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...Zuerst entwickeln sich majestitisch die Variationen der Geschwindigkeiten,
dann setzen von der einen Seite die Zustands-Gleichungen, von der anderen
die Gleichungen der Centralbewegung ein, immer hoher wogt das Chaos der
Formeln; plotzlich ertonen die vier Worte: “Put n = 5.7 Der bose Ddmon V/
verschwindet, wie in der Musik eine wilde, bisher alles unterwiihlende Figur
der Bisse plotzlich verstummt; wie mit einem Zauberschlage ordnet sich, was
frither unbezwingbar schien...

(Ludwig Boltzmann, 1887)



Aspekte der Leptogenese bei endlichen Dichten

Leptogenese ist ein Modell zur dynamischen Erkldrung der Materie-Antimaterie Asymmetrie.
Dieser Prozess findet im frithen Universum bei hohen Temperaturen statt und eine Abweichung
vom Gleichgewicht ist fundamentale Voraussetzung fiir die Erzeugung der Asymmetrie. Die
Beschreibung dieses Prozesses basiert auf klassischen Boltzmann Gleichungen (BGn). Diese wur-
den durch die Verwendung thermaler Propagatoren verfeinert. In Anbetracht der grundlegenden
Beschrinkungen dieser Gleichungen erscheint es wiinschenswert einen systematischen Ansatz zu
entwickeln der auf Nicht-Gleichgewichts QFT beruht. In dieser Arbeit werden modifizierte BGn
verwendet die aus ersten Prinzipien innerhalb des Kadanoff-Baym Formalismus hergeleitet wer-
den. Dies wird fiir ein einfaches Toy-Modell durchgefiihrt welches ausreichend komplex ist um
populdre Szenarien wie das der thermalen Leptogenese in Analogie untersuchen zu kdnnen. Dieser
Ansatz legt die Struktur der korrigierten BGn offen und fiihrt zu einem neuen Ergebnis fiir die
thermalen Beitrige zum CP-verletzenden Parameter, sodass die géngige Form iiberdacht werden
muss. Es stellt sich heraus, dass die verschiedenen Ansétze in Einklang gebracht werden konnen.
Die neuen Ergebnisse sagen eine Verstiarkung der Asymmetrie vorher. Die Grosse der Korrekturen
innerhalb des Toy-Modells wird durch numerische Losung der vollen BGn bestimmt.

Finite Density Aspects of Leptogenesis

Leptogenesis is a model for the dynamical generation of the matter-antimatter asymmetry. This
process takes place in the early universe at very high temperatures and a deviation from equilib-
rium is a fundamental requirement for the formation of the asymmetry. The equations used for its
description originate from classical Boltzmann equations (BEs), which were refined using ther-
mal propagators. In view of the basic restrictions of BEs, it is desirable to develop a systematic
approach which uses non-equilibrium QFT as starting point. In this thesis modified BEs are used
which are derived from first principles in the Kadanoff-Baym formalism. This is done for a simple
toy model which is sufficiently intricate to study popular scenarios such as thermal leptogenesis
in analogy to the phenomenological theory. This approach uncovers the structure of the corrected
BEs and leads to a new result for the form of the thermal contributions to the CP-violating param-
eter, so that the established one must be reconsidered. It turns out that the different approaches
can be reconciled. The new form predicts an enhancement of the asymmetry. The quantitative
implications of the medium corrections within the toy model are studied numerically in terms of
the full BEs.
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Chapter 1

Introduction

1.1 Overview

While the standard model of particle physics combined with the big-bang theory for the forma-
tion of the universe predicts an approximate symmetry between matter and antimatter, the latter is
almost completely absent on earth and in the solar system. The obvious conclusion that the uni-
verse is baryonically asymmetric is confirmed by experimental data on the abundances of the light
elements predicted by primordial nucleosynthesis [5—7] and precise measurements of the cosmic
microwave background anisotropies [8, 9] by the WMARP satellite experiment. As it is somewhat
unsatisfactory and insufficient to assume that this asymmetry comes as an initial condition of the
universe, many possible mechanisms have been proposed to generate the asymmetry in a dynamic
way. It has been shown that this possibility exists if three conditions are met. Two of these directly
address extensions of the standard model and since 1967, when Sakharov found these require-
ments [10], numerous possible scenarios have been invented which can rather satisfactorily fulfill
them. Some of these became disfavoured or were ruled out later.

A viable class of models which has attracted a lot of attention in recent years is known as leptoge-
nesis [11]. Here the asymmetry is initially produced in the lepton sector and (partially) converted
to the baryon sector subsequently [12, 13]. The success of this scenario is partly due to the fact
that the required extension of the standard model, through the implementation of Majorana mass
terms, is relatively moderate and tightly linked to a favored mechanism for the generation of the
neutrino masses. Another advantage is that a non-vanishing B — L asymmetry is produced which
survives the conversion process to baryons, in contrast to a B and L asymmetry with B — L = 0.
Many aspects of leptogenesis have been extensively investigated. In particular, it has been studied
in the context of supersymmetry and it has been shown that the CP-violating parameter and the
efficiency of leptogenesis are affected by the flavor structure of the neutrino Yukawa couplings
[14-20]. It has also been shown that the creation of the asymmetry may be resonantly enhanced if
the Majorana neutrino masses are quasi-degenerate [21-24].

Comparatively few progress has been made towards a better understanding of the underlying ki-
netic equations which are needed to implement the third Sakharov condition, namely the necessity
of a deviation from thermal equilibrium. In most of the models it is realized with help of a standard
out-of-equilibrium decay scenario. This scenario is based on the fact that, because of the rapid ex-
pansion of the universe, a relatively weakly interacting massive particle species (heavy Majorana
neutrinos in the case of leptogenesis) may fail to follow its equilibrium abundance while it decays.

7
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This process takes place at high temperatures which approximately correspond to the mass of the
heavy Majorana neutrinos, in the simplest case of thermal leptogenesis above 7' 2> 10° GeV. In
practice, the detailed time evolution of the abundances of the different species in this scenario is
investigated by solving rate equations, as in many cases in cosmology. These phenomenological
equations are usually constructed from generalized Boltzmann equations [25-29] in a bottom-up
approach. This means that the standard form of the Boltzmann equation, with amplitudes com-
puted from perturbation theory in the usual in-out formalism in vacuum, is used as starting point.
In the case of leptogenesis and baryogenesis one then needs to correct these by subtracting real
intermediate states by hand in order to obtain consistent equations.

The Boltzmann equation, as a central equation of kinetic theory, describes the time evolution of
the one-particle distribution function (i.e. the density distribution in the one-particle phase space).
The equations, obtained in this bottom-up approach, are then integrated yielding simple differen-
tial equations for the abundances. From this derivation of the rate equations it is clear that they
describe non-equilibrium physics only in the sense of chemical non-equilibrium and that the quan-
tum effects described by the quantum statistical terms in the Boltzmann equation are not accounted
for. But even when the (full) Boltzmann equations are solved directly one is faced with the fun-
damental problem that these are classical equations from the point of view of non-equilibrium
quantum field theory, as their subject are one-particle distribution functions, which are classical
objects from this viewpoint. The notion of particles is manifest in the definition of the distribution
function and in the explicit (or implicit, in the classical form) kinematics of particle collisions,
which was the Boltzmann equation’s inventors great achievement. The particle concept, however,
is not necessarily applicable in the case of early universe cosmology. Being a phenomenological
equation in the beginning, today derivations from basic principles are known, in some cases at
least. In other cases, such as the case where quantum statistical factors are included, the deriva-
tion is subject to active research [30, 31]. The assumption of low density (long mean free path-
length as compared to the intrinsic interaction length) and absence of initial correlations (between
the colliding particles) represent integral parts in established approaches, in this form or another.
However, the early universe at the energy scales of leptogenesis consists of a dense and hot plasma
in which case these assumptions may be wrong. In order to find out how reliable the generalized
Boltzmann kinetic equations are in this case, a thorough quantum field theoretic description in a
top-down approach is desirable.

A suitable first-principle approach can be found in the Schwinger—Keldysh/Kadanoff-Baym for-
malism. Kadanoff-Baym equations [32] may be seen as quantum field theoretical analogues of
Boltzmann equations. They can be used, in principle, to overcome the indicated problems as they
describe the evolution of spectral functions and statistical propagators which are quantum field the-
oretical objects. Existing numerical results for simple systems far from thermal equilibrium indi-
cate that Kadanoff-Baym and Boltzmann equations may lead to different results [33—38]. With re-
spect to leptogenesis, implications of this approach have been studied at different levels of approx-
imation and lead to qualitatively new results [39, 40]. However, issues related to the rapid expan-
sion of the universe, which drives the required deviation from thermal equilibrium, have not been
addressed there. On the other hand, modifications of the Kadanoff-Baym formalism in curved
space-time within simple models have been considered in [41-44] but models with CP-violation
have not been studied in this context. Some aspects of leptogenesis have been investigated within
this framework at different levels of approximation in Minkowski space [23, 24, 39, 40, 45]. As
the expansion of the universe is the driving force for the deviation from equilibrium, it is desirable
to develop a consistent description of leptogenesis in this top-down approach.
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Although Boltzmann equations are meant to describe systems of dilute classical gasses and cannot
take into account certain effects for principle reasons, they have been applied successfully to a
wide variety of physical problems (in modified or reduced form mainly). In the case of cosmology
spatial homogeneity and isotropy in momentum space can be exploited to reduce the number of
variables and integrals in order to make it accessible to numerical methods. This seems signifi-
cantly harder (to the required accuracy) in the case of Kadanoff-Baym equations. The approach
of the present work is therefore to use quantum corrected Boltzmann equations which include
contributions accounting for the finite density of the background plasma. These are derived (in
a mathematical non-rigorous way) using the Kadanoff-Baym formalism as starting point. In this
approach the structure of the Boltzmann equations itself can be derived by applying a number of
systematic approximations. In principle this allows to check the applicability of the particle pic-
ture associated with the definition of the distribution functions. Since it is a rather ambitious goal
to study a phenomenological theory in the top-down approach, we focus here on a simple scalar
Yukawa model which involves only two real and one complex scalar fields. These mimic the
heavy right-handed Majorana neutrinos and leptons respectively. While we use it here to describe
leptogenesis it can also be matched with other models for baryogenesis, in which the asymme-
try is produced in the out-of-equilibrium decay of some heavy species in which the CP-violation
enters due to the interference of tree-level amplitudes and vertex and self-energy loop contribu-
tions. Despite the simplicity of this toy model its inspection helps to clarify the structure of the
quantum corrected Boltzmann equations in presence of the quantum statistical terms and of the
medium corrections to the CP-violating parameter. These results have been published recently in
the research papers [3, 4]. Here, we focus on the case of hierarchical Majorana neutrino masses.
While the usefulness of the particle picture is doubtful in different cases (and hence the usage
of Boltzmann-like equations) the top-down approach then leads to quantum corrected Boltzmann
equations which give immediately consistent results in equilibrium and include medium contribu-
tions.

Previous attempts to obtain such results for leptogenesis where mainly based on the bottom-up
approach supplemented by finite-temperature field theory [46, 47]. In this ansatz the Boltzmann
equations are employed in their usual form while the (CP-violating) transition amplitudes are
computed based on thermal propagators. This means that the fields propagating in the loops,
contributing to the amplitudes, feel the presence of the background plasma. Putting both ingredi-
ents together one obtains corrected Boltzmann equations which include additional terms involving
medium contributions in the transition probabilities but the quantum statistical terms cannot be
included consistently. Also other thermal effects, such as thermal masses and renormalized cou-
plings have been taken into account in this approach. It turns out that the corrected Boltzmann
equations obtained in this way are in contradiction with the ones derived in the top-down ap-
proach. By analogy, this result applies to the equations for the phenomenological scenario as well.
We will show that the discrepancy is due to an ambiguity in the real-time-formalism of thermal
quantum field theory and that it can be reconciled with the findings based on the top-down ap-
proach if one uses so-called causal products for the computation of the CP-violating amplitudes.
This is an important result, especially, because the established formulas give a zero contribution
(in the ultra-relativistic limit). This is qualitatively different for the new result, which leads to
an enhancement of the asymmetry in the decay of the Majorana neutrinos in phenomenological
scenarios.

In order to motivate our efforts we have a glimpse on the most simple scenario of thermal leptoge-
nesis in the case of hierarchical neutrino masses in this chapter. To set up the model and to see the
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similarity to the scenario of thermal leptogenesis we investigate the toy model in the conventional
bottom-up approach in chapter 2. The top-down derivation of the quantum corrected Boltzmann
equations within this model is presented in chapter 3. In chapter 4 we reconsider the bottom-up
derivation in the framework of thermal quantum field theory in order to settle the apparent conflict.
A numerical method for the solution of the Boltzmann equations is then outlined followed by the
presentation of the results within the toy model in chapter 5. We conclude in chapter 6.

Throughout this work we use natural units where 7 = ¢ = k = 1 which implies that [energy] =
[mass] = [temperature] = [length] ! = [time] .

In this system we have 1 GeV =~ (2.0 x 107 cem)~! ~ (6.6 x 1072%s) 7! ~ 1.2 x 1013K, and
G= m;lz, where G is Newtons constant and m,; ~ 1.2 x 10! GeV denotes the Planck mass.

10
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1.2 General considerations

Evidence for the baryon asymmetry

Experimental evidence for the existence of the baryon asymmetry comes from various experi-
ments. Cosmic rays exhibit an admixture of anti-protons at the level of only ~ 10~ (recent data
from the PAMELA experiment are shown in fig. 1.1). But even this small fraction can be explained

0.4
---------- Donato 2001 (D, ¢=500MV)

----- Simon 1998 (LBM, ¢=500MV)
Ptuskin 2006 (PD, g=550MV)

0.35
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Figure 1.1: PAMELA measurement of the antiproton-to-proton flux ratio [48]. The solid
lines represent various theoretical models for purely secondary production. The data is con-
sistent with other contemporary measurements.

by secondary processes such as p+p — 3p-+p, induced by high-energetic particles colliding with
interstellar matter. Also from the absence of annihilation products (i.e. y-radiation) it can be con-
cluded that our galaxy contains almost no (baryonic) antimatter and a possible separation on large
scales can be excluded on theoretical grounds [49]. A rough value for the baryon to photon ratio
can therefore be obtained by comparison of the abundance of (luminous) baryonic matter to the
number density of photons in the cosmic microwave background (CMB) ng/n. ~ 10719,

Primordial nucleosynthesis or big-bang nucleosynthesis (BBN) [6, 7] which predicts, rather suc-
cessfully, the abundance of the light elements D, *He, “He and "Li takes place at 7' ~ 0.1 MeV.
The predicted relative abundances of the generated elements depend crucially on the baryon to
photon ratio and the comparison with experimental measurements can therefore be used to esti-
mate the baryon to photon ratio.

The CMB, which is Planck distributed to a very good approximation, exhibits small deviations
from perfect isotropy at a level of ~ 1075, These anisotropies reflect acoustic oscillations in the
primordial plasma at the time of photon decoupling at T' ~ 0.1 eV. They have been measured with
high accuracy by the WMAP satellite experiment. The predictions for the angular power spectrum
of the CMB do also depend on the baryon abundance. The comparison of theory and experiment
leads currently to the best values for the baryon to photon ratio [50]:

np =218 LB _ g 11610197 19710 (1.1)

Ny Ty

It is compatible with the BBN value. The significance of this number is owed to the fact that,

11



1.2. General considerations Chapter 1. Introduction

once the process of its generation is finished, it stays approximately constant during the further
evolution of the universe.

At temperatures 7' < 1 GeV processes of the kind p + p <+ v +  proceed only in the forward
direction, because, on average, the photons lack the energy to produce the massive nucleons. At
this temperature the baryon to photon ratio would have dropped to a value of 3 ~ 1078, if the
baryons would still have been in thermal equilibrium at this time. Therefore, a baryon asymmetry
must be present at temperatures well above 1 GeV so that the annihilation remains incomplete. The
goal of all baryogenesis and leptogenesis theories is to explain the observed value of the baryon
asymmetry of the universe eqn. (1.1) in a dynamic way.

The Sakharov conditions

Sakharov realized that a baryon asymmetry could be produced dynamically in the evolution of the
universe if three conditions are satisfied:

e Baryon number violation
e C and CP-violation

o Departure from thermal equilibrium [of the relevant B, C and CP-violating processes]

It is well known that the standard model, in principle, includes all ingredients to satisfy the first
two conditions. Firstly, there are ("t Hooft 1976) non-perturbative properties that can give rise to
so called sphaleron processes which violate B+ L (but conserve B — L) [13, 54]. These processes
are suppressed today by the Boltzmann factor

(1.2)

E T
Fsphaleron(T) X T_3 €Xp <_Spha];:0n()> )

but at sufficiently high temperatures (above the electroweak phase transition 100GeV < T <
10'2 GeV) the sphalerons can be in thermal equilibrium.

Secondly, in the standard model C is maximally broken by the weak interaction. CP-violation has
first been observed in 1964 in the K — K system. It also shows up in the more recent B — B°
experiments at BaBaR and BELLE.

This thesis is concerned mainly with the third Sakharov condition. It is easy to see that it is a
direct consequence of CPT invariance [55]. Writing 6 for the CPT conjugation operator and p for
the density matrix p(t) = e #OH (") with Hamiltonian H, then

(B)p = Tr(e P B) = Tr(§~0e=P1 B)
= Tr(0e PH BO™1) = Tr(fePH0710BO) = Tr(e PH (- B))
=—(B)r - (1.3)

Here we exploited the fact that § and H commute, when CPT is preserved and that CP transfers
baryons into anti-baryons.

In the standard model the asymmetry (leading to the effects observed in the K and B systems) is
generated by the non-zero Jarlskog invariant which depends on the CP-violating complex phase
in the CKM-matrix. This CP asymmetry is unfortunately much too small in order to account for

See [51]; Independently Wadim Kuzmin (1970).
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1.3. Thermal leptogenesis Chapter 1. Introduction

the observed baryon asymmetry. Many successful scenarios for baryogenesis share the property
that the asymmetry is generated by the CP-violating out-of-equilibrium decay of some speculative
heavy state. Thereby the CP-violation is typically generated by the one-loop diagrams contributing
to this process.

Moreover, typical reaction rates for annihilation or decay are at least of order o> M (« is the
coupling constant). Particles with a mass M 2 1TeV which are charged under the standard model
gauge group have rates which are much larger than the expansion rate at temperatures of order of
their mass. Any model which intends to generate np at this temperature should therefore involve
particles without standard model gauge interactions (there may be exceptions to this rule where
the deviation from equilibrium is realized in a different way). In order to satisfy this constraint
one usually reverts to extended theories. However, it is not difficult to find viable models which
can successfully describe baryogenesis. This statement is supported by the existence of a large
number of different phenomenological scenarios. Many of these models are very involved. As
we are interested mainly in the proper description of the out-of-equilibrium scenario we seek a
model which is as simple as possible but sufficiently complex to describe the the phenomenon of
baryogenesis properly. The toy model which we employ for this purpose is a scalar Yukawa theory
which works for the description of the generation of the asymmetry if one formally assigns baryon
or lepton number to the fields. As the model does not include any physical particles which could
be matched directly with observations in laboratories, the motivation for its use will be mainly by
analogy to existing scenarios. Therefore, before we focus on this toy model, we will now briefly
discuss the scenario of thermal leptogenesis which can serve as a prototype for the kind of scenario
described above. In this case only a minimal extension of the standard model is required, which at
the same time addresses the issue of neutrino masses in an elegant way. The crucial properties of
this model will be found again in the toy model later.

1.3 Thermal leptogenesis

In this section we discuss the basic scenario of thermal leptogenesis [11, 15, 56] with hierarchical
heavy Majorana neutrino masses and its prerequisites in some more detail. Because of its sim-
plicity it can serve as a prototype for a model which can be matched with the toy model to be
discussed later. The basic idea of leptogenesis is that first a lepton asymmetry is created which is
subsequently converted (partially) into a baryon asymmetry. This conversion between lepton and
baryon number is accomplished by sphaleron processes which are assumed to be in equilibrium
above the electroweak phase transition. It is important that effectively leptogenesis creates a B — L
asymmetry which cannot be washed out by sphalerons.

Majorana neutrinos and the see-saw mechanism

In order to explain the phenomenon of neutrino oscillations one needs to add neutrino mass terms
to the standard model (SM). Within this model the masses of the charged quarks and leptons arise
from Yukawa couplings of the form

Ly = —holrlr + h.c., (1.4)

where /1, {r and ¢ denote the left-handed lepton, right-handed lepton and Higgs fields respec-
tively. All charged fermion masses, generated in this way, are within a range of roughly two orders
of magnitude, but the masses of the neutrinos are smaller by several orders of magnitude. Stated
differently, the coupling constant for such a Yukawa term would be h ~ my/{#), «~ 1074 for

13



1.3. Thermal leptogenesis Chapter 1. Introduction

a neutrino of mass m, =~ 0.01 eV, whereas the Yukawa coupling for the electron is h, «~ 1076,
Of course, it would seem natural to assume that these are of approximately the same order. In
principle one could account for neutrino masses by simply adding such Dirac mass terms for the
neutrinos (including adequate right-handed singlet fields) to the standard model lagrangian [58].
However this would leave the puzzle of the existence of different mass hierarchies within the
standard model unresolved.

A popular way to circumvent this unattractive scenario is the so called see-saw mechanism.” In
contrast to Dirac mass terms a Majorana mass term is constructed out of right-handed fields alone
(such terms are possible for standard model singlet fields only):

Mp—o
Lty = —TR(NR)CNR + hec. (1.5)

R

A general neutrino mass term can be written in the form:

L = _% (WW) < 0 mp ) ( (]V\?; > +he. (1.6)

mp Mg

One then assumes that mp > mp. Upon diagonalization of the mass matrix one finds two mass
eigenvalues

me~ "D N~ Mg (1.7)

Hence the see-saw mechanism explains the smallness of light neutrino masses by means of the
large mass of the heavy Majorana neutrinos.® Here we assumed, for the moment, that there is only
one generation of neutrinos. Usually mp and Mg are matrices and the see-saw mechanism results
in three light and three heavy Majorana neutrinos. The latter are ideal candidates for the heavy
states required for the out-of-equilibrium decay scenario in baryogenesis.

While the elegance of the see-saw mechanism as a theoretical concept is usually taken as a strong
hint for its existence, it is unclear today whether neutrinos are Majorana particles or not. A di-
rect proof for the Majorana character would be the observation of neutrinoless double beta decay
Nuc — Nuc’ 4 2e~. However, current experimental results are not considered to give concluding
evidence for this process.

To describe thermal leptogenesis we begin with the SM extended by 3 right-handed neutrino
fields:*

1—
§(NRi)CMRiNRi + h.c., (1.8)
where ¢ = 1,2,3 and flavor indices have been suppressed. Spontaneous symmetry breaking
generates the Dirac masses

L= Lsy + iNim’yuaﬂNRi - thNRz(i) —

mp = hv, (1.9)

with vev v ~ 246 GeV. The model predicts three heavy Majorana neutrinos with masses M;
which explain the small masses of the light neutrinos by virtue of the see-saw mechanism. Via the

"Here, in the context of thermal leptogenesis, we use this term for the so called type-I see-saw mechanism. There
exist similar mechanisms (type-II and type-III) which can also be used to explain the mass-hierarchy and leptogenesis
is possible in these cases as well.

3The Majorana neutrinos, in turn, can be naturally considered as parts of unified theories at high energies.

*®, 41, and Ng denote the SM SU (2) . Higgs-doublet, the SU(2) . lepton doublet and the right-handed SU(2) 1, x
U(1)y singlet neutrino fields respectively. h denotes the corresponding Yukawa couplings.
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1.3. Thermal leptogenesis Chapter 1. Introduction

Yukawa interactions the heavy Majorana neutrinos can decay into lepton-Higgs pairs:
N; — b, N;— 1. (1.10)

These decays obviously violate lepton number and we shall shortly see that they violate CP as
well. The relevant temperature scale for this process is 17" ~ M;. For simplicity we assume here
hierarchical Majorana neutrino masses M; < My, M3 which means that any lepton asymmetry
possibly produced by N»2 and N3 decays is washed out by processes involving /N1 (which can also
proceed in the opposite direction if 7" 2 M) and that the final asymmetry eventually is created
by the out-of-equilibrium decay of N7 (/N7 dominated scenario).

CP-violating parameter

The CP asymmetry in the decay of IV; is caused by interference between the tree level and the
one-loop diagrams [11, 20, 59] in figure 1.2 which contribute to the CP-violating parameter e;
which is defined as

Tnto—Tr s
Nizto =~ Nilo (1.11)

€ = ,
’ I'ny—ep + ]'_‘Nz'"&i;

where I'y, ¢4 includes a sum over flavour indices: T'y, ¢y = > o I'Ni—t,6. If we write the

o ;LY v,
// | N //
——— e I N; 4 -
N; \ NSy N N'\
7 [3 K3 J
¢ ¢ ) / ¢

Figure 1.2: Tree level and one-loop contributions to the heavy Majorana neutrino decay
N; — {¢. The asymmetry, at lowest order, is due to the interference of these contributions.

amplitudes (up to one-loop level) as My, .z = goAo + g1.A1 and My 75 = g5 Ao + g1 Ax,
where go.Ap and g1.A; are the tree-level and one-loop level contributions, respectively, and go, g1
represent the products of all coupling constants in these diagrams, we find that we can write the
CP-violating parameter as (neglecting higher orders in the couplings)

= 9040 + g1 A1” — |gsAo + gf AL _2%{9391}%{A3A1}
l90Ao + g1 A1 |* + |gi Ao + g A l90[” | Aol

(1.12)

We see that, in order to have a non-vanishing CP-violation both gjg¢; and Aj.A;, need to have
non-vanishing imaginary parts. In particular, this implies that CP-violation can only appear if we
include at least the loop level contributions (A4; # 0) and that graphs such as the one-loop graphs
in fig. 1.2 with j = 7 do not contribute to ¢;. For the latter the product g;g; is real. This means
that at least two heavy Majorana neutrinos are needed.

In the present case one finds from the diagrams in fig. 1.2:

5 o{omz} (M;>

T Ter 2 (W \r? (1.13)
where
_2 1+ 2—x 1
f(m>_3ﬁ[<1+x>1n( : )_1_36} = (1.14)
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1.3. Thermal leptogenesis Chapter 1. Introduction

Therefore, using M < M, M3, we have:

5 s {(ntny3; } M

T — . 1.15
167 (hTh)ll Mj ( )

This means that the order of magnitude of ¢; is given by the mass hierarchy of the heavy Majorana
neutrinos. A rough estimate for €; is given by ¢ ~ 0.1 M; /My 3 ~ 1075, In addition to the
Majorana neutrino decays there are many different L-violating scattering processes which we do
not consider here explicitly but which can give significant contributions which might even exceed
the ones by the decays. At least the process £¢ < £¢ needs to be taken into account to overcome
the so-called “double counting problem”, as we will see later in the framework of the toy model.

Rate equations

The simple scenario of thermal leptogenesis with hierarchical neutrino masses is usually treated
by solving a set of two phenomenological rate equations for the heavy neutrino abundance Ny, =
nn, /s and the B — L asymmetry Np_1, = np_r/s [57, 60]:

AN .
d;Vl = —(D+ S)(Ny, = N3, (1.16a)

dNp_ .
di L = e(D+8)(Ny, — N§&) — W Np_p, (1.16b)

where x = M7 /T. The implications of these equations can be understood rather intuitively. De-
cay and inverse decay processes (N « l¢ and N; < lo), represented by their relative rate
D =Tp/(Hz), and AL = 1 scattering processes, represented by S = I's/(Hz), lead to the
creation of an asymmetry via the first term of the second equation if there is an excess of /V; rela-
tive to its (x dependent) equilibrium value. The second “washout” term (inverse decays, AL = 1
and AL = 2 scattering processes) in this equation competes with the first one and diminishes the
asymmetry (including any preexisting asymmetry at high temperatures ' > M7). Decay and scat-
tering processes, on the other hand, try to keep the Majorana neutrinos close to their equilibrium
abundance via their contributions to the first equation. By doing so they can remove the basis for
the generation of an asymmetry via the second equation if their relative rate is large enough. These
competing processes set the condition I' ~ H for the onset of leptogenesis. Approximately this
condition is fulfilled when the temperature drops below the mass of the lightest neutrino T ~ M;
and the inverse decay to N7 becomes suppressed. Equation (1.16) does not include spectator pro-
cesses, such as the sphalerons, which can influence the generated asymmetry indirectly. In the
strong washout regime the scattering terms S can be neglected relative to D. Equations (1.16) can
approximately be solved analytically in limiting cases. In general this has to be done numerically.
The result for typical parameters is depicted in fig. 1.3.
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0.1 1 10
z=MT

Figure 1.3: Starting from zero initial abundance, Ny, approaches its equilibrium value N]e\,q1 .
At the same time a significant B — L asymmetry is produced, because the zero initial abun-
dance represents an extreme non-equilibrium situation. As soon as Ny, reaches its equilib-
rium value the B — L asymmetry is washed out again. Finally, due to the rapid expansion,
the Majorana neutrinos undergo out-of-equilibrium decays and the final asymmetry comes
into existence. The parameters are: M; = 1019 GeV, ¢, = 1075, effective neutrino mass
1y = 1073 eV and absolute neutrino mass scale 7 = 0.05eV. This figure has been taken
from [57].

Very roughly the generated final asymmetry can be parametrized as Np_;, = Kye1/g«, Where
g« ~ 106.75 is the effective number of relativistic degrees of freedom and the efficiency factor
ky < 1 takes into account washout factors and needs to be determined by the solution of the rate
equations.

In order to find out, how large the final B asymmetry produced by sphaleron processes out of
the B — L asymmetry will be, one assumes that the involved leptons, quarks and Higgs particles
interact rapidly enough via Yukawa, gauge and sphaleron processes to maintain thermal equilib-
rium. This yields relations between the chemical potentials of the various species which results
in relations for the conversion factors between B — L and B or L asymmetry respectively. For
Ny (= 3) generations and 7' > v one finds Ng = ¢,Np_r and N, = (¢; — 1)Np_, with
cs = (8Ny +4)/(22Ny + 13) = 28/79. The precise conversion factor may depend on e.g. the
precise conditions of the electroweak phase transition, but it can be assumed to be of this order.

Despite its simplicity, the thermal leptogenesis scenario has a very rich phenomenology already.
In some cases the efficiency can be related to low energy neutrino parameters, especially when the
CP-violation is assumed to be solely to the Dirac phase of the PMNS matrix. In the hierarchical
case (via the dependence of the efficiency on the neutrino mass parameters) a bound on the abso-
lute neutrino mass scale of m; < 0.1eV and a relatively large lightest heavy neutrino mass bound
M; > 10° GeV can be derived. To avoid overproduction of gravitinos in supersymmetric models
an upper bound on the reheating temperature of the same order may need to be imposed. Since this
is then considered as an upper bound for leptogenesis these requirements are obviously in conflict.
For the present scenario the parameter space could be constrained by new bounds on the absolute
neutrino mass scale (e.g. by the KATRIN experiment). Such problems can be circumvented in the
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quasi-degenerate case, where the CP-violating parameter can be resonantly enhanced and the en-
ergy scale lowered to 7' ~ 1 TeV. Flavour effects can become important for M; < 10'2 GeV and
can lead to a modification of the CP-violating parameter and to a suppression of washout effects
. The general scenario of leptogenesis is hard to disprove, even if the Dirac CP-violating phase or
the small neutrino mixing angle #;3 is not large enough, because the CP-violation could be due
to the high energy CP-violating phases. Instead, an experimental confirmation of the Majorana
nature, via neutrinoless double beta decay (e.g. by future experiments such as GERDA), or the
measurement of a sufficiently large Dirac phase (e.g. in long-baseline neutrino experiments such
as NOvA or T2K) could support the leptogenesis hypothesis. In special cases signals from heavy
Majorana neutrinos could also be observed at colliders such as the LHC. See e.g. [14-24, 61] for
the discussion of various phenomenological implications of leptogenesis.

As indicated, eqns. (1.16), as their analogues for the toy model, are derived from a set of Boltz-
mann equations. While eqns. (1.16) are often called Boltzmann equations themselves we do not
adopt this nomenclature in order to avoid confusion.” To this end one applies a number of ap-
proximations with respect to the species’ momentum distributions. These include that all species
are assumed to be in kinetic equilibrium and to obey Maxwell-Boltzmann statistics. To take non-
equilibrium effects into account one needs to solve the full Boltzmann equations or to find more
sophisticated methods which allow to obtain some kind of higher order corrections.

The generation of an asymmetry by the decay of some heavy state, the CP-violation being due to
the interference of tree- and one-loop level contributions to this decay, is a rather generic feature
of many scenarios of leptogenesis and baryogenesis. We have focused here on the simple case of
thermal leptogenesis which can be seen as a prototype for many extended scenarios. However, this
is not the only example which can be identified with the toy model which will be explored in the
next chapter.

SWe use the term Boltzmann equation here for relativistic kinetic equations describing the evolution of the one-
particle distribution function with the generalizations that we include equations for multi-particle processes including
decays and inverse decays and the appropriate quantum statistical factors as customary in cosmology.
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Chapter 2

Bottom-up approach

2.1 Toy model

The purpose of this section is to set up a toy model which is as simple as possible, but suffi-
ciently intricate as to mimic the phenomenon of leptogenesis or baryogenesis. Our motivation
for this approach comes mainly from the observation that the kinetic equations obtained for the
different species are very similar, if not the same, to those of established scenarios such as ther-
mal leptogenesis, as described in section 1.3, or GUT-baryogenesis. The advantage is that we can
systematically compare the results obtained in the framework of the bottom-up and top-down ap-
proach. Despite its simplicity, the model incorporates all important features needed to describe
such scenarios. Of course the model does not describe the conversion of the generated asymmetry
by means of sphalerons (as these are specific for the standard model), in the case of leptogenesis.
As usual, we therefore assume that the processes of generation and conversion of the asymmetry
are well separated and can be considered independently. The model is defined by the lagrangian

1 1 — _
<z = ) Wﬁ“wi - §m12¢,2¢12 + aﬂbc'?“b — mgbb
A

— 5137 (00" - %q/;ibb - %W}E Lot i=1,2. .0

The complex scalar field b imitates the baryons (b denotes the complex conjugate of b) and the real
scalar fields v; represent the lightest heavy right-handed neutrinos. For simplicity we include only
two 1); fields. The model has a U(1) symmetry which can be used to define “baryon” number B
(For definiteness we assign B = 1to band B = 0 to ;). It is explicitly broken by the trilinear
interaction terms just as the Majorana mass terms explicitly break the B — L symmetry of the
standard model. The couplings g; correspond the complex Yukawa couplings of the right-handed
neutrinos to leptons and the Higgs. We assume that the phases of g; differ so that only one of
them can be made real by rephasing the b field and the other one remains complex. In this way the
model violates B and CP and thereby satisfies the first two Sakharov conditions. The purpose of the
quartic self-interaction term is to mimic the Yukawa and gauge interactions in established models.
It induces additional interactions for the toy-baryons and will keep them close to equilibrium. We
assume here that \ is of the same order as |g;| /my,.

Further terms which are required for renormalizability are accounted for by Z,..s:. By appro-
priately choosing the corresponding coupling constants we can always make the contributions of
these terms negligibly small. It is reasonable to assume that the couplings stay small during the
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relevant period despite of the renormalization group running, because the generation of the asym-
metry approximately takes place in the relatively short interval 0.1my, < T S 10my,. The
Feynman rules for the toy model are given in fig. 2.1.

? {

Wi _pz—mij—i—z’e’ T 2o mi e

Figure 2.1: Feynman rules for the toy model.

2.2 S-matrix elements

Here we compute the relevant S-matrix element in perturbation theory in the usual in-out for-
malism. Apart from the tree level graphs it is necessary to take loop corrections into account,
because the amplitudes | M |12pi—>bb and | M ‘12%—435 are just equal at tree level. As in phenomenolog-
ical scenarios the CP violation in the decay of v; is due to the interference of tree- and one-loop
contributions. The corresponding diagrams for ¢); — bb are shown in figure 2.2. The amplitude

|
< w0
n i i )j ¥

(a) (b) (c) (d)

Figure 2.2: One loop contributions to the 1; — bb decay channel. The diagrams for ¢; — bb
are analogous. Note the similarity to the relevant contributions in thermal leptogenesis,
fig. 1.2. The graphs (b), corresponding to iS,l(z)bbl, and (c), corresponding to iSl(/i)be, con-
tribute to the CP-violating parameter only when j # i. Depending on A and g; graphs like

(d), corresponding to szf)bbs can be of the same order as (b) and (c), but they do not con-
tribute to the CP-violating parameter, because the product of the couplings of (a) and (d) is
real, see eqn. (1.12).

M |12/)i—>bb can be computed by summing the diagrams in fig. 2.2:

1 3 3 3) |2
’Mﬁpﬁbb = S”L([J}?b + Sl(pi%;m + Sfpj;w + Sq(ﬁigzbi’) 5 (2.2)
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and the amplitude |M|12¢ﬁ513 can be found interchanging g; and g;":

2

Mty |50+ 50+ 50 5

)
it T Oua1 T Sy T Ou s (2.3)

Without computing these expressions explicitly we can parametrize the matrix elements by defin-
ing the CP-violating parameter similar to eqn. (1.11):

2 2
vae _ Lwimth = Dymgy My — My, 5

€ - . 2 2 9 (2.4)
! Lo —ob + L'y b ‘M‘Wﬂbb + ‘M‘wi_%
where we used that the decay widths are given by
Ding=——. 2.5
=f 167y, (2.5)
Then the amplitudes for the v; decay are conveniently parametrised as
2 1 vac 2
Mo = 5 (1 + €)My, [” (2.62)
2 1 vac 2
MG, = 5 (1 =€) My, | - (2.6b)
and the amplitudes for the inverse decays can be deduced from CPT invariance:
1
2 2
|M‘bbﬂwi = 5(1 —€/%) |M¢2] , (2.7a)
2 1 vac 2
Mgy, = 5 (14 €)My, |7 (2.7b)

In addition we need the matrix elements for the 2 — 2 scattering processes of b and b. Including
only the tree level diagrams depicted in fig. 2.3 we obtain for the bb — bb scattering amplitude:'

2
(M55 =~

(9:)° : T
! S—m?pi—l—z’mwfi t—m?m u—mii

2
|g'|4 1 n 1 n 1
(A
(s — m?pl)2 + (my,T4)? t— miz U — mii
2(s —m2) 1 1
Pi
e 2.8

Ww%mw@wQﬂ%+wma " ey

At this order, loop graphs do not contribute to | M lsz% and it equals ‘M‘%Babb' The remaining

2 — 2 scattering amplitudes are dominated by the coupling A so that, at lowest order, we get
2 - 2 _ 2 __y22

’M|bb~>bb - ’M|bb—>bb - |M‘bb—>bb =A%

"Here we use the Breit-Wigner form of the v;-propagator in the s-channel with T';(s?) ~ T'; = |[M, |/(167m., ).
“This approximation has the advantage that it will simplify the numerical computations significantly since the an-
gular integration of amplitudes such as eqn. (2.8) is considerably more involved.
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o + R Vi
PN

Figure 2.3: s-,t- and u-channel contributions to the tree-level amplitude M, _z;.

2.3 Kinetic theory

Just as in phenomenological scenarios, the toy model requires a deviation from thermal equilib-
rium (caused by the rapid expansion of the universe) to satisfy the third Sakharov condition. Con-
ventional equilibrium thermodynamics deals with macroscopic quantities such as particle number,
energy or pressure which are obtained as average values of a large ensemble of identical systems.
In order to understand non-equilibrium phenomena one needs a microscopic description of many
particle systems such as the one given by kinetic theory.

A basic object in this theory is the one-particle distribution function f®(x, k). It is defined such
that f%(x, k)A%xA3k = AN is the average number of particles® of species a with momenta in
the range (k, k + Ak) located in the volume (x, x + Ax) at a time ¢.* Once the distribution
functions of the different species are known the macroscopic quantities can be computed from
it. In the context of relativistic kinetic theory it is important to note that f is a Lorenz scalar.
The time evolution of the distribution functions of the different species in a reactive mixture of
relativistic gases is determined by a network of generalized Boltzmann equations® for the one-
particle distribution functions of the different particle species [5, 25-27, 63] which we can write
in abstract notation as

LIf (k)= > CEroitfe], (2.9)

interactions of a

where the Liouville operator L[] is given by
L[f*)(x, k) = k*Da f*(k, ) , (2.10)

with covariant derivative D,. In the framework of general relativity the matter content of the
universe, given here in terms of distribution functions, contributes to the stress-energy tensor and
thereby affects the curvature of the universe via the Einstein equations. In general, these and the
Boltzmann equations form therefore a coupled system of equations (Einstein-Boltzmann system).
Since individual ultra-relativistic species always make only a small contribution to the total energy
density, we can work here in a “test-particle” approximation within which the effect of the con-
sidered species (represented by their distribution functions) on the curvature is neglected.® We

*We omit a normalization factor of 1/(27)* and the factor g, here.

“We use relativistic coordinates =z = z* = (¢, x). Note that k° is not an independent variable as the particle’s
4-momentum is confined to a hyperboloid in momentum space k° = k2 +m2 = Ej. (ie. f depends on seven
independent variables only.)

SThese equations are generalized Boltzmann equations in a multiple sense: the equations are general relativistic
with a Liouville operator which accounts for the expansion; the collision terms are generalized to multiple particle
scattering processes including decays and inverse decays; quantum statistical terms for blocking or stimulated emission
are included.

%In the phenomenological model of thermal leptogenesis the contribution of the heavy right-handed neutrinos to the
energy density of the universe is at the level of a few percent .

22



2.3. Kinetic theory Chapter 2. Bottom-up approach

are interested here in (spatially flat and radiation dominated) Friedman—Robertson—Walker (FRW)
space-time. In this context the cosmological principle helps to simplify the Boltzmann equation
because it allows us to assume that the distribution functions depend only on the magnitude of
the momenta. The Liouville operator can then be simplified to (the time dependence of f¢ is
suppressed in this notation)

LI (2. k) = RO ( 0 kHa) 7K. @1

ot 9 K|
where H = a/a is the Hubble parameter.  The individual collision terms Cg:-—"[ fo] for
multi-particle processes a +b +c...«»i+ 75+ ... are

a+.<i+.[ ra 1 c ) j
Cor ] = Q/dngb dIT, ... dIL, dT, . (27)* 6™ (pa + py + pe .. — pi — 1))

)My Cagpre., Q=)A= fo YA =€ f5 ) o fo Sl —
M3 e —iiji Tt fp - (L= Ef)A=Ef) ] 212

The amplitudes \M|§+j+_ﬁa+b+c_._ and |M|(21+b+c...—>i+j+... are spin-averaged S-matrix elements
squared computed in usual perturbation theory, furnished with a symmetrization factor 1/n! if
there are integrals over n identical species in the initial/final state. If CP is violated, as in the
present case, the amplitudes for the different directions can differ. £* denote the quantum statistical
factors (£ = +1 for fermions, £* = —1 for bosons, (¢ = 0 for Maxwell-Boltzmann statistics)

and the Lorentz invariant phase-space factor dlI;; is given by’

Gad®p

e = 92 P
= (2m)32Ey

(2.13)
To understand the physical content of these assignments let us now have a look at the heuristic
probability interpretation of the Boltzmann equation [26] for the special case of only one species.
Neglecting, for simplicity, the covariant derivative (which acts as a force term), the collisionless
Boltzmann equation (Liouville-equation) reads

kO f(z,k) = 0. (2.14)

In order to account for loss and gain of particles, we need to compute the change of the number
of particles in the phase space element A*z and A3p due to collisions. We first consider elastic
collisions of two particles with initial four-momenta k* and p* and final momenta ¢* and 7.
Under the assumption of molecular chaos (absence of initial correlations of the colliding particles)
and long free path-length compared to the range of the interaction, the average number of such
collisions in the volume element A%z around x and the time interval At around ¢ is proportional
to

e the average number of particles per unit volume with three-momenta in (k, k + Ak), i.e.
A3k f(x, k)

e the average number of particles per unit volume with three-momenta in (p, p + Ap), i.e.
A’pf(z,p)

7E§ = /p? + m2 denotes the on-shell energy and g, the number of internal degrees of freedom (g, = 1 for
scalars) of a particle of species a.
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e the intervals A*z and A3q, A3r.

The proportionality factor can be written as W (k, p|q, r)/(k°2p°(27)32¢° (2m)32r%(27)3). This,
in fact, defines the transition rate 1/~ which depends only on the four-momenta before and after the
collision. It must be a Lorentz scalar. In this argument we have assumed, that the four-volume-
element A%z is so small that the variation of the distribution functions in this interval may be
neglected. Hence the proportionality to f(z, k) and f(x,p) at the same place and at the same
instant of time and the independence of W of the space and time coordinates. This ansatz, which
requires one to assume molecular chaos as well, is known as Botzmann’s Stofizahlansatz.

In this way, we find for the loss of particles:

W (k,plg,r)

Appss = AMzA3gA3
loss = & T A2 10900 (2m)32¢0 (2)3210 (27)

3A3kf(x,k:)A3pf(w,p). (2.15)

In the same way one obtains the gain of particles:

Wig,rlk, p)
k92p0(27)32¢0(27)32r0(27)

Again = Az A3 EA3D 3A3qf(x, Q) A3rf(z,7). (2.16)

Subtracting the loss from the gain and integrating over the momenta we find
1 1 4 A3k

| Bpein— = | s = A= CC (0 k
2 . gain 2 . loss X ko (xa )7

with collision integral

1
Clak) =5 [ dtt drt,drt, [W(a.rlkp) o.)f(o,7) = W kspla. 1) £ o, ) (o)
2.17)
Since the differential change of particle number is given by A*zA3k/k? k%0, f one finds the

Boltzmann kinetic equation
k®Ouf(x, k) = C(x, k) . (2.18)

Now we can identify W with the invariant quantity

W (k,plg,r) = 2m)*6W (k +p—q—r)| M|} (2.19)

PG
If we introduce the additional quantum statistical terms for blocking or stimulated emission (1 —
&2 f) for the final state particles in the interactions we can see that eqn. (2.17) is a special case
of eqn. (2.12) for elastic 2 — 2 scattering. Setting f, = f, = 1 in eqn.(2.17) the loss and gain
terms corresponds to the usual formulas for the transition probability P(k,p — ¢, r) for the
2 — 2 scattering process computed from the S—matrix [64]. The Dirac-delta enforces energy-
momentum conservation in each individual scattering process.

Kinetic equations for inelastic reactions according to eqn. (2.9) (in particular, as we encounter it
here, for decays and inverse decays) are not Boltzmann equations in the original sense, but they
can be seen as a generalization of this heuristic probability concept.

As announced in section 1.3, we are interested here in the hierarchical case, i.e. we choose m,,
sufficiently large so that it decays already at much higher temperatures® and cannot be created

8This requires also that the coupling g is not too small.
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kinematically anymore. Later we will also assume that the asymmetry generated by the decay of
1o is washed out before 1), starts to decay. This corresponds to the N; dominated scenario in
thermal leptogenesis. For the toy model the application of eqn. (2.9) then leads to the following
system of only three Boltzmann equations:

Lyl 9] =CPr= g, £+ ot o, 17, (2.20a)
[fb] bb<—>1/11 [f fi/ll] bb(—)bb[fb fb] Cbebb[fb] Cbb<—>l_)l_)[fb’ fl_)] ’ (220b)
Lk[fb] b<—>w1 [fb fzpl] + Cbb<—>bb[fb fb] + Cbb<—>bb[f ] + Cbebb[f ’be (2.20¢)

where the different collision terms for 1) are given by
cprtgt, ) = 5 [ it en)s 0 - p - g)
(5 IMB gy (14 AR~ S IME Ly 5 4 )]
cpt ) = 5 [ i en) s - p - g)

[ IMIZ (L [ L2 10 — % M, f L+ 1A+ D).
(2.21a)

The inverse processes contribute to the equations for b and b:
bb— 1
<L IME, o O A FE = M, A0+ 1]

CEBHM i3 £ = / dng Ity (2m)* 0™ (k + p — q)

N | —

<[ 1M, s L+ DL+ DR = My, SREC+ 1)
(2.21b)

These species are also subject to B-violating 2 — 2 scattering processes:
— — 1 — —
I =5 / dIT} dIT} dIT? (2m)*6 ™) (k +p — g — 1)

<[5 IMB iy (4 T+ AR~ 2 IME, g5 720+ 7D+ 7]
(2.21¢c)

and B-conserving ones:
. 1
P = / I T dTT (246 (k4 p — g — 7)
rl 1
<[5 MU (14 DA+ E)FLLE = 5 IMByy SEF L+ DA+ 1)

,(_} — — 1 — —
CEI =5 / 1T}, 1T, dI1; (27) '8 (k + p — g — 1)

x| WMy (L SO+ SRR = My SEFO+ )+ 1))
(2.21d)
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The collision terms CY0bb[fb | fb1 CI=b0] £5] and Co=to[ b 8] follow from these by inter-
change of b and b. We shall shortly see that the rate equations corresponding to eqns. (2.20),
constructed in the bottom-up approach, are plagued with the problem that they lead to the creation
of an asymmetry even in thermal equilibrium. The solution to this problem is known from baryo-
genesis and leptogenesis as real intermediate state subtraction (RIS subtraction). We will see that
this procedure does not work in the usual way if one wants to keep the quantum statistical terms.
Therefore, strictly speaking, eqn. (2.20) together with eqn. (2.21), i.e. the quoted literature result
eqn. (2.12) is inconsistent in this case.

2.4 Rate equations

We use the “pseudo chemical potential” method [25] to obtain rate equations® by integrating the
Boltzmann equations over the remaining phase space volume. This means that we assume a spe-
cific equilibrium form for the distribution functions of all species with small chemical potentials.
In detail, we make the following simplifying assumptions:

1. All species are in kinetic equilibrium (and have the same temperature 7°).'°
2. Maxwell-Boltzmann distribution functions can be used instead of Bose—Einstein (or Fermi—

Dirac for fermions) distributions. This implies that we neglect the quantum statistical
terms.!!

3. The chemical potentials are small (i.e. the system is close to chemical equilibrium) 14 /T <
1 and the chemical potentials of b and b are equal but opposite in sign. !>

4. The comoving entropy is conserved, i.e. d(sa3) = 0.!3

The distribution functions can then be approximated in the following way:'4

1 —(Ba— B I m
a ~ (E MG)/T ~ a — a, eq a
fo = T e \or ~e T (1+5)=fyr(1+ 7). (2.22)

The first of these approximations implies that n, = e#e/Tng?.

First of all, we multiply the equations by g,/ [(27r)3Eg] (we keep the internal degrees of freedom
although g, = 1 in the present case) and integrate over the remaining three-momenta [5, 25].

"We do not use the popular term “Boltzmann equations” for the rate equations, since it would be misleading in the
present context.

!0This is usually a good approximation, if the reaction rate is greater than the expansion rate ' > H. In the early
universe the particles would undergo other thermalizing reactions such as v + ¢ — ~ + £ and so on (typically at higher
rates) which maintain thermal equilibrium. Within our toy model the interactions bb < bb, bb <> bb and bb « bb have
a similar effect.

""Thus the particles are treated as classical particles..

"2This would follow from the existence of reactions like £ + £ < ~ + v which would lead to 1, 4 15 = 24, = O'in
equilibrium. For the scalars in the toy model (with Bose—Einstein distribution) the assumption pp = — 3 is an obvious
contradiction which is circumvented here by using Maxwell-Boltzmann distribution functions.

3This should be a good one if there are no strong non-equilibrium processes.

4By writing it this way, we mean that the values of the integrals involving the distributions will take similar values.
Since we cannot estimate the error of this approximations analytically, the proof is left to numerical calculations. For
small masses and chemical potentials the second of these equations is obviously wrong for small momenta.
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Using approximation 4, the left hand side is then given by

da d3k _ dng dY,  H(m) dY, dY,
a = Hn, = = =sH 2.2
PE / [f] 7 +3Hng, = s s sH(x)z ot (2.23)

dt xr dx
with Y, = n,/s and H(m) = 1.66,/g=m?/mp,.

We first integrate eqn. (2.20a). The left-hand side is given by eqn. (2.23) and applying approxima-
tion 1, we find for the first term on the right-hand side:

o [ Lhcpspn,

2m)* ) B
~ / dILY* dITb dIIt (2m) 6@ (k — p — q)
1 2u, My 1
xfr (1 — 5”f},’)(1 - §bf§) [5 ’M’zbwpl O 5 ‘M’ilﬂbb] . (2.24)

Applying approximations 2 and 3 gives

G / d®k ¢1<—>bb[f1p1 fb] /dn;fl ng dHZ(Qﬂ)46(4)(k —D—- Q)

2m)* ) B
2 1
Y1, Hb ¥ 2
g (14 50 ) W, — 25 IME, ]
(2.25)
where we exploited the fact that, due to energy conservation,
fofq = ety et o frea fea(l 4 2/ T) = £ (1 + 20/ T). (2.26)

The term for 1/, < bb follows from eqn. (2.25), substituting b — b (this implies p1p — 1y = —[hp)-
Summing the two contributions, using dI1? = dII® and the parametrization of the matrix elements
(2.6a), (2.7a) yields

d3k - N d3k Lo 7
é’jﬁ;g / Ewl Cpr v £ 4 g@g / Ewl Cr v ) o

e 2K
:/dﬂ}fl dngdng(zw)45<4>(k_p_q)§|M¢1| [fwl’ q( - ”) fkl}.

Since pp,/T and e are small we can neglect the €2, /7" term compared to 1. The phase space in-
tegral over fy, (k) |[My, |? gives the thermally averaged t;-decay width times the number density
of 11, so that we can write it as

d3k - 1 d3k L e
Gy / 1111 bb[qu f ] Gy / Cw bb[fdfl f ] ~ _é <F¢1> [n¢1 _ n¢ql] ,

(2m)3 E% 2m) ) B
(2.27)
with averaged decay rate
1
(T} =—zr / dITY* dIT dIb (2m) 6@ (k — p — q) [ My, |> £F2. (2.28)

1
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The collision term for bb < 11 on the right-hand side of eqn. (2.20b) can be rewritten in the same
way as

(ng) C; f CO=A [ ]

~ / dI1}, b dI1e* (2)* 6™ (k + p — q)
b rb b rby £11 2 20p My
x(1=&f)(1—¢ fp)fq |M"¢)1—>bb ’M|bb—>1/}1 eT T (2.29)

The term for bb « 1) follows from eqn. (2.29) by substituting b — b (this implies 1, — 15
—w)- As in section 1.3 it is convenient to derive a single equation for the toy-baryon asymmetry
which is given by np = (n, — nj). Subtracting the two terms for bb < 11 and bb — v, we find

/ bb<—>¢1 fb fl/)l _ gb / Cbb<—>'l/)1 fb f’t/)l] ~
271'

~ / dIT}, I}, dIT4 (27r)45(4)(k +p—q)

21y —2pp7  _HYg
xf;bl{ [’Mﬁpl—wb - |M|zlqgg] - [|M\§IH¢1 eT — [Mlf_, €T } e T } (2.30)

With eqn. (2.28) this leads to

b 3k bb<—>¢1

95 43k
anr | m O I -

@2m)3 ) EP

Cbb<—*¢1 [fb flh] ~

eq

~ (Ty,) €[ny, +nil] —np (Ty,) if; : 2.31)
L

where we have used 21,/T ~ (ny, — ng)/n,? = np/ny’. In approximation 1 the collision terms

for bb < bb and bb < bb on the right-hand side of eqns. (2.20b) and (2.20c) vanish and we need
to compute only the remaining ones:

d*k 5
7(2%3 - Pl fP) o / dIT}, 11} dIT) dnf;(27r)45(4>(k +p—q—r)
k
x(1— €)1 — fbfp)fq |M‘bbabb (Ml e £
(2.32)

Subtracting the analogous term for bb < bb we obtain

ab dk
(2r)3 ) Ej

Cbb<—>bb[fb fi] (2975)3 C]lgf bb<—>bb[fb f } ~

~ / dIT, dItb dit? ditd (2m) 4@ (k + p — g — )

b,eq pb 2 —2n 21y
qu’eqfr’eq DM‘BT;HMJ@ T |M|bbﬂbbe T ] .
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In the limit /7 < 1 this becomes

B3k 7 B3k
(29;)3 Eb bb<—>bb[fb fb] (Qb) Eb Cbb<—>bb[fb fb]

~ / dI1y, dI1b di1? a1t (2m) 6@ (k +p — g — )

2
Xfé)’ eqff’ “ { |:|M‘1%5be - \M\inzz} - [|M‘bbabb + ‘M’bbabb} } : (2.33)
We can write the second term as 4
- # (o |v]) (ny")?, (2.34)

with cross section times velocity averaged

(o |v]) / dT1}, dT1 dT12 AT (27) 46 (k + p — g — 1) [IM[% sz e BRHED/T - (2.35)

1

- (m7)?
With ‘M‘%Babb = \.M]gb%,;g the first term in eqn. (2.33) vanishes. Summing the remaining con-
tributions eqn. (2.31) and (2.34) we see that an asymmetry is created even in thermal equilibrium.
Because the decay 1); — bb is preferred over the decay vy — bb according to eqn. (2.21a) and
the inverse decay bb — 1)1 is suppressed compared to the decay, according to eqn. (2.21b), this is
clear even without integrating the Boltzmann equations. The (well-known) reason for this problem
[65] is that the current approximation of the amplitudes found in section 2.2 is inconsistent. The
matrix elements for the processes bb — bb (bb — bb) include s-channel processes in which v; can
be in real intermediate (on-shell) states. This process is already taken into account by successive
inverse decay and decay bb — 1)1 — bb (bb — 1)1 — bb). This issue is usually called the double
counting problem. Consequently the real intermediate state (RIS) contributions need to be sub-
tracted from the complete amplitude ‘Mﬁb—»% (|M|%B—>bb)‘ In the narrow width approximation
these contributions are given by

2
i
M55, ris = | Mob—u . My, 5
bb—bb, RIS — g 12/;1+melr’¢1 1
1
=My, IMIZ 5
Mlosoor Ml (= 7 G T ?
4 i 2
and, analogously,
M V[ p—— R 2.36b
| |bb_>bb, RIS | |¢1—>bb M, Do, (s mzpl) ( )
The RIS-subtracted amplitudes for 2-2 scattering are then given by'>
2 2
|M‘bbabb Mgy — 2 ’M|131'be, RIS » (2.37a)

5We need to include here an additional factor of 2 which is absent in the case of leptogenesis. This is due to the fact
that the collision term for the RIS term has an extra symmetrization factor 1/2 in the toy model which is absent in the
case of leptogenesis where the initial and final state of the RIS contribution each include two different species.
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2.4. Rate equations Chapter 2. Bottom-up approach

2 2 2
|M|;;1HBB = |M\bb_>55 -2 ’M|bb—>55,RIS . (2.37b)

In contrast to the full matrix element for 2 — 2 scattering eqn. (2.8) these amplitudes do violate CP.
To obtain the rate equations corresponding to the RIS subtracted Boltzmann equations we need to
substitute |M|%_,, — M| _,, and [M[}, 5 — |[M|> 5 in eqn.(2.33). Then the first term
includes
‘M’bbﬂbb ‘M|bb~>bb = —32n% |Mw1‘ (s mm)
and can therefore be written as
— 3212 [ My, |? n;qll

with

=1 / dITY, X1 XL T2 (27) 8 (k + p — g — )0 (s — m?, )e” BAE/T . (2.38)

1/J1

It can be shown that
1

= (Ty,).

Therefore, the contribution from the first term of eqn. (2.33) is —2¢ (I'y, ) nffl After substituting

IM|? — | M|"® the second term becomes

4Mb 2
7 (o) () (2.39)

where we defined the averaged cross section times velocity (with real intermediate state contribu-
tions subtracted) analogous to eqn. (2.34) by

1
b

2 T 4
X |:|M‘bb—>bb 2y Ty (M, [7 (s — mfbl)] : (2.40)
1 1
Using 2u/T ~ np/n,? we find
dnB eq nieﬁql eq /
— +3Hnp = (T'y,) €[ny, — n%] - n3<<F¢l) e + 2n," (o |v|>) . (2.41)
b

With help of eqn. (2.23) we obtain from eqn. (2.27) and (2.41)

del <F¢1> e

— Y, —Y¢ 2.42
dx 2H (x)z [ 1 1/’1] ’ ( 2)
dvg  (Ty,) (D) 2 et b 20" [o])

Yp. (2.42b)

dx _H(x)aze [le B Y;ﬂ B H(x)x

These equations are very similar to the phenomenological rate eqns. (1.16) for thermal leptoge-
nesis, especially when the lepton number violating scattering terms S are neglected (which is
approximately possible in the strong washout regime). Its interpretation is essentially the same.
Here only decays and inverse decays contribute to the generation of the asymmetry. The second
term on the right-hand side of eqn. (2.42b) acts as washout term.
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2.4. Rate equations Chapter 2. Bottom-up approach

To see explicitly when and why the RIS subtraction in eqn. (2.37) works one can exploit the uni-
tarity of the S-matrix. Wie want to check whether the difference of eqn. (2.29), eqn. (2.32) and the
corresponding terms for b in equilibrium:

—2 / dI1y, dI1b dit¥ (2m)* 6™ (k + p — q)
X(1= €D =€) M, — 1M ]
—2 / dI1} dI1 1t} d11b (2m) 6@ (k + p — g — 1)
5,51
x(U= D= €It [[MBs — M|, 243)

which is the right-hand side of the rate equation for np in equilibrium (here CPT-invariance was
used), vanishes as required by the argument given in eqn. (1.3). To this end, we apply the gener-
alized optical theorem eqn. (C.1) above the energy thresholds s > m?pi and s > 4mg = 4m% to

the amplitudes for bb — bb and bb — bb at order O(g*). Summing the corresponding graphs in
fig. 2.4 and fig. 2.5 we find for bb — bb:

i )i

w>__< + >__ : ’w]—i_ o - lE;le71
i i

w>__< + >__ : ¢J+ o :S?Sgg)g’l

Figure 2.4: Vertex corrected graphs contributing to M4, and Mi;_ 5 at order O(g?).
The sums include all possible combinations of 4 and j.

P; i pj i
_ o)
>-©-< + >-Q-< + o =5

Figure 2.5: self-energy loop corrected graphs contributing to M,y and Mg 55 at O(g?).

The diagrams in S () cancel the contributions in S,Eggb - The sums include all possible

Hagr bbbb,2
combinations of ¢ and j.

. 4 4)%
-t |:Ml(7b)—>bb(k7p; kap>_Ml(;b)_>bb(kap; k%P)] -

:/ Iy (2m)* 6@ (k +p — q) IM[5,_,, (k,p5q)

1
+ / dHZ A (2m)4 6@ (k 4+ p — g — r)§ |M|l2)bﬁl;l; (k,p;q,r) (2.44)
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In the same way one finds for bb < bb

; 4)%
—t {M%L%(k,p; q, T)—M%ng(k, P4 T)} =

_ / dITe (2m)*6D (k + p— q) IM%5 . (ki q)

1
+ / dHZ A (2m)4 6@ (k+p— g — 7")5 ’M’%B—»bb (k,p3q,7).
(2.45)

Subtracting eqn. (2.45) from eqn. (2.45) we obtain
. 4 4
=2 [ S{MG) sk, p)} = S{IMEY (R, pi ko) }| =
=/ I (27)* 6@ (k + p — @) [ M5y, (R p3@) — IMIF5_y, (kD3 q)]

1
+ / dI1b ditb (27)*6 W (k +p — g — 3 M5 (kopya,7) — M5y (B, pig,7)] -
(2.46)

Being a direct consequence of the unitarity of the S-matrix (necessary for the preservation of
probability) this equation must hold for a consistent approximation of the amplitudes. Now the
left-hand side of eqn. (2.46) equals zero, because the diagrams cancel pairwise Slgggb (ki k,p) =

4 4 * 4 * .
stgg)g,l(kaﬁ k,p) and (Slgblzb,l(k7p5 k,p)) = (Sigégé,l(km; k,p)) , see fig. 2.4 and fig. 2.5. Multi-
plying eqn. (2.46) by f,g’eq fo€ (Maxwell-Boltzmann equilibrium distributions) and integrating
over dII% and ng we find

0 :/ dIT, a1t dITS" (2m) 6 (k + p — q) f7° [ | My, (Rip3 @) — MGy, ]

1
+ / dIT}, dIT) 1T dTt} (27) 6 (k 4+ p — g — T)ff’eqff’qu LM s — M s ]
(2.47)

where we have used that the species are in thermal equilibrium. Comparing eqn. (2.47) with
eqn. (2.43), we see that the equilibrium contributions from scattering and decays cancel exactly
if the species are assumed to obey Maxwell-Boltzmann statistics. In this case, no asymmetry is
generated in thermal equilibrium. On the other hand, it is clear from this comparison that the
cancellation cannot be exact if the quantum statistical terms are included. Therefore, the question
arises how consistent Boltzmann equations can be obtained in this case. We will see that it can be
answered in the top-down approach.

2.5 CP-violating parameter

To complete the discussion of the bottom-up approach we need to compute the CP-violating pa-
rameter in vacuum defined in eqn. (2.4). As in the phenomenological scenario, it is generated by
the interference of the tree-level and one-loop amplitudes, see fig.3.8. The result of this com-
putation is well-known but we repeat it here for the vertex contribution, since we will need to
perform similar calculations later. According to eqn. (1.12) the contributions of the interference
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q+1

k
q+ l/ k,
|
oY B
D l
Figure 2.6: Momentum flow in the vertex and the self-energy loop.

terms (between tree-level and vertex or self-energy loop corrections) to the CP-violating parameter

are given by
9i9; s
N ANE 2
i 97 i\Y;

The contribution of the vertex loop diagram to the amplitude can be written as

.a(3) _lgl(g) 2 ;92 2
1Sy = g3 Cola", k>, 0,0,mg, ), (2.48)

where the scalar 1-loop vertex three-point function Cy is given by [66, 67]:
Cg(qz, kz,mg,mg,mij) —
i 4 1 1 1
=—— | dl 2, 2, 2 .
T (q+l)2—mb+zel2—mb+ze(q+l—k)2—m¢j—I—ze
(2.49)

The assignment of the momenta is depicted in fig. 2.6. The tree-level and one-loop amplitudes of
the decay process 1) — bb differ from eqn. (2.48) only by conjugation of the couplings. Therefore,
at leading order, we obtain for the CP-violating parameter:

2 .a*
6“/',vac _ ‘g]'| S 9i9; %{CO(QQ k2 0.0 m2 )} . (2.50)
i 8r2 ~ \ g19; B

The imaginary part of the loop integral Co(q?, k?, m2, m2, mij) is caused by a branch cut dis-
continuity above the threshold gy > 2m;, when the two b propagators in the loop go on-shell. We
can in principle compute €/*¢ by first computing the vertex loop integral Cy and then taking the
imaginary part. Cy can be calculated by introducing Feynman parameters [66, 67] in eqn. (2.49).
The result in the massless limit, m; = 0, reads

9 9 1 ) mi 2
Co(m¢_,0,0,0,mw_) = —5 L12 1+ 22 - — | . (251)
’ J m m 6
i ¥pj
With dilogarithm Liy as defined in [67] the imaginary part of this coincides with eqn. (2.61). For
e}/’mc we obtain
1 |g;|? g m2,
evwae _ _ L1914 (gjf]] ) In (1 + f) . (252)
8m my, 95 95 my,

Identifying the imaginary part of Cj as branch cut discontinuity, DiscCy = 2iS{Cp}, we can
alternatively evaluate it with help of the Cutkosky cutting rules (see appendix C) as

DiscCy = Cy(q?, k2, mi, mi, mij) ) (2.53)
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with

1 .
Cé(qza kQa ma mga m?p]) = _ﬁ /d4l [—27TZ@((]0 + ZO)d((q + l>2 - mg)]

1
—271i0(—1)6(1* — m} .
x [—2mi©(—lo)d( mb)}(q+l—k‘)2—mij+ie
(2.54)
Using §(2? — a?) = (2|a]) = (6(z — a) + §(x + a)) we find
1
Co= | d'ig- (60 +1o = Epy) + 8lao + 1o + L)
q+
X [5(50 — B} + 8o+ ED| G, (2.55)
q

with G;fj =i/[p? — mij + i€], where we can drop the ie prescription in the propagator because
1; cannot go on-shell. Since the expression is Lorentz invariant we can evaluate it in the CMS
frame (q = 0, E},; = E}). In this frame it is easy to see that

d*l oy
= / o +lo ENo(lo + EDGY, . (2.56)

Upon integration over [ this becomes

a3l W
= / ES(a0 — 2EDGY, QH*LO}Eb’

‘loszb

(E})? z 2E? 2 :
(2.57)
which evaluates to
d 1]y,
Cl = / GV ‘ . 2.58
R (T e
In the CMS frame we have (¢ + 1 — k)Q‘lo——kO——‘LO = —2|11> (1 — cos f;) and
- - 2
o i
qul—k — mi )
—2|11 (1 + it — €05 0k)
where, here and in the following, we always imply |1| = (%0)2 mz. With this we find
—i déy d cos 0 —i ! dcosf
Ch= lEb / T‘fj cost  _ : 12217 oot (2.59)
£ 1+ =4 — cos by £y 114+ —cosf
201 211
Performing the remaining integral we get
i 4112
Cl=— In(14+—1. 2.60
07 o EP ( m2, (2:60)
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Inserting the expression for |1 and gg = m,;, we obtain

. 2 2
2 m;, —4m
Cé(mii,mg,mg,mg,mfbj) =— m In (1 + ¢’2b> , (2.61)
MMy, miz - 4mg mqr/’j

which leads directly to eqn. (2.52) if we set my = 0. This result is, of course, well known. We have
repeated the computation here in order to illustrate the connection with the cutting rules at finite
temperature given in chapter 4. In the same place we will also obtain the result for the self-energy
loop contribution to the CP-violating parameter as zero temperature limit of the general case. It
reads

2 *

. i 1

6;'S',vac - |g]| %<gigj > 5 5 - (262)
16\ gig; ) my, — my,

It is well known that this expression can be used only in the hierarchical case. The case m,,, ~
my,,; corresponds to the scenario of resonant leptogenesis. Note that in the strongly hierarchical
case My, > My, the contributions eqn. (2.52) and eqn. (2.62) differ by just a factor of 2 and the
sum of both contributions gives

vac _ V,vac_l_E‘S,vacNiS{(g;gj)2} 1

. 2.63
’ ¢ v 167 |lgs |2 mfpj ( )

€

Note the similarity to CP-violating parameter in the phenomenological scenario eqn. (1.15).

In this chapter we have established the similarity between the toy model and and the scenario of
thermal leptogenesis with respect to the source of the CP-violation and the kinetic equations. At
the same time we have seen that the usual rate equations are based on kinetic equations which
have been developed for dilute gases and that the inclusion of the quantum statistical terms in the
straight-forward way would lead to the creation of an asymmetry even in equilibrium. This and
the observation that the creation of the asymmetry via leptogenesis depends crucially on the loop
contributions to the amplitudes, which are inherently quantum effects encourage us to study the
toy model of the present section in the framework of non-equilibrium quantum field theory.
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Chapter 3

Top-down approach

The goal of this chapter is to derive kinetic equations for the one-particle distribution functions
for the toy model eqn. (2.1) in the Kadanoff-Baym formalism by applying a number of well-
known approximations [68—71]. Since this systematic derivation starts from complete evolution
equations for the two-point functions (based on the in-in or Schwinger—Keldysh description of
non-equilibrium quantum fields [72, 73]) we refer to this ansatz as top-down approach. We will
denote the resulting “Boltzmann-like” equations as quantum corrected Boltzmann equations due
to their similarity to the equations obtained in chapter 2. The qualitative difference with respect to
the classic approach which was presented there is that the overall structure of the kinetic equations
as well as the transition amplitudes are derived self-consistently from a common starting point.
We will see that the top-down approach is free of the double-counting problem and that the tran-
sition amplitudes include terms which account for finite-density effects. Since, in the context of
leptogenesis, the driving force for the deviation from thermal equilibrium is the rapid expansion
of the universe we work in a covariant formulation [43, 74, 75].

3.1 Schwinger-Keldysh formalism in curved space-time

In this section we present the Schwinger—Keldysh formalism and the derivation of Boltzmann
equations from Kadanoff-Baym equations [68—71, 76? , 77] in a manifestly covariant fashion [2].
To illustrate the important points, we use a model containing a single real scalar field with quartic
self-interactions, minimally coupled to gravity. The results can later be applied to the toy model.
Here we use the lagrangian
1 1 A
_ Lop _t2. 2 A4

£ = 28 00, 1T (3.1
Since the procedure for the Ap? theory is well known in Minkowski space-time it will be easy to
compare it with the results obtained in [35, 41-44] and elsewhere.!

Beginning with the generating functional for connected Green’s functions in covariant form, the
individual steps are roughly:

e a Legendre transformation to obtain the effective action

"We note that a self-consistently dressed description of the vertex in Aw* theory requires the use of the 4PI effective
action, which is beyond the scope of this work.
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e derivation of the Schwinger—Dyson equation

o derivation of the Kadanoff-Baym equations for the spectral function and the statistical prop-
agator

o a first-order gradient expansion and a Wigner transformation to obtain a system of quantum
kinetic equations for the correlation functions

e neglecting the Poisson brackets and employing a quasi-particle approximation to get the
Boltzmann-like equation for the one-particle distribution function

If the respective requirements are met the different steps can be generalized to more sophisticated
models, such as the toy model.

3.1.1 Schwinger-Dyson equations

We begin with the generating functional for Green’s functions with local and bi-local external
scalar sources J(x) and K (z,v),

Z[J, K] = /@gp exp [i(S + Jp + %@Kgp)] , (3.2)
where the action S is given by the space-time integral of the Lagrange density:
S = / V—gd*z £,
with invariant space-time volume element

V—gdtz, g¢g=det v - 3.3)

The scalar products of the sources and the fields in eqn. (3.2) are defined as
Jp= /\/jgd4a?J(a:)g0(a;) ) (3.4a)
Ky = / / V=gd'z/—gd*y o(x)K (z,y)e(y) (3.4b)
The path integral measure in curved space-time is given by [74]

79 =[] d[(-9)7e()],

and the fields and external sources are defined independently on the positive and negative branches
of a closed real-time contour, see fig. 3.1. In particular, there are two local (J and J_) and four
bi-local (K1, K, K_, and K__) sources. Analogously, the field expectation values on the
two branches are denoted by ¢ and _ and the components of the two-point function by G 4,
G4+—,G_4 and G__ [78]. This applies also to the metric tensor, i.e. g;[l, # g, in general. In our
notation the branch indices are suppressed.

As explained in chapter 2.3, the effect of the individual fields on the curvature of space-time
was neglected in the bottom-up approach and we make the same test-field approximation here.
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> \ t
- J B
tinit tmax

Figure 3.1: Closed real-time path C.

Analyses of this back-reaction effect have been carried out in [41, 44]. This means in particular
that the metric tensor on the positive and negative branches is determined by external processes
only so that it is the same on both branches.

We define a generalized Dirac-delta 69 such that 69 (z,y) is always zero if its arguments lie on
different branches of the time-path [68] and otherwise satisfies the relation

/fmﬁ@f@N%%MZf@% (3.5)

where the integration is performed over the closed contour. The solution to this equation is given
by [74]

89(x,y) = (—gx) " T8(2, ) (—gy) T - (3.6)
The generalized Dirac-delta is then used to define functional differentiation in curved space-time:
g —
OFl] _ . Flol@) +28%(x,y)] = Flow)] o
5¢(y) e—0 3
Consequently, we obtain:
dJ(z) g 0K (z,y) . g

As usual, the generating functional for connected Green’s functions is given in terms of Z[.J, K|
by

W[J, K] =—iln Z[J, K] . (3.9)
Its functional derivatives with respect to the external sources read

OWIJ, K] OW[J,K] 1
—— =9 — =G O(x)P 3.10
7 =0 Gry) = 26+ @), (3.102)
where ® denotes expectation value of the field and G is the propagator. The two-particle-irreducible
(2PI) effective action is defined as the (functional) Legendre transform of W[.J, K|:
1 1
re,Gl=W[J,K] — J® — §Tr[KG] — §<I>K<I>. (3.11)
Analogously to the conventional Legendre transform the external sources can be reproduced as its
functional derivatives with respect to the expectation value and the propagator:

(ng(;;)b] =—J@) - /ngd4z K(z,2)®(2), (3.122)
TG, 0] 1
Gy ~ 2w (3.12b)
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When we shift the field by its expectation value ¢ — ¢ 4+ ® we can write the action as a sum of
two terms:

where S; denotes the classical action, which depends only on ® and S[p, ®| = So[¢] + Sint[e, P]
contains terms quadratic, cubic and quartic in ¢. The free field action can be written in the form

1 o
So = 3 //\/—gxd4x\/—gyd4yg0 (zg 1) Vv, (3.14)
where ¢! is the zero-order inverse propagator

G (z,y) = i(0y +m?) 6%(z,y), (3.15)

with O, = g,, Vi VY. Now we can exploit the translational invariance of the path integral measure
to rewrite the effective action as

1 1
re,G)=- iln/@gpexp [i(S+ Jo+ §¢K¢)} + Sa[®] — 5Tr[KG} : (3.16)

We define the 2PI functional I'y by writing I" in the form
[[®,G] = Sq[®] + %m det [G™1] + %Tr [471G] +T4[®,G]. (3.17)

The second and third term are given by

Gfl
det [] = /@gpexp ((,0 G_lgo)
27
and
Tr[¢'G] = / V=gad'e\/=g,d'y G (2, y)G(y, z),
respectively. We are interested in finding the functional derivative of I'y with respect to G. It can

be obtained by using eqn. (3.12) and computing the derivatives of the second and third term. The
functional derivative of the second term can be found upon use of

/\/—g d*z G u, 2)G(z,v) = §9(u,v) . (3.18)
The result of this calculation is
)
—1 -1 =_g! . 1
5G(z.) ndet [G™] G (y,z) (3.19)

Differentiating the third term of eqn. (3.17) we find

)

-1 _ w1
mn[% Gl =9""(y,x). (3.20)
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The functional derivative of the complete eqn. (3.17) with respect to G then reads

OL[G, @] _ i o iy DIveX TR
3G(z,y) 3G (v,2) + 59 (y,x)+5G(x,y) = —5K2). (3.21)

Substituting this expression for K into eqn. (3.17) we can rewrite the 2PI effective action in the
form

or
]G, ®] = —iln/@cpexp [z (S+Jgo — cp5G2g0>]

ol i _
+ Tr [MG} ~ 3 Indet [G 1] + const . 3.22)
Here S = Sy + Sint, but Sy is now given by
1 o
So = 5 //\/—gxd4x\/—gyd4yg0 (ZG 1) . (3.23)

The functional ¢I'y is represented by the sum of all vacuum diagrams, which cannot be discon-
nected by cutting any two internal lines [79]. The vertices as given by .Z},,; and the internal lines
represent the complete connected propagator G. Hence the name two-particle-irreducible.

We are interested in physical situations corresponding to vanishing sources. In this case eqn. (3.21)
can be written in the form

G Ha,y) =9 (,y) — (z,y) (3.24)
where we defined the self-energy 11 as
O [G, D
IT =2i———. 3.25
D=2 56,) .2

Equation (3.24) is the Schwinger—Dyson equation. The structure of this equations is completely
determined by the particle content of the theory.

3.1.2 2PI effective action

The 2PI effective action is given by the (infinite) sum of all 2PI diagrams which can be drawn given
the set of vertices defined by the interaction lagrangian and the set of internal lines representing
the complete connected two-point functions. We write the 2PI effective action as

ira[G) = > irsvia],

n

and consider the lowest order contributions ng), Fgg) and Fgg given by the diagrams in fig. 3.2.

The expressions for these contributions differ from those given in [34, 35, 43, 80] by the presence
of \/—g factors which ensure invariance of the effective action under coordinate transformations:

iG] = - % / V=g,d'e G (x, @),
. >\2
ir(6) =~ T5 | Vg.d'ev=g,d'y G 9) Py ),

, iA3
zl“gl)[G] = 48/\/—gxdz{'m/—gyal‘ly\/— _dY2G (y, 1) G2 (z, 2)G(2,y). (3.26)
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(a) (b) (c)

Figure 3.2: Two—, three—, and four-loop contributions, iI‘éQ) (a), il"?) (b) and iI‘gl) (c) to
the 2PI effective action in the scalar ¢* theory.

We use the definition of the self-energy eqn. (3.25) and the functional differentiation rule and split
the self-energy also into the contributions from the different loop orders:

M(z,y) => T (z,y). (3.27)

For each vertex in the loop diagrams there is a corresponding integral in the effective action. The
functional differentiation leads to the appearance of two Dirac-delta’s due to which two of the
integrals can be carried out trivially. Four- and higher-loop contributions to I's contain more than
two integrations over space-time. This means that the corresponding contributions to II contain
such integrals as well. The different contributions corresponding to the terms in eqn. (3.26) are:

1) (2,y) = — 89z, ) ) Gl ).

)\2
H(s) (ZL‘, y) = - FG(ya JJ)G(]J, y)G(IE, y) ’
-\ 3
H(0,y) =" Glyna) [ V79.042G3 0, )G e). (3.28)

We see that, for the reason given above, the lowest order contribution H(z), which corresponds
to the two-loop diagram in fig. 3.2(a), is local and cannot describe thermalization. It will later
be absorbed in the effective mass. Therefore, one usually considers also the three-loop diagram
fig. 3.2(b) which describes 2 — 2 scattering. The four-loop contribution fig. 3.2(c) describes one-
loop corrections to 2 — 2 scattering processes and was also taken into account in [2] where it led
to a Boltzmann equation which includes medium corrections for the ¢*-theory. For brevity we
ignore this contribution here.

3.1.3 Kadanoff-Baym equations

In order to derive evolution equations for the propagator one can convolve the Schwinger—Dyson
eqns. (3.24) with G from the right and use eqn. (3.18) to obtain

i[ds +m?|G(z,y) =09(z,y) + / V—gd*z(z,2)G(z,y). (3.29)
Next, we define the spectral function:
Golz,y) = i{[p(x), 0(y)]-) , (3.30)
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and the statistical propagator:

Gr(z.y) = ~ (o), ov)]4) (3.31)

2

where [.,.]_ denotes the commutator and [.,.]; the anti-commutator. As is clear from the ter-
minology G, contains information about spectral properties of the system, whereas G i contains
information about its statistical state. From the definitions (3.30) and (3.31) it is also clear that
the spectral function is antisymmetric with respect to permutation of its arguments, while the sta-
tistical propagator is symmetric under this transformation. Note that G (z,y) and G,(x,y) are
real-valued functions for a real scalar field [33]. With help of this definitions, the full Schwinger-
Keldysh propagator can be decomposed into statistical and spectral part:

Gla.y) = Grla,y) - gsgue(@” — y")Gyle,y). (3.32)

We now insert this expression into eqn. (3.29) to obtain equations for G (x,y) and G,(z,y). The
action of the [, operator on the second term on the right-hand side of eqn. (3.32) yields the product
g%5(2%, y")VEG ,(x,y). Using the definition of G, and the canonical commutation relations in
curved space-time [81],

lim [p(z% x), (2%, y)]- =id(x,y), (3.33)

y0—20
where? m = g%, /=g Vo, we find for the derivative of the spectral function:

_ xy)
9°v=g

The product which appears on the right-hand side of eqn. (3.32) upon differentiation then gives the

generalized Dirac-delta §9(x, y) which cancels the Dirac-delta on the right-hand side of eqn. (3.29).

VoGp(,y) (3.34)

As announced, the local term from the lowest order contribution II?) to the self-energy (3.28),
can be absorbed in an effective mass:

m?(x) = m? + M. () . (3.35)
In the present case we have:
A
m?(z) = m?* + §G(m,x) .

The effective mass, which contains the local self-energy, describes mean-field effects. In analogy
to eqn. (3.32), the remaining non-local part of the self-energy can also be split into a spectral part
II, and a statistical part IIz:

(e,y) = Tr(e,y) - gsgne(a” — " )y(x,y). (3.36)

Now the integral in eqn. (3.29) which is along the closed time path in fig. 3.1 can be broken into
different parts. Thereby we take into account that any point of the negative branch is considered as

%In the FRW universe we have go; = 0. In general, the off-diagonal components of the metric tensor can always be
set to zero by an appropriate choice of the coordinate system [82].
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a later instant of time than any point on the positive branch. In this way we obtain the Kadanoff—
Baym equations for the ¢*-theory:

(O, +m?(z)|Gr(z,y) = /\/ng4z Op(z,2)Gy(2,y) — /Jjgd4z I,(z,2)Gr(z,y),
0 0
[Os +m?(2)]Gy(z,y) = —/\/jgd4z I,(z, 2)G,(2,y) - (3.37)

Comparing with the literature results [33, 35], we find that eqns. (3.37) are the covariant gen-
eralization of the corresponding Kadanoff-Baym equations in Minkowski space-time. Equa-
tions (3.37) are exact equations for the quantum dynamical evolution of the statistical propagator
and the spectral function. Since these are quantum field theoretic objects, there are no inherent
problems related to the definition quasi-particles. In other words, eqns. (3.37) are free of any pos-
sible uncertainties associated with definition of quasi-particle excitations in the hot plasma of the
rapidly expanding universe. Furthermore, eqns. (3.37) are written in terms of resummed propaga-
tors, i.e. they take into account the full series of daisy and ladder diagrams. Because of the presence
of the characteristic memory integrals on the right-hand sides the dynamics of the system depends
on the complete history of its evolution [84]. The different quantities which enter the Kadanoff—
Baym equations must be renormalized, which is, however, beyond the scope of this thesis. The
renormalization at finite temperature has been developed in [85-88]. It has been generalized to
out-of-equilibrium systems with non-Gaussian initial conditions in [89, 90]. A renormalization
procedure at tadpole order in the Gaussian scheme in the expanding universe has been applied to
the analysis of Kadanoff-Baym equations in [44]. The number and the precise form of the equa-
tions depends on the particle content of the theory and will be different for the toy model or for
a phenomenological theory. As stated above, the spectral and statistical self-energies encode the
information about the interactions of the model. Despite all advantages, the full Kadanoff-Baym
equations are relatively rarely used for the analysis of out-of-equilibrium processes, partially be-
cause of the complexity of the numerical solution, see e.g. [33, 35, 36, 87, 91-95].

To complete this section we derive explicit expressions for the different components of the self-
energies. Using the symmetry (anti-symmetry) of the statistical propagator (spectral function), we
obtain for the three-loop contribution:

A2 3

I (@,y) = = 5 [Cr(e,y)Cr(e,y)Cr(e,y) = [Cr(@,y)Cplx.y)Colz.y)] . (3.389)
A2 1

HE)?)) (CL‘, y) = - E [3GF(J:7 y)GF(xa y)Gp(l’, y) - ZGP(CL" y)GP('T’ y)GP(xv y)] . (338b)

Four- and higher-loop contributions to the self-energy components contain space-time integrals.
The explicit results for the four-loop contributions can be found in [2].
3.1.4 Quantum Kinetic equations

We proceed now with the next step towards the Boltzmann kinetic equations which consists in
the derivation of quantum kinetic equations. To this end, we introduce retarded and advanced
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propagators in order to decompose the spectral component of the propagator in eqns. (3.37) as
follows:

GR(%', y) = ‘9($0 - yO)GP(xv y) ) GA(x7y) = _e(y() - :CO)Gp(aj7y) ) (339)

and, analogously, retarded and advanced self-energies for the decomposition of the spectral com-
ponent of the self-energy:

Mg(z,y) = 0(2° -y (z,y), Ma(z,y) = —0(y° — 2", (z,y). (3.40)
The retarded and advanced components of propagator and self-energy satisfy the relations
GA(y)x) = GR(SU,:I/), HA(y,.T) = HR(.T,y) (341)

The Kadanoff-Baym eqns. (3.37) can then be written in the form:

(O + m?(2)] Gr(z,y) = — / V—gd*z0(2°)

x [Op(z,2)Ga(z,y) + Ug(z, 2)Gr(2,y)] | (3.42a)
O @) Gla) = — [ V=gd20()
x [Hp(z,2)Galz,y) + Ug(z, 2)Gp(z,9)] . (3.42Db)

The system (3.42) must be supplemented by equations for the retarded and advanced propagators
which can be derived from the second of eqns. (3.37) upon use of eqn. (3.34):

[Dx + mQ(x)] GA(:Ea y) :59(1.7 y) - / \/jgd4z HA(‘T? Z)GA(Za y) ) (3.43a)

[0 + m?(2)|Gr(z,y) =6%(2,y) — /\/—7gd4z Igr(z,2)Gr(z,Y) . (3.43b)

We are free to interchange = and y on both sides of the Kadanoff-Baym equations. The differ-
ence and the sum of the original eqns. (3.42) and the equations resulting after this substitution are
referred to as the quantum kinetic equations and constraint equations (for the statistical propaga-
tor and the spectral function), respectively. Using eqn. (3.41) and the symmetry properties of the
statistical propagator and the spectral function we obtain:

(O 7 Oy +m*(2) T m*(y)|Gr(z,y) =
=~ [ Va0 e, )Gialz.) F Gl M (z.0)
+1g (2, 2)Gr(z,y) T Gp(z, 2)a(z,y)] (3.44a)
0, %0, + m(z) F m2(y)] G, (2, )
=~ [ Va0 1L (2. )Ga (2, ) F Gl 2L (2. )
+ (2, 2)Go(2,y) F Gplz, 2)1a(z,9)] - (3.44b)

In the same way we can interchange x and y on both sides of eqn. (3.43a) and add it to eqn. (3.43b)
to obtain the constraint equation for the retarded propagator:

[Dz +0, + mQ(x) + m2(y)]GR(x, y) =
— 259(z,y) - / V=gd 2 [, 2)Gr(zy) + Gr(e, 2)Tp(z.y)] . (3.45)
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Next, following the usual procedure in Minkowski space-time, we introducing center and relative
coordinates. In Minkowski space-time geodesics are straight lines and center and relative coor-
dinate are given by X = (z + y)/2 and s = (z — y), respectively [35]. This means that the
center coordinate corresponds to the middle of the geodesic connecting x and ¥, while the relative
coordinate gives the length of this line-segment. To proceed, this concept must be generalized, in
a covariant way, to curved space-time [96].% Let ¢ € [¢/, "] be an affine parameter on the geodesic

X = £(sx) y = &(<")
x=§(<")

3

Figure 3.3: A short line-segment of the geodesic.

connecting x and y and £ a mapping of [¢’, ¢”’] onto this segment of the geodesic, with
:Eoz — ga(gl), ya — ga(gll) . (346)

The center coordinate X can then be defined in terms of the affine parameter cx = (¢' +¢”)/2 as
X% = £%(sx). This is illustrated in fig. 3.3. The relative coordinate s is now defined as the sum
of the infinitesimal distance vectors d{® at £* = £“(<) along the geodesic which are submitted
to parallel transfer from the point £*(<) to the center coordinate £*(sx ). According to [96] this
implies

X*=X3, =€ (sx), s =s3,=( =" (sx), (3.47)
where the four-velocity u®(s) = d§“(<)/ ds has been introduced. On the geodesic it satisfies the
equation

du®

e —nguﬂuﬁf : (3.48)

As announced above, we want to recast eqns. (3.44) in terms of X and s. On the left-hand side we
need to express the Laplace-Beltrami operator in these coordinates:*

Oy~ tpep, ¢+~ ipa (3.49)
YTy Y 95208, 0S¢ '
where D,, is the covariant derivative in center and relative coordinates:
0 0
= _- _ 1B a2
D, = B Loqs 958 (3.50)

Next, we perform a first order Taylor expansion of the effective mass around the center coordi-
nate X:

m?(z) ~ m?(X) + %saDamQ(X) ,
m?(y) ~ m*(X) — %saDam2(X) , (3.51)

In [42, 97] a different method based on the use of Riemann normal coordinates and the momentum representation of
the propagators has been employed. This approach has some advantages for the study of the quantum kinetic equations.
*We neglect here higher order terms proportional to the Riemann and Ricci tensors, see [96].
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The spectral function and the statistical propagator on the left-hand side of eqn. (3.44) can also be
rewritten in terms of the center and relative coordinates:®> Gr(z,y) — Gp(X, s) and G,(z,y) —
Go(X,s).

On the right-hand sides of eqns. (3.44) we have convolutions of functions depending on z and z
and functions of z and y. We use the identity

+e)=C+N+(c-¢")=2¢x +(s—¢")

and Taylor expand around ¢x to obtain at first order (the dots represent the various indices of the
different components)

I (x,2) = I ( Xz Szz) (X, Sz2)

Ol d&*  OI du™\ ¢ — <"
ol d&% | O du®) <= (3.52)
0« d¢  Ou® dg 2
Defining 5%, = (s —¢")u®(sx) this may be written in the form
1
I (z,2) = I1(X,sz2) + isgyDaH_(X, Spz) - (3.53)
Using the identity
"+6)=("+") = (" —¢)=2¢x — (' —%)
we get a similar expression for functions of z and y:
1
G.(2,y) = G (X, 8.y) — §ngDaG..<X7 Say) - (3.54)

To perform the integrations over products of the form eqn. (3.53) times (3.54), we shift the coordi-
nate origin to X* = £“(<x ) and replace the integrals with respect to z by integrals with respect to
the distance sx, from X to z along the geodesic. Moreover, we approximate \/—g, by its value
at the origin /=g, ~ /=g .0

The spectral function and the statistical propagator have been defined as functions of two coor-
dinates in four-dimensional space-time. By introducing center and relative coordinates we have
traded one space-time coordinate system for another one. On our road towards Boltzmann ki-
netic equations we clearly need to derive equations for functions which depend on space-time and
momentum space arguments (such as the one-particle distribution function does). Performing the
so-called Wigner transformation, one can trade one of the space-time variables for a momentum
space variable. In curved space-time the Wigner transformation and the corresponding inverse
transform are defined by [96]

Gr(X,p) = \ﬁ—gx/d%ei”sGF(X, s), (3.552)

Gr(X,s) = / dIly e P Gp(X,p). (3.55b)

SWe use the same symbol for both functions. Which one is meant should be clear from the context and the symbols
used for the arguments.

®The next-to-leading term of the Taylor expansion is proportional to the convolution of the Christoffel symbol [82],
V=9, = V/—gx(1 4+ T¢,s%). This correction can in principle be taken into account and would induce additional
terms proportional to i0/9p® on the right-hand side of the quantum kinetic equation. Since such term are neglected in
the Boltzmann approximation, the collision terms do not receive any corrections.
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The definition of the Wigner transform of G,(X, s) differs from (3.55a) by a factor of —i so that
G, (X, p) is again real valued. Note that we use contravariant space-time coordinates and covariant
momentum space coordinates and that ng denotes the invariant volume element in momentum
space:

1 d*p
4 _
X

(3.56)

We shall later need a property of the Wigner transform which is similar to the convolution theorem
for the Fourier transformation:

fl(m.vy)fn(x?y) _>f1---fn(X7P>
E/dﬂﬁl...dﬂf)n(Qﬂ)4\/ng54(pl-|—...+pn—p)f(X,p1)...f(X7pn). (3.57)

Again, similar to the conventional Fourier transform, it follows from eqn. (3.55b) that differentia-
tion of the Wigner transformed quantities with respect to s brings down a factor of —ip®,

a%a o —ip® (3.58)

and upon integration by parts s® is replaced by differentiation with respect to p®:

s* — 13]890‘ (3.59)

Consequently, after the Wigner transform, the covariant derivative reads

0 0
Dy — Dy = 8 pg——o.

= v (3.60)

Combining eqns. (3.49) and (3.51), the Wigner transform of the left-hand side of eqn. (3.44) be-

comes’

O, — O, + m?(x) — m?(y) — —i <2p“1>a + Dam2£> . (3.61)
(0%

We assume now that there is a gradual loss of the dependence on the initial conditions due to
the exponential suppression of correlations between earlier and later times [35, 84]. One can
then drop the # function from the integrals in the difference eqns. (3.44). Furthermore, we let the
relative-time coordinate 59( ., range from —oo to oo in order to perform the Wigner transformation.
See [84, 98] for a discussion of these approximations. Using eqn. (3.59) and (3.60), we then obtain
for the Wigner transform of the product terms on the right-hand side of eqn. (3.44a):

/deA‘z IL(z,2)G.(2,y) —

I1(X, p)G.(X,p) + & {IL(X,p), G.(X.p)} i (.62

7 Additional contributions arising from the decomposition of the Laplace-Beltrami operator may be relevant in
strong gravitational fields [96]. Since these terms contain at least one 10/0pq derivative, they do not contribute in the
Boltzmann approximation.
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where the following covariant generalization (derivatives with respect to X are replaced by the
covariant derivative) of the definition of the Poisson brackets has been used:

0 0
{A(X,p), B(X,p)}pp = ﬁA(X,p)DaB(X, p) —PaA(X,p)5 ~B(X;p).  (3.63)

(67

This leads to a rather lengthy expression which can be simplified with the help of a set of re-
lations between Gr(X,p), Ga(X,p), and G,(X,p) (and for the analogous components of the
self-energy) which are related to the symmetry properties of the propagators in space-space time
coordinates. Using the well-known expression for the Fourier transform of the 6 function,

/dso exp(iws®)f(£s") = lim

and also the familiar representation of the Dirac-delta,

€

) = lim ——— 3.64
() o m(w? +€?)’ (3.64)
one finds the following relations for the retarded and advanced propagators
dw G,(X,p,w)
X,p)=— [ ——L—27 3.65
Gr(X,p) /27Tp0—w—|—z'e’ (3.652)
dw G, (X
GA(X’p):_/wP(’p’“.J)' (3.65b)
2T pg — w — 1€

From comparison of these two expressions, it follows that (analogous relations hold between the
retarded and advanced self-energies)

Ga(X,p) = Gr(X,p), (3.66)
and
Gr(X,p) —Ga(X,p) =1iG,(X,p) . (3.67)
Equation (3.66) and (3.67) imply that
Gp(X,p) =23{Gr(X,p)} . (3.68)
To shorten the notation, we also introduce the quantity
QX,p) = plpy — m*(X) — In(X, p), (3.69)

where I, (X, p) = R{IIr(X,p)}, and collect the terms on the right-hand side of eqn. (3.44). The
kinetic equations for the Wigner transform of the statistical propagator and the Wigner transform
of the spectral function may then be written in the compact form:
{Q(X7 p)v GF(X7p)}PB :GF(X7 p)Hﬂ(X7p) - HF(X7p)GP(X7p)
- {Gh(X7p)7 HF(X7 p)}PB ) (3.70a)
{Q(X,p), GP<X7P)}PB == {Gh(X7p)’ HIJ(va)}PB ) (3.70b)

where G1,(X,p) = R{Gr(X,p)}.
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These equations are local in time although, as stated previously, the exact quantum dynamical
evolution of the system (at each instant of time) according to eqns. (3.37) depends on the whole
history of its evolution. This is manifest in the presence of the memory integrals. The reason is,
that by performing the linear order Taylor expansion in the relative coordinate s around X, we
take into account only a very short (infinitesimal) part of the history of the evolution.

Next, we consider the Wigner transform of the constraint equation for the retarded propagator
eqn. (3.45). On the left-hand side we have [, 4+ [0, ~ 20500, to first order in the covariant
derivative, whereas m?(z) +m?(y) ~ m?(X). On the right-hand side the Poisson brackets cancel
and only the product of Il and G survives. Finally, the Wigner transform of the generalized
Dirac-delta equals unity. Therefore, we get an algebraic equation for the Wigner transform of the
retarded propagator:

[P'pu — m*(X) - IR(X, p)| Gr(X,p) = —1. (3.71)
This implies that the real part of the retarded propagator is given by

Gr(X = .
D)= X ) + IR (X,p)

3.72)
Note that G}, (X, p) vanishes on the mass shell, which is defined by the condition (X, p) = 0.
Using eqn. (3.68), we find:

_HP(X7p)
O2(X,p) + 3112(X, p)

Go(X,p) = (3.73)

This is also a particular solution of eqn. (3.70b). To first order in the covariant derivative the
Wigner-transform of the constraint equation for the statistical propagator reads

X, p)Gr (X, p) = (TTF(X,p), Gyl X.p)} s
+ {GR(X D) (X, D)} + TIR(X P)GM(X p). (B74)

This equation for G (X, p) is not algebraic and can not be solved analytically in general. Let us
assume, for a moment, that the system is in thermal equilibrium. In this case all quantities are
constant in time and space and the Poisson brackets in eqn. (3.74) vanish identically. The solution
of the resulting algebraic equation is known as fluctuation-dissipation relation:

GF(p) = ;IZ((;) G(p) . (3.75)

The ratio of II and 11, can be computed from relation eqn. (3.32) with help of the Kubo-Martin-
Schwinger (KMS) periodicity condition, G(z,y)|.—0 = G(x,y)|z=—ig, Where (3 is the inverse
temperature. Wigner-transforming this equation we obtain from eqn. (3.75):

Gy (p) = [feq(p) + %}Gfﬂ(p), (3.76)

where f¢? denotes the Bose—Einstein equilibrium distribution function. This equation will serve
as a motivation to make a particular ansatz for the statistical propagator out-of-equilibrium.
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To complete this section we need to compute explicit expressions for the Wigner transforms of
the spectral and statistical self-energies eqn. (3.38) for the ¢*-theory. Using eqn. (3.57) we can
write the Wigner transforms of the three-loop contributions as (remembering that the definition of
G, (X, p) contains an additional factor of —i )

22 3

I (X.p) = = SLGHX.p) + [CrGH(X,p)]. (3.77a)
A2 1

(X, p) = = T BGEGH(X,p) + G (X, p)]. (3.77b)

The expression for the Wigner transform of the three-loop retarded self-energy can be obtained
from eqn. (3.77) by replacing one of the G,’s by Gr. The Wigner transforms of the four-loop
contributions can be written in a similar way [2].

3.1.5 Boltzmann Kinetic equations

We are now about to make the final steps towards the Boltzmann kinetic equations. It is obvious
that we need to relate the propagators to the one-particle distribution function to achieve this. The
spectral function eqn. (3.73) has approximately Breit—-Wigner shape with a width proportional to
the spectral self-energy. As a direct consequence of eqn.(3.34) and the anti-symmetry of the
spectral function, G,(X, p) satisfies a normalization condition:

gOO
/%GP(X,p) podpo = 1. (3.78)

In the limit of vanishing coupling constant the width of the spectral function approaches zero,
since the magnitudes of II, (and also of IT; and of the local term of the self-energy, implicit in
the definition of (X, p)), are controlled by the coupling. At the same time its on-shell value
goes to infinity, see eqn. (3.73). We can infer from eqn. (3.64) that the spectral function takes the
form [32],

G,(X,p) = 2msgn(po) § (¢ pupy — m?) (3.79)

in this limit. This ansatz for G,(X, p) is referred to as quasi-particle approximation. Note that it
is consistent with the normalization condition (3.78). The signum-function appears in eqn. (3.79),
because I1,(X, p) is an odd function of pg. In the same limit eqn. (3.70b) for the spectral function
becomes

p*DaGp(X,p) =0, (3.80)

and indeed admits a quasi-particle solution of the from of eqn. (3.79). Note that eqns. (3.80) and
(3.79) state that the effective mass m (X) of the field quanta is constant along the geodesic just as
for particles.

We are free to replace G (X, p) by some other function:

Gr(X.p) = [£(X.p) + ] Gy(X.p). (3.81)

This ansatz is motivated by the fluctuation-dissipation relation (3.76). If Gr(X, p) and G, (X, p)
are smooth functions then eqn. (3.81) is merely a definition of f(X,p). In the quasi-particle ap-
proximation the spectral function is proportional to a Dirac-delta and eqn. (3.81) must be under-
stood in the distributional sense. In the presence of an adequate momentum integral G ,(X, p) then
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forces the momentum argument of f onto the mass shell. This quasi-particle approximation for
the statistical propagator (3.81) is usually referred to as Kadanoff-Baym ansatz [32, 80].

The final step in the derivation is to neglect the Poisson brackets in the quantum kinetic equations.
It has been noted above that these take into account a short part of the history of the systems
evolution. To neglect the Poisson brackets means to ignore the previous evolution of the system,
i.e. to neglect the memory effects completely. Physically this corresponds to the Stozahlansatz of
Boltzmann which we have related, in section 2.3, to the absence of correlations between particles
before they collide (assumption of molecular chaos).

Inserting eqn. (3.81) together with (3.79) into eqn. (3.70a) we finally obtain a kinetic equation for
the evolution of the one-particle distribution function f (X, p) (which is implicit):

PDaf (X.p)]Gp(X,p) = 5 [ (X.p)Go(X,p) ~ Go (X P(Xp)] . (382
where we have introduced
G (X.p) = Gp(X,p) £ %G,}(x, D), (3.83)
and the analog for the self-energies:
Mo(X, p) = TIp(X, p) £ %HP(X, p). (3.84)

The symmetry (anti-symmetry) of the statistical (spectral) propagator with respect to permutation
of the arguments imply that their Wigner transforms satisfy the relations

Gr(X,p) = Gr(X,—p), Gp(X,p)=—-G,(X,—p). (3.85)
Therefore, we find for the single real scalar field:
Gz(X,—p) = G<(X,p), (3.86)

and a similar relation for the corresponding components of the self-energies.

If we insert the Kadanoff-Baym ansatz into eqn. (3.83) we find:

G>(X7p) = (1 + f(X,p))Gp(X,p), G<(X7p) - f(X7p)GP(X7p)' (387)

This indicates already that the first and second term in eqn. (3.82) correspond to the loss- and gain-
term of the Boltzmann equation. In order to simplify further, we need to find explicit expressions
for Hz(X ,p) for the *-theory. These can be obtained after some algebra from eqn. (3.77). For il-
lustration purposes we first derive II>(z, y) and perform the Wigner transformation subsequently.
Using the decomposition

G(z,y) = 0(z" — y°)G>(z,y) + 0(y° — 2°)G<(z,y) (3.88)

we obtain for the three-loop contribution
@) oy N

2 6
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Its Wigner transform reads

)\2
nY(X,p) = T} T, T, (2)469 (p + p1 — pa — ps)
XG<(X,p1)G2(X, p2)G=(X, p3) (3.90)

where we have used relation (3.86). As announced in the beginning, it describes 2 — 2 scattering
processes and corresponds to the tree-level Feynman diagram in ﬁg 34.

X oo

Figure 3.4: Feynman diagrams contributing to 2 — 2 scattering at tree and one-loop level.

The corresponding four-loop contributions have been presented in [2].

Next, we insert the explicit expressions for G>(X, p) eqn.(3.87) and for II>(X, p) eqn. (3.90)
into eqn. (3.82) and obtain:

[paDaf(Xa p)] GP(Xa p) =
2

+3 dIL, dIL} dIT} (27)*6% (p + p1 — p2 — p3) X
<[ (L4 (X, D) Gp(X,p) (14 (X, p1)) Gp(X, 1)

X f(XvpQ)G,O(XvpQ)f(X7p3)GP(X’p3)_
_f(X’p)GP(X’p)f(Xvpl)GP(X7p1)

(14 F(Xp2))GolXop2) (L F(X.p) Go(Xp)| . 391)

After the quasi-particle ansatz for G,(X,p) has been inserted we integrate the left— and right-
hand side of (3.91) over py and choose the positive energy solution on the left-hand side. On the
right-hand side both, the positive and the negative energy, solutions contribute. For positive pg
energy-momentum conservation allows the following three combinations:

p20 >0, p3g >0, p1g>0,
P20 >0, p3g <0, p1p<0,
P20 < O) P30 > 07 P1g <0.

As far as the three-loop self-energy eqn. (3.90) is concerned, each combination leads to the same
result, i.e. an overall factor of 3 appears. After a renaming of the momentum variables we finally
arrive at the Boltzmann equation for the distribution function:

1
Do f(X k) = 5 / dIT3 dIT3 dIT; (27) 'S (E), + Ep — Eq — E,)5(k+p —q — 1)

x%AQ[(l +(X1) (1+ £ (X)) f(X, @) f (X,r)—
~FLRF(XP)(1+ F(XL @) (1+ FXD) |, 392
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where the transition amplitude is given trivially by A% = A\?. On the right-hand side, all the /=g y
factors have disappeared due to the introduction of “physical” momenta and energies.

This means that, after a long calculation, we have reproduced the same result as we would have
obtained from eqn. (2.9) with the transition amplitude computed from the S-matrix (in lowest
order). One may then ask what the advantages of this approach are. Firstly, it shows that in this
non-rigorous derivation we were required to make various assumption, the implications of which
are hard to quantify in general, to extract the classical Boltzmann kinetic equations out of the
quantum dynamical Kadanoff-Baym equations. Secondly, it turns out that the next-to-leading
order (four-loop) contribution to the self-energies leads to corrections to the transition amplitude,
which include integrals over the distribution function, i.e. medium contributions. In [2] it was
shown that it contains a sum of three loop-integrals L(X, p) with arguments corresponding to s-,
t- and u-channel scattering:

A2 - A2(Xap2ap37pl) =

A2(1 = A[L(X, p2 + p3) + L(X,p2 — p1) + L(X, ps — p1)]) , (3.93)
with
, Pk 2f(X, k) +1 p? — 2pk p? + 2pk
L(X,p) =1 3.94
(X.p) 65%/(%)3 2B}, Pt T Py O

where k = (E}, k) is the on-shell four-momentum expressed in terms of the “physical” compo-
nents: B = ko/ V/900, etc. It has also been shown that this expression reduces to the vacuum
result at one-loop level in the zero density limit f — 0. The obvious interpretation of eqn. (3.94)
is, therefore, that the particles propagating in the loop feel the presence of the non-zero density
and that this affects only one of the internal lines. The other one is off-shell and we can not
associate the particle number density with it. The expression is therefore only linear in the dis-
tribution function.® Finally, the structure of eqn. (3.92) has been derived self-consistently. In the
present case this does not have any advantage over the canonical approach, but for the toy model
of leptogenesis it leads to a qualitative difference as we will see.

Let us note here that the different contributions to the Boltzmann equation corresponding to a
particular term of the 2PI effective action have a simple diagrammatic interpretation [? ]. They
can be deduced by cutting the 2PI diagrams “in one stroke”, i.e. by drawing a single connected line
which divides the diagrams into two pieces. This needs to be done in all possible ways, see fig. 3.5.
For example, the three-loop diagram can be cut in just one way and the result represents a product
of two tree-level scattering diagrams. On the other hand, the four-loop contribution could be cut
in three equivalent ways and the result represents a product of tree-level and one-loop scattering
diagrams.

The properties observed above make the Kadanoff-Baym equations a prime candidate for the
analysis of leptogenesis. If the quasi-particle picture is applicable, they account for the time-
dependence of the quasi-particle parameters. In particular, an effective time-dependent mass and
width induced by the interactions of the system can be extracted from the Wigner transform of the

8We should note in this context that the dependence of A on the distribution functions represents a further general-
ization of Boltzmann equations. The symmetry properties of the usual Boltzmann equations (with amplitudes which do
not depend on the distribution) lead to a number of collisional invariants, such as the total particle number density (in
Minkowski space-time), see section 2.3. This property is considered as very elementary within classical kinetic theory.
Because such conservation laws do in general not hold for the “Boltzmann-like” equations presented in this thesis, we
do refer to these as quantum corrected Boltzmann equations.
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G- XX
B X

Figure 3.5: The diagrammatic interpretation of the contributions to the Boltzmann equation
in terms of 2PI diagrams. These must be separated into two pieces by a single connected line.

spectral function [34]. Finally, in the “classical limit” the Kadanoff-Baym equations reduce to the
Boltzmann equation [68—71]. To conclude this section, we summarize the results:

o Kadanoff-Baym equations and the deduced Boltzmann equation in curved space-time are
covariant generalizations of their Minkowski-space counterparts

e in the given approximation, the space-time metric enters only the left-hand side of the Boltz-
mann equation in the form of the covariant derivative

e at tree-level the collision terms coincide with those computed in vacuum, whereas loop con-
tributions contain medium corrections in the form of integrals over the distribution functions

e concerning loop contributions one can clearly distinguish between initial, final states on the
one hand and on-shell intermediate states on the other hand
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3.2 Quantum corrected Boltzmann equations

As explained in section 1.3 and section 2.2 there is a vertex contribution, which has been consid-
ered alone in the early times [11], and a self-energy (or “wave”) contribution to the CP-violating
parameter. This is true for the phenomenological scenario of thermal leptogenesis as well as for
the toy model. Within the Kadanoff-Baym formalism the analysis of the former contribution is
rather independent (and technically different) of the latter. It will turn out later that the self-energy
contribution is very similar to the vertex contribution in the strongly hierarchical case. We have
observed this behaviour already in section 2.5 with respect to the contributions in vacuum which
can be expected to result in the zero-density limit. Here, we consider only the vertex contribution
in the top-down approach. As soon as we have established the correspondence between the results
obtained in this and the bottom-up approach, supplemented by thermal quantum field theory, in
chapter 4, we will be able to deduce the form of the self-energy contribution. It is investigated
within the top-down approach in [4] in the general (non-hierarchical) case, which leads to very
interesting new results. Let us consider now the toy model, defined by the lagrangian eqn. (2.1) in
the framework of the Schwinger—Keldysh/Kadanoff-Baym formalism in curved space-time dis-
cussed in the previous section. In order to obtain Boltzmann equations we follow the steps which
have been outlined there. For brevity we begin here with the system of Kadanoff-Baym equations.
The qualitatively different, but technically similar derivation of the Kadanoff-Baym equations for
complex scalar fields is presented in appendix A.

3.2.1 Kadanoff-Baym equations

As outlined in section 3.1 the number and precise form of the Kadanoff-Baym equations depends
on the particle content of the theory. For the complex scalar field b, which corresponds to the
toy-baryons, they read

yO 20

Oz + mZ(w)]DF(:L‘,y) :/@42 Yp(x,2)Dy(2,y) — /@42 Y,(x,2)Dp(2,y), (3.95a)
0 0

y()
(O, + mi (z)]D,y(x,y) :/@4,2 Yo(x,2)Dpy(2,y) , (3.95b)
20
where we have introduced a short-hand notation 2z for the invariant volume element eqn. (3.3):
Dz =\ /—gd*z.
It ensures that the Kadanoff-Baym equations can be applied not only in Minkowski, but also in

curved space-time. The Kadanoff-Baym equations for the two real scalar fields are very similar
to the ones for the single real scalar field discussed in section 3.1.3:

,yO $O
O + mi]G}%(w, Y) —/@42 1% (z, z)G]p“j(z,y) - /@42 Hf,:,k(a:, z)G’;j(z, y), (3.96a)
0 0
0

y
O + mfm]Gﬁ,j(x, Y) :/@42 H,igk(x, z)G];j(z, Y) . (3.96b)
20
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The propagators and self-energies are now 2 x 2 matrices, the off-diagonal components of which
describe the mixing of the fields.”

The system of integro-differential equations formed by eqns. (3.95) and (3.96) can be applied to
a theory of one complex and two real scalar fields with arbitrary interactions. As discussed in
section 3.1, the information about the particular form of the interactions is encoded in the corre-
sponding self-energies (z,y) and I1¥ (x,y). Again, the latter ones can be derived by functional
differentiation of the 2PI effective action I'o[G, D] with respect to the propagators, here D(y, x)
and G’*(y, ). To obtain a qualitative similarity between the toy model and phenomenological
models, we must take into account processes which generate and washout the asymmetry. Hence
the infinite sum of 2PI diagrams must be truncated in a suitable way. The relevant contributions are
shown in fig. 3.6. To understand which physical processes these diagrams describe in the Boltz-

(@) (b) (©) (d)

Figure 3.6: Relevant two- and three-loop contributions to the 2PI effective action.

mann approximation one has to distinguish between local and non-local contributions. Since the
diagram fig. 3.6(a) includes only one vertex, and hence only one space-time integral, it yields a
local (mean-field) contribution to the effective mass m?(z):

mi(x) =m? + X°(z), ¥'°%z) = AD(z,z). (3.97)

The remaining diagrams fig. 3.6(b)-(d) give non-local contributions, because they include more

>

-

(@) (b) (©)

Figure 3.7: Processes described by the 2PI diagrams in fig. 3.6.

than one space-time integral, and describe scattering and decay processes. This becomes clear
when the diagrammatic interpretation based on cuts “in one stroke”, exemplified at the end of
section 3.1, is applied to the different diagrams. The possible cuts are shown in fig. 3.7 for the
different contributions. Cutting diagram fig. 3.6(b), we obtain squares of tree-level amplitudes of
bb — bb and bb — bb, similar to the p*-theory. Cutting diagram fig. 3.6(c), we get squares of the
tree-level amplitudes of 1); — bb and v; — bb decay processes. In the Kadanoff-Baym formalism
the leading “vertex” CP-violating contribution is described by diagram fig. 3.6(d). Cutting it in
the way shown in fig. 3.8, we obtain a product of the tree-level and one-loop vertex amplitudes.

“This can, of course, be generalized to an arbitrary number of real scalars.

57



3.2. Quantum corrected Boltzmann equations Chapter 3. Top-down approach

%
i )i

Figure 3.8: Interference of the tree-level and one-loop vertex decay amplitudes.

This corresponds indeed to the interference terms which contributed ey’”ac to the CP-violating
parameter within the bottom-up approach. In addition, there are two further ways of cutting for
this diagram, which are denoted by the ellipses in fig. 3.7. They describe the processes bb — bb,
bb — 1/Jﬂb] and T/Jlb — T/Jjb.lo

Instead of calculating the spectral and statistical components of the self-energies, it is easier to
calculate the Wightman components ¥>(, y) = Xp(,y) F §2,(, y). They are also convenient
to work with, because their Wigner transforms can be identified with the gain and loss terms, see
eqn. (3.87). After some simple but tedious algebra, see appendix B, one obtains the components
of the self-energies corresponding to the diagrams in fig. 3.6:

£ a,) =~ 12D (2.4) D (2.9) Dl ). (3.95)
28 (@,y) = - 995 G2y ) D<(v, @), (3.98)
29 (2,9) =~ 59,9395 / 77t
X | Dr(y, ) Di(u,v) D<(u,2) G h(y, 0)G2" (@, 0)
+ Dg(y, v)Da(u, v) D<(u, 2) G (y, u) GZ" (w, v)
+ Dp(y,v)Dr(u,v) D<(u, 2)GH(y, u) GL" (2, v)
+ D<(y, v) D (u,v) Da(u, @) GL(y, u) GR" (w, v)
+ D<(y,v) D a(u, 0) Dp (u, ) GL(y, w) G (. v)
+ D<(y, v) D (u,v) Da(u, 2)GZ(y, u) GE" (w, v)
+ Dg(y,v)Dx(u,v)Da(u, x)Gg(y, w)GL" ()
+ De(y, v) Ds(u, v) D, 2)G(y w)GR" (2,0)] . (398¢)

The diagrams fig. 3.6(b) and (c) lead to the contributions »®) and (¢ which contain only the
Wightman two-point correlation functions D> and Gg. As we have seen, these correspond to the
on-shell initial and final states in the Boltzmann approximation. To write the last term (%) in
compact form, we have introduced the retarded and advanced propagators, Dg(x,y) = 6(2° —
y°)D,(x,y) and Da(z,y) = —0(y° — 2°)D,(z,y), in complete analogy to eqn. (3.1.4). The first

Note that the three-loop 2PI diagram only describes the interference of the s, ¢ and u-channel scattering amplitudes:
Mty Mgy, Myy. The missing topologies, which generate the M, My, and M., terms, appear only upon use of
the extended quasi-particle approximation. This analysis is beyond the scope of this thesis.
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six contributions describe the one-loop correction to the decay width. The combinations of the
statistical, retarded and advanced propagators in eqn. (3.98c) correspond to the three internal lines
in the loop, whereas the 2 components, again, correspond to the on-shell initial and final states.
The seventh term in eqn. (3.98c) describes the scattering process ;b — ;b. This is clear from the
fact that it contains one D> and two > components, i.e. one “external” complex scalar and two
“external” real scalars. Similarly, the eighth term of eqn. (3.98c) describes the scattering process

bb — bb, because it contains three D> two-point functions, i.e. three “external” complex scalars.

Since we do not take into account possible quartic interactions of the real scalar fields, in the toy
model, there are no local corrections to their masses. It is for this reason that eqns. (3.96) contain
only the bare masses mil of the fields. Now let us consider the Wightman components of the

non-local self-energies for the real scalar fields II>(z,y) = Ilr(z,y) F I, (z,y):

H(g)ij (z,y) = — %gig}fDé(ﬂ% y) — %gf 9;D%(y, ), (3.99a)
H(zd)ij(x,y) =— ;gigjg;‘ng:/@%@A‘u
x |GE" (v, 4) Dz, v) Dz, u) Dr(y, v) D (y, )
+ GR"(v,u) Dz (2, v) Dz (2, u) Dr(y, v) Dr(y, u)
+ G (v, u) Dz (2, 0) Dz (2, u) D (y, 0) Dr(y, u)
+ GF"(v,u) Dr(z, v) Dr(z, u) D<(y, v) D<(y, u)
+ GE"(v,u)Dr(x,v)Dp(z, u)Dg(y, v) D<(y, w)
+ GA" (v,u) Dp(z,v) Dr(z, u) D<(y, v) D<(y, u)
+ G;<'m(v, u)Dx(x,v)Dgr(z,u)Dr(y,v) D<(y, u)
+ G2 (v,u) Dp(w, v) Dz () D<(y, v) Dr(y, u)]
— %gi‘ 95 9mn / 7D u

< |G (v, u) D<(v,2) D<(u,2) Da (v,9) Da(u.y)

+ e . (3.99b)

The first term I1(©) describes the decay of the heavy scalar at tree-level. The first six terms in each
of the two square brackets of 11(4 describe the one-loop corrections to the scattering width.!!
Their structure is very similar to that of the first six terms of eqn. (3.98c) and the combinations of
the statistical, retarded and advanced propagators again correspond to the three internal lines in
the loop.

The Kadanoff-Baym eqns. (3.95) and (3.96) together with the expression for the self-energies
(3.98) and (3.99) form a closed system of integro-differential equations. Its solutions carry the full

""'The seventh and eighth terms of eqn. (3.99b) describe the scattering processes ;b — ;b and bb — 1;2);.
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information about the spectral and statistical properties of the system, including the information
about the generated asymmetry at each instant of time.

3.2.2 Boltzmann kinetic equations

In thermal equilibrium the two-point correlation functions D(x,y) and G%(z,y) depend only
on the relative coordinate s and are independent of the center coordinate X . With this property
in mind, we trade the variables = and y for the new arguments X and s: D(z,y) — D(X,s).
Out of equilibrium the two-point functions depend on both, the relative and center coordinate.
Assuming that the deviation from equilibrium is small, one can perform the gradient expansion of
the correlation functions and the self-energies in the vicinity of X keeping only the leading terms.
The fast dynamics associated with the relative coordinate is responsible for the spectral properties
of the system, which are conveniently described in the momentum representation. Performing
the Wigner transformation, we trade the relative coordinate s for a coordinate p in momentum
space: D(X,s) — D(X,p). The next steps in the derivation of the Boltzmann equations are the
Kadanoff-Baym ansatz eqn. (3.81) for the statistical propagator D (X, p) and the quasi-particle
approximation, where one replaces the exact smooth spectral function D,(X, p) by a Dirac-delta
peaked on the mass-shell of the quasi-particles. These steps have been performed for the p*-theory
in section 3.1 and are generalized to the toy model in appendix A. They result in two equations
for the one-particle distribution functions f°(X,p) and f°(X,p) for toy-baryons and toy-anti-
baryons, respectively:

[paDafb(va)] DP(Xa p) =

[0 DPaf*(X.p)] Dp(X.p) = 5 [Da(X. )85 (X.p) = D>(X,p)E<(X.p)],  (3.100b)

[D<(X7p)2>(Xap) - D>(X7p)2<(X’p)] ’ (31003)

— N =

where D> (X, p) = D<(X, —p), ©>(X,p) = £<(X, —p). To obtain a closed system of quantum
corrected Boltzmann equations, we also need to Wigner-transform the self-energies eqn. (3.98),
which encode the scattering and decay rates including quantum non-equilibrium effects, see below
for more details. By employing the relations (3.87) for the components Dz(X , p), which follow
directly from the Kadanoff-Baym ansatz, we will then be able to rewrite eqns. (3.100) in a way
resembling the usual form of Boltzmann equations.

Within the 2PI three-loop approximation, we find that there are two physically distinct contribu-
tions to the self-energy. The first one, corresponding to ¥.(?), describes CP-conserving two body
scatterings, bb — bb, at tree-level:

1
2i(X.p) = —§>\2 / dIly dIT, dIT) (27)*69(p + p1 — p2 — p3)

where the invariant volume element in momentum space dﬂé is defined by eqn. (3.56). The second

contribution, given by the sum of %(¢) and %.(%), describes decay processes 1; — bb and ; — bb
at tree- and one-loop level:

i(X,p) = —gi|? /dﬂéldﬂé2(27r)469(p1 —p2—p)

x [1+ AL(X, p1,p2) | GE(X, p1) D<(X, p2) - (3.102)
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The function Ai(X , 1, p2) takes into account the one-loop corrections to the decay width and is
given by

: 9i9;
AL(X,p1,p2) = |g;I” ( : J,> /dﬂildHiQdHig
9; 9j
X (2m) 169 (p1 + k1 + ka)(2m)* 0% (ky — k3 + p2)
x [DA(X, k1) Dr(X, ko) G (X, k3)
+D (X, k1)Dgr(X, k:g)G” (X, k3)
+Dp(X, k1) Da(X, k2)G% (X, k3)] + c.c. (3.103)
Proceeding in the same way, we derive quantum corrected Boltzmann equations for the distribution
functions of the real scalar fields, which is a two-by-two differential matrix equation. The off-
diagonal components of the correlation functions are generated dynamically, when the system
deviates from equilibrium, by the exchange of two complex scalars and are therefore assumed
to be of order g2. The one-loop vertex terms, which generate the CP-violating parameter, are
proportional to the fourth power of the coupling constant. Therefore the contribution of the oft-
diagonal terms to the vertex CP-violating parameter is of the order of g®. Here, we limit ourselves
to terms of at most fourth power in the coupling constant and therefore we can neglect the off-

diagonal terms in the corresponding matrix equation. The resulting equations coincide then with
those derived in section 3.1:

[P*Daf™ (X, p)] G (X, p) = S[GL(X, PIL(X, p) = GE(X, PIE(X,p)] . (3.104)

Note that we have in fact used this diagonal approximation in eqns. (3.102) and (3.103). The
Wigner-transform of the self-energy eqn. (3.99) is given in the same approximation by

g 1
M"(X,p) = =5 lgil” /dﬂﬁldﬂé(?ﬂ)%g(m +p2 — p)
<{ [1+ AL p.p2)] D(X,p1) D2 (X, p2)
+[1+ AY(X,p, p2)] Dz(X,pl)Dz(X,pz)} : (3.105)

The second line of this equation describes the process ©); — bb. The one-loop correction to this
process is given by

i .glg
AL(X,popa) = g, ? ( ﬂ) [t an

x (21) 469 (p + k1 + ko) (27)*69 (ko — k3 + p2)
[ R(X, k1) Dr(X, ko) G (X, k3)
+Dr(X, k1) D (X, ko) G4 (X, k3)
+Dp(X, k1) Dr(X, k)G (X, k3)] + c.c. (3.106)

The third line of eqn. (3.105) describes the ¢; — bb process and the corresponding one-loop
contribution is related to eqn. (3.106) by Afb (X,p1,p2) = Afp(X, —p1, —D2).

Comparing the Boltzmann equations for particles and anti-particles, (3.100a) and (3.100b), we see
that the dynamical generation of the asymmetry is only possible if > (X, p) # ¥>(X, p). Since
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ig(X p) = X<(X, —p), in the diagonal approximation, this is equivalent to the requirement that
Ay (X, p1,p2) ;é A} (X, —p1, —p2). The CP-violating parameter can then be defined as
1. . .
e/ (X,p1,p2) = §[AZ(X,p1,p2) — AY(X, —p1,—p2)] - (3.107)

We will compute it explicitly in the next sub-section. A very important feature of the expressions
for the self-energies, eqns. (3.102) and (3.105), is that the loop corrections Aé and Aip appear as
overall factors on the right-hand sides of the corresponding quantum corrected Boltzmann equa-
tions. To see what this means, we focus now on the hierarchical limit m,,, < my, in which
the interactions with on-shell 1)2’s can be neglected due to their large mass and their negligible
abundance in the universe when 1 begins to decay, see section 1.3. To obtain the three Boltz-
mann equations for f°, f® and ¥, we integrate each of eqns. (3.100a), (3.100b) and (3.104) for
1 = 1, after inserting the Wigner transforms of the self-energies (3.101), (3.102) and (3.105), over
po (left- and right-hand side) and choose the positive energy solution, just as in section 3.1.5. In
agreement with the cosmological principle, we assume spatially homogeneous and momentum
isotropic distribution functions in (spatially flat and radiation dominated) FRW space-time. With
these modifications, the network of quantum corrected Boltzmann equations takes the form:

LUKl = CRr 1o, 11+ G e 1, (3.108a)
LIF)(K]) = CRE=1fY) + CRE L £ + Clom 17, 1), (3.108b)
LK) = CR L) + R £ + ﬁi’rwl 7. £, (3.108¢)

where the Liouville operator is given by eqn.(2.11) and the notation of section 2.3 is used for
the different “collision terms”, the distribution functions and the Lorentz invariant phase-space
volumes dHf;. For the 2 — 2 scattering processes in (3.108b) we find

2
LU Th) (U Tl e Ty = Fha i (L ) L )| 3.1099)

RS =5 /de’; dIT, i1t (2m)*6 ™) (p 4 p — q — 7)A?

1 1
ORI = 5 [ At dntant @n) 5+ p - g - 1) 3

LU i) (U Tl e Ty = Fha o (L ) (L 1) |- 3.1090)

The corresponding terms in the equation for b can be obtained by replacing f° with f B_in eqns. (3.109a)
and (3.109b). If the generated asymmetry is small, as we assume here, then f* ~ f°. In this case
the CP-violating contributions to the right-hand side of eqn. (3.108a) cancel out and we obtain

O~ G~
= [t dnen's O p - p -0 o P
([ S oty = F (14 ) (L )|
H O AN Al = SO+ ) 0+ )]} G110
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The collision terms for the (inverse) decay of the heavy particle into a bb or bb pair explicitly
contain the CP-violating parameter eY given in eqn. (3.120):

ﬁff—’% [fb fdu] _ /de dea (2ﬂ)45( )(p —p— q)\gl\z[l + 6¥(|q\)]

X {(1 + Fg) (L S Flf = Fia iy (1 +f|ﬁ1\)] , (3.111a)
Cir 1) = 5 [ i oo o - p - o Pl - & (1))
x|+ AR U+ T A = Tl (1 D] (3.1110)

The network of Boltzmann equations (3.108) should be understood in the generalized sense: the
transition amplitudes differ from the usual perturbative matrix elements and do not have their
symmetry properties as explained at the end of section 3.1.3.

Equations (3.108) can be compared directly to the network obtained in the bottom-up approach,
eqns. (2.20). As announced, the structure of eqns. (3.111) differs from the conventional one. In
particular, we did not need to include the processes bb < bb explicitly, because our collision terms
for the processes bb < 1 and bb « 1); do not suffer from the generation of an asymmetry
in equilibrium. If we would use the conventional approximations and integrate eqns. (3.108) to
obtain rate equations, as shown in the bottom-up approach in section 2.4, we would obtain in the
vacuum limit the structure'?

d

—= (5, Y5) o (1+e) Yy =Y +..., ie
d
(% - Yp) o 2¢€] (Yy, = YT + ... (3.112)

To obtain the equivalent result for Y}, — Y7 in the canonical approach we needed to subtract the RIS
part of the S-matrix element for the processes bb « bb. This means that, here, the structure of
the equations automatically ensures that no asymmetry is generated in thermal equilibrium. Stated
differently, the Kadanoff-Baym formalism is free of the “double-counting problem”.

In the homogeneous and isotropic early universe the canonical Boltzmann equations conserve the
linear combination
2Y,, +Y, + Y3 (3.113)

of the different species’ abundances. However, the conservation of this quantity is “accidental”,
i.e. not guaranteed by a symmetry of the underlying lagrangian. It is not conserved by the full
Kadanoff-Baym equations (see [35] for another example). This is also true for the quantum cor-
rected Boltzmann equations which we have derived from the Kadanoff-Baym equations here. To
see this one can sum eqns. (3.100a) and (3.100b) as well as eqn. (3.104) multiplied by two and use
the explicit expressions for the self-energies (3.102) and (3.105). Although the expressions for
the loop corrections (3.103) and (3.106) are similar, they are not equal. Close to equilibrium, this
results in a small time-dependence of the quantity (3.113) (see also chapter 5).

The factors 1/2 associated with the couplings in (3.109a) and (3.110) correctly account for the
symmetrisation of collision integrals which include integration over the momenta of two identical
particles in the initial/final state. They have been consistently obtained in the derivation from the
Kadanoff-Baym equations.

2For the numerical analysis we will use the full Boltzmann equation, since the approximations required to obtain
rate equations are not appropriate if the toy model is considered as closed and no additional interactions are introduced,
see section 5.
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3.2.3 CP-violating parameter

Using properties of the Wigner transforms of the statistical, retarded and advanced propagators, we
find that in an approximately toy-baryon-symmetric medium the CP-violating parameter defined
by eqn. (3.107) is given by'3

9i9;
e/ (X, p1,p2) = |g;°S (g*g] ) /dﬂildﬂigdﬂis
=
x(2m)69 (p1 + k1 + ko) (27)*69 (ko — k3 + p2)
X [Dy(X, k1) Dp(X, k2)GF (X, ks) + {k1 < ko}
+D(X, k1) Dp(X, k)G (X, k3) + {k1 < ka}

+D,(X, k1) D (X, k2) G (X, k3) — {k1 < ka}], (3.114)

where, as before, D}, (X,p) = R{Dr(X,p)} = R{Da(X,p)} and G}, is defined analogously.
We can now show that only the first two terms in this expression contribute to the CP-violating
parameter in the integrated Boltzmann equations. In the Kadanoff-Baym ansatz together with the
quasi-particle approximation the spectral functions and the statistical propagators are forced on
the mass shell. At the same time, the real parts of the retarded propagators, Dy, and G, vanish
on-shell. This means that only processes contribute in which two of the internal lines are on-shell

b2 b2 D2
ko ko k2
P | P1 p1
R Uy —— - by  —— - | ks
| } |
k1 k1 k1
p3 ps3 P3
(a) (b) ©

Figure 3.9: Graphical representation of the terms in eqn. (3.114). Thick lines represent on-
shell particles. Only the first diagram, with two on-shell internal b’s, contributes.

and the third one is off-shell, see fig. 3.9. We can also see, that in each term in (3.114) only one
of the internal lines includes Dy or G, i.e. explicitly depends on the one-particle distribution
function. In other words the medium corrections are linear in the particle number densities. We
will see later, in chapter 4, that this is in conflict with literature results for the medium contributions
derived in the framework of thermal quantum field theory by replacing vacuum propagators with
thermal ones in the computation of the CP-violating parameter.

We have seen in chapter 3 that the rate equations are obtained by integrating the left- and right-
hand sides of the Boltzmann eqns. (3.100a) and (3.100b) over the remaining free momentum. In
the integrated gain and loss terms,

[t o) (s = )1+ 6]

x GL(X,p1)D<(X, p2) D< (X, p), (3.115)

3The CP-violating parameter, defined in this way, is different for particles and anti-particles if the corresponding
distribution functions are different. Since the expected asymmetry is small, this is only a second order effect and can
be neglected here.
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one can perform the transformation p < po and add half of the result to the half of the original
expression without changing it. This is equivalent to the replacement

1
e/ (X,p1,p2) — §[€Y(X,P17p2) + €/ (X, p1,p)] (3.116)

in eqn. (3.115). At the same time we can transform the variables k; <« ko and k3 — —Fk3
in EZV (X, p1,p) given by eqn. (3.114). Using the anti-symmetry of the spectral function of the
real scalar fields G}'}'(X ,—k1) = —Gﬁf(X ,k1) we find indeed that only the first two terms in
eqn. (3.114) contribute, while the other terms cancel. In other words, only the terms represented
by the diagram fig. 3.9(a) contribute to the CP-violating parameter.

Applying the quasi-particle approximation and the Kadanoff-Baym ansatz in eqn. (3.114), one
obtains the following expression for the CP-violating parameter:

gig;f> /sz 1+ f2(EY) + £2(By)
9; 9j 4 mij/mii +3(1+cosf)’

1 g~2
e/ (p1,p2) = — &T‘md% (
s

(3.117)

where Ey, , are the energies of the intermediate toy-baryons as a function of p; and ps (we have
omitted the time-space coordinate X to shorten the notation). The CP-violating parameter is a sum
of vacuum and medium contributions. In the zero-density limit we can perform the integration
over the solid angle following the steps which led from eqn. (2.57) to eqn. (2.61). We obtain the
standard expression for the CP-violating parameter in eqn. (2.52). The medium contributions are
proportional to the one-particle distribution function. Hence, within the toy model the CP-violating
parameter is always enhanced.

Because of the fact that the intermediate toy-baryons propagate with respect to the rest frame of
the thermal bath, a speciality arises in the derivation of eqn. (3.117) which is due to the presence
of the distribution functions. As the equilibrium distribution function, these are functions of the
Lorentz invariant product p,U* of the particles’ four-momentum and the four-velocity U of the
plasma in a general frame. In the rest-frame of the plasma U = (1,0, 0, 0) we obtain the standard
form which depends on pg. One can therefore go to the rest frame of the decaying particle to
perform the integration along the same lines which led from eqn. (2.54) to eqn. (2.57). However,
one needs to evaluate U in the same frame. It is given by U = (mwl)*l(E;’f’f, —p1). This leads
to the dependence on the energies of the intermediate complex scalars 'y and E> which are given
by (see also [3]):

1
Ei9 = 3 [E;;Z’ll + |p1](sin 6; cos ¢; cos &’ F cos §; sin 5’)] , (3.118)

where 6; and ¢; are elements of the solid angle ; and the angle ¢’ is given by sind’ = (|p3| —
p2|)/|p1l.

As noted above, In the limit of almost equal one-particle distribution functions of particles and
anti-particles, f® ~ f°, the CP-violating parts of Afp do not contribute to the Boltzmann equations
for the real scalars, just as in the canonical approach. For this reason, we do not consider these
contributions here.

In order to estimate the size of the medium corrections, we consider again the hierarchical case.
By expanding eqn. (3.117) in m?pl / miz, we obtain a simplified expression for the relevant CP-

violating parameter EY,

o (pr.pa) = ¢ [1 + [ {fE+ fE(EQ)}} , (3.119)
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where ¢} """ is the CP-violating parameter in vacuum given in eqn (2.52). Exploiting the k1 < ko

symmetry and 1ntegrat1ng over the full solid angle we find that 61 depends on the absolute value
of p; only. That is €} (p1,p2) = ¢} (|p1]), where
Emaz/2

Vyvac

v
€1 (|p|) ~ey’

1+ E)dE| , (3.120)

T‘P| Emin/2

with E,, = E;f ' —rlp| and By = E;f ' + r|p| are the largest and smallest kinematically
allowed energies of the light scalars produced in the decay ¢y — bb. Here E;f ' and |p| de-
note the energy and momentum of 1 in the rest-frame of the medium and we have defined

r=,/1- 4mg/mfﬁ1

The medium corrections depend on the one-particle distribution function of the light scalars (toy-
baryons) and the masses of the particles. We emphasize that eqn. (3.120) is valid even if the
light scalars are out-of-equilibrium. Nevertheless, since we assume that, in agreement with the

phenomenological scenario, the toy-baryons are close to kinetic equilibrium, we insert a Bose—
Einstein distribution function. Then the integrals can be performed analytically and we obtain

Emaz*QH«b
v 2T, l1—e 2T
61V(LI:C|) =1+-—In ‘ Fonzy |+ (BE). (3.121)
eV r|p| | e

For comparison we also consider the case of a Maxwell-Boltzmann distribution:

Vv E, ;. —2 E —92

p 2T _ Pmin—4Hp _ Emaz—2pp

M =1+ b <e T,  —e 2T, ) , (MB). (3.122)
nee 7|p|

€1

The resulting expression depends on time via the toy-baryon temperature 73 and chemical potential
wp. For the rest of this section we assume || << T, as usual in the phenomenological scenario,
for the purpose of illustration'. The temperature- and momentum dependence of the medium
correction in the range of typical momenta |p| ~ T}, is represented by the shaded areas in fig. 3.10
for the BE and MB cases, respectively. It is instructive to consider the non-relativistic regime
(T, |p| < my,) and the ultra-relativistic regime (T}, 2 |p| > my,). In the non-relativistic limit,
the BE and MB cases coincide, and the medium correction is exponentially suppressed,

vac m
et (Ip)/e/"* — 1+2 exp <— 2}";) . (3.123)

Furthermore, it is independent of the momentum |p|. In the ultra-relativistic limit, the medium
correction in the BE and MB cases behave quite differently: In the MB case the medium correction
saturates at €} /e}"** < 3. In the BE case, it is logarithmically enhanced (see fig. 3.10):

2T,
e
-
my, +

ATy |p|
8p2m?
mil (1+r)

(3.124)

e (Ipl)/e/™™ — 1+

!4The usual motivation for this condition have been given in section 2.4. Within the toy model, due to the absence of
gauge interactions, it is possible to have |us| ~ |fis| ~ Tp while the asymmetry remains small. It turns out that this is
even necessary to obtain consistent numerical solutions within the present scenario, see section 5.
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This effect is due to Bose-enhancement. Thus, we find that the quantum statistics is important
for the size of the medium correction. In the following section, we will see that the logarithmic
enhancement at high energies is also suppressed by the inclusion of sizable negative chemical
potentials.

In order to get rid of the momentum dependence and to find out how large the medium corrections
may be close to thermal equilibrium, we consider an thermally averaged CP-violating parameter.
We define it by integrating the gain or loss term in the Boltzmann equation for the decay over the
remaining free momentum: '3

[ dIT}, dIT3,dTT3 w(py, pa, p3)e; (p1, p2)
J dIT3 dIT3 dIi3 w(ps, pa, ps) ’

(&) (3.125)

where the term w represents the gain or loss term of the decay processes:

w(p1,pa, p3) = (2m) S(Ep — Ep, — Eb)5(p1— Po — P3) (1 + [0 ) Iy Sy - (3.126)
This means that (¢)") measures the potential relative effect of the medium corrections in €} on the
number densities and hence on the generated asymmetry. In the hierarchical limit m.,,, << my,,
the CP-violating parameter eY depends only on |p1|, see eqn. (3.120). In the ultra-relativistic limit
mp = 0 the integration over the momenta of the final states in eqn. (3.125) can be performed
analytically and one finds:

0 v
<6¥> _ fO d‘pﬂ w(‘plbel (’pl‘) . (3127)

Jo~ dlpa| w(lp1l)

We consider again two cases which differ by the distributions used for the computation of w(|p1|).
Inserting Bose—Einstein distributions for f” and f¥¢ (with common temperature T and p = Hy =

fy, = 0)in (3.126) we obtain
: Ed’1+|pl|)
sinh [ =2 —~——
2|p1| | ( i

P12 Epll
Ep, sinh” [ -7

w(|p1]) = (BE). (3.128)

n
Y Y1 ’
: Epl 7|p1|
> sinh <4T

If we insert, on the other hand, Maxwell-Boltzmann distributions for f° and neglect f¥: in (3.126)
the resulting expression for the weighting function reads

) Ewl
w(|p1|) = [p1[*exp | — j’i , (MB). (3.129)

The numerical results for the remaining integral, i.e. the averaged CP-violating parameter in the
BE and MB case are also shown in fig. 3.10. We observe that (¢}') ~ €} (|p| ~ Tj).

Before discussing the impact of the medium correction to the CP-violating parameter quantita-
tively by solving the Boltzmann equations in chapter 5, we comment on the relation between the
top-down and the bottom-up approach. As has been mentioned before, in the zero-density limit,
the top-down result eqn. (3.117) for the CP-violating parameter coincides with the canonical re-
sult eqn. (2.52). Nevertheless, the structure of the Boltzmann equations differs between the two

'5Gain and loss term are equal in equilibrium.
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Figure 3.10: The CP-violating parameter ¢} (|p|) with medium contributions for the toy
model. The shaded areas correspond to the range 0.25 < |p|/T" < 4 of momentum |p| of
the decaying particle 1); — bb/bb with respect to the rest-frame of the medium. Here we
have assumed a thermal Bose-Einstein (BE) and Maxwell-Boltzmann (MB) distribution for
b/b with vanishing chemical potential. In the non-relativistic limit (NR), the vacuum value
is approached. In the ultra-relativistic limit (UR), the CP-violating parameter is strongly
enhanced. The thermally averaged CP-violating parameter (¢} ) for the BE (red line) and
MB (blue line) cases and the result that would be obtained from thermal field theory (green
dotted line), see chapter 4.

approaches, i.e. the quantum corrected ones are free of the “double-counting problem”. Further-
more, we note again that the size of the medium correction differs between the top-down and the
bottom-up approach supplemented by thermal quantum field theory. Within the latter, the medium

. . . \%a Vith . . .
corrections have been discussed by replacing €;""““ — ¢;”"" in the canonical Boltzmann equations
Vith

and ¢, was modified by the inclusion of thermal propagators in its calculation. It involves an
additional term compared to the top-down result (3.117), which is quadratic in the particle distri-
bution function. In fig. 3.10 we show that, within the toy model, the medium correction would be
significantly over-estimated in the present thermal field theory approach. However, we show in
the next chapter that the two approaches can be reconciled.

To conclude this chapter we summarize the results:

e By studying the toy model, we have obtained a network of quantum corrected Boltzmann
equations which is similar to the one encountered in thermal leptogenesis in the hierarchical
limit but exhibits important differences. They are applicable to systems of weakly coupled
(quasi-)particles that have a width which is small compared to their mass and that evolves
slowly compared to the microscopic interaction time scales. We expect that these conditions
are satisfied in the given scenario of leptogenesis, where the deviations from equilibrium are
moderate in general.

e The formalism is free of the “double-counting problem” typical for the canonical approach.
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In other words the structure of the equations automatically ensures that the asymmetry van-
ishes in thermal equilibrium and no need for the RIS subtraction arises.

e The result for the vertex contribution to the CP-violating parameter differs from the litera-
ture result obtained in the framework of thermal quantum field theory. The medium correc-
tions in our results are only linear in the particle number densities. Within the toy model
the medium effects always increase the CP-violating parameter which, in turn, leads to an
enhancement of the generated asymmetry.

e By comparing the CP-violating parameters obtained by using the Maxwell-Boltzmann and
Bose-Einstein statistics, we find that quantum statistical effects play a considerable role.
The medium effects increase the CP-violating parameter by a factor of at most two in the
Maxwell-Boltzmann approximation. At high temperatures, the increase is up to an order of
magnitude larger when Bose-enhancement is taken into account.
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Chapter 4

Finite temperature field theory
approach

In [14, 46, 47] expressions for the CP-violating parameter have been obtained in the framework of
finite temperature field theory for the phenomenological scenario of thermal leptogenesis. These
include higher order products in the distribution functions and therefore, by analogy, seem to con-
tradict the results derived in the top-down approach in section 3.2. This discrepancy has first been
demonstrated in the context of leptogenesis in [3]. Here, we use the finite temperature equivalent
of the Cutkosky cutting rules [106—109] to derive thermal corrections to the expression for the
imaginary part of the 3-point vertex function and the self-energy loop corrected vertex which can
be used in the Boltzmann equation. We show that the apparent contradiction disappears if one
considers retarded or advanced n-point functions.

In thermal quantum field theory the physical system is considered to be composed of two sub-
systems. One is given by the background plasma which forms a thermal reservoir at temperature
T = 3~ while the fields which are used in the computations live in the second system. These
fields can interact with the reservoir via decays to or excitation from the reservoir. There are two
main formulations of finite-temperature field theory [111]. Within the imaginary-time formalism
(ITF), in the computation of an n-point function, continuous energy variables are replaced by
discrete imaginary values. In this formulation the final result for real external energies is obtained
by analytic continuation. This procedure becomes cumbersome for larger n or at higher loop
levels. In contrast, in the real-time formalism (RTF) energies are real and no analytic continuation
is necessary. However, in the straight-forward application of this formalism unphysical products
of Dirac-delta functions with coinciding arguments appear in the computation of Feynman graphs.
In order to cure this problem one usually introduces a further degree of freedom to cancel such
irregular terms. In the “1/2-formalism” this is done by introducing two types of fields termed
type-1 and type-2 fields.! Interactions do not mix these two fields but the vertices can be of either
type, g! = —ig and g?> = +ig, for a generic (but real) coupling constant g, differing only by a
relative minus sign. The propagators connecting the different types of vertices can be considered

'Historically this fields have been called physical and ghost fields respectively, because it was common belief that
only one type-1 fields are physical and that type-2 fields are a auxiliary quantities which do not appear in external lines.
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as components of a 2 x 2 propagator matrix>>

ab . Gll(p) G12(p) B A(p) eﬁp0/2A—(p)
¢ (p) a < Gzl(p) GQQ(p) ) N < e_ﬁpo/QA-i-(p) A*(p) > .

For a scalar particle b the components are

A(p) i +2m o (p)s(p* — mi)

- p? —m2 +ie
A*(p) = 2m [O(Epo) + /7(p)] 6 — md) (.0
For a fermion f the components are

7

A(p) = (y-p+my) [ —2m fhe(p)o(p? — m?)] :

A*(p) =2m(y-p+my) [@(ipo) — ff’eq(p)} 5(p® —m7). (4.2)

Here, we denote by f¢(p) and f/9(p) the equilibrium distribution function for bosons and
fermions respectively. They are functions of the Lorentz invariant product p, U* of the particles’
four-momentum and the four-velocity U of the plasma in a general frame. In the rest-frame of the
plasma U = (1,0,0,0) we obtain the standard form which depends on po.* In the following we
assume that it is sufficient to replace the different propagators in our toy model by their thermal
field theory equivalents given in eqn. (4.1). This approach has been followed in previous works for
the leptogenesis scenario [47]. Further thermal effects, such as thermal corrections to the masses
and wave function renormalization are neglected here, as they are of higher order in the coupling
constants.

Denoting vertices attached to external lines by x; and those attached to internal lines only by z;
we can formally denote an amputated n-point graph by F'(z1,...,2,;2;). Here we assume that
F' is given in momentum space, writing the position space coordinates in order to identify the
individual vertices. The contribution of this graph to the amplitude is —iF'(z1,. .., zp; 2j).

Physical amplitudes involve a sum over possible combinations of types of internal vertices:
Flxi, ..., xn;25) = Z F(x1,...,2n;25) .
type z;

For external vertices of fixed type it has been shown [106, 107] that this sum is equivalent to a sum
over all ways of “circling” the internal vertices:’

F(xr,...,xn;25) = Z Fg(xl,...,xn;zj). 4.3)

circling z;

%In [47] and elsewhere resummed propagators have been used in this place amongst others to prevent the appearance
of singularities. Since we are mainly interested in the structure of the thermal corrections we stick to the bare thermal
propagators here.

3We adopt here the nomenclature used in thermal quantum field theory and do not comment on similarities between
the quantities encountered here and in chapter 3.

*Compare the discussion below eqn. (3.117).

>The historic origin of this formula was that the external fields where considered to be all of type 1 (physical).
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FS and F. with “circled” vertices represent graphs computed using the set of rules, given in
fig. 4.1. These differ for the computation of F-. and F by interchange of the A™ and A~ propaga-
tors. In F> (1, ..., zn; 2;) we explicitly denote circling of a vertex avas F>(z1, . .., T, - - -, Tnj 25)-
Note that the two ways of defining F in terms of F, and F. in eqn. (4.3) are in agreement only if
the Kubo—Martin—Schwinger (KMS) boundary condition, in momentum space (in the rest-frame
of the plasma) for bosons, A~ (p) = e P A*(p), is satisfied.®

. ——° =AW
P p

S = A7(p), G———»° = A*(p)
p p

Figure 4.1: Circling rules for a generic theory used for the computation of . in momentum
space. The rules for the computation of F. differ by interchange of A™(p) and A~ (p).
The A* propagators connecting circled and uncircled vertices may be interpreted as cut
propagators. In vacuum they correspond to the cut propagators in the Cutkosky rules. The
physical interpretation of the additional terms is that due interactions with the plasma in the
reservoir energy flow is not restricted to a definite direction at finite temperature.

An obvious problem with the real-time formulation for the computation of n-point functions (in
the 1/2-formalism) is that there are in general 2" such functions which differ in the types of the
external vertices.

4.1 Physical and ghost fields

Historically the correct function was considered to be the one with all external vertices of type-1.
In this case eqn. (4.3) leads to the following formula for the imaginary part of a graph’s contribu-
tion to the amplitude, see appendix C:’

1
S{i_lf(l,...,l;zj)} =3 Z Fg(xl,...,xn;zj), (4.4)
circling (x;), z;

where the sum includes all possible circlings of the internal vertices z; but only those circlings of
external vertices x; which include both, circled and uncircled vertices (indicated by the brackets

®The KMS relation holds in equilibrium. In this case it is easy to see that (the difference between F being the
usage of AT and A™.) the graphs F> with either all or none of the external vertices and a fixed set of internal vertices
circled differ by products of the form [, e which can be identified with each vertex, where i runs over all lines
attached to this vertex. By energy conservation these terms are equal to 1.

"Note, that the vertex diagram does not involve any internal vertices. Since the external vertices are all of type 1 it
is possible to compute its contribution using the G** component of the propagator only [46]. Here we use a formula

which can be compared to both the cutting rules in vacuum and, later, to the formula for the causal products.
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around z;). The six diagrams contributing to the imaginary part of the 3-point vertex function are
shown in fig. 4.2.

i) i) i)
T | T | T |
Tt | Tt I Tt |
xrs3 xrs3 xr3
(a) (b) (c)
X2 X2 X2
1 | 1 | 1 |
Tt | Tt I Tt I
xrs3 xrs3 X3
(d) ©) ®

Figure 4.2: Circlings contributing to & {iil}" (1,1, 1)} for the vertex loop. The circlings
can be interpreted as cuts, as indicated, by the lines separating circled from uncircled re-
gions. The A* propagators connecting these regions are proportional to mass-shell delta
functions. In general (for diagrams involving internal vertices) not all diagrams contributing
to the imaginary part can be interpreted as cut propagators in this approach [106]. For such
cases a formula for the imaginary part was derived in [108] in which unconnected regions of
circled vertices are canceled by the summation over field type indices, while this sum remains
to be performed explicitly for the leftover terms. The equivalence of the two approaches has
been shown in [109]. The contributions from diagrams involving cuts through the dashed
internal line are suppressed relative to the others.

In this case we can write the imaginary part of the thermal vertex function as (using the rules for
Fo)
. 1
) {Z 1‘7:(1> 17 1)} = 5 |:F<(£1,1'2,l‘3) + F<($17£2>$3) + F<(LL'1,LL‘2,£3)+

+Fo (2,29, 03) + Fe (2,22, 23) + Fe (21,29, 23) | - 4.5)

The contributions from the diagrams in fig. 4.2(b)-(e), involving cuts through the 1); lines, are
(exponentially) suppressed relative to the other graphs due to the large mass my, in the hierarchical
case. For this reason we consider the contributions from graphs fig. 4.2(a) and (f):®

4
i Fagen (110} = 5 [ G (o) (ion) (ign) A (0 + DAa-+1 = HA~()+

+(—ig1)(+ig2)(+igs) A" (g + DA* (g + 1 — kE)AT(])] .
(4.6)

We set the generic couplings g1, g2, g3 to 1 now (to obtain directly the imaginary part of A; in

$Momenta are as defined in fig. 2.6.
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eqn. (1.12)). and insert the explicit expressions for the different propagators:

%‘{i_lf(m(f)(l» 1, 1)} =
_1/ d4l2¢{ O(q0 + lo) +fbeq} ((g +1)* = mi)x

2/ (2m)

: e
e i+ze+27rfjrlqk6(( 1= k)= md) |
(

o(— z0)+fb€q} —m2)—
—[O(—tao+ 1)) + £F52]3((a + P — md)x

—1 bj.e 2 2
T +2m 0 5 (g + 1 — k) —mwj)}x
J

L(g+1—k)?—
O(lo) + f;_’»eq}(s(z? - mg)} . 4.7)

Since 1); cannot simultaneously be on-shell with the two b’s, we can drop the ie prescription and
the terms proportional to three mass-shell deltas:

1

1 d*l

1 : 2 2 2 2

%{2 F(a)+(f)(1, 1, 1)} =-3 / 7(277)225(((1 +10)* — mg)é(l — mg) EYEYS m?/,
J

AT P 2 ) 4.8)

The integration over d |1| dly proceeds along the same line as in the derivation of the CP-violating
in the top-down approach. It leads to

Ak B, l_)7 E: 57
V,th:_1|gj’2S<g’gj>/ a1+ AU ST 2R )

8mmy,  \ 979 Amr m?pj fmz + $(1+4 cos b))

where the dots refer to the suppressed contributions corresponding to cuts through the 1); line. The
indices on the distribution function mean that they are to be evaluated for the energies F; and Fs
given in eqn. (3.118). Equation (4.9) is quadratic in the distribution functions and can be compared
to the literature result [46, 47] for the phenomenological scenario of thermal leptogenesis if one of
the b’s (and the corresponding distribution function) in the vertex loop is identified with the lepton
and the other with the Higgs.

We can now repeat the same computation for the self-energy loop contribution to the CP-asymmetry.
The circlings contributing in this case to eqn. (4.4) are shown in fig. 4.3.
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(a) (b)

G P

C

Figure 4.3: Circlings contributing to & {i_l}' (1,1; z)} for the self-energy loop. The graphs
(b) and (c) vanish since 9; and 1); cannot be on-shell simultaneously. Note that we consider
only the diagrams with 1); in the external and 1); in the internal line (¢ # j) because these are
the only ones which contribute to ;.

1
%{i_l}"(l, 1;z)} = §[F<(§1,x2,z) + Fo (1,29, 2)+
+F<(§1,.Z‘2,§)+F<(l’1,§2,§)] : (410)

The contributions from the diagrams in fig.4.3(b) and (c), involving cuts through the v; lines,
vanish since 1); cannot simultaneously be on-shell with 1;:

S (i Flaeia (1 1:2)} = 5 [(Fign) (—iga)(—ig-) A (g + DAT (A (g)+

+(—ign)(+iga) (+ig:) AT (g + DAT(DA (@) . 411)

We set the generic couplings g1, g2, g to 1 again and insert the explicit expressions for the different
propagators:

S F e (1 12)) = = /d4l5((q—|—l)2—m2)5(12—m2)1><

(a)+(@)\ L 2. 2] (271')2 b b q2 _ m?p

J
{1+ 10+ e+ 1t (4.12)

where we included a symmetrization factor of 1/2!. This leads to the self-energy contribution

Z \/T/m ~ ;
GS,th ]gj Cx<99]> b ﬂ%/d l{1+fbeq beq+2f{7€qf§7€Q}. (4.13)

i 16w 95 9;

The results in eqn. (4.8) and eqn. (4. 12) can easily be adapted to the phenomenological scenario of
section 1.3, using the propagators in eqn. (4.2) for fermions for the Majorana neutrinos and leptons
in the loop and eqn. (4.1) for the Higgs bosons. In this case the expressions for the asymmetries in-
clude spinor sums [47] which can be factored out, however. For the dependence on the distribution
functions one obtains then the quadratic form

1+ f@%eq _ f&eq _ 2f¢7EQf€7€q ) (4.14)
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This result was found in [46], but, by analogy, it obviously contradicts the result derived from non-
equilibrium quantum field theory in the Boltzmann approximation (assuming that this derivation
can be generalized to the phenomenological scenario) which does not include products of multi-
ple distribution functions. This discrepancy becomes particular important as eqn. (4.14) implies
cancellation of the leading effects since f"*? — fy°! = 21 £5-°¢. The remaining effect is due
to the relative motion with respect to the plasma, because different momenta enter the distribution
functions of leptons and Higgs particles in eqn. (4.14).

4.2 Causal n-point functions

We will now see how the finite temperature field theory approach can be reconciled with the
results derived from non-equilibrium quantum field theory. In [112—-114] it was shown that the
combination

i#a
.7:;20;)/}(961,---,3371;23'): Z Fé(xlv---xaw“?xn;zj% (4.15)

circling x;,2;

referred to as the retarded (advanced) product, has the distinguishing property that the time com-
ponent (x,,)o is singled out as being the largest (smallest). This becomes clear when we consider
the so-called largest (smallest) time equation

Fe(z1,. oo Tay ey Tn) + F2(21,. 00,2 ,xn) =0, if (z4)p largest/smallest, (4.16)

o
which implies pairwise cancellation of the terms in eqn. (4.15) if any external vertex x; with ¢ # «
has the largest (smallest) time component. Furthermore, it has been shown that the causal products
agree with the results of the calculation in imaginary-time formalism analytically continued to real
energies, at least in a few examples including the 3-point vertex. Itis reasonable to use such causal
combinations in Boltzmann collision terms since, for example, the products created in the decay
of some particle should always have larger time components than the decaying particle.

The imaginary part of the causal sum was shown in [113] to obey

3{i _lfR/A x1,...,$a,--~,$n32j)} =

not all

—1 )
E g { Fo(ai,... Zpy oy @n; 25)—

c1rc11ng x; circling z;

—le<(a;1,...,ga,...,xn;zj)}, 4.17)

where “not all” means that not all x; should be circled at the same time and the imaginary part is
taken of the causal product in momentum space. Here, the vertex x, with largest or smallest time
is always circled.

We can now compute the imaginary part of the advanced product %{.7-"511)(951, 2, xg)} for the
3-point vertex with smallest time component (1 )( of the decaying particle. The relevant circlings
are shown in fig. 4.4.
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T2 T2 T2

1 1 X1 |

() (b) (©)

Figure 4.4: Circlings contributing to %{fg)(xl, T2, :vg)} for the vertex loop. The sum
involves both, F\ and F. contributions. These differ only by a relative sign and the re-
placement A* < AT in the circling rules. Since the finite temperature contributions (terms
proportional to f-°?) to the latter are the same, all contributions of order higher than one in
the distribution functions cancel.

As before the contributions fig. 4.4(b) and (c) are suppressed due to the cut through the v); propa-
gator line. In addition these contributions cancel exactly in the framework of the toy model in the
integrated equations. To see this we write the contributions from fig. 4.4(b) to the sum as

{F> 131,5152,563 F< IE1,$2,113 }5( q_k; p)

/d4l1/d4l2/d413 —Hgl +'ng)( Zgg)

x 6W (g + 13 — 1) 0D (ly — Ip — k)dW(ly — I3 — p)
X A*(zl)[A*(ZQ)N(zg) CAT)AT ()] . @18)

Similarly the contributions from fig. 4.4(c) can be written as

{F> 1:15'1;2743 F< x15$25$3 }5( q_k; p)

/d4l1/d4l2/d413 —Hgl ’ng)(—i—@gg)

x 0W (g 415 — 11)0W 1y — Iy — k)6D (Iy — I3 — p)
x A*(13) [A*(zl)N(zQ) CAT)AT ()] . @19

In the integrated Boltzmann equations we can perform the combined transformation ¢ — —g,
k — —p, p — —k without changing anything if the final state particles (with momentum % and
p) in the decay have same quantum statistics and identical distribution functions as is the case
in the toy model. Simultaneously exchanging the dummy variables /; and /3 in eqn. (4.19) we
find that the contributions in eqns. (4.18) and (4.19) are just equal with opposite sign. Hence the
contributions to the integrated Boltzmann equations cancel. Note that the same result was found
in the top-down treatment of the vertex contribution, see the discussion below eqn. (3.114).

Now, we compute the remaining contribution from fig. 4.4(a):

o 1
%{Z 1?‘[(41)(1.1’$2’x3)} 5%{1 1 > $1,$2,$3) 1F<(£1,$2,C53)}
1 . . _

5 +191 )(—ig2)(—igs) A™ (g + )A(g+ 1 — k)AT(I)—

(+zg1)( )(—zgg)A*(qH)A(qH—k)A*(l)}}. (4.20)
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Again dropping the ie prescription in the 1); propagators and the respective Dirac-deltas we get

1 d*l )

S{itF D (@1, 20, 23) ) = _2%/ (27r)25((q +10)? = m3)o(1* — m3) (q+1— 12)2 —m3 "
j

{0+ 1)) ~ 6t + el
+[0(= (a0 + o)) — Oao + lo) | £+
+[00) — (=10 57 } @.21)
which becomes
L F W (@1, w0, 23) ) =

L[ d4 1
:+2/(2W) 3l + D2 = md)s( —m)

qg+1—k)?2—-m

. {1 + fhe +fb€q}. (4.22)
2

J

Performing the integration over d [1| dl, this indeed leads to the result for the CP-violating pa-
rameter obtained in th top-down approach eqn. (3.117). The same computation can be performed
for the self-energy loop. The possible circlings are shown in fig. 4.5.

PO

(a)

Figure 4.5: Circlings contributing to S{]—"j&l) (21, 29; z)} for the self-energy loop. Graph (b)
vanishes since v; and v); cannot be on-shell simultaneously.

S{i 1 FY (@1, 22:2)) :%%{i_lF>(£1,l'2,l’3) — i (g, 20, 2) )
4
9 .:lglg{/ (20;54 [(+ig1)(—igz)(—igg)A*(q +DA(g)AT(1)—

— (+ig1)(=ig.) (~iga) A (q + DA(@)A™(1)] }
(4.23)

which becomes
{ IFA xla T2; %z } —

1 [ dY ) o
:4/ (2@25((‘1“)2—7”?)502—mi)qz_m%{1+f" (R il )

This corresponds to the result for the self-energy contribution in the hierarchical limit in the top-
down approach [4] if the equilibrium distribution functions are replaced with non-equilibrium
ones. In the vacuum limit it leads to the expression for Es Y% eqn. (2.62). Thus, we have shown
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that the CP-violating parameter ! obtained with help of thermal quantum field theory coincides
with the one obtained in the top-down approach (in the approximately symmetric case) when
one uses causal products instead of the usual ones which assume type-1 external vertices. The
generalization to a (symmetric) non-equilibrium configuration for the toy model can be performed
by the canonical replacement of the equilibrium distribution functions with non-equilibrium ones
fr—f.

We are now in the position to infer the form of the thermal corrections to the CP-violating param-
eter in the phenomenological scenario by drawing the analogy to the toy model. The reasoning
here is that the findings for the toy model in the top-down approach result in expressions for
the contributions to the CP-violating parameter which can be reproduced in the equilibrium limit
by the use of causal products in the thermal field theory approach. (The use of causal products
for the computation of amplitudes appearing in Boltzmann equations is also suggested by previ-
ous results within thermal field theory.) By this observation we are encouraged to reconsider the
thermal computations for the phenomenological theory based on causal functions for vertex and
self-energy loop. In the phenomenological scenario the computation of the loop integrals is just a
little more involved than in the scalar toy model, but the proceeding is well-known and the same
as in [47, 105] so that it is sufficient to consider the dependence on the distribution functions.
Replacing one of the scalar thermal lines in the loops (vertex and self-energy loop) by a thermal
fermion propagator we find that the dependence on the distribution functions is given by

1 _ ff7eq _|_ f2 »eq — 1 + 2f1‘€’eqf§)9€q,

which, in contrast to previous findings, does not vanish but leads to an enhancement of the CP-
violating parameter (the right-hand side of this equation applies in the ultra-relativistic limit).
We can then, a little more courageously, assume in addition that the structure of the Boltzmann
equations for the phenomenological scenario is analogous to the one given in eqn. (3.108) with
appropriate quantum statistical factors for bosons and fermions respectively and appropriate sym-
metrization factors. This defines the full set of Boltzmann equations including medium corrections
to the CP-violating parameter for the phenomenological scenario presented in the introduction.’
We note here that this result should be treated with care, because additional new effects could
arise when the phenomenological scenario is investigated in the top-down approach. In addition,
the applicability of the quasi-particle picture can not be tested in the framework of thermal field
theory. In particular the results presented above will only apply in the hierarchical case [4].

°0f course, there are different particle species and further interactions including additional 2— 2 scattering processes
in the phenomenological theory. But from the results obtained here and in the research papers [3, 4] it is obvious how
consistent equations for decays and inverse decays can be constructed which include quantum statistical terms and
guarantee that no asymmetry is produced in equilibrium.
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Chapter 5

Numerical results

In this section we solve the Boltzmann equations derived in the top-down approach for the toy
model in the hierarchical limit, eqns. (3.108), numerically. To stay consistent within our model we
keep the quantum statistical factors for bosons (which would be different in the phenomenological
scenario). In order to study the effect of the quantum corrections, we compare the results obtained
by integrating the network of Boltzmann equations with quantum corrected €; (|p|) to those which
are obtained after replacing €1 (|p|) with €}“¢. This means that we keep here the new structure of
the Boltzmann equations and study corrections which arise from the quantum corrected €; only.
The computations have initially been performed for the vertex contributions only [3] but, because
of the findings in chapter 4, it is clear that the self-energy contributions are just the half of the
vertex ones. As outlined above, this is consistent with the results obtained for the self-energy
contributions in the top-down approach [4]. We can therefore use €1 (|p|) = 3¢} (|p|) in the
hierarchical limit. Since the plots presented in this section are relative with respect to the very
small €]¢ they remain the same.

We work with a spatially flat and radiation dominated FRW universe with g, = 106.75 effective
relativistic degrees of freedom and choose parameters which are typical for the scenario of thermal
leptogenesis (see chapter 1): €¥%¢ = 107> and My, = 10'°GeV. In both, the corrected ¢;
and the vacuum €7“¢ case, we start at the same sufficiently high temperature so that all species,
including 1)1, have relativistic initial abundances. We choose thermal initial conditions for all
species. Because of the presence of the statistical factors we need to start with sufficiently negative
chemical potentials as to avoid Bose—Einstein condensation of the different species during their
evolution.! We choose them such that they are related by My = 24, = 25, i.e. the system is in

chemical equilibrium.

The coupling A can be adjusted such that the rates of the 2 — 2 interactions (3.109) are much
larger than those of the decays and inverse decays (3.110)-(3.111) at all times.> This keeps b
and b close to kinetic equilibrium, just as Higgs particles and leptons are kept in equilibrium by
rapid gauge interactions in the standard scenario. The distribution functions for these species are
therefore given by their equilibrium form throughout the entire evolution. This means that they

'In this regime it would not be appropriate to describe the system by conventional Boltzmann kinetic equations.
Since we are interested in scenarios that are qualitatively similar to realistic models of leptogenesis here, we do not
consider this case.

2As we will show in this case there is no need to compute the collision integrals for 2 — 2 scattering explicitly and
we can use perturbative values for A for most of the relevant range of | g\g assuming that it is sufficient to demand that
the rate for bb < bb is at least 10° times larger than that of bb < ).
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Figure 5.1: The maximum value of the ratio of the rates for bb « 1 and bb < bb over
washout factor .

can be described in terms of four parameters 1, Ty, and pg, Tj. Interactions (3.109) enforce the
relation T, = T} between the parameters. Therefore, it is sufficient to study the evolution of f b
and f° in terms of the remaining three parameters. The evolution of 71, however, is studied in
terms of the complete distribution function discretized on a grid with 400 momentum modes. Our
computation, therefore, includes classical non-equilibrium effects in the decay of /1. Such effects
have been studied recently in [115-117]. All integrals are evaluated numerically including all
quantum statistical factors for stimulated emission.

5.1 Numerical method

Along with this thesis a numerical method has been developed for the solution of networks of
Boltzmann equations, part of which is presented in appendix D which is based on [1]. Concerning
Boltzmann equations, which are integro-differential equations, the crucial problem is to compute
the collision terms on the right-hand side in an efficient manner, since this has to be repeated in
every time step. At the same time the result for these integrations should be accurate, because defi-
cient approximations add to the problem of numerical stiffness which is inherent in the Boltzmann
equations. Based on analytic expressions for an integral over three spherical Bessel functions [118]
it was shown how homogeneity and isotropy can be exploited to simplify the collision integrals
significantly. In particular it has been shown how the various collision terms for decays, inverse
decays and 2 — 2 scattering can be reduced to lower dimensional integrals in general. Since these
studies constituted a large part of this thesis it seems reasonable to present the following in the
main part, even though we are concerned here with a simple special case, where the new results
coincide with previous findings. At the same time this section serves to present the parameters
which enter the computations on the numerical side.

To solve the system of Boltzmann equations (3.108), we introduce the transformed variables
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Figure 5.2: Number densities of the various species and the generated asymmetry 7 as
functions of m,, /T for k ~ 0.366 (case c). The total number density is approximately
conserved.

z = a(t) and k; = Sa(t)|p;| for time and momentum. The constant factor S is chosen such
that Sz = T = (2-1.66,/7x /Mp]t)%. The distributions as functions of the transformed mo-
menta are then well represented, in some sense, in the range k; ~ 0.025 — 50.0.> In addition we
introduce the transformed on-shell energies and masses, m; = Sz M; and k) = (k% +my ) =
Sz(|pi|* + M;? ) . In this coordinates the Liouville operator for the FRW space-time takes the
form L[f](|k|) — S—'HE) dfb(k,)/dx, where f¥(ki) is the transformed one-particle distribu-
tion function dependent on k; and z. Defining L[ f?)(k1) = 8°(k1)/dx, the Boltzmann equations
can be written in the form L[f*](k1) = C[.f*.](k1) with transformed collision integral C'[. f*.].

We transform the integrals to the new coordinates at the same time. In particular, the collision
integrals for a scattering process 12 < 34 (here bb < bb, bb < bb and bb « bb) can be reduced to
a twofold integral, compare appendix D:

1 ka dks k4 dk
12H34 b s dks ks dky o
Ch = SHzx? 647r5k0 // K @(k2 — m2) D123

x[(1+fb<k1>)(1+f (2)) F*(ks) F* (ko)
PP Uk) (1 + Pk) (14 PR0)] 6D

where kzg = k:g + k:2 — k? and kg = +/ (k:g)2 — mo?. The integrated scattering kernel D1s. .34 for
a constant (momentum independent) amplitude .4 and for massless species 1, 2, 3 and 4 is given

3In particular we require that the approximate numerical value of the moments (5.7) are close to their true values
for close-to-equilibrium distributions. Also we demand that particles created in decays are not produced with momenta
outside of this range to a significant extent so that total number densities show the expected behavior.
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Figure 5.3: Energy densities of the various species as functions of m., /T for k ~ 0.366
(case c). The ratio of the total energy density p; + pg + py, and the total cosmological energy
density p is not constant. This feature is due to the different scaling behavior of relativistic and
non-relativistic species. For this reason the ratio p,,/p increases slightly before the particles
start to decay. This is more pronounced for smaller washout factors (see fig. 5.7).

by

A
Dio3a(ki, ko, k3, ka) 2271@(7{73 + kg — k1 — k2|)
X @(kl + kz — |]€3 — k‘4|)(l€3 + :IC4 — |]€3 — kly — |k‘4 — k1|) . (5.2)

Similarly, the collision integrals for a particle created in inverse decays, 1 < 23 (here ¢; < bb
and i1 < bb), can be reduced to a single integral:

e S 1 [hsdks

[(1 + fY1 (K1) Fo () £ (Res) —
— (k) (1 + (k) (1 + f”(ks))} : (5.3)

where k9 = kY — kS and ko = /(k9)2 — mo2. The integrated scattering kernel D123 is given
by

2A
D1<_>23(]€1, k‘g, k‘g) = ]{3716(]{:1 — |k‘2 — k‘3|)®((k§2 + kig) — k‘l) . (54)

Finally, the collision integrals for a particle created in decays, 12 < 3 (here bb < 1)1 and bb
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Figure 5.4: Entropy densities of the various species and the total entropy density (s, + s5 +
sy)/s as functions of my, /T for k >~ 0.366 (case c).

1), can be reduced to the single integral

~19037 7 S 1 ks dks
6%12 3['fb']:H327rk?/ k‘g @(kg—mQ)D12<_>3X

(1 2 )) (1 P h2)) ()~
— O (k1) foe2) (1 + fwl(kg))} , (5.5)

where k9 = kS — kY and ko = /(k9)2 — mo2. The integrated scattering kernel D1o..3 is given
by

2A
D12<_,3(k1, ks, k‘3) = H@(k‘g — |]€1 — kQD@((k‘l + /€2) — k‘3) . (5.6)

Number density and energy density corresponding to the distribution f b in transformed coordi-

nates read
3
n[f] = % (52) /(kl)be(kl)dkla

4
ol = o <1> / (k)25 F2 (v ) ey - (5.7)

~ on2 Szt

For massless particles these are the second and third moment of the distribution, respectively. As
outlined in section 5, we assume that the interactions bb < bb, bb < bb and bb < bb are rapid
enough to keep the distribution functions of b and b very close to their equilibrium distributions,
parametrized by ag, a1, ag and a;:

Ded (k) = [exp(ag + arky) — 1] 71,
f2(ky) = [exp(ao + arkr) — 17" (5.8)
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Figure 5.5: Deviation of the distribution function f,, from equilibrium for washout factor
Kk =~ 0.366 (case c).

Assuming that bb < bb alone is much faster than the inverse decays into )1, the evolution of f°
and f° can therefore be described by means of three parameters ag, Go and a1. The equations for
the evolution of these parameters are obtained by forming the moments n[.] of eqn. (3.108b) and
(3.108c):*

- dag [Of2°T|  day |Of -
b,eq :70 “ea1 — bb—11
n[L[f“ ]] dxn[ dag ]+ dxn[ daq n[C ] ’
- ael dag [0f24] day [ofbe
beq)| _ %00 a 401 _ . [Fbbov
" [L[fa ]] dx 8&0 ] + dx " [ Gal " |:C ] ’ (59)

Here, we used n [éblﬂ—»bb[ fb]} —n [@5545[ fz';]] — Oandn [C«b?)«—di)[ 7 fzﬂ —n [C«Eb«—i;b[ 17, fb]} _
0. The third equation is obtained by forming the moment p[.] of the sum of eqn. (3.108b) and
(3.108¢), i.e.

p {i[ beqﬂ +p[i[ beq]} :%p [agi:‘I] dag laafbeq

W“Here and in the following we use the abbreviations cthovi] = CObheva[fbed f¥1) and CPhn l =
Cho—r [ fhea, f”’l]. Also note that f°, f® and f¥* are functions of the transformed coordinates, here.

da1 b ,eq

da1 afb el
Tz’ [ daq

—p [Cbbﬁwl} Y [Cbb*"ﬁl (5.10)
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Figure 5.6: Number densities of the various species and the generated asymmetry 7 as
functions of m, /T for k ~ 0.01 (case a).

where we used p [C’bBHbB [f°, fg]} +p [C’Bb‘_’i’b [£b, fb]| = 0. The derivatives of f2°? with respect
to the parameters a; can be rewritten as

b,eq
(w = —(K)'[1+ ot (k)] fo k1), i=0,1. (5.11)

An analogous relation holds for the derivatives of fgeq with respect to ap and a;. Solving
eqns. (5.9) and (5.10) for dag/dx, day/dz and da, /dzx, we find the differential equations for the
three parameters:

dag  an[k(1 + f0) fa] + n[CP0]

" n[(1 4+ fa) fa] ’
@ _ d1n[/€(1)(1 + fg,eq) g,eq] + n[CN«BEH%]
dx (L ) £ ,
da1

T — ((n[C™= oy + K1+ £20) f27] o) x
[

dx b .
n[(1 4 f200) foet] p[(1 4 foea) foed]
+ (n[CP pp + n KD+ £200) fod] pe) x

n[(1+ S22 p[ (1 + f20) f20]) [+ p/ s (5.12)
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Figure 5.7: Energy densities of the various species and the total energy density (pp + p; +
py)/p as functions of m,;, /T for k£ =~ 0.01 (case a).

where we have defined
ho= pr (a4 2R+ 01 s+

n[KO(1+ S22 n (L + foe) for] p[ (1 + o) S +

n (R4 S290) f2]n (1 + f20) f3<9) p (1 fe0) f2e9) )
(5.13)

as well as

oy = = R+ 120) 2] — [0+ gy 5]
pc =p [CN’bb‘_"’bl] + p[CN'BB‘_’wI] . (5.14)

As stated in the main text, we need to start with finite chemical potentials as to avoid the occur-
rence of Bose—Einstein condensation. We choose the minimal acceptable value ag = ap = 0.5,
corresponding to p, = py = —0.5Tp and p, = 2p4p. The initial value a; = 1 corresponds to the
initial cosmological temperature 7y which is assumed to be the same for all species. We checked
that the results do not depend on Tj as long as Ty > my, . The heavy species 1 is subject to rela-
tively weak interactions only, so that its distribution function can deviate from kinetic equilibrium.
Therefore, we solve the full Boltzmann equation for 1,

L[] (k) = Gt v, p2 + G o, f) (5.15)

along with the integrated ones for b and b.

Because of the integration of the equations for the massless species all collision terms for 2 — 2
scattering drop out of the system. In order to verify that the rates for these processes are much
larger than the ones of the decays and inverse decays we have computed the rates for these pro-
cesses numerically. The maximum (during the full evolution) of the ratio of I'yp., and L'y 5
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Figure 5.8: Entropy densities of the various species and the total entropy density (s, + s5 +
sy)/s as functions of my, /T for k =~ 0.01 (case a).

is exemplarily presented in fig. 5.1 (the rates for the other 2 — 2 processes are similar). It shows
that we can choose A ~ 1 or smaller for most of the relevant range of | g|2 if we demand that
Typps/Tobsyy 2 103 as criterion that b and b are in kinetic equilibrium at all times. Here the
equilibrium shape of f® and f? is not distorted by the expansion since we are dealing with mass-
less particles. In addition, it can be argued that the 2 — 2 processes are meant to model rapid gauge
interactions with different particles which would have the same effect of equilibrating b and b. In

this sense we could even formally tolerate non-perturbative values of A.

To turn the equations into a system of ODE’s the distribution functions were discretized on a grid
of dimension 400 with linearly increasing spacings in the range k1 ~ 0.025. .. 50.0 to account for
the characteristic behavior of close-to-equilibrium distributions at small and large momenta. All
integrals were approximated by Riemann sums on this grid. The system of Boltzmann equations
behaves numerically stiff. This means that it is advisable to use an implicit method for its numeri-
cal solution to achieve acceptable step sizes (and hence acceptable execution times and numerical
errors). Here CVODE with its backward differentiation formula with Newton iteration was used
as ODE solver. The full Jacobian was computed analytically in every external step. A relative tol-
erance of 10~® was attributed to every momentum mode. Due to the implicit method all solutions
were computed in O(103) steps.

Since the global systematic error due to the discretization cannot be computed within the method
the proper behavior of the system was tested by successive refinement of the grid and comparison
of some of the macroscopic quantities with the theory predictions. For this purpose, we present
two examples of the number densities n,, the energy densities p, and the entropy densities for
the washout factors k ~ 0.366 (case c in fig.5.2-5.4) and £ ~ 0.01 (case a in fig. 5.6-5.8). The
total number density (np + 2n,, +n3)/s is almost conserved (as discussed in section 5). The ratio
(py + pyy + p3)/p is not constant (see fig. 5.3). This behavior is expected for a system involving
non-relativistic massive particles and is also observed for the bottom-up equations. The ratio is
much smaller than one so that it is justified to neglect the backreaction on the curvature. Finally,
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Figure 5.9: Deviation of the distribution function f,, from equilibrium for washout factor
k ~ 0.01 (case a).

the total entropy density is steadily increasing as it should. fig. 5.5 and fig. 5.9 show the deviation
of the distribution function f,;,, from kinetic equilibrium ones for which the curves would be
straight lines. The deviation from equilibrium is larger for smaller values of s and increases at late
times, as expected.

5.2 Numerical results

We define the generated toy-baryon asymmetry as

np (M, /T) — ng(my, /T)
S(le /T)

Here n;, and nj, the number densities of species b and b respectively (compare (5.7)), are com-
puted in the presence of the quantum corrected €1, and s is the standard entropy density [5]. The

vac ;

analogous asymmetry computed with €7¢ is denoted by 1"*“(m, /7).

n(my, /T) = (5.16)

Fig. 5.10 shows the numerical value of the ratio (e1) /€}*¢ for various values of the washout pa-
rameter k = ['/H(my,) = |g1|*mu /(4.5 - IGW@mil). The flattening for small m., /T as
compared to the thermal equilibrium result in fig. 3.10 is due to the finite chemical potential of
b. This shows that larger corrections could be obtained if additional interactions for b and b are
introduced which would allow to start with smaller chemical potentials and hence would lead to a
stronger enhancement.

The buildup of the asymmetry with and without quantum corrections as a function of the inverse
temperature is depicted in fig.5.11 and fig.5.12. Comparing these figures one can verify the
enhancement of the asymmetry at intermediate stages for larger washout factors (case d). Note
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Figure 5.10: The ratio (e1) /¢}*°. The shape of the curves differs from that of the corre-
sponding graph in fig. 3.10, mainly because its computation involves a finite chemical poten-
tial (which depends on m,, /T') here. Similar graphs can be obtained by including a finite
chemical potential in eqn. (3.121).

also that due to the medium contribution to the CP-violating parameter the generated asymmetry
is not a monotonous function of the washout parameter «.

The dependence of the resulting final asymmetries = n(my, /T — o0) and "% = 7%
(my, /T — o0) as well as the dependence of the ratio (1 — 1"*“) /n"* on the washout parameter
is presented in fig. 5.13. The asymmetry is always larger when quantum corrections are taken into
account compared to the results without corrections (compare section 3.2.3). The asymmetry n
has a maximum for moderate washout factors £ ~ 0.059 in contrast to the usual result which
has its maximum in the limit of zero washout factor. Our interpretation of this effect is as fol-
lows: For large washout factors the enhancement of ¢; due to the quantum corrections enhances
the asymmetry generated by the decays only at intermediate stages, because the same processes
diminish the asymmetry in particular at late times where the averaged asymmetry drops to smaller
values (compare fig.5.10). For small x the particles decay late, and the backreaction is largely
suppressed so that the washout is ineffective. However the interval of integration in eqn. (3.120)
is located at relatively large momenta since the mass increasingly dominates Eff ! as the momenta
are red-shifted to smaller values. This means that the integration is over an interval in which the
distribution f® becomes smaller and smaller. This explains why the quantum corrections tend to
zero for small k. For the same reasons the relative effect of the quantum corrections peaks at
a moderate k ~ 0.34 with about 26%. We note again that the size and the sign of the correc-
tions depend on the quantum statistics of the particles in the vertex loop and will be different in a
phenomenological scenario.
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Figure 5.11: The asymmetry n(m,, /T") with quantum corrections included. In the weak
washout regime (case a) the asymmetry is produced at smaller temperatures and it is not

necessarily larger than for larger washout factors (compare a and b).
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Figure 5.12: The asymmetry 1"*°(m,, /T) without quantum corrections
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Figure 5.13: The final asymmetries and the ratio (n — 1V*¢)/n"% over washout factor .
The cases a, b, c, d, e, f correspond to washout factors 0.01, 0.1, 0.366, 1, 10, 100. Case
c is close to the maximum relative excess of the quantum corrected results at £ ~ 0.34. In
contrast to the usual results the final asymmetry does not take its maximum value for the
smallest washout factor. Instead, the asymmetry n peaks at x ~ 0.059.
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Conclusion

The dynamic generation of the matter-antimatter asymmetry of the universe, which is observed in
experiments, is one of the most interesting problems at the intersection of cosmology and particle
physics. It can be solved by postulating the existence of some weakly interacting heavy species
which undergoes baryon and/or lepton number and CP violating out-of-equilibrium decays in the
early universe. The need for a heavy particle candidate and the requirement for a theoretical
explanation of the small neutrino masses, the only certain physics beyond the standard model
known today, can be satisfied in a unified manner by virtue of the see-saw mechanism. Such
extensions result in leptogenesis scenarios in which a B — L asymmetry is generated and then
converted to the observed baryon asymmetry.

In this thesis we focused on an aspect which is common to many scenarios of baryogenesis and
leptogenesis, namely the kinetic description of the out-of-equilibrium decay scenario. While it is
obvious that a top-down derivation is desirable, in which implicit assumptions can be tested, state-
of-the-art calculations are essentially still based on the classical bottom-up approach. With respect
to quantum effects different issues can arise in different scenarios, such as the case where quasi-
degenerate heavy Majorana neutrino masses are assumed or when flavour effects are taken into
account. Here we studied a simple toy model consisting of one complex and two real scalar fields,
which can be matched to the scenario of (unflavoured) thermal leptogenesis, in the hierarchical
regime. First, the model was studied within the bottom-up approach, which is based on gener-
alized Boltzmann equations with S-matrix elements computed in vacuum and parallels the usual
discussion for phenomenological theories. The “double-counting problem” in the presence of the
quantum statistical terms for blocking or stimulated emission was illuminated in this context.

The same model was then reconsidered in a top-down approach using the Schwinger—Keldysh/
Kadanoff-Baym formalism in a covariant generalization as starting point. This ansatz, based on
non-equilibrium quantum field theory, allows for a systematic description and has important ad-
vantages in comparison to the bottom-up approach. In particular, the full Kadanoff-Baym equa-
tions do not rely on the concept of quasi-particles and their collisions in the plasma. If the quasi-
particle picture is applicable, as we have assumed here, the formalism permits to derive a system of
“Boltzmann-like” kinetic equations which we refer to as quantum corrected Boltzmann equations.
These have two major advantages. Firstly, their structure automatically ensures that no asymmetry
is produced in thermal equilibrium i.e. the formalism is free of the “double-counting problem”.
This means that there is no need for the subtraction of real intermediate states as in the bottom-up
approach. Therefore, it answers the question how the quantum statistical terms can be taken into
account in a consistent manner. Secondly, they account for the dependence of the quasi-particles’
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properties as well as scattering and decay rates on the state of the surrounding medium. It was
found that the medium contributions to the CP-violating parameter depend linearly on the particle
number densities and that it agrees with the bottom-up result in the vacuum limit. The reason for
the linear dependence is that only one of the internal lines in the vertex loop is “thermal”. This
was apparently in conflict with the results obtained earlier in the framework of thermal field theory
by replacing the zero temperature propagators in the computation of the three-point function with
their finite temperature equivalents. The thermal field theory approach was then reconsidered in
order to reconcile it with the new results from the top-down approach. It turned out that this is
in fact possible when so-called causal products are used for the computation of the CP-violating
parameter. Thereby it was shown that the conflict was due to an ambiguity in the computation of
n-point functions which exists in the real-time formulation of thermal quantum field theory.

It is well-known that there are self-energy and vertex contributions to the CP-violating parameter.
Here, we have concentrated on the latter ones. When the ambiguity in thermal quantum field
theory is resolved, the medium corrections to the CP-violating parameter, obtained in the top-
down approach in the given approximation, can be obtained by a canonical replacement of the
equilibrium distribution functions with non-equilibrium ones. We exploited this observation to
postulate the form of medium contributions for the self-energy loop. In fact this result is confirmed
by the results published in [4] where these contributions are considered in the top-down approach
(this applies to the hierarchical case only). By analogy, we were then in the position to conclude
which form the medium corrections take for the phenomenological scenario, because the thermal
field theory approach differs only by the use of fermionic thermal propagators for the lepton in
the loops. Here we assumed that no additional new effects need to be considered when the top-
down approach is extended to the phenomenological case. However, currently, this assumption is
motivated solely by the concordance between the results obtained in the top-down and bottom-up
approaches for the toy model in the given limiting case.

Within the scalar toy model the medium effects increase the CP-violating parameter by up to an
order of magnitude. It asymptotically approaches the vacuum value as the temperature decreases.
This behaviour is partly due to a Bose-enhancement of the vertex loop correction. If Maxwell—
Boltzmann distributions are used in this computation, the corresponding CP-violating parameter
increases by a factor two at maximum. Finally an appropriate method for the solution of Boltz-
mann equations was presented and the system of the quantum corrected Boltzmann equations was
solved numerically. Due to the medium corrections to the CP-violating parameter the asymmetry
reaches its maximum value at a small but finite value of the washout parameter x, rather than for
rx — 0. To avoid the regime of Bose—Einstein-condensation we have to assume that the species
have rather large chemical potentials initially. This effectively decreases the medium correction
to the CP-violating parameter. In this setup the generated asymmetry differs from its value in the
canonical formalism by approximately 26%. In a phenomenological scenario additional interac-
tions keep the chemical potentials close to zero so that the deviation could take larger values.

With respect to the phenomenological scenario the new results exhibit the qualitative difference
that the medium corrections do not vanish (in the ultra-relativistic limit) as was the case for the
literature results. For this reason such contributions are exceeded by different thermal effects in the
state-of-the-art calculations. This situation could change now so that it will be interesting to study
it numerically. Additionally, the thermal masses can also consistently be described within the
Kadanoff-Baym formalism. As, so far, only the case of an approximately symmetric background
medium has been studied in the top-down approach it will be interesting to investigate the influence
of a nonzero asymmetry on the medium corrections to the CP-violating parameter. Moreover, it
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will be very interesting to study the quantitative effects of the modified Boltzmann equations for
the quasi-degenerate case obtained in [4] for an intermediate regime of the mass degeneracy. This
case corresponds to the interesting scenario of resonant leptogenesis. In the extremely degenerate
case, where the mass-splitting is comparable to the decay width, it turned out that the quasi-particle
approximation cannot be applied. Especially then it will be interesting to investigate the full set of
Kadanoff-Baym equations numerically without further approximations as some of their properties
cannot be included in Boltzmann-like equations for principle reasons.
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Kadanoff—-Baym formalism for complex
scalars

In this appendix, we derive the Kadanoff-Baym and quantum corrected Boltzmann equations for
the complex scalar field. It is included for the readers convenience and follows quite closely the
presentation given in [3] which generalizes the one of section 3.1 for the scalar *-theory. Results
from [68, 72, 73, 78, 79, 119, 120] are employed.

Schwinger-Dyson equation
Again, the starting point is the generating functional for Green’s functions:
zum:/%%mmw+ﬁ+ﬁ+wm. (A.1)

The fields and external sources are defined on the the positive and negative branches of the
Schwinger-Keldysh closed real-time contour shown in fig.3.1. As before we suppress branch-
indices. The compact notation of for contour integrals over the closed real-time path is used and
the scalar products of the local and bi-local sources J(x) and K (x,y) and the fields are defined as
invariant configuration space integrals, see eqn. (3.4). In contrast to the previous case the sources
are now complex functions. The requirement that the last term in eqn. (A.1) must be real implies
that K (z,y) = K*(y,2z). We work in covariant notation which is implicit in the path-integral
measures and in 2%z.

The generating functional for connected Green’s functions is given by

W[J,K] = —iln Z[J, K] . (A.2)
and the functional derivatives with respect to the external sources read
OW[J,K] - OW[J,K] 1 -
————— =b ————==|D b(z)B A3
570 =M GGy = 2P B, (A3)

where B and D denote the expectation value and the propagator of the field respectively. The
derivative of W with respect to J is just the complex conjugate of (A.3).

The 2PI effective action is again obtained by a functional Legendre transform of the generating
functional for connected Green’s functions W:

I'D,Bl=W|J,K] - Jb— JB —Tr[KD] — bKB. (A4)
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Appendix A. Kadanoff-Baym formalism for complex scalars

One finds for the functional derivatives of the effective action, with help of the chain-rule:

(SF(S[Z();C)B] =—J(z) — /@4z K(z,2)B(z), (A.5a)
ST[D,B]
DY) —K(y,x). (A.5Db)

Next, we shift the complex field by its expectation value b — b + B. Exploiting the invariance
of the path integral measure under this transformations, the effective action can be rewritten in the
form

I'D,B]=—iln /@b@b exp[i(S + Jb+ Jb+ bKb)| + Sy[B] — Tr[K D] . (A.6)

Now, we tentatively write the effective action in the form
I'[D,B] = Su[B] +ilndet [D™'] +iTr [27'D] +I'2[D, B, (A7)

which defines the 2PI functional I'.

The third term on the right-hand side of eqn. (A.7) is given by a convolution of the field propagator
D and the free inverse propagator 2. Its differentiation with respect to D(y, x) gives

PN, y) = i(0p +mi) 69(z,y) . (A.8)

The definition of the generalized Dirac-delta 69 (x, y) can be found in section 3.1. The functional
derivative of the second term on the right-hand side of eqn. (A.7) is given by —iD~!(y, x) which
be obtained upon use of

/.@42 DY, 2)D(z,y) = 8(z,v) . (A9)
Therefore, we find
oT'D,B] .., o1 6l's[D, B]
6D(z,y) DT @) T 7y @)+ 0D(z,y)

We are interested in physical situations which correspond to vanishing sources. To be precise,
within non-equilibrium field theory, this is only true for times 2%, ° > t;,;;. The local and bi-
local sources supported at P yo = t;ns formally encode the information about the (Gaussian)
initial state, see e.g. [80]. However, these sources do not appear explicitly in the Kadanoff-Baym
equations, and therefore we omit them here. It follows that eqn. (A.10) can be rewritten in the
form

DN z,y) = 7 (2,y) = X(x,y), (A.11)
where the self-energy is defined in complete analogy to eqn. (3.27) by

E(m,y) o 5F2[D7B]
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Note that the factor two in the definition of the self-energy is absent.

Kadanoff-Baym equations

Convolving the Schwinger—Dyson eqn. (A.11) with D from the right and using eqn. (A.9), we
obtain

i[Oy +m3)D(x,y) = 69 (x,y) + / 2425 (x,2)D(z,y). (A.13)

Next, following the usual procedure, we represent the time-ordered propagator as a linear combi-
nation of the statistical propagator and spectral function:

D(z,y) = Dr(z,y) - 5senc(a® = y")Dy(x.y) (A14)

where sgn, denotes the signum function with respect to time-ordering along the closed time path,
and

—

Dr(z,y) = 5 ([b(=), b(y)]+) , (A.152)
D,(x,y) = i([b(x),b(y)]-) - (A.15b)
To find out how D and D, behave under complex conjugation let us introduce
D (z,y) = (b(2)b(y)) = Te[2 b(a)b(y)] , (A.16a)
D (z,y) = (b(y)b(z)) = Tr[Z b(y)b(z)] . (A.16b)
Using the Hermiticity of the density matrix &2 and the cyclic invariance of the trace, we obtain
Consequently
Dyp(x,y) = Dr(y,x), Dj(x,y) = —Dy(y,z). (A.18)

Analogous relations also hold for the spectral and statistical components of the self-energy.

The local part of the self-energy is proportional to the Dirac-delta and can be absorbed in the
effective mass of the field, m2(z) = m? + $%¢(z,z), whereas the remaining part of the self-
energy can be split into a spectral part X, and a statistical part X in a complete analogy to
eqn. (A.14).

Because of the sgn-function, the action of the Laplace—Beltrami operator on eqn. (A.14) gives rise
to the product ¢*°§(z°, y°)VED,(x,y). Upon use of the definition of the spectral function and
canonical commutation relations for a complex scalar field this product reduces to the generalized
Dirac-delta 69 (z, y), which cancels the Dirac-delta on the right-hand side of eqn. (A.13).
Separating spectral and statistical components in eqn. (A.13), we obtain the system of Kadanoff—
Baym equations:

0 20
[Dx + m%(m)]DF(x,y) = /@42 Yp(z,2)Dp(2,y) — /@42 Y,(x,2)Dp(z,y), (A.19a)
0 0

0

y
(O, +mj (2)] Dy(z,y) = /@42 Y,(x,2)D,y(2,y) . (A.19b)
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It is very similar to that for the real scalar field, see section 3.1. An important difference is that the
functions in eqns. (A.192a) and (A.19b) are complex. This means that one gets four equations for
the real and imaginary components of the spectral function and the statistical propagator.

Quantum Kinetic equations

The Kadanoff-Baym equation (for the statistical propagator and the spectral function) can be
rewritten in terms of advanced and retarded propagators, Dg and D 4:

[+ mi(2)] Dpp) (@, y) =
_ / P120(2%) [Sp(p) (2. 2)Da(zy) + Sr(z, ) Dpy (0)] . (A20)
Because of (A.18), the retarded and advanced propagators are related by
Dp(z,y) = 0(2° —y°)Dy(z,y) = —0(z° — y°)D}s(y, z) = D (y, ) . (A21)

Interchanging x and y in (A.20) and performing a complex conjugation of the resulting equation,
we find

[0y +mi ()] D) (a,y) =
=— /@420(,20) [Dr(x,2)Sr(p)(2,y) + Dp(y)(z,2)a(z, )] - (A.22)

The sum of original eqn. (A.20) and transformed eqn. (A.22) is referred to as constraint equation
while the difference is the quantum kinetic equation. Since the latter has been obtained from the
former by reversible transformations, a solution of eqn. (A.20) is also a solution of eqn. (A.22) and
hence of the constraint and quantum kinetic equations.

For the reasons given in section 3.1, it is convenient to introduce the covariantly generalized (see
section 3.1) center and relative coordinates, X and s. In terms of these coordinates eqns. (A.18)
can be rewritten in the form

Dip(X,s) = Dp(X,—s), Dj(X,s)=—Dy(X,—s).

The Winger transforms of the spectral function and statistical propagator are defined, as before,
by:

De(X.p) =V=gx [ d'se™Dp(X.s), (A230)

D,(X,p) = —iv/—gx / d*se™*D,(X,s). (A.23b)

Consequently, the Wigner transformed statistical propagator and spectral function are again real-
valued functions. The Wigner transforms of the retarded and advanced propagators are defined
analogously. From eqn. (A.21) it then follows that the relation

D4(X,p) = Dr(X,p) (A.24)

between the advanced and retarded components also holds for a complex scalar field. Combining
eqns. (A.21) and (A.23) and using 0(s°) + 6(—s") = 1 one finds:
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Equations (A.24) and (A.25) imply, that
i
DR(A)(Xap) :Dh(X7p):|:§Dp(X7p)7 (A26)

where Dj(X,p) = R{Dgr(X,p)} has been introduced. An analogous relation holds for the
retarded and advanced self-energies.

As announced, by subtracting eqn. (A.22) from eqn. (A.20) and Wigner transforming both sides
of the result we obtain the quantum kinetic equations. In addition, we need to send the initial
time to the infinite past, ¢;,;; — —o0, which means that we drop the functions 0(20) on the right-
hand sides of eqns. (A.20) and (A.22), and to perform a gradient expansion with respect to X.
Proceeding as in section 3.1, in particular dropping terms beyond the linear order in the gradients,
we obtain a kinetic equation for the spectral function.

{W(X, p)7 Dp(X7 p)}PB = {Ep(X7p)7 Dh(X7 p)}PB; (A27)
where we have introduced
w(X,p) = g"'pupy — m%(X) - Yn(X,p), (A.28)

and the Poisson brackets are as in eqn. (3.63).

Wigner-transforming the sum of eqns. (A.22) and (A.20), we obtain the constraint equation for the
spectral function. To linear order in the gradients it is an algebraic equation:

w(X,p)Dy(X,p) = 3,(X,p)Di(X,p). (A.29)

To close the system and to analyze the spectrum, we also need the equations for the retarded and
advanced propagators. They can be obtained from (A.20) and (A.22) upon use of the definitions
of Dg and D 4 and the canonical commutation relations:

[DCE + mg(x)]DR(A) ('Ia y) = 6g(£a y) - /-@42 ER(A) (‘T? Z)DR(A) (Zv y) ) (A30)

[Dy + mg(y)]DA(R)<w7 y) = 59(1,7 y) - /-@4ZDA(R)(xvz)EA(R)(Z7y) . (A31)

Wigner-transforming the difference of eqns. (A.30) and (A.31) and subtracting eqn. (A.27), we
obtain the kinetic equation for real part of the retarded and advanced propagators:

(X, ), Du(X,p)}pis = ~ 1 (X, ), Dy(X,p)} i (A3

Wigner-transforming the sum of eqns. (A.30) and (A.31) and subtracting eqn. (A.29), we obtain
the second constraint equation:

1
w(X7p)Dh(X7p) =-1- ZEP(X7P)DP(X,p) . (A33)
The solution of the system of constraint eqns. (A.29) and (A.33) reads
—2,(X,p
Dy(X,p) = — ol ; 2) : (A.342)
w (Xap) + Zzp(va)
w(X,p)
Dyp(X,p)==——-—=<D,(X,p). (A.34b)
P =5 () Do)
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As can be checked by substitution, solution (A.34) is also solution of the kinetic eqns. (A.27) and
(A.32). In other words, to linear order in the gradients we have analytic expressions for the spectral
function and retarded (advanced) propagators. The spectral function has a sharp peak on the mass
shell, i.e. for w(X, p) = 0. The height and exact shape of the peak are time-dependent.

Proceeding in a similar way, we can derive the kinetic and the constraint equations for the statistical
propagator:

{w(X,p), Dr(X,p)}pe = {Zr(X,p), Dr(X,p)}PB
+DF(X7p)EP(X7p) - EF(‘XV, p)DP(Xa p) ) (A35)

w(X,p)Dr (X, p) = {Sr(X.p), Dy(X.p) ks
+3{DF(X,])), Ep<X,p)}PB + EF(X,p)Dh(X,p) . (A.36)

The constraint equation is no longer algebraic and can not be solved analytically in general. How-
ever, if the system is in thermal equilibrium, then all the quantities are constant in time and space
and the Poisson brackets in (A.36) vanish identically. The solution of the resulting equation reads

EF(p) eq
S(p) 7

That is, we have obtained the fluctuation-dissipation relation from the constraint eqn. (A.36). As
can be checked by substitution, in equilibrium (A.37) is indeed a solution of (A.35). Furthermore,
using (A.14) and the KMS periodicity condition we find [80]

D (p) = (p)- (A.37)

1
DE(p) = [ £29(p) + 5| D5 (). (A38)
where £%¢? denotes the Bose—Einstein distribution function.

Boltzmann kinetic equations

Neglecting the Poisson brackets on the right-hand side of (A.35), we obtain the Boltzmann equa-
tion for the statistical propagator:

1
p*PaDr(X,p) = 5 [Dp(X,p)S,(X,p) — Sp(X,p)Dy(X,p)] . (A.39)

Motivated by the fluctuation-dissipation relation (A.38), we trade the statistical propagator for the
one-particle number density:

Dr(X,p) = [(X,p) + 3] D(X.p). (A40)

By the same arguments as those given in section 3.1, we can also apply the quasi-particle approx-
imation:

D,(X,p) = 2msgn(po) 0 (gw,p“p” — mz) . (A41)
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We can then rewrite eqn. (A.39) as an equation for the phase-space distribution function f°(X, p):

[PaDafb(Xap)]Dp<X7P) = %[E>(X7P)D<<X7P) - D>(X7P)E<(X7p)] )

where we have introduced
1
Dz(X,p) = Dp(X,p) £ §Dp(X,p) : (A42)
eqn. (A.42) is very similar to the Boltzmann equation for a real scalar field in section 3.1. There is,

however, an important difference. For negative values of py the distribution function f° describes
anti-particles:

X, —p) = ~[fP(X,p) +1]. (A.43)

In other words, eqn. (A.42) describes the time evolution of both particles and anti-particles. One
can obtain an explicit equation for f by changing the sign of py:

[P D f (X, P Dy(X,p) = 5[5 (X, p)D<(X,p) Do (X,p)S<(X.p)],

where we have introduced iz(X ,p) = X<(X, —p) and taken into account that in the quasi-

particle approximation D, (X, —p) = —D,(X, p).
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Appendix B

Calculation of the self-energies

The 2PI effective action is given by the sum of all 2PI diagrams with vertices as given by the
interaction lagrangian and internal lines representing the complete connected propagators [80].
The structure of the terms of the effective action can be read off the diagrams in fig. 3.6:

s :—;)\/ D2(z, ), (B.1a)
r® =1 [ pe,y)p?
g = ,y)D*(y, z), (B.1b)
8 2y

I‘\(C) _ 1 * agmn D2 _ 1 * agmn D2

¢ 2 4 gmgn (':L'v y) (:Ev y) 4 gmgn (gj, y) (y7 l’) ) (BlC)
Ty xry

ZFéd) :4gigjgmgn/ G" (.1‘, y)G (’U¢ U)D(yv ’U)D(.I‘, U)D(yv U)D(l’, u) ) (B.1d)
TY U

where, to shorten the notation, we have introduced

/ 5/94331...941:”.

The self-energies of the complex scalar field are obtained by functional differentiation of the ef-
fective action with respect to the two-point correlation function:

Yz, y) = z(m . (B.2)

Differentiating the individual contributions to the effective action, we obtain
»(@ (x,y) = —id9(z,y)\D(z, x), (B.3a)
2O (z,y) = —%A2D2(x,y)D(y, x), (B.3b)
2O (@,y) = —g:9; G (y, 2) D(y, ), (B.3c)
s@(z,y) = gigjg,*ng,*l/ G™(z,v)G" (y,u)D(y,v)D(u,v)D(u, z) . (B.3d)

The components of the self-energy of the system of real scalar fields are obtained upon functional
differentiation of the effective action with respect to the components of the correlation function:

6Ts[D, G

ij =
Y (z,y) = 21 G (g 1) (B.4)
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The result of the differentiation reads

c 1, 1,
I (2.y) = —59i9;D*(w,y) = 5979, D*(y, @), (B.5a)
1 * *
ng) (,y) = 2/ G™" (v, u) [gz’gjgmgnD(x,v)D(m,u)D(y, v)D(y,u)+
+ 95 95 gmgn D (v, 2) D (u, z) D (v, y) D (u, y)] . (B.5b)

The next step is to derive the spectral and statistical components of the self-energies eqns. (B.3)
and (B.5). Upon use of the decomposition (A.14) and of the analogous decomposition of the
propagators of the real scalar field, one easily obtains a corresponding decomposition of the self-
energies (), $(¢) and 1) into the statistical and spectral components. Linear combinations
of the resulting expressions are presented in eqns. (3.98a), (3.98b), and (3.99a). The calculation
of the spectral and statistical components of (4 and II(¥), which contain two integrations over
space-time, is more involved (see also [? ]). Decomposing the two-point correlation functions in
eqn. (B.3d) into the statistical and spectral components, we get 32 terms. Each of the terms must
be integrated over the closed time path C. It is useful to use relations like

| i ssne(a® = ) sgne(u® ~ o) Dyl ) Dyl ) =
C
1.0
=92 sgnc(xo — yo) /0 du® D,(z,u)Dpy(u,y) . (B.6)
Y

One then finds that ten terms vanish upon integration over the contour: one term which does not
contain any sgn,. functions; five terms which contain only one sgn. function; two terms which
contain a product of two sgn, functions both depending only on one of the integration variables,
u or v; and finally two terms which contain a product of three sgn, functions but depend only on
one of the “external” arguments, = or y. For the remaining terms the integration over the contour

YA

(0) (d)

fo
-

. LY T v
Figure B.1: The integration plane in the case ° > ¢°.

C reduces to a “single time” integration over a combination of the six regions in fig. B.1. Note that
the upper limits of the integration never exceed the largest time argument (2 in fig. B.1) which
ensures the causality of the Kadanoff-Baym equations. In most cases integration over a part of the
uv plane can be easily represented as integration over the whole plane, 0 < u,v < o0, if two of
the spectral functions are replaced by the corresponding retarded and (or) advanced propagators.
There are, however, two exceptions: if the resulting integral is only over region (e) or region ( f)
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in fig. B.1. Using the identities

/ — / _ / _ / , (B.7a)
(e) (atc+e) (b) (a+b+c)
H (b+d+f) (a) (a+b+d)

and the definitions of the retarded and advanced propagators, we can represent the corresponding
contributions as combinations of integrals over the whole uv plane. Collecting all the terms, we
obtain expressions presented in eqns. (3.98c) and (3.99b).

Wigner transformation

To calculate the self-energies entering the Boltzmann equations, we have to Wigner-transform
products of several two-point functions. Using the definitions (A.23), we obtain for the Wigner-
transform of a product of n functions of the same arguments, see eqn. (3.57):

(@) .. fulz,y) H/dﬂﬁl L dID (2m)40%(p — p1— - ) F(X,p1) - F(X, pa) -
(B.8)

Equation (B.8) allows us to Wigner-transform the self-energies (3.98a), (3.98b) and (3.99a). The
self-energy (3.98c) has a more complicated structure:

Flayy) = / £1(9s0) fo (1, 0) f (1 ) fa(y 0) s, 0) (B.9)

We will now calculate the Wigner-transform of eqn. (B.9) in the Boltzmann approximation. That
is, in each f,, we will neglect the deviation of the corresponding center coordinate from X = X,,.
For instance:

fl(yvv) - fl(Xymsyv) - fl(me,Syfu) . (B.10)

In this approximation the integration over u and v induces two conditions on the momenta: p, =
Py = 0, where p,, = p2 + p3 — pg and p, = p1 + p2 + ps. Integration over the relative coordinate
s, see eqn. (A.23a), induces an additional constraint: p = p,, where ps = %(pg, — D4 — P3 — P1)-
Thus, in the Boltzmann approximation the Wigner transform of eqn. (B.9) takes the form:

F(X,p) = / AT AT (20)469 (pa) (27) 69 (py)

x(2m)*69(p — ps) f1(X,p1) .. f5(X,ps5) (B.11)

As far as decays are concerned, two of the momenta in eqn. (B.11) correspond to the initial and
final states, whereas three of the momenta correspond to the internal lines of the loop. The Dirac
Dirac-deltas in eqn. (B.11) ensure conservation of four-momentum in each vertex of the loop.

The self-energy (3.99b) has the structure

fla,y) = / £1(0, ) fa(, 0) (2, 0) Fa(y0) F () (B.12)

Proceeding in the same way, we again obtain eqn.(B.11) but now with p, = p1 — p2 — p4,
Pu = p1 + p3 + ps and ps = %(pQ + p3 — ps — ps). This completes the calculation of the
Winger-transforms of the self-energies.
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Generalized optical theorem and
cutting rules

The generalized optical theorem is a direct consequence of the unitarity of the S-matrix (i.e. it
expresses the conservation of probability) [64, 121]. It can be generalized to unstable particles
by means of the Cutkosky cutting rules for the computation of the discontinuities of Feynman
graphs [64].

—i[ Mo ({hi ApiH) = Mo (i}, TR})| =

=2\l / iy, | m)' oWk = D pi) Mamil({ki} g HMi_i({pi {0 })

i

(C.1)

The amplitudes M, _;, include all contributing diagrams (at a given order of perturbation theory)
and the sum on the right-hand side is over all possible real intermediate states ¢ which contribute
to M. The intermediate state momenta are integrated over their invariant phase space.

The generalized optical theorem can also be seen as a consequence of the Cutkosky cutting rules
[122—124] for the computation of the imaginary part of the diagrams in the perturbative expansion.

(i) Cut through the diagram in all possible ways such that the cut propagators can simultane-
ously be put on shell.

(i) For each cut, replace 1/(p? — m? + ie) — —2miO(py)d(p? — m?) in each cut propagator,
then perform the loop integrals.

(iii)) Sum the contributions of all possible cuts.

With certain restrictions, related to the notion of cutting [109], the Cutkosky rules can be gener-
alized to thermal quantum field theory. Due to the second degree of freedom in RTF in general a
large number of diagrams, with different types of the vertices, has to be taken into account. Dif-
ferent formulas have been derived to reduce the number of relevant diagrams by performing sums
partially by using the “largest/smallest time equation” eqn. (4.16).
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In [106] a formula for the absorptive (imaginary) part of the amplitude was derived. Starting from
eqn. (4.16) one can derive the “circling relation”

Z Fx(z1,.. . 05 25) = Z F(z1,...,2n;25) =0, (C2)

circling x;,z; circling z;

since there is always a vertex with largest time component. From the circling rules it can be shown
that the complex conjugate of a function F'~ with all external vertices uncircled and a fixed set
of internal vertices circled is just F. with all external vertices and the conjugate set of internal
vertices circled:

Fo(w1,. om0 2, 25) = Fs(2y, o0 205 25 2k) - (C.3)

Assuming that the KMS boundary condition holds we have the relations

Fe(x1,. o @0 25, 2) = P (21,000 03 25, 25)

Fo(zy,....2z; 25, 21) :F>(g1,...,§n;zj,zk). (C4)

’ =N

With help of eqn. (C.3) one finds

. 1/,._ . *
S{i 1.7:(x1,...,mn;zj)} = 2—2({2 1.7:(331,...,xn;zj)} —{i 1.7:(x1,...,xn;zj)} )
1/._ . *
:271'(1 1 Z Fo(xi,...,xn525) +1 1( Z F<(a:1,...,xn;zj)) )
circling z; circling z;
1
= (X Rl Y Flonzin).
circling z; circling z;

To this one can add 1/(2) times the sum in eqn. (C.2) without changing anything:

. 1
%{z 1]—"(:61,...7a:n;zj)} =3 Z Fo(z1,...,2n;2))
circling (x;),z;
1 1
5 Z F<(§1,...,§n;2’j)—§ Z F>(§1ﬂ"'7£n;zj)7
circling z; circling z;

where the brackets indicate that in this sum either none or all of z; are circled. The last two terms
in this equation cancel due to eqn. (C.4). We arrive at the final result

1
%{fl}"(xl,...,xn;zj)} =3 Z Fo(z1,...,2n;25) .

circling (z;),2;
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Reduction of the collision integral

In order to be able to perform the integration of the collision integral accurately and effectively
it is necessary to perform the angular integration analytically. Omitting the superscripts denoting
the particle species' in we can write a collision integral for 2 — 2 scattering as (see eqn. (2.12)):

) = g RSB+ By~ By - E)6 ket p - a - [MF
lepesar d®p d3q d3r
) ory2E, GrE, Gayes, s O
where we have introduced
PR (1) = (L= ) (1= @ h) fue — iy (1 - €0)0 - 1), D2)

We write the 3-dimensional Dirac-delta as the Fourier transform of unity and switch to spherical
coordinates:

3
Pk+p-q-r1)= /e““‘ﬂ’—q—“) A
(2m)3

The collision term eqn. (D.1) then becomes

pdpqdqrdr
E, E, E,

CEP= [ f](k) = / 3(Ex+Eyp—Eq—Ey)F*=0 [f] D(k, p,q,7) - (D3

647T3Ek

Here D was defined as

D(k,p,q,7) = D" (kp,q,r
- 82/dQ/dQ/dQ 5 (k+p—q—r) M

pgr % i —1 —iAr
— 647T5/A2dA/e/\de,\/eAdep/e /\quq/e AT aQ, |IM|?

D.4)

Note, that this definition renders D(k, p, q,r) a dimensionless quantity. Due to the presence of
the Dirac-delta we expect that the result is non-zero only if g + r > |k —p|and k +p > |¢ — |,

"From here on we will always use the momenta k, p, ¢ and 7 in connection with only one particle species, such that
it serves as a label for the species at the same time. We also use the convention v = |v| to denote the modulus of the
three-momenta.
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Appendix D. Reduction of the collision integral

because the equation k 4+ p = q -+ r does not have a solution otherwise, for whatever combination
of the solid angles (1, €14, €2,.. Therefore, the result will be proportional to

O (kp,qr) = Olg+r—I|k—p)Ok+p—lg—r])
O(min (k +p,q+7r) —max (|k —p|,|lqg—7])). (D.5)

After computing D(k, p, g, r) we can proceed with the integration of the remaining energy Dirac-
delta in eqn. (D.3):

Ckr=ar[f) (k) = @//@(Ep —mp)F[f}D(k,p,q,r)(%ﬂrgr, (D.6)

q T

where p = /B2 — m2 with E}, = E, + E,. — E}, is given by energy conservation. The Heaviside-
function prevents integration over combinations of ¢ and r which are kinematically forbidden.
Note, that the choice to integrate eqn. (D.3) over p is not unique. The integration over ¢ and r
leads to analytically equivalent expressions for C.

Thus, the collision integral is reduced to a two-dimensional one, suitable for numerical integration.
However, all the work is now hidden in the definition of D = D(k, p, ¢, ) which is characteristic
for the scattering model, i.e. for the matrix element of the underlying theory for the scattering
process under consideration.

The computation of D is easily carried out for matrix elements squared with simple angular de-
pendence such as the constant (| M |2 = const), for matrix elements in the Fermi approximation
(IM|* (k- p)(q-r), (k- p), including re-namings of the momenta therein) and for resonant
processes in the narrow width approximation (]/\/l|2 o 6(s — m% ), where m is the mass of the
particle in the intermediate state).

In general, the spin averaged matrix element | M \2 will depend on Lorentz-invariant combinations
of the four-momenta of the in- and outgoing particles, usually the Mandelstam variables s, ¢, u,

s = (k+p)?,
o= (k= q) = m} +m? — 2B, + 2[K|[q] cos (0h,)
u = (k—7)2=mi+m?—2E,E, +2k||r|cos () . (D.7)

In the following we take ¢ and u as the two independent variables and s is expressed by

s= Y mj —t—u. (D.8)

i=k,p,q,r

In [1] it has been shown that D can be written as

qr M|
D(k,p,q,7) = — | ———=dcosfqdcosb,, (D.9)
R AV R
with
F(eqver) =

2
= (2¢qr sin 4 sin 0, 2_ k — qcosOy — rcos b, 24 gsin 24+ (rsinb, 2—p2
q q q

(D.10)
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Appendix D. Reduction of the collision integral

The domain of integration A is given by —1 < cosf,, cos6, < 1and F(6,,6,) >0

The expression (D.9) for D has only a two-dimensional integral and is by far superior to the origi-
nal expression with respect to numerical integration. The integrand may have singular points at the
boundary of A. Hence the routines for numerical integration must be chosen adequately. Usually,

for a numerical method, it is sufficient to know D(k,p = \/ (Eq + Er — Ey)? —m2,q,7) fora

finite set of momenta {k;, gj,;} on a grid. Therefore it is possible, in principle, to tabulate D
through numerical integration of eqn. (D.9). For applications in cosmology, this relation is only
of restricted use, since the momenta or, equivalently, the particle masses are scaled in each step of
the time evolution, so that the values of D(k;, p, ¢j,7;) need to be recomputed permanently.

In order to evaluate eqn. (D.4) in a numerical efficient way, one can expand \M\Q in terms of
cos (0q) and cos (O ):

IM|? = Z Z Apm (€08 0kq)"™ (cos O,)™ (D.11)

n=0m=0

Note that the coefficients A, can depend on the magnitudes of the momenta. Upon integration
of eqn. (D.4) we can then write

D(k,p, q,r Z Z Apn (K, q,7) D" (,p, q,7) (D.12)

n=0 m=0

assuming that the series converges for all relevant k, p, ¢ and r (the momenta are still restricted by
energy conservation).

In order to give a meaning to eqn. (D.12) we need to compute the integral

D" (k,p,q,r) = pq?”/dQ /dQ /dQ 5*(k +p — g —1)(cos Oy)" (cos O, )™
(D.13)

n [1] it has been shown, that the results for D™ (k, p, ¢, ) can always be written in the form

© (k,p,q,r)

D" (k,p,q,r) = AW

(B1R1 + BaRy + BsR3 + C) . (D.14)
A is a numeric prefactor. The coefficients B; and C' are multivariate polynomials in the momenta
k,p,q,r.

a=k+p—q-r, ca=k—-ptq-r, a=k-p—q+r
and RlzR(Cl), RQIR(CQ), R3:R(03), (D.15)

where R(x) = z0O(x) is the ramp function. D™ with n < m (D™™ with n > m can be derived
from D™ by interchanging ¢ and r. The expressions B> (Bs3) are found by substituting in B; the
term cq by co (c3) and f; by f; 9779 (f;" ") for all 4.

For the lowest orders the coefficients are given by:

DOk, p,q,r) (D.16)
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A=1/2, C =2k,
B =1,

DY (k,p,q,7) : (D.17)
A=—-1/12, C = —4k3,
By = foc1 —c1i® + f1,

[f1:6k7’,f2:3k—37”]

D%2(k,p,q,7) : (D.18)

L C =8k (2k*+571%),

~ 120
B = fac1 + fze1? + faci® =31t + f1,

[ fi = —60k%2, fo = —60kr(k —7), f3 = =207 — 20 k> + 60 kr, f1 = —157 + 15k]

DYk, p,q,7) (D.19)
A= %, C=4k(3k*+5p* —5¢* —571%),
By = fac1 + fse1? + fact® — et + 1,
[ fi = —60k3qr, fo = —30k( — 2qr + kq + kr), f3 = 20 kq + 20 kr — 20 qr — 10k,
fa=-5q—5r+5k]

For the numerical computations in this thesis only the lowest order coefficients for D%0 were
needed needed. Some higher-order D™""’s can be found in [1].
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