2

N,ij

m2(H0)

)
. (5.117)
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Absorbing ln
(

M2
N,ij

m2(H0)

)
into M−1

N (which can be done without loss of generality) we can write

(Mν)ij =
2λ5

16π2
ml,i

(
M−1

N

)
ij

ml,j . (5.118)

Since we have a rough idea about the form of the neutrino mass matrix in the limit of zero
CP -phase δ and small reactor angle θ13, we can use it to get an idea about the elements of
the RH neutrino mass matrix. It is interesting that all elements of this mass matrix can be
determined.

5.10.3 The mechanism of radiative transmission

A numerical fit of the heavy neutrino mass matrices to current neutrino data is given in Ref. [14].
In both cases, normal and inverted mass hierarchy, there is a strong hierarchy in the heavy
neutrino sector in a way similar to the charged lepton sector. This is what we label as the
radiative transmission of hierarchy from the charged leptons to the heavy neutrinos (or vice
versa). Note that this mechanism, given a certain form of MN (with small mixings), naturally
allows for large mixing angles in the SM lepton sector, that are not necessarily maximal. This
is different from many other models, where in most cases only zero or maximal mixing is
predicted.10

To see analytically why this happens, let us try to reconstruct MN from the tri-bimaximal
form for the PMNS-matrix [173,174],

UPMNS =


√

2
3

1√
3

0
− 1√

6
1√
3

− 1√
2

− 1√
6

1√
3

1√
2

 . (5.119)

Using this and Eq. (5.118), we can write down MN as function of λ5 and of the light neutrino
mass eigenvalues m1,2,3. It is given by λ5

4π2·6m1m2m3
times 2(m1 + 2m2)m3m

2
e 2(m1 − m2)m3memµ 2(m1 − m2)m3memτ

2(m1 − m2)m3memµ (3m1m2 + m2m3 + 2m1m3)m2
µ (−3m1m2 + m2m3 + 2m1m3)mµmτ

2(m1 − m2)m3memτ (−3m1m2 + m2m3 + 2m1m3)mµmτ (3m1m2 + m2m3 + 2m1m3)m2
τ

 .

(5.120)
If we assume normal (m1 = p2m0, m2 = pm0, and m3 = m0, with small p) or inverted hierarchy
(m1 = m0, m2 = m0, and m3 = pm0), the corresponding matrices will roughly look like

(MN )NH =
λ5

24π2p2m0

 4m2
e −2memµ −2memτ

−2memµ m2
µ mµmτ

−2memτ mµmτ m2
τ

 (5.121)

and

(MN )IH =
λ5

8π2pm0

2pm2
e 0 0

0 m2
µ −mµmτ

0 −mµmτ m2
τ

 . (5.122)

Note that the reconstruction of the matrices from Eqs. (5.121) and (5.122) has led us to heavy
neutrino mass matrices which are hierarchical and stiff. Furthermore, the µ-τ symmetry [167]

10Note however, that there are also exceptions to this: E.g., the size of the mixing angle could be determined
by underlying discrete symmetries [198], or it could arise from an anarchical pattern of the neutrino mass
matrix [199].
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from Eq. (5.120) translates into a pattern in the lower right 2 × 2-part of MN . In all cases,
having a light neutrino mass close to zero (p → 0 in Eqs. (5.121) and (5.122)) can only increase
this hierarchy, but not destroy it. Especially in Eq. (5.122) the 11-entry is fixed, which means
that we will generically have one fixed heavy neutrino mass that is not too large. A similar
situation happens for the quasi-degenerate case.

These mass matrices for the heavy neutrinos have a structure that is easily obtainable
from the Froggat-Nielsen (FN) mechanism [200], by a U(1)H flavour symmetry with H charges
(0, 1, 2) for the third, second, and first generation right-handed lepton doublets. The LR- and
U(1)H -invariant Yukawa couplings in this case can be written as:

LY,H = hl
3l3,LΦ̃l3,R+hl

2l2,LΦ̃l2,R
σ

M
+hl

1l1,LΦ̃l1,R

( σ

M

)2
+

 ∑
a,b=1,2,3

fabl
T
a,R∆̃lb,R

( σ

M

)6−(a+b)
+ h.c.

 .

(5.123)
For an appropriate choice of <σ>

M (roughly 1/20 in the NH-case), we get the desired hierarchy in
both, the charged lepton masses as well as in the right-handed neutrino sector. This hierarchy
then translates into a structure of the light neutrino mass matrix that naturally yields large
mixing angles, although no values are excluded a priori.

The first results for this new model seem to be an encouraging, and it will be exiting to
see if it survives further testing. In any case, it will be a nice playground for models that can
predict flavour structure without invoking discrete flavour symmetries.
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Chapter 6

Conclusions

In this thesis, some of the mysterious phenomena of the leptonic sector of the Standard Model
of Elementary Particle Physics have been discussed. In the course of the text, we have treated
unexplained measurements as well as New Physics.

After giving a brief review of the Standard Model in Chapter 2, we have started in Chapter 3
by discussing a phenomenon that is still unexplained, namely the measurement of a seemingly
modulated decay law in Electron Capture decays of different highly charged ions. We have
shown that, contrary to first claims, this phenomenon cannot be related to standard neutrino
oscillations. This has been argued for using several different pictures and languages, which all
led us to the same conclusion. The remaining possibility to cause such a result are Quantum
Beats that arise from a splitting in the initial state. This possibility has its problems, too, but
is up to now one of the very few viable attempts for an explanation.

Starting with Chapter 4 we have turned our focus to New Physics beyond the Standard
Model. The first topic that has been discussed is the possible Majorana nature of the neutrino,
which means that the neutrino might be identical to its anti-particle. If this is the case, rare
decays like neutrino-less double beta decay will occur unless very unfortunate values of the
parameters involved are present. After discussing the interplay of future measurements of
such processes with other experiments that will yield information on the neutrino mass, we
have performed a detailed calculation of one particular alternative double beta process, namely
radiative double Electron Capture. This process can occur via the emission of one or more
photons, and it is not a priori clear which mode is dominant. We have performed the calculation
of both modes in the same framework to be able to compare the results. It turns out that in some
cases the two-photon mode can indeed be favored, or at least be comparable to the emission of
one single photon. We have shown this for isotopes with a relatively small Q-value, using an
approximation for the two-photon case whose viability we have tested in the calculation of the
one-photon mode.

In Chapter 5, we have discussed another phenomenon which generically occurs in theories
beyond the Standard Model, namely the violation of lepton flavour. Since there is no deeper
reason for lepton flavour to be a conserved quantum number, it is violated in many extensions
of the Standard Model. We have first systematically investigated which criteria have to be
fulfilled in order for lepton flavour to be conserved or violated. Indeed, one can reduce models,
which seem to be relatively complicated from the first sight, to their essentials so that it is very
easy to see if lepton flavour violation can occur in the respective model, or not. We have later
on turned this logic around and have investigated how well models that have an explanation
for patterns that occur in the flavour sector can be constrained by lepton flavour violations
experiments. It turns out that models with an extended scalar sector very generically crash
with phenomenology, once some structure is introduced (e.g., by discrete flavour symmetries),
while they can easily pass all experimental bounds without this additional structure. We have
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also shortly discussed a new mechanism that could explain such patterns.
Summing up, we have investigated three of the countless mysteries of the leptonic sector of

particle physics. It is clear that, in spite of apparent successes of our theories, we still lack an
understanding of many aspects of the elementary particles in Nature. Hopefully this thesis can
at least contribute a bit to attack these questions and can be a small one of the many building
blocks which are required to manufacture our immense “building” – understanding “what the
world contains, In its innermost heart and finer veins”.
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List of Abbreviations

0νββ = Neutrino-less double beta decay
BSM = Physics beyond the Standard Model
CKM = Cabibbo-Kobayashi-Maskawa

EC = Electron Capture
ECEC = Double Electron Capture

ESR = Experimental Storage Ring
FCNCs = Flavour Changing Neutral Currents

FN = Froggat-Nielsen mechanism
FRS = Fragment Separator
GIM = Glashow-Iliopoulos-Maiani mechanism
GSI = GSI Helmholtzzentrum für Schwerionenforschung

HDM = Heidelberg-Moscow experiment
IH/IH = Inverted Hierarchy
INT = Intermediate

KK = Kaluza-Klein
LFV = Lepton Flavour Violation
LHC = Large Hadron Collider
LR = Left-right symmetric

MSSM = Minimal Supersymmetric Standard Model
mSUGRA = Minimal Supergravity

NH = Normal Hierarchy
NME = Nuclear Matrix Element

PMNS = Pontecorvo-Maki-Nagakawa-Sakata
QBs = Quantum Beats
QD = Quasi-degenerate
QM = Quantum Mechanics

QFT = Quantum Field Theory
SM = Standard Model

SUSY = Supersymmetry
THDM = Two Higgs Doublet Model
UEDs = Universal Extra Dimensions
VEV = Vacuum Expectation Value

Summary of the general conditions for the absence of LFV

A summary of the general conditions necessary for the absence of lepton flavour violation is
given in the subsequent table.
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