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Abstract

In this thesis, the running of neutrino masses, lepton mixing angles and
CP phases is investigated, using the description of neutrino masses by
the lowest dimensional effective operator and its realization within see-
saw scenarios. In the effective approach, the β-functions which govern
the running of the parameters below the lowest see-saw scale in the Stan-
dard Model, in Two-Higgs-Doublet Models and in the Minimal Super-
symmetric Standard Model are calculated. Analytical formulae, which
allow to understand the running qualitatively and to a good approxima-
tion also quantitatively, are derived and compared to numerical results.
In minimal see-saw scenarios, where only heavy singlets are added to the
particle spectrum, the β-functions and matching conditions for the var-
ious effective theories, which arise from successively integrating out the
heavy particles, are calculated in the above-named models. Characteris-
tic properties of the running in these scenarios are discussed analytically
and illustrated by numerical examples.

Zusammenfassung

In dieser Arbeit wird das Laufen von Neutrinomassen, leptonischen Mi-
schungswinkeln und CP-Phasen untersucht. Dabei wird die Beschrei-
bung von Neutrinomassen durch den niedrigst-dimensionalen effektiven
Operator und dessen Realisierung in Seesaw-Modellen verwendet. In der
effektiven Herangehensweise werden die β-Funktionen berechnet, die das
Laufen der Parameter im Standardmodell, in Zwei-Higgs-Modellen und
im minimalen supersymmetrischen Standardmodell bestimmen. Ana-
lytische Formeln, die ein qualitatives und in guter Näherung auch quan-
titatives Verständnis des Laufens erlauben, werden hergeleitet und mit
den numerische Resultaten verglichen. In minimalen Seesaw-Szenarien,
in denen ausschließlich schwere Singlets zum Teilchenspektrum hinzuge-
fügt werden, werden die β-Funktionen und Matching-Bedingungen für
die verschiedenen effektiven Theorien berechnet, die durch das schritt-
weise Ausintegrieren der schweren Teilchen in den oben genannten Mo-
dellen entstehen. Charakteristische Eigenschaften des Laufens in diesen
Szenarien werden analytisch diskutiert und durch numerische Beispiele
verdeutlicht.

5



6



Contents

Abstract 5

Introduction v

1 Origin and Description of Neutrino Masses 1

1.1 Fermion Masses in the Standard Model . . . . . . . . . . . . . . . . . 1
1.1.1 Electroweak Symmetry Breaking . . . . . . . . . . . . . . . . 1
1.1.2 Fermion Masses . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.3 Experimental Results for Fermion Masses and Mixings . . . . 3

1.2 Extensions of the Standard Model Particle Content . . . . . . . . . . 5
1.2.1 Additional Higgs Triplet . . . . . . . . . . . . . . . . . . . . . 5
1.2.2 Additional Fermion Singlets . . . . . . . . . . . . . . . . . . . 6
1.2.3 The See-Saw Mechanism . . . . . . . . . . . . . . . . . . . . . 8

1.3 Neutrino Masses in an Effective Theory Approach . . . . . . . . . . . 9
1.3.1 The Lowest Dimensional Effective Neutrino Mass Operator . . 9
1.3.2 Tree-Level Realizations of the Neutrino Mass Operator . . . . 10
1.3.3 Loop Realizations of the Neutrino Mass Operator . . . . . . . 10
1.3.4 Higher Dimensional Operators for Neutrino Masses . . . . . . 11

1.4 Neutrino Masses in Left-Right Symmetric Extensions of the SM . . . 13
1.4.1 Minimal Left-Right Symmetric Models . . . . . . . . . . . . . 13
1.4.2 The Pati-Salam Model . . . . . . . . . . . . . . . . . . . . . . 15
1.4.3 SO(10)-Unification . . . . . . . . . . . . . . . . . . . . . . . . 16

1.5 Dynamical Electroweak Symmetry Breaking by a Neutrino Condensate 19
1.5.1 Mass Eigenbasis for the Dynamical See-Saw Mechanism . . . . 20
1.5.2 The Coupled Dirac-Majorana Gap Equations . . . . . . . . . 20
1.5.3 Implications for Neutrino Masses . . . . . . . . . . . . . . . . 22

2 The β-Functions for the Effective Neutrino Mass Matrix 23

2.1 Preliminaries on Renormalization . . . . . . . . . . . . . . . . . . . . 24
2.1.1 Renormalization Group Equations . . . . . . . . . . . . . . . . 25
2.1.2 Calculating RGEs from Tensor-Valued Counterterms . . . . . 27

2.2 The Neutrino Mass Operator in Non-Supersymmetric Theories . . . . 30

i



Contents

2.2.1 Calculation of the RGE in the SM . . . . . . . . . . . . . . . . 30
2.2.2 Calculation of the RGEs in 2HDMs . . . . . . . . . . . . . . . 36

2.3 The Neutrino Mass Operator in the MSSM . . . . . . . . . . . . . . . 40
2.3.1 Preliminaries on N=1 Supersymmetric Theories . . . . . . . . 40
2.3.2 Component-Field Calculation of the RGE . . . . . . . . . . . 42
2.3.3 Calculation of the 2-Loop RGE using Supergraphs . . . . . . . 49

2.4 The Effective Theories of Minimal See-Saw Scenarios . . . . . . . . . 54
2.4.1 Tree-Level Matching in Type I See-Saw Scenarios . . . . . . . 54
2.4.2 Tree-Level Matching in Type II See-Saw Scenarios . . . . . . . 56
2.4.3 The Effective Theories . . . . . . . . . . . . . . . . . . . . . . 57
2.4.4 Component-Field Calculation of the RGEs . . . . . . . . . . 58
2.4.5 Calculation of the RGEs at 2-Loop using Supergraphs . . . . . 63

3 Analysis of Running Neutrino Masses, Mixings and CP Phases 67

3.1 Analytical Results in the Neutrino Mass Operator Approach . . . . . 68
3.1.1 Derivation of Analytical Formulae for the Running Parameters 68
3.1.2 The Running of the Lepton Mixing Angles . . . . . . . . . . . 71
3.1.3 The Running of the Neutrino Masses . . . . . . . . . . . . . . 73
3.1.4 The Running of the Dirac CP Phase . . . . . . . . . . . . . . 78
3.1.5 The Running of the Majorana Phases . . . . . . . . . . . . . . 79
3.1.6 Estimating the Generic Size of the RG Effects . . . . . . . . . 80

3.2 RG Corrections Compared to Sensitivities of Future Experiments . . 82
3.2.1 Radiative Corrections for the Mixing Angle θ13 . . . . . . . . . 82
3.2.2 Radiative Corrections for the Mixing Angle θ23 . . . . . . . . . 83

3.3 The Running in Type I See-Saw Models . . . . . . . . . . . . . . . . 86
3.3.1 Solving the RGEs for Non-Degenerate See-Saw Scales . . . . . 86
3.3.2 The Running of the Effective Neutrino Mass Matrix . . . . . 87
3.3.3 Analytical Results for the Running of the Mixing Angles . . . 88
3.3.4 The Running Between the Thresholds . . . . . . . . . . . . . . 90

3.4 Radiative Generation of the LMA Solution in Type I See-Saw Models 92
3.4.1 The LMA solution from Bimaximal Lepton Mixing . . . . . . 92
3.4.2 The LMA Solution from Vanishing Solar Neutrino Mixing . . 98

Conclusions 101

A Appendix 103

A.1 The Mixing Parameters of Quarks and Leptons . . . . . . . . . . . . 105
A.1.1 Definition of the Mixing Parameters . . . . . . . . . . . . . . . 105
A.1.2 Extraction of Mixing Angles and CP Phases . . . . . . . . . . 108

A.2 Useful Formulae and Notations . . . . . . . . . . . . . . . . . . . . . 110
A.2.1 Weyl, Dirac and Majorana Spinors . . . . . . . . . . . . . . . 110
A.2.2 Clifford Algebra in d Dimensions . . . . . . . . . . . . . . . . 111

ii



Contents

A.2.3 Passarino Veltman Functions . . . . . . . . . . . . . . . . . . 111
A.3 Summary of Feynman Rules . . . . . . . . . . . . . . . . . . . . . . . 115

A.3.1 Feynman Rules in the Extended SM . . . . . . . . . . . . . . 115
A.3.2 Feynman Rules in Extended 2HDMs . . . . . . . . . . . . . . 123
A.3.3 Feynman Rules in the MSSM Extended by Heavy Singlets . . 125

A.4 Results for Relevant Vertex Corrections and Self-Energy Diagrams . . 130
A.4.1 Summary of Results in the SM . . . . . . . . . . . . . . . . . 130
A.4.2 Summary of Results in the 2HDMs . . . . . . . . . . . . . . . 132
A.4.3 Summary of Results in the MSSM . . . . . . . . . . . . . . . . 134

A.5 Summary of the RGEs for the Minimal See-Saw Scenarios . . . . . . 136
A.5.1 The RGEs in the Extended SM . . . . . . . . . . . . . . . . . 136
A.5.2 The RGEs in Extended 2HDMs . . . . . . . . . . . . . . . . . 137
A.5.3 The RGEs in the MSSM Extended by Heavy Singlets . . . . . 139

Acknowledgments 143

Bibliography 145

iii



iv



Introduction

The energy scale dependence of physical quantities, their so-called running, is a
well-known effect in quantum field theory. Experimentally, it has been confirmed
for the gauge coupling of the strong interaction [1]. Theoretically, it has manifold
consequences. For instance, the potential meeting of the three gauge couplings in
extensions of the Standard Model (SM) after their extrapolation to high energies
opens up the possibility of a Grand Unified Theory (GUT) [2] of the known gauge
interactions at energy scales some orders of magnitude below the Planck scale. An-
other example is the running of the parameters of the Higgs sector in the SM, which
has lead to upper and lower bounds for the Higgs mass from vacuum stability [3]
and triviality [4]. It furthermore points towards the SM being an effective theory
which has to be embedded into a more fundamental framework at high energies.

In recent years, experiments have discovered flavour conversions of neutrinos. To-
gether with their explanation by neutrino oscillations, they have lead to fascinating
results for neutrino masses and lepton mixings. Unlike quarks, leptons have two
large mixing angles and experiments with solar and atmospheric neutrinos found
two small differences for their squared masses. From beta decay experiments and
astrophysical observations, we have furthermore gained upper bounds for the neu-
trino mass scale. Neutrino masses are many orders of magnitude smaller than the
masses of quarks and charged leptons. At present, our picture regarding neutrino
masses is not complete yet. We do not know the neutrino mass scale, the values of
possible physical CP violating phases and whether neutrinos are Dirac or Majorana
particles. However, future experiments are expected to provide precision measure-
ments of the neutrino mixings and mass squared differences and they may complete
our knowledge of the parameters of the lepton sector.

From the theoretical point of view, these observations require an extension of the
SM. Though there are many possibilities, it is attractive and rather model indepen-
dent to introduce neutrino masses by an effective operator. Their smallness is then
linked to the largeness of the energy scale where the operator is realized. Plausible
scenarios beyond the effective approach use the so-called see-saw mechanism where
the exchange of heavy particles leads to suppressed neutrino masses. Below the
mass scales of these particles, which are typically some orders of magnitude below
the gauge unification scale, the description by the effective operator can be applied.
These scenarios nicely fit into left-right symmetric extensions of the SM, such as
minimal left-right symmetric models [5–7], Pati-Salam models [8] or SO(10)-GUTs
[9,10].

The goal of this thesis is to investigate the running of neutrino masses, lepton
mixing angles and physical CP phases. It has to be taken into account, whenever
these parameters at two different energy scales are compared. In particular, it is
required for models aiming towards an explanation of the observed structure of
fermion masses and mixings from physics at the GUT scale. In order to use the
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experimental results in the lepton sector for probing such models, their predictions
have to be evolved to low energy. Furthermore, it is possible that the running
alters neutrino masses, lepton mixings and CP phases so much that interesting new
possibilities for model-building arise. Another example where these parameters are
required at very high energies is the mechanism of generating the observed baryon
asymmetry of our universe via leptogenesis [11]. In this scenario, it is generated
by the out-of-equilibrium decay of the same heavy singlet neutrinos which also lead
to light neutrino masses via the see-saw mechanism. Typically, the masses of these
singlets are assumed to be some orders of magnitude below the GUT scale. After
extrapolating the neutrino mass matrix to this energy scale, it can be constrained
from the requirement of a successful leptogenesis.

The outline of this thesis is as follows:

In chapter 1, we discuss some issues regarding the origin and description of neu-
trino masses. We briefly review the generation of fermion masses within the SM and
summarize the present experimental data on fermion masses and mixings, including
the results from the neutrino sector. We then review the possibilities to generate
neutrino masses by minimal extensions of the SM particle content and their relation
to the description of neutrino masses by the lowest dimensional effective operator
allowed by gauge symmetry. They can be realized naturally within left-right sym-
metric models, for example. Finally, we demonstrate that instead of introducing a
fundamental Higgs field, it is possible to break the electroweak symmetry by neu-
trino condensation. In this scenario, small neutrino masses emerge from a dynamical
see-saw mechanism.

The running of physical quantities is determined by the Renormalization Group
Equations (RGEs). In order to evaluate the energy scale dependence of neutrino
masses, lepton mixings and CP phases, the RGE for the effective neutrino mass
matrix is required. When this study started, the existing RGEs for the lowest di-
mensional effective neutrino mass operators in the SM and in Two-Higgs-Doublet
Models (2HDMs) were not in agreement. In chapter 2, we will therefore calculate
them in the SM, in 2HDMs and in the Minimal Supersymmetric Standard Model
(MSSM). For comparing the predictions of GUT models with the experimental re-
sults, the effective approach is usually not sufficient, since the neutrino mass opera-
tor is realized at intermediate energy scales in many cases. We therefore discuss the
matching conditions and calculate the RGEs which are required for a RG analysis
of minimal see-saw models.

The RGEs of a theory provide a coupled system of differential equations for the
energy scale dependence of all the physical quantities. To obtain the RG flow, they
have to be solved simultaneously. In chapter 3, we will analyze the RG evolution
of neutrino masses, lepton mixings and CP phases in the SM and the MSSM with
the lowest dimensional neutrino mass operator as well as in the minimal see-saw
extensions of these models. We will use analytical as well as numerical methods in
order to understand its characteristic properties.
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1 Origin and Description of

Neutrino Masses

The SM has been very successful in describing particle physics at energies of the
order of the electroweak (EW) scale. The particle masses in the SM are generated
via spontaneous symmetry breaking (SSB) of the EW symmetry, where the scalar
Higgs particle acquires a vacuum expectation value (vev). The strong evidence for
neutrino masses on the other hand is the first clear signal for physics beyond the
SM. There are of course several mechanisms to generate neutrino masses in many
possible extensions of the SM. We restrict ourselves to the most minimalistic exam-
ples. A rather model-independent approach is to consider the SM as an effective
theory. Without introducing additional particles, the neutrinos can obtain masses
from the lowest dimensional effective operator allowed by gauge symmetry. The
possible realizations of this operator at some high energy scale nicely fit into theo-
ries with left-right extended gauge symmetry and particle spectrum and left-right
symmetric GUTs. An alternative to introducing a fundamental scalar Higgs field is
the generation of a composite Higgs particle. In a minimal model we illustrate that
by neutrino condensation, it is possible to break the EW symmetry and to generate
small neutrino masses by a dynamical see-saw mechanism.

1.1 Fermion Masses in the Standard Model

The SM is a SU(3)C ×SU(2)L ×U(1)Y := G321 gauge theory which is spontaneously
broken to SU(3)C×U(1)e. In addition to the gauge fields, the SM contains fermionic
fields and a complex scalar SU(2)L-doublet, the Higgs. The fermions can be sepa-
rated into quarks q, dC, uC and leptons `, eC which all exist in three generations and
transform under the SM gauge group as shown in table 1.1.

1.1.1 Electroweak Symmetry Breaking

The Higgs field Lagrangian is given by

L
SM
Higgs = (Dµφ)†(Dµφ) −m2φ†φ− 1

4
λ(φ†φ)2 . (1.1)

Dµ = ∂µ+igATAV
A is the gauge-covariant derivative, where TA (1 ≤ A ≤ dim(G321))

are the representations of the Lie algebra generators as defined in table 1.2.

1



1 Origin and Description of Neutrino Masses

Field φ qf dCf uCf `f eCf

SU(3)C 1 3 3 3 1 1

SU(2)L 2 2 1 1 2 1

qY +1
2

+1
6

+1
3

−2
3

−1
2

+1

Table 1.1: The Higgs and the fermions of the SM, written as left-handed Weyl spinors, and
the corresponding representations of the SM gauge group. f ∈ {1, 2, 3} is a flavour index and
qU
Y :=

√
3/5 qY denotes the U(1)Y charge in the so-called GUT normalization.

gauge group coupling gA TA gauge field V A
µ

A = 0 U(1)Y g1 qY Bµ

A = 1, 2, 3 SU(2)L g2
τi
2

(i = A) W i
µ

A = 4, . . . , 11 SU(3)C g3
λl

2
(l = A− 3) Gl

µ

Table 1.2: Notation for the generators of the SM gauge group G321, given here in the fundamental
representation. τi are the Pauli matrices and λl the Gell-Mann matrices.

The minimization of the Higgs potential shows that the EW symmetry is sponta-
neously broken for m2 < 0 and that the true ground state satisfies

〈
φ†φ
〉

= v2
EW/2

with vEW = (−4m2/λ)1/2. We can now expand the SU(2)L-doublet φ around a
chosen specific vev,

φ =

(
φ+

φ0

)
=

(
G+

1 + iG+
2

1√
2

(vEW + h + iG0)

)
, (1.2)

defining the embedding of the unbroken U(1)e into SU(2)L×U(1)Y. With t3 defined
by the eigenvalue of τ3

2
, the U(1)e-charge qe of the fields is given by qe = t3 + qY.

The superscripts in equation (1.2) indicate the charge qe of the SU(2)L-component
fields. The Goldstone bosons G+

1 , G
+
2 and G0 are “eaten” by the linear combinations

of gauge fields W±
µ = (W 1

µ ∓W 2
µ)/

√
2 and Zµ = − sin(θW)Bµ + cos(θW)W 3

µ , which
become massive. θW is the Weinberg angle, related to the gauge boson masses by
cos2(θW) = m2

W±/m2
Z. h is the real SM Higgs-field with a mass given by m2

h =
−2m2 = 1

2
λv2

EW.

1.1.2 Fermion Masses

The masses for the fermions are generated by the Yukawa interactions

L
SM
Yuk = −(Ye)gfe

g
Rφ

†`fL − (Yu)gfu
g
Rφ̃

†qfL − (Yd)gfd
g
Rφ

†qfL + h.c. , (1.3)

2



1.1 Fermion Masses in the Standard Model

where φ̃ := iτ 2φ∗ =: εφ∗ is the charge conjugate of the Higgs. We have used the
common notation of writing the Weyl spinors as chirality projected 4-component
spinors and assigned the following components to the SU(2)L-doublets,

qfL =

(
ufL
dfL

)
, `fL =

(
νfL
efL

)
. (1.4)

After SSB, we obtain the mass matrices

Mu =
vEW√

2
Yu , Md =

vEW√
2
Yd and Me =

vEW√
2
Ye (1.5)

for the up-type and down-type quarks and the charged leptons, respectively. The
neutrinos remain massless within the SM.

1.1.3 Experimental Results for Fermion Masses and Mixings

We will now give a brief overview over the present status of our knowledge about
fermion masses, mixings and CP phases. The results are summarized in table 1.3.
The conventions for the definition of the mixing parameters for leptons will be given
in appendix A.1.

Experiments on neutrino oscillations have found strong evidence that neutrinos are
massive. For the solar angle θ12 and the solar mass squared difference, the so-called
LMA solution has been confirmed by the KamLAND [12] experiment. It points
towards a large, but not maximal mixing angle θ12. The results for the solar and
atmospheric mass squared differences of the neutrinos and for the lepton mixings
shown in table 1.3 stem from the analysis [13] of the recent KamLAND [12] and
the SNO data [14], the Super-Kamiokande atmospheric data [15] and the CHOOZ
experiment [16]. We left aside the controversially discussed results of the LSND
experiment [17], which requires a third mass squared difference. For a summary of
present and planned experiments on neutrino oscillations, see e.g. [18].

The neutrino mass scale has not yet been determined by experiment. At present,
the most stringent bounds are mi < 0.23 eV from WMAP [19] and 〈mν〉 . 0.35 eV,
with some uncertainty due to nuclear matrix elements, from neutrino-less double
beta decay experiments [20,21]. Note that the latter search for an effective mass
defined by 〈mν〉 = |∑i(UMNS)2

1imi| =
∣∣m1 c

2
12c

2
13 e

iϕ1 +m2 s
2
12c

2
13 e

iϕ2 +m3 s
2
13 e

2iδ
∣∣

and are only sensitive to Majorana masses. The sign of ∆m2
atm is unknown at

present and θ23 can be above or below 45◦. The nature of neutrino masses, i.e. if
they are of Majorana or Dirac type, as well as the phases in the lepton sector are
unconstrained by experiments.

The masses of the quarks and leptons at MZ are taken from [22]. For the quark
mixings, the results stem from the Particle Data Book 2002 and for the value of the
CKM phase we refer to [23].

3



1 Origin and Description of Neutrino Masses

Best-fit value Range C.L.

mu(MZ) [GeV] 2.33 · 10−3 1.88 · 10−3 − 2.75 · 10−3 1σ

mc(MZ) [GeV] 0.677 0.616 − 0.733 1σ

mt(MZ) [GeV] 181 ±13 1σ

md(MZ) [GeV] 4.69 · 10−3 4.03 · 10−3 − 5.29 · 10−3 1σ

ms(MZ) [GeV] 0.0934 0.0804 − 0.1054 1σ

mb(MZ) [GeV] 3.00 ±0.11 1σ

θq12 [ ◦] 12.8794 12.7502 − 13.0088 2σ

θq13 [ ◦] 0.206265 0.166158 − 0.246373 2σ

θq23 [ ◦] 2.36125 2.24657 − 2.47595 2σ

δCKM [ ◦] 63.5 56.5 − 70.5 1σ

me(MZ) [GeV] 0.48684727 · 10−3 ±1.4 · 10−10 1σ

mµ(MZ) [GeV] 0.10275138 ±3.3 · 10−7 1σ

mτ (MZ) [GeV] 1.74669 1.74642 − 1.74699 1σ

θ`12 [ ◦] 32.6 25.6 − 42.0 3σ

θ`13 [ ◦] − 0.0 − 9.2 90%

θ`23 [ ◦] 45.0 33.2 − 56.8 3σ

∆m2
sol [eV2] 7.3 · 10−5 4 · 10−5 − 2.8 · 10−4 3σ

|∆m2
atm| [eV2] 2.5 · 10−3 1.2 · 10−3 − 5.0 · 10−3 3σ

Table 1.3: Experimental data for the quark masses at MZ , quark mixings θq
ij and the CKM-

phase δCKM, charged lepton masses at MZ , lepton mixing angles θ`
ij and neutrino mass squared

differences.
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1.2 Extensions of the Standard Model Particle Content

1.2 Extensions of the Standard Model Particle

Content

In the SM, a renormalizable neutrino mass term of the Dirac as well as of the
Majorana type is not possible in the Lagrangian. The same holds in the MSSM or
in 2HDMs, which we will discuss in the next chapter in more detail. If the particle
spectrum of the SM is extended, the neutrino masses, i.e. mass terms that appear
in the effective Lagrangian after SSB, can arise at tree-level or at a higher loop
order. We restrict ourselves to the tree-level case in this section. The additional
particles may carry baryon and lepton number. For the case of Majorana masses,
it is necessary to introduce explictly lepton number violating interactions or Higgs
fields which carry lepton number and break it spontaneously.

The possible extensions which generate tree-level masses for the neutrinos either
require an additional Higgs field or an additional fermion, which couple to two
lepton doublets or a lepton doublet and the Higgs doublet, respectively (table 1.4).
A comprehensive introduction to neutrino masses can e.g. be found in [24].

coupled fields representations

`fL , `gL (1, 2,−1
2
) × (1, 2,−1

2
) → (1, 1,−1) + (1, 3,−1)

`fL , φ (1, 2,−1
2
) × (1, 2,+1

2
) → (1, 1, 0) + (1, 3, 0)

Table 1.4: Irreducible representations of G321, contained in the product representations of two
lepton doublets and a lepton doublet and a Higgs doublet, which are relevant for the generation
of neutrino masses.

1.2.1 Additional Higgs Triplet

As shown in table 1.4, there are two ways to couple scalar fields to the two lepton
doublets. The scalars could either be SU(2)L-singlets with an electric charge +1
after EWSB or SU(2)L-triplets in the representation (1, 3,+1). Obviously, only the
triplet can acquire an U(1)e invariant vev. The SU(2)-invariant mass term with the
SU(2)L-triplet Higgs ∆ can be written as

L
∆
Yuk,ν = −1

2
(Y ∆

ν )gf`CL
g

(~τ · ~∆) `fL , (1.6)

where (~τ · ~∆)ab is defined as ((τA)ac ε
cb ∆A) with a, b, c, d ∈ {1, 2} being SU(2)L

indices. The superscript C denotes charge conjugation of the 4-component spinor.
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1 Origin and Description of Neutrino Masses

If the U(1)e-neutral component of ∆ acquires a vev v∆ := 〈∆0〉, a Majorana mass
matrix

mν = Y ∆
ν v∆ (1.7)

for the SM neutrinos emerges (figure 1.1(a)). v∆ is however severely constrained by
the ρ-parameter, defined as

ρ :=

(
mW±

mZ cos(θW)

)
. (1.8)

It is equal to 1 in the SM at tree-level and modified in the presence of a SU(2)L-triplet
Higgs to

ρ =
v2
EW + 2v2

∆

v2
EW + 4v2

∆

, (1.9)

since the gauge boson masses are now mW± = 1
4
g2
2(v2

EW + 2v2
∆) and mZ = 1

4
(g2

1 +
g2
2)(v2

EW + 4v2
∆). Experimentally, the ρ-parameter is given by 1.0012+0.0023

−0.0014 [25] and
thus the vev of a triplet Higgs has to be much smaller than vEW. It is however
possible to explain such a small triplet-vev in left-right models where a bi-doublet
and two triplet Higgs fields are present, since there is a vev see-saw relation which
follows from the minimization condition of the Higgs potential (see section 1.4.1).
A large vev vR for the triplet ∆R implies a small vev vL for ∆L. The small vev is
induced, which means that it appears after the breaking of the EW symmetry.

1.2.2 Additional Fermion Singlets

Dirac masses for the neutrinos can be achieved by adding nG fermionic SU(2)L-
singlets NCi (i ∈ {1, . . . , nG}) in the representation (1, 1, 0) or SU(2)-triplets Σ
in the representation (1, 3, 0) of G321 to the SM spectrum. We consider the first
possibility in more detail. Neutrinos can then obtain a tree-level Dirac mass term
via a Yukawa coupling (see figure 1.1(b)) in analogy to the other SM fermions,

L
SM
Yuk,ν = −(Yν)ifN i

Rφ̃
†`fL + h.c. , (1.10)

yielding a Dirac mass matrix

M (D)
ν =

vEW√
2
Yν . (1.11)

Once the singlets are introduced, one should note that they can obtain a direct
Majorana mass term (see figure 1.1(c))

L
SM
M = −1

2
N i

RMijN
Cj
R + h.c. . (1.12)
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1.2 Extensions of the Standard Model Particle Content

The most general case after EWSB is a (3 + nG) × (3 + nG) Majorana mass matrix
in the basis of fields {νfL, NCi

R }. A special case occurs if M vanishes exactly. The
result would be pure Dirac masses from equation (1.11). The neutrino mass scale is
however more than 6 orders of magnitude smaller than the mass scale of the lightest
other fermion and thus very small neutrino Yukawa couplings are required.

One should also remark that there can be scalar SU(2)-singlet Higgs-fields χ in
the representation (1, 1, 0), which can acquire vevs and would contribute to the
Majorana mass matrix M (see figure 1.1(d)). This is used in the Froggatt-Nielsen
mechanism, which will be discussed in section 1.3.

PSfrag replacements

v∆

∆0

νf νg

(a)

PSfrag replacements

v∆

∆0

νf
νg

vEW

φ0

νf NC
j

(b)

PSfrag replacements

v∆

∆0

νf
νg

vEW

φ0

νf
NC
j

NC
i NC

j

Mij

(c)

PSfrag replacements

v∆

∆0

νf
νg

vEW

φ0

νf
NC
j

NC
i

NC
j

Mij

vχ

χ0

NC
i NC

j

(d)

Figure 1.1: Diagrammatic illustration of the tree level mass terms which are possible, if a triplet
Higgs and singlet fermions are added to the SM particle spectrum. Figure (a) gives a Majorana
mass term after EWSB by the coupling to a Higgs triplet, (b) a Dirac mass term, (c) a direct mass
term for the singlets and (d) a Majorana mass term for the singlets by a singlet Higgs χ.
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1 Origin and Description of Neutrino Masses

1.2.3 The See-Saw Mechanism

If no symmetry protects against a Majorana mass term as in equation (1.12), we
can in general assume that the mass eigenvalues Mi are large compared to the EW
scale. Then, the (3 + nG) × (3 + nG) Majorana mass matrix can be approximately
block-diagonalized,

L
SM
fM = −1

2

(
νCf

L

N j
R

)T (
0 (Y T

ν )fi
vEW√

2

(Yν)jg
vEW√

2
Mji

) (
νgL
NCi

R

)
+ h.c. (1.13a)

≈ −1

2

(
ν ′CfL

N ′j
R

)T (
(mν)fg 0

0 Mji

) (
ν ′gL

N ′Ci
R

)
+ h.c. , (1.13b)

where, neglecting O(M−1
i )-terms, ν ′fL ≈ νfL and N ′Ci

R ≈ NCi
R and where the Majorana

mass matrix mν for the SM neutrinos is given by

mν ≈ −v
2
EW

2
Y T
ν M−1 Yν . (1.14)

The suppression by M−1 provides a natural explanation for the smallness of neutrino
masses and is referred to as the canonical (or type I) see-saw mechanism [26–29].
If a mass matrix from a Higgs triplet is allowed as well, equation (1.14) has to be
modified to mν ≈ Y ∆

ν v∆− 1
2
v2
EW Y T

ν M−1 Yν and is now referred to as type II see-saw
[30–32].
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1.3 Neutrino Masses in an Effective Theory Approach

1.3 Neutrino Masses in an Effective Theory Approach

We now assume that there are no other light particles then the ones of the minimal
SM and that the effects of possible extensions of the SM are decoupled at low
energy. The SM is then an effective theory valid up to some energy scale Λ, where
new physics has to be taken into account. The effects from unknown physics above
Λ have to be taken into account by admitting higher dimensional and therefore non-
renormalizable operators in the Lagrangian. They are in general suppressed by 1/Λn

for an operator of mass dimension 4 + n. This suppression arises since the effective
operators enter the theory when particles with masses of the order Λ are integrated
out. The heavy particles effectively do not propagate in the theory far below their
mass scales. This approach allows to treat the neutrino masses in a quite model
independent way. Above Λ, the enlargement of the particle spectrum in extensions
of the SM opens up many possibilities for realizing the neutrino mass operators
by integrating out the heavy degrees of freedom. In principle, this is done in the
path integral formalism. In practice, at the scale Λ the full theory is matched with
the effective theory containing in principle all higher-dimensional operators allowed
by symmetry. An introduction to effective field theory and more details about the
matching procedure can e.g. be found in [33].

1.3.1 The Lowest Dimensional Effective Neutrino Mass

Operator

In the SM, the lowest dimensional operator, which gives Majorana masses for the
neutrinos, has mass-dimension 5 and couples two Higgs and two lepton doublets. It
is given by

Lκ =
1

4
κgf `

C
L

g

cε
cdφd `

f
Lbε

baφa + h.c. . (1.15)

κgf has mass dimension −1 and is symmetric under interchange of the generation
indices f and g. If we decompose the operator of equation (1.15) into components,
neutrino masses emerge after EWSB from the part

Lκ,ν =
1

4
κgf ν

C
L

g
νfLφ

0φ0 + h.c.
EWSB−−−−−→ κgfv

2
EW

4

1

2
νC

L

g
νfL + h.c. . (1.16)

A diagrammatic illustration is given in figure 1.2. The neutrino mass operator pro-
vides a good description of neutrino masses up to an energy scale where new physics
has to be taken into account which generates the effective operator. Typically, this
is the mass scale of a heavy particle. At this scale, the effective operator is realized
by integrating the heavy particle out of the theory. We now study the possible mini-
malistic realizations of this operator at tree-level and at one-loop order. Clearly, this
requires an extension of the SM with at least one lepton number violating interac-
tion, since Lκ violates lepton number by 2 units. For the diagrammatic illustration,

9



1 Origin and Description of Neutrino Masses

instead of the full SU(2)L × U(1)Y invariant operator, we will only study the part
Lκ,ν which contains the neutrinos.

PSfrag replacements φa φd

(`f )b (`g)c

EW symmetry−−−−−−−−−−→
breaking

PSfrag replacements

φa
φd

(`f )b
(`g)c

vEWvEW

φ0φ0

νf νg

Figure 1.2: The lowest dimensional effective neutrino mass operator in the unbroken and in the
broken phase after EWSB. It yields an effective Majorana mass matrix for the light neutrinos.
a, b, c, d ∈ {1, 2} are SU(2)L indices. All fermions are written as left-handed Weyl spinors.

1.3.2 Tree-Level Realizations of the Neutrino Mass Operator

The heavy particle, which is exchanged for the tree-level realization of the dimension
5 operator, has to have a SU(2)L × U(1)Y invariant coupling to either two lepton
doublets (and two Higgs doublets), if it is a scalar, or to a Higgs-doublet and a
lepton doublet, if it is a fermion. Furthermore, it has to have a component which is
uncharged under U(1)e, since it has to couple to the neutrinos and to the electrically
neutral component of the Higgs doublet. The possible fields to be exchanged can
again be extracted from table 1.4 and the corresponding diagrams are shown in figure
1.3. The exchanged fermion can either be a SU(2)-singlet NC or the electrically
neutral component of a SU(2)-triplet Σ. The heavy scalar field has to have an
electrically neutral component and can thus only be the SU(2)-triplet ∆.

1.3.3 Loop Realizations of the Neutrino Mass Operator

One generic possibility for a one-loop realization of the neutrino mass operator is
shown in figure 1.4. It has the same topology as the well-known Zee-model [34]. We
assume that at least one of the four particles ω, ρ, η and ξ, which appear in the loop,
is heavy and will thus be integrated out.

From the couplings in the diagram of figure 1.4, we can infer the properties of
the fields ω, ρ, η and ξ. From the coupling of ω and ρ to the Higgs doublet, we
know that one of them has to be a SU(2)-doublet. Without loss of generality,

we therefore choose ω in the representation (r
SU(3)
ω , 2, qω). Consequently we obtain

ρ ∼ (rSU(3)
ω , r

SU(2)
ρ ,−qω+ 1

2
), where r

SU(2)
ρ ∈ {1, 3} and further ξ ∼ (r

SU(3)
ω , 2, qω), η ∼

(rSU(3)
ω , r

SU(2)
η ,−qω+ 1

2
), where r

SU(2)
η ∈ {1, 3}. All the possibilities with this topology

10
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PSfrag replacements vEWvEW

φ0φ0

νf νg∆0

X0

(a)

PSfrag replacements

vEW vEW

φ0 φ0

νf νg

∆0

X0

(b)

Figure 1.3: Realization of the neutrino mass operator by the exchange of a heavy fermion X 0 with
a Majorana mass (a) and a heavy scalar ∆0 (b). The superscripts indicate the electric charge qe.
X0 can either be a SU(2)L-singlet NC or the electrically neutral component of a SU(2)L-triplet Σ.
∆0 is the electrically neutral component of a SU(2)L-triplet ∆, as explained in the text.

are thus classified by specifying e.g. the set of quantities {rSU(3)
ω , qω, r

SU(2)
ρ , r

SU(2)
η }.

There are of course other possible realizations of the neutrino mass operator at
one-loop and also from higher orders in perturbation theory (see e.g. [35]).

1.3.4 Higher Dimensional Operators for Neutrino Masses

If the SM is e.g. extended by nG heavy singlet fermions NC
i and also by nχ sin-

glet Higgses χm, several higher-dimensional operators for neutrino masses can be
constructed as illustrated in figure 1.5. There can be diverse suppression factors,
according to the masses Mi of the heavy fermions NC

i and the vevs vχm of the sin-
glet Higgses. Usually, due to some horizontal symmetry, for a given combination of
neutrino flavours only specific operators of this kind are allowed. This mechanism
is called universal see-saw or Froggatt-Nielsen mechanism [36]. It was originally
invented in order to explain the hierarchy in the quark mass spectrum. If the sin-
glet fermions and Higgses are heavy, integrating them out of the theory will give a
contribution to the dimension 5 neutrino mass operator. A classification of several
higher dimensional neutrino mass operators can be found in [37].
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1 Origin and Description of Neutrino Masses

PSfrag replacements
vEW

vEW

φ0

φ0

νf νg

η ξ

ω ρ

Figure 1.4: One generic possibility for a 1-loop realization of the effective neutrino mass operator.

. . .

PSfrag replacements

vEWvEW vχn
vχm

φ0 φ0χ0
n χ0

m
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Figure 1.5: Froggatt-Nielsen-type diagram, which corresponds to the tree-level realization of a
higher dimensional neutrino mass operator. The indices n, m ∈ {1, . . . , nχ} run over the singlet
scalar Higgs-fields and the indices i, j, k, l ∈ {1, . . . , nG} over the singlet fermions.
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1.4 Neutrino Masses in Left-Right Symmetric Extensions of the SM

1.4 Neutrino Masses in Left-Right Symmetric

Extensions of the Standard Model

In minimal left-right symmetric extensions of the SM, the fermion particle spectrum
is extended by three generations of SM-singlets, which can be interpreted as right-
handed neutrinos. Every left-handed fermion now has a right-handed counterpart,
and by extending the gauge sector, a left-right symmetric structure can be achieved.
We will now consider briefly the left-right symmetric scenarios with this fermion
content and their consequences for neutrino masses.

1.4.1 Minimal Left-Right Symmetric Models

The minimal left-right symmetric extension of the SM gauge group is given by

G3221 = SU(3)C × SU(2)L × SU(2)R × U(1)B−L . (1.17)

The particle spectrum contains the fermions of the SM plus the additional singlets
NCf , which can be written as doublets

qfL =

(
ufL
dfL

)
, `fL =

(
νfL
efL

)
, qfR =

(
ufR
dfR

)
, `fR =

(
Nf

R

efR

)
(1.18)

of SU(2)L or SU(2)R, respectively. The fields have been written as chirality projected
4-component spinors. The transformation properties of the fermions and of some
possible Higgs fields are summarized in table 1.5. The minimal left-right models
can have an additional discrete left-right symmetry, which interchanges “left” and
conjugate “right” fields of table 1.5. However, it has to be introduced by hand.

Field qfL qCf
R `fL `CfR Φ χL χ∗

R ∆L ∆∗
R

SU(3)C 3 3 1 1 1 1 1 1 1

SU(2)L 2 1 2 1 2 2 1 3 1

SU(2)R 1 2 1 2 2 1 2 1 3

qB−L +1
3

−1
3

−1 +1 0 +1 −1 +2 −2

Table 1.5: The fermions and some possible Higgs fields of the minimal left-right model, written
as left-handed Weyl spinors, and the corresponding representations of G3221. The indices L and R
indicate the transformation properties under SU(2)L and SU(2)R in this notation.

After the breaking to SU(3)C × U(1)e, we obtain a U(1)e-charge qe given by qe =
t3L + t3R + 1

2
qB−L, which defines the embedding of U(1)e in SU(3)C × SU(2)L ×

SU(2)R × U(1)B−L.
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1 Origin and Description of Neutrino Masses

Fermion Masses in Minimal Left-Right Models

There are two minimal ways to break the G3221 gauge symmetry spontaneously to
SU(3)C × U(1)e, using a bi-doublet and two doublets

χL =

(
χ+

L

χ0
L

)
, χR =

(
χ+

R

χ0
R

)
, (1.19)

or a bi-doublet and two triplets

ε∆L = ~τ · ~∆L = ε

(
∆+

L ∆++
L

∆0
L −∆+

L

)
, ε∆R = ~τ · ~∆R = ε

(
∆+

R ∆++
R

∆0
R −∆+

R

)
. (1.20)

The bi-doublet

Φ =

(
φ(1)0 φ(2)+

φ(1)− φ(2)0

)
(1.21)

transforms as (1, 2, 2, 0) under the LR gauge group (1.17). A vev 〈Φ〉 = diag(vΦ, v
′
Φ)

can give masses via Yukawa-like couplings to the fermions but does not break
U(1)B−L. We can break U(1)B−L, while leaving the SM gauge group intact, by
generating Majorana mass terms for the right-handed neutrinos, e.g. with the dou-
blet χR or the triplet ∆R. Schematically,

G3221

〈∆R〉 or 〈χR〉−−−−−−−−−→ G321

〈Φ〉−−→ SU(3)C × U(1)e . (1.22)

Using the doublet, Majorana masses for the singlets can be achieved via the effective
operator

LMR
= −ρfg

Λρ
(`fR · χR) (`CgR · χR)

〈χR〉−−−→ −1

2
(MR)fgN

f
RN

Cg
R . (1.23)

E.g. with Λρ ≈ MPl ≈ 1019 GeV and 〈χR〉 ≈ MGUT ≈ 1016 GeV, this would give
singlet masses in the right range for the see-saw mechanism. By effective operators,
Majorana masses for the left-handed neutrinos as well as Dirac masses for the quarks
and leptons can be generated . In principle, no bi-doublet is needed at all (see
e.g. [38]).

With the triplets and the bi-doublet, lepton masses arise after SSB from the
Yukawa-type interactions

LY = −1

2
(Y ∆L

` )gf`
C
L

g
(ε∆L) `fL − 1

2
(Y ∆R

` )gf`R
g

(ε∆R)∗ `CfR

−(Y Φ
` )gf `R

g
Φ`fL − (Y

eΦ
` )gf `R

g
Φ̃ `fL + h.c. , (1.24)

with Φ̃ := τ2Φ∗τ2. Note that the Majorana mass for the right-handed neutrinos
would be MR = Y ∆R

` vR in our notation, where vR := 〈∆0
R〉 is the vev of ∆R.
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1.4 Neutrino Masses in Left-Right Symmetric Extensions of the SM

The minimization of the most general Higgs potential with a bi-doublet and the
two triplets leads to the so-called vev see-saw relation (see e.g. [39])

vLvR = λ∆v
2
Φ , (1.25)

in the approximation that v′2Φ is negligible. λ∆ depends on the parameters of the
Higgs potential and vR := 〈∆0

R〉, vL := 〈∆0
L〉. First, we make the assumption that

vR is much larger than the EW scale in order to accomplish a see-saw mechanism
for the SM neutrinos. We then see that there are in principle two ways to proceed.
We could either eliminate the vev see-saw by imposing a symmetry from beyond the
left-right symmetric model, which enforces λ∆ = 0 and thus leads to a type I see-saw
mechanism for the neutrino masses or we could not eliminate it. The latter leads
to an induced small vev for ∆L after the EW symmetry is broken and Φ obtains its
vev. This yields a type II see-saw mechanism.

1.4.2 The Pati-Salam Model

The Pati-Salam model is a left-right symmetric extension of the SM gauge group
which unifies quarks and leptons into SU(4)C-multiplets. The gauge symmetry is
given by

G422 = SU(4)C × SU(2)L × SU(2)R . (1.26)

The fermion fields are contained in the quartets f fL and fCf
R of SU(4)C and doublets

of SU(2)L and SU(2)R, respectively,

f fL =

(
ufLr ufLy ufLb νfL
dfLr dfLy dfLb efL

)
, f fR =

(
ufRr ufRy ufRb Nf

R

dfRr dfRy dfRb efR

)
. (1.27)

The indices r, y, b correspond to SU(3)C-color and lepton number acts as the fourth
color. The fermion representations and some possible Higgs fields are listed in table
1.6. As in the minimal left-right model, an additional discrete left-right symmetry
can be introduced.

Fermion Masses in Pati-Salam Models

After the breaking of G422 to SU(3)C ×U(1)e, we obtain a U(1)e-charge qe, given by
qe = t3L + t3R + 1

2
qB−L as in the minimal left-right model. The breaking of B−L,

i.e. Majorana masses for the right-handed neutrinos, and the breaking of SU(4)C to
SU(3)C can e.g. be achieved by a vev of the triplet ∆R or by an effective operator

L
G422
M = −ρfg

Λ
(f fR χR) (fCg

R χR)
〈χR〉−−−→ −1

2
MfgN

f
RN

Cg
R , (1.28)
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1 Origin and Description of Neutrino Masses

Field f fL fCf
R Φ Φ′ χL χ∗

R ∆L ∆∗
R

SU(4)C 4 4 1 15 4 4 10 10

SU(2)L 2 1 2 2 2 1 3 1

SU(2)R 1 2 2 2 1 2 1 3

Table 1.6: The fermions and some possible Higgs fields of the Pati-Salam model and the corre-
sponding representations of the gauge group G422. The fermion fields are written as left-handed
Weyl spinors.

where the Higgs χR has a vev in the NR-component. Dirac masses for the fermions
can e.g. emerge from the bi-doublets Φ or Φ′ or from effective operators using the
SU(4)C-doublet Higgses. Schematically, we have

G422

〈∆R〉 or 〈χR〉−−−−−−−−−→ G321

〈Φ〉, 〈Φ′〉−−−−−−→ SU(3)C × U(1)e . (1.29)

Due to the quark-lepton unification, the Yukawa couplings which arise from one
Higgs Φ in the representation (1, 2, 2)G422 have the property

Yu = Yν , Yd = Ye . (1.30)

A Higgs field Φ′ in the representation (15, 2, 2)G422 leads to Yukawa couplings

Yν = −3Yu , Ye = −3Yd , (1.31)

since the elements of 15 of SU(4)C can be represented by traceless 4×4 matrices.
In Pati-Salam models as well as in the minimal left-right models, see-saw sup-

pressed neutrino masses can arise naturally. Whether a type I or a type II see-saw
occurs, depends on the specific model under consideration.

1.4.3 SO(10)-Unification

In SO(10) GUTs, all fermions of the minimal left-right models can be unified into
one irreducible representation 16SO(10), for each generation. The Pati-Salam group
G422 as well as G3221 are contained in SO(10) as subgroups. In addition, SO(10)
contains a discrete left-right symmetry. The content of 16fSO(10) in terms of G422 is
given by

16fSO(10) = (4, 2, 1)fG422
+ (4, 1, 2)fG422

= f fL + fCf
R . (1.32)

For the breaking of SO(10) to G321, there are many possibilities, which require
diverse Higgs representations, as for example {16}SO(10), {45}SO(10), {54}SO(10),
{120}SO(10) and {126}SO(10). The brackets indicate the Higgs-fields in this section.
We will not consider the breaking of SO(10) in detail here and restrict ourselves to
the generation of fermion masses.
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Fermion Masses in SO(10) GUT Models

In order to determine the Higgs-fields, which can couple to two fermions in the
representation 16fSO(10), we have to consider the irreducible representations contained
in the product

16SO(10) ⊗ 16SO(10) = 10SO(10) + 120SO(10 + 126SO(10) . (1.33)

Consequently, the possible interactions which can generate mass terms in a renor-
malizable Lagrangian after symmetry breaking, have the form

LY = − (Y (10))gf16
gT

SO(10) C {10}iSO(10) Γi 16
f
SO(10) + h.c. (1.34a)

− (Y (120))gf16
gT

SO(10) C {120}ijkSO(10) Γijk 16fSO(10) + h.c. (1.34b)

− (Y (126))gf16
gT

SO(10) C {126}ijklmSO(10) Γijklm 16fSO(10) + h.c. , (1.34c)

where C is the charge conjugation matrix for the SO(10) spinor representation. Γi

(i ∈ {1, . . . , 10}) are the generators of the Clifford algebra in 10 dimensions and
Γijk and Γijklm denote the antisymmetrized products of three and five generators,
respectively. The Yukawa matrices satisfy the relations

(Y (10))gf = (Y (10))fg , (Y (120))gf = −(Y (120))fg , (Y (126))gf = (Y (126))fg .(1.35)

We consider the decomposition of the Higgs fields into representations of G422, given
by (see e.g. [40])

{10}SO(10) = (1, 2, 2)G422 + (6, 1, 1)G422 , (1.36a)

{120}SO(10) = (1, 2, 2)G422 + (10, 1, 1)G422 + (10, 1, 1)G422

+ (6, 3, 1)G422 + (6, 1, 3)G422 + (15, 2, 2)G422 , (1.36b)

{126}SO(10) = (6, 1, 1)G422 + (10, 3, 1)G422 + (10, 1, 3)G422

+ (15, 2, 2)G422 . (1.36c)

We see that the triplets and bi-doublets, which we have already encountered in the
Pati-Salam models, are contained in the SO(10)-Higgses. Since all the fermions be-
long to one representation, we have additional predictions for the Yukawa couplings
to the various Higgses.

If fermion masses are generated by one {10}SO(10), which contains the bi-doublet
(1, 2, 2)G422 , we obtain the prediction

Yu = Yν = Yd = Ye (1.37)

at the GUT scale and the property that the Yukawa matrices are symmetric.
The Higgs {126}SO(10) contains the bi-doublet (15, 2, 2)G422 , which is in a non-

trivial representation of SU(4)C and leads to symmetric Yukawa matrices which
satisfy

Yν = −3Yu , Ye = −3Yd . (1.38)
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1 Origin and Description of Neutrino Masses

It also contains the representations (10, 3, 1)G422 and (10, 1, 3)G422 . The latter can
yield a B−L-breaking Majorana mass term for the right-handed neutrinos,

(Y (126))gf v126 NR
g
NCf

R , (1.39)

whereas the first can obtain an induced vev, required for a type II see-saw. The
discussion, whether a type I or type II see-saw mechanism is realized, is quite similar
to the case of the minimal left-right models.

From the Higgs {120}SO(10), which contains (15, 2, 2)G422 as well as (1, 2, 2)G422 ,
there can be antisymmetric contributions to the Yukawa matrices.

Note that it is also possible to introduce an effective operator containing two
Higgses {16}SO(10) and two fermion representations 16fSO(10), which gives Majorana
masses for the right-handed neutrinos after the Higgs acquires a vev.

In summary, we find that the description of neutrino masses by the lowest dimen-
sional effective operator, realized within a see-saw scenario, is rather natural from
the point of view of left-right symmetric extensions of the SM. As we have seen,
quark-lepton unification in Pati-Salam models or grand unification within SO(10)
can lead to various constraints for generating neutrino masses. In many models
based on these scenarios, further effective operators and/or horizontal symmetries
are introduced in order to be predictive and realistic (see e.g. [41–47]). One main
problem is to explain the large, but not maximal mixing angle θ12 in the lepton
sector, which in many cases requires unwanted fine-tuning. However, the discussion
of such models is beyond the scope of this thesis. Instead, we will focus of the RG
evolution of neutrino masses, lepton mixings and CP phases, which is required in
order to compare the predictions for them with the experimental results.
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1.5 Dynamical Electroweak Symmetry Breaking by a Neutrino Condensate

1.5 Dynamical Electroweak Symmetry Breaking by a

Neutrino Condensate

In order to break the electroweak symmetry, in the SM the Higgs scalar field is intro-
duced. However, as has been shown in the context of top condensation [48,49], the
Higgs can be a composite particle formed dynamically by two fermions. While the
minimal models of top condensation predict too large top quark and Higgs masses,
we have shown that it is possible to realize this mechanism in a phenomenologi-
cally acceptable way with neutrinos alone [50]. The reason for the prediction of
a large top quark mass is the compositeness-condition of a large, non-perturbative
top-quark Yukawa coupling at the condensation scale. Neutrino condensation is
a possible alternative, since neutrinos can have Yukawa couplings which are even
larger than that of the top, if the smallness of neutrino masses is explained by the
see-saw mechanism. Clearly, if the singlet neutrinos completely decoupled at low
energy and could thus be integrated out of the theory, no condensation of neutri-
nos would be possible. From a detailed analysis of the coupled non-perturbative
Dirac-Majorana gap equation, however, we will see that it is possible to obtain a
dynamical realization of EW symmetry breaking by neutrino condensation.

We will now show the essential aspects of such a scenario. For simplification,
we consider only one generation of condensing neutrinos. Instead of the SM Higgs
field we assume an effective four-fermion coupling involving a lepton doublet and a
singlet neutrino,

L4ν = G(ν) (`LNR)(NR`L) . (1.40)

We further assume a large Majorana mass LM = −1
2
M NRN

C
R + h.c. for the singlet.

In order to determine, whether the four-fermion interaction leads to the formation
of a condensate, we solve the coupled Dirac-Majorana gap equations. If a non-trivial
solution produces dynamically a large Dirac mass term, it breaks the EW symmetry
and a neutrino condensate forms, which effectively acts as the SM Higgs particle
(see figure 1.6). The presence of the huge singlet Majorana mass will then lead to a
dynamical see-saw mechanism with small neutrino masses.

+ + + . . . =

Figure 1.6: The exchange of a virtual composite Higgs scalar can be seen as a sum over all
loop contributions involving the four-fermion vertex in the so-called bubble sum approximation.
Hatched blobs denote full propagators.
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1 Origin and Description of Neutrino Masses

1.5.1 Mass Eigenbasis for the Dynamical See-Saw Mechanism

We will now study in detail the dynamical generation of neutrino masses. A com-
putation of the gap equation in the basis of mass eigenstates must therefore include
in a self-consistent way the possibility of a dynamically generated Dirac mass term,

LD = −DνLNR + h.c. . (1.41)

For any value of D, the mass eigenstates are two Majorana fermions, given by
(
λ
ρ

)
= U ·

(
λ′

ρ′

)
, U =

(
cosϕ sinϕ
− sinϕ cosϕ

)
=:

(
c s
−s c

)
, (1.42)

with λ′ := νL + νC
L and ρ′ := NR +NC

R . The corresponding mass eigenvalues

mλ =
1

2

(
M −

√
4D2 +M2

)
, mρ =

1

2

(
M +

√
4D2 +M2

)
(1.43)

are related to ϕ by ϕ = arctan
√

−mλ/mρ. For convenience, we rewrite the singlet
Majorana mass term as well as the neutrino part of the four-fermion interaction
(1.40) in terms of Majorana fermions,

−LM =
1

2
M NRN

C
R + h.c. =

1

2
M ρ′ PR ρ

′C + h.c. =
1

2
M ρ′ρ′ ,

L4ν = G(ν) (νLNR) (NRνL) = G(ν) (λ′ PR ρ
′) (ρ′ PL λ

′) . (1.44)

Using equation (1.42), for the calculation of the gap equations it is useful to change
basis to the Majorana fermions λ and ρ.

1.5.2 The Coupled Dirac-Majorana Gap Equations

The non-perturbative gap equations for the masses mλ and mρ are given in dia-
grammatic form in figure 1.7. They correspond to the Bethe-Salpeter equation with
a four-fermion interaction in the bubble sum approximation. The calculation yields

mλ = 2G(ν) c2 s2 [mλ Igap(mλ) −mρ Igap(mρ)] + s2M , (1.45a)

mρ = 2G(ν) c2 s2 [mρ Igap(mρ) −mλ Igap(mλ)] + c2M . (1.45b)

We have introduced

−1
2
Igap(m) :=

Λ2

16π2

[
1 − m2

Λ2
ln

(
Λ2

m2
+ 1

)]
, (1.46)

where Λ is the condensation scale, which acts as a cutoff. Since mλ + mρ = M , as
can be seen from equation (1.43), the gap equations are linearly dependent. It is
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λ λ
=

λ λ

+

λ λ

λ λ +

λ λ

ρ ρ

ρ ρ
=

ρ ρ
+

ρ ρ

ρ ρ +

ρ ρ

λ λ

Figure 1.7: Gap equations for mλ, the mass eigenvalue of the light neutrino, and mρ, the mass
eigenvalue of the heavy neutrino. The direct Majorana mass, which is not of dynamical origin,
is indicated by a cross. The shaded blobs on the left side are the OPI 2-point vertex functions,
whereas the hatched blobs on the right side are full propagators.
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Figure 1.8: Characteristic numerical solution of the gap equation for the four-fermion coupling
G(ν) and the dynamically generated Dirac mass D with a Majorana mass M = 1014 GeV and a
condensation scale Λ = 1016 GeV.
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1 Origin and Description of Neutrino Masses

thus sufficient to solve one of them. Note that non-trivial solutions for mλ and mρ

also imply a dynamically generated Dirac mass D.
The gap equation (1.45a) for mλ can be considered as an equation for G(ν) and D,

if fixed values are assigned to M and Λ. For M = 1014 GeV and Λ = 1016 GeV, the
solution is shown in figure 1.8. Instead of G(ν), we plot the dimensionless coupling
constant g =

√
G(ν)Λ2. We find non-trivial solutions for D, if the coupling g is

larger than a critical value. This result is quite similar to top condensation [48],
even though the right-handed neutrino has a large Majorana mass. We should note
that such solutions do not appear, if M is larger than the condensation scale.

In order to obtain a Dirac mass of the order of the EW scale, in the used bubble
sum approximation some fine-tuning is required, as can be seen from the extremely
small slope of the graph in figure 1.8. Even if the same fine-tuning is present in the
exact gap equation, loop corrections, which destabilize the hierarchy in the usual
perturbative framework, do not pose an additional problem here. The destabilization
of the hierarchy by radiative corrections is part of the so-called hierarchy problem.
The other part is the missing explanation why the EW vev vEW ≈ 246 GeV and
accordingly the Higgs mass is so much lower than the fundamental Planck scale,
which is of the order of 1019 GeV. Given that viewpoint, the dynamical scenario
under consideration solves the first part of the hierarchy problem.

1.5.3 Implications for Neutrino Masses

The neutrino condensation scenario can be extended to include masses for the other
fermions of the SM as well. Following the method of [48], one can show that the
effective theory below the condensation scale is just the SM extended by heavy
singlets with additional boundary conditions. The latter imply that the neutrino
Yukawa coupling is non-perturbatively large in the energy range where the conden-
sate forms. In order to compare this prediction from the condensation scale with
bounds on neutrino masses obtained at low-energy experiments, we have to calcu-
late their energy scale dependence. Below the mass scales of the heavy singlets,
the neutrino masses can be effectively described by the dimension 5 neutrino mass
operator. It turns out that with Λ ≈MGUT, due to the see-saw and a strong energy
scale dependence of the neutrino Yukawa couplings, small neutrino masses far below
the present bounds are possible in this scenario [50].
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2 The β-Functions for the Effective

Neutrino Mass Matrix

In the previous chapter, we have investigated possibilities for generating neutrino
masses in extensions of the SM, restricting ourselves to rather minimal examples. We
have found that they can be introduced in a minimal and quite model-independent
way by the lowest dimensional effective operator allowed by gauge symmetry.

In order to determine the energy scale dependence of the neutrino mass matrix,
we first calculate the RGEs for the effective neutrino mass operator. They govern its
energy scale dependence in the energy range where the effective description discussed
in section 1.3 can be applied. The calculations are performed at 1-loop in the SM
and in a class of 2HDMs, where the previous results in the literature turn out to
be not entirely correct. In the MSSM, we confirm the existing 1-loop result by a
calculation in component fields and, using supergraph techniques, we extend it to
the 2-loop level.

As we have seen, there are many possibilities for realizing the neutrino mass op-
erator radiatively or at tree-level within a renormalizable theory. The tree-level
realizations from integrating out heavy singlet fermions and/or Higgs triplets natu-
rally appear for instance in left-right-symmetric extensions of the SM or MSSM and
have been introduced in section 1.2.3 as type I and type II see-saw mechanisms.

We will study these types of scenarios in a minimal approach, where only singlets
with large intermediate scale masses are explicitly added to the particle spectrum.
Other particles, which correspond to the generation of a type II see-saw or to some
GUT-model degrees of freedom, are assumed to be so heavy that they are already
integrated out of the theory. We explicitly perform the tree-level matching for
the singlets and the triplet and compute the RGEs of the effective neutrino mass
matrix in the various effective theories between and above the mass thresholds of
the singlets.

Before we turn to the calculations, we give a brief introduction to renormalization
and introduce the RGEs. We further derive a general method for calculating RGEs
from counterterms, which works for tensorial quantities.
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2 The β-Functions for the Effective Neutrino Mass Matrix

2.1 Preliminaries on Renormalization

The naive calculation of loop diagrams, required in order to calculate quantum
corrections to physical processes, yields divergent results in many cases. At the first
glance, this seems to be a disaster. However, quantum field theories are most likely
effective theories which are no longer valid at least at energy scales of the order of
the Planck scale. If loop diagrams are calculated, integrations of the momenta of the
particles running in the loop from zero to infinity are performed, which would be only
entirely adequate if the theory provided a correct description at all energy scales.
This is a possible origin of the appearing divergences. Nevertheless, in order to make
sense out of quantum field theory, a method of dealing with these divergences has
to be found.

The first step is to render the theory tentatively finite by introducing a regulator
which isolates the divergencies. One typical example is a cutoff which introduces an
upper limit for the integration over momentum. In this thesis we use dimensional
regularization, which defines the theory formally in d := 4 − ε dimensions. The
divergences are recovered as ε goes to zero. In d dimensions, the mass dimensions
of fermion, scalar and gauge fields are given by [ψ] = d−1

2
, [φ] = d−2

2
and [A] = d−2

2
.

Since the mass dimension of the Lagrangian is d and we would like to maintain the
mass dimensions of the couplings as they are in 4 dimensions, we have to introduce
a mass dependent quantity, the so-called renormalization scale µ, in the interaction
terms of the Lagrangian. E.g. for the neutrino mass operator, we have to replace
κ → µεκ. The calculation of loop diagrams now leads to isolated infinities in terms
of poles in ε.

However, even if the theory was completely finite, it should be kept in mind that
the bare physical quantities, i.e. couplings, masses and fields which would appear in
the Lagrangian of a free field theory, are generally shifted in the presence of interac-
tions. The usual strategy is to reformulate the theory in terms of new, i.e. the shifted
quantities. This is the method of renormalization and the introduced quantities are
called renormalized. Of course, in particle physics the interactions cannot be turned
off and consequently the bare quantities are not directly observable. However, they
can in principle be extracted from the comparison of physical processes with calcu-
lations which include the quantum corrections. In practice, perturbation theory in
the couplings is performed, which is truncated after a given order. The divergent
loop diagrams then lead to divergent bare quantities, which absorb the infinities.

We now introduce renormalized quantities, which we define to be finite, and re-
solve the formal problem of the divergent bare quantities by regularization. We
then reformulate the theory in terms of the renormalized quantities and the so-
called renormalization constants Zφi

and δQ(j), which leads to a Lagrangian

LB = LR + C , (2.1)

where only renormalized quantities appear on the right side and LR and the coun-
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2.1 Preliminaries on Renormalization

terterm Lagrangian C have the same form as LB. The relation between the bare
and the renormalized quantities has the general form

φ
(i)
B = Z

1/2
φi
φ

(i)
R with Z

1/2
φi

= 1 + δZ
1/2
φi

(2.2)

for fields and

Q
(j)
B = [Q

(j)
R + δQ(j)]

∏

i

Zni

φi
(2.3)

for scalar valued couplings, with all divergences absorbed in the renormalization
constants. The index R to denote renormalized quantities will be omitted in the
following. Theories which can be made finite by this method to any given loop-order
in perturbation theory are called renormalizable. Obviously, the counterterms are
not uniquely defined by this requirement. Finite terms can be added to them, which
is the freedom to choose a specific renormalization scheme. In this work, we will
make use of the mass independent Minimal Subtraction (MS) scheme [51], where
just the poles in ε are absorbed by the counterterms. For a comprehensive treatment
of renormalization theory, see e.g. [52].

It has been proven that gauge theories like the SM are renormalizable [53–55].
Generation of masses via SSB is compatible with renormalization, since the gauge
symmetry is still present, it is just non-linearly realized. Explicitly, the counterterms
calculated in the unbroken phase still renormalize the theory after SSB in the broken
phase. We will make use of this property and calculate the counterterms, and thus
as we will see also the RGEs, in the unbroken phase.

Finally, in this thesis we will deal with the effective neutrino mass operator, which
has mass dimension 5 and is thus strictly speaking non-renormalizable by power-
counting. However, as we have seen in section 1.3, in effective theories such operators
are suppressed by the inverse of a large mass scale Λ, which is of the order of the
scale where the operator is realized by a “full” theory. In this case it is possible to
renormalize the theory by performing an expansion in 1/Λ to a given order.

2.1.1 Renormalization Group Equations

We will now introduce the RGEs and show their relation to the energy scale depen-
dence of one particle irreducible (OPI) vertex functions, which appear as effective
parameters in the effective action. For simplicity and since the generalization is
straightforward, we consider just one field and one coupling, like e.g. in ϕ4 theory.
The bare n-point OPI vertex function Γ

(n)
B and the renormalized n-point OPI vertex

function Γ(n) are related by

Γ(n)({pi}, λ,m, µ0, ε) = Z
n
2
φ Γ

(n)
B ({pi}, λB, mB, ε) , i ∈ {1, ..., n} . (2.4)
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2 The β-Functions for the Effective Neutrino Mass Matrix

Γ
(n)
B is µ0-independent by definition, which yields

0 = µ0
d

dµ0
Z

−n
2

i Γ(n)({pi}, λ,m, µ0, ε)

=

[
µ0

∂

∂µ0

+ βλ
∂

∂λ
+ γmm

∂

∂m
− nγZ

]
Γ(n)({pi}, λ,m, µ0, ε) , (2.5)

defining the functions βλ, γm and γZ. µ0 is an arbitrary but fixed scale introduced
in dimensional regularization. λ and m are renormalized quantities, where the MS
scheme with renormalization scale µ0 has been used. Scaling of µ0 by a factor et

leads to

0 =

[
∂

∂t
+ βλ

∂

∂λ
+ γmm

∂

∂m
− nγZ

]
Γ(n)({pi}, λ,m, µ0e

t, ε) . (2.6)

Its solution can be written in the form

Γ(n)({pi}, λ,m, µ0e
−t, ε) = Γ(n)({pi}, λ(t), m(t), µ0, ε) e

−n
R t

0
dt′γZ(t′) , (2.7)

where λ(t) and m(t) are the so-called running quantities. They are defined as
solutions to the RGEs

dλ(t)

dt
= µ

dλ(µ)

dµ
= βλ , λ(t = 0)

!
= λ , (2.8)

dm(t)

dt
= µ

dm(µ)

dµ
= γmm ≡ βm , m(t = 0)

!
= m , (2.9)

where we have defined µ = µ0e
t. The right-hand sides of the RGEs, βλ and βm, are

referred to as β-functions. Equation (2.7) gives the dependence of Γ(n) on the change
of the renormalization scale. The coupling λ is assumed to have mass dimension
Dλ.

Equation (2.7) can be used to derive the dependence of Γ(n) on the scaling of
the external momenta {pi} by a factor et, which corresponds e.g. to the scaling of
the center of mass energy of some physical scattering process. Note that this is
only possible for massless external particles. The masses of particles propagating in
the theory are generally problematic in mass independent schemes, since they are
insensitive to mass-thresholds. We thus remark that in practice we work in energy
ranges where we either can assume the particles as massless or integrate them out
of the theory. The latter is adequate far below the mass scales of the particles if
they decouple [56]. If we use the naive scaling of an OPI vertex function Γ(n) with
mass dimension DΓ,

Γ(n)({etpi}, eDλtλ, etm,µ0e
t, ε) = eDΓtΓ(n)({pi}, λ,m, µ0, ε) , (2.10)
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we obtain the formula

Γ(n)({etpi}, λ,m, µ0, ε)
(2.7)
= Γ(n)({etpi}, eDλte−Dλtλ(t), ete−tm(t), µ0e

t, ε) e−n
R t
0 dt′γZi

(t′)

(2.10)
= eDΓt Γ(n)({pi}, e−Dλtλ(t), e−tm(t), µ0, ε) e

−n
R t

0
dt′γZi

(t′) . (2.11)

Equation (2.11) shows that the energy scale dependence of the vertices is governed
by the running of the physical quantities, which are the solutions of the RGEs.
The OPI vertex functions give the coefficients of the terms in the effective action,
e.g. the effective couplings or masses. Therefore, in order to find the energy scale
dependence of neutrino masses, lepton mixings and CP phases, we have to calculate
the RGE for the effective neutrino mass matrix.

2.1.2 Calculating RGEs from Tensor-Valued Counterterms

The counterterms for a given loop order are calculated from the requirement that all
n-point vertex functions be finite. In mass-independent (MS-like) renormalization
schemes, they only absorb constant finite terms in addition to the divergences. In
order to calculate the counterterms, it is sufficient to consider the OPI diagrams. We
now generalize the usual formalism for calculating β-functions in MS-like renormal-
ization schemes to include tensorial quantities as well as non-multiplicative renor-
malization. The β-function for a quantity Q is defined as

βQ := µ
dQ

dµ
. (2.12)

For scalar valued couplings, the relations of the bare and renormalized quantities
are given by the equations (2.2) and (2.3). For the tensor valued case, this has to
be generalized to

QB = Zn1

φ1
· · ·ZnM

φM
[Q+ δQ]µDQεZ

nM+1

φM+1
· · ·ZnN

φN

=

(
∏

i∈I

Zni

φi

)
[Q + δQ]µDQε

(
∏

j∈J

Z
nj

φj

)
, (2.13)

where I = {1, . . . ,M}, J = {M+1, . . . , N} and DQ is related to the mass dimension
of Q. δQ and the wavefunction renormalization constants depend on Q and some
additional variables {VA},

δQ = δQ(Q, {VA}) , (2.14a)

Zφi
= Zφi

(Q, {VA}) , (1 ≤ i ≤ N) . (2.14b)

The renormalized quantities Q = Q(µ) and VA = VA(µ) are functions of the renor-
malization scale µ. We now use the fact that QB is independent of µ by definition
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and that δQ and Zφi
do not depend explicitly on µ in an MS-like renormalization

scheme. We thus obtain

0
!

= µ−DQεµ
d

dµ
QB

(2.13)
=

(
∏

i∈I

Zni

φi

) [
βQ +

〈
dδQ

dQ
βQ

〉
+

+
∑

A

〈
dδQ

dVA
βVA

〉
+ εDQ(Q+ δQ)

] (
∏

j∈J

Z
nj

φj

)

+

(
∏

i∈I

Zni

φi

)
[Q+ δQ]

{
∑

j∈J

(
∏

j′<j

Z
nj′

φj′

)
×

×
[〈

dZ
nj

φj

dQ
βQ

〉
+
∑

A

〈
dZ

nj

φj

dVA
βVA

〉](
∏

j′′>j

Z
nj′′

φj′′

)}

+

{
∑

i∈I

(
∏

i′<i

Z
ni′

φi′

)[〈
dZni

φi

dQ
βQ

〉
+
∑

A

〈
dZni

φi

dVA
βVA

〉]
×

×
(
∏

i′′>i

Z
ni′′

φi′′

)}
[Q + δQ]

(
∏

j∈J
Z
nj

φj

)
, (2.15)

with
〈

dF
dx

y
〉

defined as dF
dx
y for scalars,

∑
n

dF
dxn

yn for vectors,
∑

m,n
dF

dxmn
ymn for ma-

trices and analog for arbitrary tensors x, y. Equation (2.15) and the corresponding
expression for VA can be solved in an MS-like scheme by expanding all quantities in
powers of ε := 4 − d,

δQ =
∑

k≥1

δQ,k

εk
, (2.16a)

Zφi
=

�
+
∑

k≥1

δZφi,k

εk
=:

�
+ δZφi

. (2.16b)

The β-functions, on the other hand, are of course finite as ε→ 0. We can therefore
make the ansatz

βQ = β
(0)
Q + εβ

(1)
Q + · · · + εnβ

(n)
Q , (2.17a)

βVA
= β

(0)
VA

+ εβ
(1)
VA

+ · · · + εnβ
(n)
VA

, (2.17b)

where n is an arbitrary integer. From (2.16) and (2.17) we find that

dZni

φi

dQ
= ni Z

ni−1
φi

dZφi

dQ
= ni

dδZφi

dQ
+ O

(
1
ε2

)
= O

(
1
ε

)
, (2.18)

where the lowest possible power of 1
ε

appearing on the right side of (2.18) is 1. An
analogous relation holds for Q ↔ VA. We now use these observations to analyze
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equation (2.15). Starting with the inspection of the εn term, we find that β
(n)
Q

vanishes. From the analog of equation (2.15) for βVA
, we obtain that β

(n)
VA

vanishes
as well. This argument, repeated for successively smaller positive powers of ε, implies
that

β
(k)
Q = β

(k)
VA

= 0 ∀ k ∈ {2, . . . , n} , (2.19a)

β
(1)
Q = −εDQQ , (2.19b)

β
(1)
VA

= −εDVA
VA . (2.19c)

Obviously, these terms do not contribute to the β-function in 4 dimensions, i.e. for
ε → 0, but they are necessary to read off β

(0)
Q from equation (2.15). Using the

relations of equation (2.19), from equation (2.15) we obtain [57]

β
(0)
Q =

[
DQ

〈
dδQ,1

dQ
Q

〉
+
∑

A

DVA

〈
dδQ,1

dVA
VA

〉
−DQ δQ,1

]

+Q ·
∑

j∈J

nj

[
DQ

〈
dZφj ,1

dQ
Q

〉
+
∑

A

DVA

〈
dZφj ,1

dVA
VA

〉]

+
∑

i∈I
ni

[
DQ

〈
dZφi,1

dQ
Q

〉
+
∑

A

DVA

〈
dZφi,1

dVA
VA

〉]
·Q . (2.20)

Note that for complex quantities Q and VA we have to treat the complex conjugates
Q∗ and V ∗

A as additional independent variables. Formula (2.20) allows to calculate
the β-functions for tensor valued β-functions from the counterterms. We have chosen
a general form for the counterterm, in order to make the formula applicable to
multiplicative as well as additive renormalization.

29



2 The β-Functions for the Effective Neutrino Mass Matrix

2.2 The Neutrino Mass Operator in

Non-Supersymmetric Theories

The method of section 2.1.2 will now be applied to calculate the RGEs for the
lowest dimensional effective neutrino mass operator at one loop order. For the
models under consideration, the SM and a class of 2HDMs, we will proceed as
follows: First, we define the counterterms and determine the relation between the
bare and the renormalized couplings. Then we calculate the relevant counterterms
in the MS scheme by the requirement that they just absorb the divergences of the
corresponding OPI vertex functions. Finally, we apply the formula (2.20) to compute
the RGE for the dimension 5 neutrino mass operator.

2.2.1 Calculation of the RGE in the SM

Following the strategy described above, we will now perform the calculation in the
SM. The relevant Feynman rules are given in appendix A.3.1. In order to obtain
the RGEs for the neutrino mass operator, we have to define and calculate the coun-
terterms which enter the relation between the bare and the renormalized quantities
κB and κ. The Lagrangian consists of LSM + Lκ and proper counterterms CSM and
Cκ. We define the counterterm for κ by

Cκ = 1
4
δκgf `CL

g

cε
cdφd `

f
Lbε

baφa + h.c. . (2.21)

From the definition

LBκ = Lκ + Cκ = 1
4
(κgf + δκgf) `CL

g

cε
cdφd `

f
Lbε

baφa + h.c. (2.22)

we obtain the relation between κB and κ,

κB = Z
− 1

2
φ

(
ZT
`L

)− 1
2 [κ+ δκ] µεZ

− 1
2

`L
Z

− 1
2

φ . (2.23)

The counterterms for the kinetic and mass terms for the Higgs and the charged
lepton are defined as

Ckin(`L) = `L
g
(iγµ∂µ)(δZ`L)gf`

f
L , (2.24a)

CHiggs = δZφ(∂µφ)†(∂µφ) − δm2 φ†φ− 1
4
δλ(φ†φ)2 . (2.24b)

The δZi (i ∈ {`L, φ}) determine the wavefunction renormalization constants Zi =�
+ δZi. Note that Z`L is a matrix in flavour space.
The next step is to calculate the renormalization constants δκ, δZ`L and δZφ from

the vertex corrections and self-energy diagrams, respectively. The 1-loop vertex
corrections which contribute to the renormalization of the neutrino mass operator
in the SM are shown in figure 2.1.
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Figure 2.1: Contributions to the renormalization of the effective vertex. For the gauge bosons of
U(1)Y and SU(2)L, we use the condensed notation vA with (v0, v1, v2, v3) = (B, W 1, W 2, W 3).
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We will now calculate explicitly the diagrams (a) – (d) of figure 2.1. They con-
tribute to the part of the β-function with a non-trivial flavour structure, where the
existing RGEs [58,59] are not in agreement.

iµε(Γe(1)κ )abcdgf :=

�

�
�

��� �

�
	��
��� �
���

��� �

=
[
iµεκgi

1
2
(εcdεje + εceεjd)

] [
−iµ ε

2 (Y †
e )ihδaj

] [
−iµ ε

2 (Ye)hfδeb
]
×

×
∫

ddk

(2π)d
PL
i(�q − �q

′ + ��k)

(q − q′ + k)2
PR

i(�q + ��k)

(q + k)2
PL

i

k2 −m2

=
i

8π2
µε(κY †

e Ye)gf
1
2
(εcdεba + εcbεda)PL

1

ε
+ UV finite , (2.25)

iµε(Γe(2)κ )abcdgf := �
� �

�
������� ���� �
� �

� � �

=
[
iµεκgi

1
2
(εcaεje + εceεja)

] [
−iµ ε

2 (Y †
e )ihδdj

] [
−iµ ε

2 (Ye)hfδeb
]
×

×
∫

ddk

(2π)d
PL
i(�q − �p

′ + ��k)

(q − p′ + k)2
PR

i(�q + ��k)

(q + k)2
PL

i

k2 −m2

=
i

8π2
µε(κY †

e Ye)gf
1
2
(εcaεbd − εcbεda)PL

1

ε
+ UV finite , (2.26)

iµε(Γe(3)κ )abcdgf := !

" "�#

$ #
$

%&('�&�)+* %
&,* %
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=
[
−iµ ε

2 (Y T
e )ghδce

] [
−iµ ε

2 (Y ∗
e )hiδdj

] [
iµεκif

1
2
(εjeεba + εjaεbe)

]
×

×
∫

ddk

(2π)d
PL

−i(�p + ��k)

(p+ k)2
PR

−i(�p− �p
′ + ��k)

(p− p′ + k)2
PL

i

k2 −m2

=
i

8π2
µε(Y T

e Y
∗
e κ)gf

1
2
(εcdεba + εcbεda)PL

1

ε
+ UV finite , (2.27)

iµε(Γe(4)κ )abcdgf := -. .�/
0�/

0
1

2(3�4
5+6 1
2,6 1

=
[
−iµ ε

2 (Y T
e )ghδce

] [
−iµ ε

2 (Y ∗
e )hiδaj

] [
iµεκif

1
2
(εjeεbd + εbeεjd)

]
×

×
∫

ddk

(2π)d
PL

−i(�p + ��k)

(p+ k)2
PR

−i(�p− �q
′ + ��k)

(p− q′ + k)2
PL

i

k2 −m2

=
i

8π2
µε(Y T

e Y
∗
e κ)gf

1
2
(εcaεbd − εcbεda)PL

1

ε
+ UV finite . (2.28)

In order to obtain the divergent parts, we substitute the integrals by Passarino-
Veltman functions, defined in appendix A.2.3. The 1

ε
-poles of the Passarino-Veltman

functions are known and summarized in table A.1. The reduction is also imple-
mented in the package FeynCalc [60], which provides a useful way to check the
results.

In addition to the counterterm for the vertex, the wavefunction renormalization
constants are required. The Higgs self-energy diagrams are shown in figure 2.3, and
the corresponding diagrams for the lepton doublet in figure 2.2. A detailed treatment
of all relevant vertex corrections and self-energies can be found in [61]. The results
for the 1

ε
-poles, required for the calculation of the renormalization constants, are

listed in appendix A.4.1.
The wavefunction renormalization constants are calculated from the relations

0 =
∑

i

(
Σi
φ

∣∣
div

)
+ (p2δZφ − δm2) , (2.29a)

0 =
∑

i

(
Σi
`L

∣∣
div

)
+ �p δZ`LPL = 0 , (2.29b)

where the subscript “div” indicates the divergent part of the corresponding expres-
sion. The renormalization constant δκ is determined by demanding that it exactly
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gf
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Figure 2.2: Self-energy diagrams for the leptonic doublets `L. We write vA for the gauge bosons
of U(1)Y and SU(2)L.
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Figure 2.3: One-loop diagrams which potentially contribute to the computation of the self-energy
of the Higgs field. For simplicity, the fermion flow is not shown explicitly here. For the gauge
bosons of U(1)Y and SU(2)L, we use the condensed notation vA.
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cancels the divergent part of sum of the the vertex corrections,

0 =
∑

i

(Γiκ)
abcd
gf

∣∣
div

+ δκgf
1
2
(εcdεba + εcaεbd)PL . (2.30)

From these requirements, we obtain for the counterterms

δZ`L,1 = − 1

16π2

(
Y †
e Ye + 1

2
ξBg

2
1 + 3

2
ξWg

2
2

)
, (2.31a)

δZφ,1 = − 1

16π2

[
2 Tr

(
Y †
e Ye + 3Y †

uYu + 3Y †
d Yd

)

− 1
2
(3 − ξB)g2

B − 3
2
(3 − ξW )g2

2

]
, (2.31b)

δκ,1 = − 1

16π2

[
2κ(Y †

e Ye) + 2(Y †
e Ye)

Tκ

−λκ− (3
2
− ξB)g2

1κ− (3
2
− 3ξW )g2

2κ
]
. (2.31c)

The β-function βκ := µdκ
dµ

for the dimension 5 neutrino mass operator can now be

computed from formula (2.20). First, using equation (2.23), we find the relation

βκ = δκ,1 −
1

2
(δZφ,1 + δZ`L,1)

T κ− 1

2
κ (δZφ,1 + δZ`L,1) . (2.32)

Inserting the results from equation (2.31) for the counterterms finally results in [57]

16π2βκ = −3

2

[
κ
(
Y †
e Ye
)

+
(
Y †
e Ye
)T
κ
]

+λ κ− 3g2
2 κ+ 2 Tr

(
3Y †

uYu + 3Y †
d Yd + Y †

e Ye

)
κ . (2.33)

Compared to earlier results [59], we find a coefficient − 3
2

instead of −1
2

in front of
the term κ(Y †

e Ye) + (Y †
e Ye)

Tκ with a non-trivial flavour structure. Our result has
been confirmed by an independent calculation [62]. We will apply it in chapter 3 in
order to study the running of the neutrino mass matrix in the SM.
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2.2.2 Calculation of the RGEs in 2HDMs

We now consider the renormalization of the effective neutrino mass matrix in exten-
sions of the SM with a Higgs sector enlarged by an additional SU(2)L-doublet, φ(i)

(1 ∈ {1, 2}). As pointed out in [63–65], it is very hard to construct viable models
in which one type of SM fermions e, d and u couples to two or more Higgs bosons,
since this in general leads to tree-level flavor-changing neutral currents (FCNCs).

In order to avoid such FCNCs, we will therefore consider only schemes in which
each of the right-handed SM fermions couples to exactly one Higgs boson. This
can be achieved by imposing the 7 2 symmetry φ(1) → φ(1) , φ(2) → −φ(2) and
corresponding transformations in the fermion sector. These only allow the schemes
of table 2.1. For example, in scheme (ii) all fields transform trivially except for
φ(2) → −φ(2) and u→ −u.

Coupling scheme
8�9+:<;8�9�=
;

>? @ A�B+C<DA�B�E
D
FG H I�J+K<LI�J�M
L

NO P Q�R+S<TQ�R�U
T
VW X

Model (i) (ii) (iii) (iv)

Table 2.1: Classification of the 2HDMs with natural suppression of FCNCs and tree-level mass
terms for all SM fermions except neutrinos. Note that model (i) is usually referred to as “type I”
and (ii) as “type II” in the literature.

By convention, the Higgs which couples to e is φ(1). The Yukawa couplings of the
Higgs doublets to the SM fermions are then given by

L
(i)
Yukawa = −(Ye)gfe

g
Rφ

(1)†
a δab`fLb

−
2∑

i=1

z
(i)
d (Yd)gfd

g
Rφ

(i)†
a δabqfLb −

2∑

i=1

z(i)
u (Yu)gfu

g
Rq

f
Lbε

baφ(i)
a , (2.34)

where the coefficients z
(i)
d and z

(i)
u for the models classified in table 2.1 are given in

table 2.2. In the chosen notation, the φ(i) transform as (1, 2, 1
2
) under G321.

(i) (ii) (iii) (iv)

z
(1)
u 1 0 1 0

z
(2)
u 0 1 0 1

z
(1)
d 1 1 0 0

z
(2)
d 0 0 1 1

Table 2.2: The coefficients z
(i)
d and z

(i)
u for the Two-Higgs-Doublet Models classified in table 2.1.
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In the considered 2HDMs, there are two dimension 5 effective neutrino mass
operators,

Lκ =
1

4
κ

(11)
gf `CL

g

cε
cdφ

(1)
d `fLbε

baφ(1)
a

+
1

4
κ

(22)
gf `CL

g

cε
cdφ

(2)
d `fLbε

baφ(2)
a + h.c. . (2.35)

It is possible that only one of these operators arises from integrating out heavy
degrees of freedom in a specific model. However, as we shall see, both mix due
to the renormalization group evolution and therefore have to be taken into account
simultaneously. As long as the discrete symmetry is valid, L

(11)
κ and L

(22)
κ represent

the only possible dimension 5 operators containing two `L fields. The most general
Higgs self-interaction Lagrangian compatible with the Y 2 symmetry is

L2Higgs = −λ1

4

(
φ(1)†φ(1)

)2 − λ2

4

(
φ(2)†φ(2)

)2

−λ3

(
φ(1)†φ(1)

) (
φ(2)†φ(2)

)
− λ4

(
φ(1)†φ(2)

) (
φ(2)†φ(1)

)

−
[λ5

4

(
φ(1)†φ(2)

)2
+ h.c.

]
. (2.36)

We define the wavefunction renormalization constants analogous to the SM case.
For the vertices, we need two counterterms for the two neutrino mass operators
allowed by symmetry,

Cκ =
1

4
δκ

(11)
gf `CL

g

cε
cdφ

(1)
d `fLbε

baφ(1)
a

+
1

4
δκ

(22)
gf `CL

g

cε
cdφ

(2)
d `fLbε

baφ(2)
a + h.c. . (2.37)

For the bare and the renormalized quantities we obtain the relations

κ
(11)
B = Z

− 1
2

φ(1)

(
ZT
`L

)− 1
2
[
κ(11) + δκ(11)

]
µεZ

− 1
2

`L
Z

− 1
2

φ(1) , (2.38a)

κ
(22)
B = Z

− 1
2

φ(2)

(
ZT
`L

)− 1
2
[
κ(22) + δκ(22)

]
µεZ

− 1
2

`L
Z

− 1
2

φ(2) . (2.38b)

The vertex corrections for the calculation of the counterterms δκ(ii) (i = 1, 2) are
partly similar to the ones in the SM. For instance, the corrections for the flavour
non-trivial part have the same structure as the diagrams (a) – (d) of figure 2.1 and
the same holds for the gauge boson contributions, diagram (f) – (k) of figure 2.1.
Note that for each diagram there are two potential counterparts with the exchange
of a virtual φ(1) and φ(2). However, the contributions from the the diagrams with
Higgs self-interactions are different and lead to a mixing of the two neutrino mass
operators. They are shown in figure 2.4.
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Figure 2.4: Vertex corrections containing Higgs self-interactions. The diagrams (c) and (d) lead

to a mixing between the operators L
(11)
κ and L

(22)
κ .

Let us consider diagram (c) as an example. The other diagrams can be calculated
analogously.

iµε(Γλ5

κ(22))
abcd
gf :=

p+q+k

k

κ(22)

q

p

=
1

2

[
iµεκ

(22)
gf

1
2
(εbiεcj + εciεbj)

] [
−iµελ∗5 1

2
(δaiδdj + δajδdi)

]
×

×
∫

ddk

(2π)d
PL

i

(p+ q + k)2 −m2
2

i

k2 −m2
2

= − i

16π2
µελ∗5κ

(22)
gf

1
2
(εbaεcd + εcaεbd)PL

1

ε
+ UV finite . (2.39)

The factor 1
2

in the second line is a symmetry factor. The calculation of the wave-
function renormalization constants in the 2HDMs is analogous to the SM case. The
types of diagrams for the self-energies are similar to the ones shown in the figures
2.3 and 2.2. Differences occur for the self-energy diagrams of the Higgs fields, since
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in a specific 2HDM, each of the Higgses couples only to some of the fermions, as
defined in table 2.1. More details can be found in [66]. The 1

ε
-poles of the relevant

vertex corrections and self-energies, which are required for the calculation of the
renormalization constants, are listed in appendix A.4.2.

From the requirements

0 =
∑

i

(
Σi
φ(j)

∣∣∣
div

)
+ (p2δZφ − δm2

j) , (2.40a)

0 =
∑

i

(
Σi
`L

∣∣
div

)
+ �p δZ`LPL = 0 , (2.40b)

0 =
∑

i

(Γiκ)
abcd
gf

∣∣
div

+ δκgf
1
2
(εcdεba + εcaεbd)PL , (2.40c)

we determine the renormalization constants in the 2HDMs. This yields

δZφ(i),1 = − 1

16π2

[
δi1 2 Tr(Y †

e Ye) + z(i)
u 6 Tr(Y †

uYu) + z
(i)
d 6 Tr(Y †

d Yd)

+ 1
2
(ξB − 3) g2

1 + 3
2
(ξW − 3) g2

2

]
, (2.41a)

δZ`L,1 = − 1

16π2

[
Y †
e Ye + 1

2
ξBg

2
1 + 3

2
ξWg

2
2

]
, (2.41b)

δκ
(ii)
,1 = − 1

16π2

[
δi1 2κ(ii)(Y †

e Ye) + δi1 2(Y †
e Ye)

Tκ(ii)

− λiκ
(ii) − δi1λ

∗
5κ

(22) − δi2λ5κ
(11)

+
(
ξB − 3

2

)
g2
1κ

(ii) +
(
3ξW − 3

2

)
g2
2κ

(ii)
]
. (2.41c)

Using formula (2.20) and equation (2.38a), we obtain the relation

βκ(ii) = δκ
(ii)
,1 − 1

2
(δZφ(i),1 + δZ`L,1)

Tκ(ii) − 1

2
κ(ii)(δZφ(i),1 + δZ`L,1) , (2.42)

which, by inserting (2.41), directly leads to the results [67]

16π2βκ(ii) =
(

1
2
− 2δi1

) [
κ(ii)(Y †

e Ye) + (Y †
e Ye)

Tκ(ii)
]

+
[
δi1 2 Tr(Y †

e Ye) + z(i)
u 6 Tr(Y †

uYu) + z
(i)
d 6 Tr(Y †

d Yd)
]
κ(ii)

+ λiκ
(ii) + δi1λ

∗
5κ

(22) + δi2λ5κ
(11) − 3g2

2κ
(ii) . (2.43)

The terms proportional to λ5 are responsible for the mixing of the two effective
neutrino mass operators. As in the SM, our result for βκ(11) corrects the previous
one [59] by a factor of 3 in the part with a non-trivial flavour structure.
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2.3 The Neutrino Mass Operator in the MSSM

The β-function for the lowest dimensional effective operator for neutrino masses
will now be calculated in the MSSM. For the calculations, we use two independent
techniques: the component field formalism and the supergraph method. Before that,
we give a brief introduction to N=1 supersymmetric extensions of the SM.

2.3.1 Preliminaries on N =1 Supersymmetric Theories

Supersymmetry is an extension of the external Poincaré symmetry group. Accord-
ing to the no-go theorem of Coleman and Mandula [68], there is no such extension
by bosonic operators. Haag,  Lopuszański and Sohnius [69] introduced fermionic
operators Qi

α and Q̄i
α̇ (i = 1, . . . , N), which generate supersymmetry (SUSY) trans-

formations and satisfy the so-called super-Poincaré algebra. Since the MSSM is of
the N = 1 type, we will restrict ourselves to this case in the following. Acting on
component fields, the SUSY-generators change the spin by half a unit, thus trans-
forming fermions into bosons. Since supersymmetry is an extension of space-time
symmetry, it is natural to extend space-time to a supermanifold with additional
fermionic coordinates θα and θ̄α̇. Fields defined on superspace contain bosons as
well as fermions and auxiliary fields. The SUSY generators now generate the trans-
lations in the directions of the superspace coordinates. Comprehensive introductions
to supersymmetric theories can e.g. be found in [70,71].

Supersymmetric extensions of the SM have some attractive properties. One of the
most important is that they solve a part of the gauge hierarchy problem. Above the
scale where SUSY is broken, the hierarchy between the EW scale and the Planck
scale is stable against large radiative corrections due to cancellations of contributions
from bosonic and fermionic loop diagrams. However, since no superpartner of a SM
particle has been observed so far, SUSY has to be broken by some mechanism. In
order to maintain the stabilization of the hierarchy of scales, the SUSY-breaking
scales, i.e. the mass scales of the superpartners, should not be too far above the EW
scale. It is remarkable that under this restriction, the MSSM has the property that
the gauge couplings meet at ≈ 2 · 1016 GeV. Though SUSY is a rather economical
principle, which reduces the freedom for constructing Lagrangians, the fact that it
has to be broken leads to a large number of additional parameters. Furthermore,
usually the so-called R-parity is required in order to avoid unobserved large baryon
number violation.1 If R-parity is conserved, the lightest supersymmetric particle
(LSP) is stable and provides an attractive candidate for cold dark matter.

1 It is possible to generate neutrino masses from small R-parity violating interactions (see e.g. [72]).
In this thesis, however, we will restrict ourselves to the R-parity conserving case.
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The General Lagrangian of N =1 Supersymmetric Theories

The Lagrangian of a general N=1 supersymmetric theory can be written as

L =

∫
d2θ d2θ̄

N ¤∑
i,j=1

¥ (i)
[exp(2g · ¦ )]ij

¥ (j) +

[
1

4

∫
d2θ

S∑

n=1

§ n
α

§ nα + h.c.

]

+

[∫
d2θW + h.c.

]
+ LGhost + LGauge Fixing , (2.44)

where we have defined

§ n
α :=

1

8gn
D

2
[exp(2gn ¦ n) Dα exp(−2gn ¦ n)] , (2.45a)

g · ¦ :=

S∑

n=1

gn ¦ n and ¦ n =

dimGn∑

An=1

¦ An

n TAn

n , (2.45b)

and where W is the superpotential.
¥ (i) (i ∈ {1, . . . , N ¨ }) are chiral superfields

which contain the usual matter fields and ¦ n are the vector superfields, corresponding
to the internal gauge symmetry group Gn. As usual, TAn

n (An = 1, . . . , dimGn)

denote the generators of Gn. Dα := ∂α + iσµ
αβ̇
θ̄β̇∂µ and D̄α̇ := −∂̄α̇ − iθασµαα̇∂µ are

the SUSY-covariant derivatives. For the integration over superspace, our convention
is chosen such that

∫
d2θ θ2 = 1 and

∫
d2θ̄ θ̄2 = 1 holds. The theory is completely

defined by specifying the gauge symmetry G1×· · ·×GS, the corresponding couplings
gn (n ∈ {1, . . . , S}) and the superpotential W .

Particle Content and Interactions of the MSSM

Before we turn to the calculation of the RGE for the lowest dimensional neutrino
mass operator, we briefly summarize some properties of the MSSM, relevant for our
calculations. Since we want to calculate the RGE for the running at energy scales
far above the SUSY-breaking scale, we can neglect the soft-breaking terms. As in
the non-SUSY case, it is useful to perform the calculation in the SU(2)L × U(1)Y-
unbroken phase. The MSSM without soft supersymmetry breaking terms is a G321

gauge theory with a R-parity conserving superpotential given by

WMSSM = m © (1)
a εab © (2)

b + (Ye)gf ª Cg © (1)
a εab « fb

+(Yu)gf ¬ Cg © (2)
a (εT )ab ­ fb + (Yd)gf ® Cg © (1)

a εab ­ fb . (2.46)

In addition, we consider the lowest dimensional effective operator which gives Ma-
jorana masses to the light neutrinos. L MSSM

κ is given by the F -term

L
MSSM
κ = Wκ

∣∣
θθ

+ h.c. = −1
4
κgf

« g
cε
cd © (2)

d
« f
b ε

ba © (2)
a

∣∣
θθ

+ h.c. . (2.47)
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2 The β-Functions for the Effective Neutrino Mass Matrix

Note that contrary to non-supersymmetric 2HDMs, in the MSSM only one such
operator is possible in the superpotential due to holomorphicity. The superfields¯ C, ° C and ± C contain the SU(2)L-singlet charged leptons, down-type quarks and
up-type quarks, respectively. ² contains the SU(2)L quark doublets and ³ the SU(2)L

lepton doublets. ´ (1) and ´ (2) are the superfields which contain the Higgses. Note
that two Higgs superfields with opposite U(1)Y-charges are required in order to
cancel gauge anomalies. The quantum numbers of the superfields are specified in
table 2.3. R-parity is defined by R = (−1)3(B−L)+2S , where B is the baryon number,
L the lepton number and S the spin of the particle. This gives even R-parity to the
known particles of the SM and odd R-parity to their superpartners. Note that GUT
theories can have automatic R-parity conservation, as e.g. SO(10) GUTs if B−L is
broken by two units via a Higgs {126}SO(10).

Field ´ (1) ´ (2) ² f ° Cf ± Cf ³ f ¯ Cf

SU(3)C 1 1 3 3 3 1 1

SU(2)L 2 2 2 1 1 2 1

qY −1
2

+1
2

+1
6

+1
3

−2
3

−1
2

+1

Table 2.3: Quantum numbers of the superfields. qU
Y =

√
3/5 qY is the U(1)Y-charge in GUT

normalization. The corresponding gauge coupling constant is redefined as gU
1 =

√
5/3 g1 in this

case.

2.3.2 Component-Field Calculation of the RGE

For the calculations using component fields, we have to compute the interaction La-
grangian explicitly. The straightforward way would be to insert the usual expansion
of the chiral superfields µ (i) in fermionic coordinates,

µ (i) = Ai +
√

2θψi + θθFi , (2.48)

to perform the integration over them and to eliminate the auxiliary fields by their
algebraic equations of motion. Ai is a complex scalar, ψi is a Weyl spinor in the
fundamental representation of SL(2, ¶ ) and Fi is an auxiliary field. The expansion
of the MSSM-superfields in component fields is given by

³ f = ˜̀f +
√

2 θ`f + θθ F f
` , (2.49a)¯ Cg = ẽCg +

√
2 θeCg + θθ F g

e , (2.49b)

² f = q̃f +
√

2 θqf + θθ F f
q , (2.49c)

± Cg = ũCg +
√

2 θuCg + θθ F g
u , (2.49d)

° Cg = d̃Cg +
√

2 θdCg + θθ F g
d , (2.49e)
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2.3 The Neutrino Mass Operator in the MSSM

· (1) = φ(1) +
√

2 θφ̃(1) + θθ Fh(1) , (2.49f)· (2) = φ(2) +
√

2 θφ̃(2) + θθ Fh(2) . (2.49g)

However, to extract specific vertices, it is useful to expand W({ ¸ (i)}) itself in the
fermionic coordinates,

W({ ¸ (i)}) = W({ ¸ (i)})
∣∣
θ=0

+ ∂iW({ ¸ (i)})
∣∣
θ=0

(
√

2θψi + θθFi)

+1
2
∂i∂jW({ ¸ (i)})

∣∣
θ=0

(
√

2θψi + θθFi)(
√

2θψj + θθFj) , (2.50)

where ∂iW := ∂W/∂ ¸ (i). The F -term of W is then given by

W({ ¸ (i)})
∣∣
θθ

= ∂iW({ ¸ (i)})
∣∣
θ=0

Fi − 1
2
∂i∂jW({ ¸ (i)})

∣∣
θ=0

ψiψj . (2.51)

Inserting the algebraic equations of motion for the auxiliary fields Fi, which are
given by Fi = − (∂iW)∗|θ=0, yields the useful result

W({ ¸ (i)})
∣∣
θθ

= −∂iW({ ¸ (i)})(∂iW({ ¸ (i)}))∗
∣∣
θ=0

−1
2
∂i∂jW({ ¸ (i)})

∣∣
θ=0

ψiψj . (2.52)

In the above equations the sum over the indices i and j, which denote the superfields
of the superpotential, is implicit. We will apply equation (2.52) in appendix A.3.3
where the Feynman rules relevant for the calculations of this section are given.

The kinetic terms, gauge-matter interactions and D-term contributions are con-
tained in the first term of equation (2.44), which in the MSSM is given by

Lkin =

∫
d2θ d2θ ¸ (i)

exp {2g3 ¹ 3 + 2g2 ¹ 2 + 2g1 ¹ 1} ¸ (i) , (2.53)

with ¹ 3 := ¹ A3 TA (A ∈ {4, . . . , 11}), ¹ 2 := ¹ A2 TA (A ∈ {1, 2, 3}), and ¹ 1 := ¹ 0
1T0 =

g1 ¹ 0
1yi º . yi is the U(1)Y-charge of the matter superfield ¸ (i). We now write the

gauge-matter interactions in component fields by inserting the vector superfields in
Wess-Zumino (WZ) gauge,

¹ A = −θσµθ vAµ + i(θθ) (θ λ
A

) − i(θ θ) (θλA) + 1
2
(θ θ) (θθ)DA , (2.54)

making use of the identities (θφ) (θψ) = − 1
2
(φψ) (θθ) and (θ φ) (θ ψ) = − 1

2
(φψ) (θ θ).

The interaction terms involving one of the superfields ¸ (i) are

L » (i)

g−m = (∂µAi − ig vAµTAAi)
†(∂µAi − ig vµATAAi)

− g ψiL (γµvAµTA)ψiL + g2A∗
ia v

Aµ(TATB)ab vBµ Aib

− i
√

2g (ψiLb PR λ
ATba

A Aia − A∗
ia λ

A
Tab
A PL ψiLb) . (2.55)

vAµ are the gauge fields, λA the gauginos, which are Majorana fermions, and D is an
auxiliary field. The condensed notation with the index A running from 0 to 11 is
defined in table 1.2 on page 2 .
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2 The β-Functions for the Effective Neutrino Mass Matrix

Lkin also contains the part

LD = −1

2
DADA = −1

2

(
∑

i,A

g2
iA

∗
iaT

ab
AAib

)2

(2.56)

of the scalar potential. In particular, there are Higgs self-interactions

L
4Higgs,g2

1
D = −1

2
g2
1

(
φ(1)∗
a yφ(1)δabφ

(1)
b − φ(2)∗

a δabφ
(2)
b

)2

= −1

2
g2
1y

2
φ(1)(φ

(1)†φ(1))(φ(1)†φ(1)) − 1

2
g2
1y

2
φ(2)(φ

(2)†φ(2))(φ(2)†φ(2))

−g2
1yφ(1)yφ(2)(φ(1)†φ(1))(φ(2)†φ(2)) (2.57)

proportional to g2
1 and

L
4Higgs,g2

2
D = −1

2
g2
2

(
φ(1)∗
a

τabA
2
δabφ

(1)
b − φ(2)∗

a

τabA
2
φ

(2)
b

)2

= −1

4
(
1

2
g2
2)
(
(φ(1)†(φ(1)

)2 − 1

4
(
1

2
g2
2)
(
(φ(2)†(φ(2)

)2

+mixed terms with φ(1) and φ(2) (2.58)

proportional to g2
2, which will be relevant for the calculation of the vertex corrections

in the MSSM.

Calculation of the RGE for the Neutrino Mass Operator

The counterterm for the usual effective neutrino mass operator of equation (1.15),
which is contained in L MSSM

κ of equation (2.47), can be defined as in the non-
supersymmetric theories,

Cκ = 1
4
δκgf `

C
L

g

cε
cdφ

(2)
d `fLbε

baφ(2)
a + h.c. . (2.59)

This leads to the relation

κB = Z
− 1

2

φ(2)

(
ZT
`L

)− 1
2 [κ + δκ] µεZ

− 1
2

`L
Z

− 1
2

φ(2) (2.60)

between the renormalized and the bare quantities κ and κB. The wavefunction
renormalization constants in component field notation are defined as usual.

We now turn to the calculation of the vertex corrections relevant for the compu-
tation of δκ in the MSSM. One might think that in supersymmetric theories, for
couplings of the superpotential the sum over all vertex corrections should be finite
due to the non-renormalization theorem. However, in the component field formal-
ism SUSY is not manifest, since for the calculation a super-gauge like Wess-Zumino
gauge has to be fixed. Thus, the non-renormalization theorem cannot be applied
naively. As expected, we find that only the sum over the corrections proportional to
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Figure 2.5: Figures (a)–(d) are the contributions from the gauginos λA to the renormalization
of the dimension 5 operator in the MSSM. Figures (e) and (f) show the D-term contributions.
Figures (g)–(l) are the gauge contributions as in the 2HDM of type (ii). The gray arrow indicates
the fermion flow as defined in [73].
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2 The β-Functions for the Effective Neutrino Mass Matrix

the gauge couplings has a pole in ε and thus contributes to δκ in the MS scheme. We
will now calculate these contributions in Rξ gauge. They stem from the exchange
of virtual gauge bosons, gauginos and Higgs doublets and are shown in figure 2.5.

As an example for the contributions proportional to the gauge couplings (diagrams
(g) – (l) of figure 2.5), we calculate diagram (g),

iµε(Γv
A(1)
κ )abcdgf := 7 8

9 :<;>=
?
9A@

BDCE;>=?>@

=
[
iµεκgh

1
2
(εceεja + εcaεje)

] [
iµ

ε
2gvδhfTjb

] [
iµ

ε
2gvTed

]
×

×
∫

ddk

(2π)d

[
PL
i(�q + ��k)

(q + k)2
γµPL i

−ηµν + (1 − ξv)
kµkν

k2

k2
×

× (2p′ν + kν)
i

(p′ + k)2 −m2

]

=
−2i

16π2
ξvµ

εg2
vκgf

1
2
(εceεja + εcaεje) Ti

jbT
i
edPL

1

ε
+ UV finite

=
−2i

16π2ε
µεκgfPL

{ − 1
4
g2
1ξB

1
2
(εcdεba + εcaεbd) for A = 0

1
4
g2
2ξW

1
2
(2εcbεda − 3εcaεdb − εcdεba) for A ∈ {1, 2, 3}

+UV finite . (2.61)

We have used the relations
∑

A TA
jbT

A
ed = 1

4
(2δjdδbe − δjbδed) for the SU(2)L and∑

A TA
jbT

A
ed = yφ(2)y`Lδjbδed = −1

4
δjbδed for the U(1)Y case. The general relation for

the generators TA of SU(N) (N ≥ 2) is given by

∑

A

(TA)ij(T
A)k` = 1

2

(
δi`δjk − 1

N
δijδk`

)
, (2.62)

in the usual normalization Tr(TATB) = 1
2
δAB . As an example for the gaugino

contributions (diagrams (a) – (d) of figure 2.5), we explicitly calculate diagram (a),

iµε(Γλ
A(1)
κ )abcdgf := k κ

p

p+k

q

q−k

q′

p′
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=
∑

A

∫
ddk

(2π)d

[
−
√

2gµε/2(TT )AbjδifPL

] i

(p+ k)2
×

×
[
iµεκgi

1
2
(εceεja + εcaεje)PL

] i(�q −��k)

(q − k)2

[√
2gµε/2TA

edPR

] i(−��k)

k2

=
−4i

16π2ε
µεκgfPL

{ − 1
4
g2
1

1
2
(εcdεba + εcaεbd) for A = 0

1
4
g2
2

1
2
(2εcbεda − 3εcaεdb − εcdεba) for A ∈ {1, 2, 3}

+UV finite .

Additionally we have to compute the wavefunction renormalization constants for
the lepton doublet `L and the Higgs φ(2). Compared to the 2HDM type (ii), there
are additional diagrams with superpartners running in the loops. The diagrams for
the wavefunction renormalization of the lepton doublets are shown in figure 2.6.

`fLa

φ
(1)
c

ehR

`fLb

(a) i(Σe
`L

)ba
gf

`fLa

φ̃
(1)
Lc

ẽhR

`fLb

(b) i(Σee
`L

)ba
gf

`fLa

vA

`fLc

`fLb

(c) i(ΣvA

`L
)ba
gf

`fLa

˜̀f
c

λAR

`fLb

(d) i(ΣλA

`L
)ba
gf

Figure 2.6: Contributions to the wavefunction renormalization of the lepton doublets in the MSSM.
For the gauge bosons and gauginos of U(1)Y and SU(2)L we use the condensed notations vA and
λA.

We see that there is one additional contribution proportional to the Yukawa cou-
plings (diagram (b)), where the Higgsino runs in the loop. Its calculation yields
the same ε-pole as for diagram (a). The situation is similar for the contributions
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proportional to the gauge couplings. Calculating diagram (d) gives

iΣλA

`L
:=

k

p+k

p p

= µε
√

2gATac
A (−

√
2)gTcb

A

∫
ddk

(2π)d
PR

i(�p+ ��k)

(p+ k)2
PL

i

k2

=
i

8π2
g2
A (Tac

ATcb
A) �pPL

1

ε
+ UV finite . (2.63)

This can be further evaluated using equation (2.62) for the generators of SU(2)L or
the corresponding relation for U(1)Y. We now turn to the wavefunction renormal-
ization of φ(2). The diagrams which contribute are shown in figure 2.7.

φ
(2)
a

φ
(2)
c

vA

φ
(2)
b

(a) i(ΣvA

φ(2) )
ba

φ
(2)
b

φ̃
(2)
Lc

λA

φ
(2)
a

(b) i(ΣλA

φ(2))
ba

φ
(2)
a

ugR

qfLc

φ
(2)
b

(c) (iΣu
φ(2))

ba

Figure 2.7: One-loop diagrams which contribute to the wavefunction renormalization of the Higgs
field φ(2) in the MSSM. For the gauge bosons and gauginos of U(1)Y and SU(2)L we use the
condensed notation vA and λA.

As an example, we calculate diagram (b) with the virtual gaugino running in the
loop,

iΣλA

φ(2) :=

p+k

k

p p

= µε(−
√

2)gATac
A

√
2gTcb

A (−1) Tr

{∫
ddk

(2π)d
PL
i(�p+ ��k)

(p+ k)2
PR

i��k

k2

}

=
4i

16π2
g2
A (Tac

ATcb
A) p2 PL

1

ε
+ UV finite . (2.64)

The results for the divergent parts of the relevant vertex corrections and self-energies
are listed in appendix A.4.3.
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The renormalization constants are determined from the requirements

0 =
∑

i,j

(
Σi
φ(j)

∣∣∣
div

)
+ (p2δZφ(j) − δm2) , (2.65a)

0 =
∑

i

(
Σi
`L

∣∣
div

)
+ �p δZ`LPL = 0 , (2.65b)

0 =
∑

i

(Γiκ)
abcd
gf

∣∣
div

+ δκgf
1
2
(εcdεba + εcaεbd)PL , (2.65c)

which yield

δZ`L,1 = − 1

16π2

[
2Y †

e Ye +
1

2
(ξB − 1)g2

1 +
3

2
(ξW − 1)g2

2

]
, (2.66a)

δZφ(2),1 = − 1

16π2

[
6 Tr(Y †

uYu) +
1

2
(ξB + 1)g2

1 +
3

2
(ξW + 1)g2

2

]
, (2.66b)

δκ,1 = − 1

16π2

[
(ξB + 2)g2

1 κ + 3(ξW + 2)g2
2 κ
]
. (2.66c)

From the relation

βκ = δκ,1 −
1

2
(δZφ,1 + δZ`L,1)

Tκ− 1

2
κ(δZφ,1 + δZ`L,1) , (2.67)

and the insertion of the results from equation (2.66) for the counterterms, we obtain
the result for the 1-loop RGE in the MSSM [67],

16π2βMSSM
κ = (Y †

e Ye)
Tκ + κ(Y †

e Ye) + 6 Tr(Y †
uYu) κ− 2g2

1κ− 6g2
2κ . (2.68)

We thus confirm the existing result of [58,59] by a component field calculation. In
section 2.3.3, where we will calculate the 2-loop β-function using a different method,
we will perform another independent check of the correctness of the 1-loop part.

2.3.3 Calculation of the 2-Loop RGE using Supergraphs

In order to calculate the 2-loop β-function for the lowest dimensional effective neu-
trino mass operator, we use supergraph techniques [74–77]. The calculation of
β-functions is then simplified considerably, since due to the non-renormalization
theorem [78,79] only wavefunction renormalization has to be considered for opera-
tors of the superpotential. As we have seen in section 2.3.2, in a component field
description no naive use can be made of the theorem with respect to loop correc-
tions proportional to the gauge couplings, since SUSY is no longer manifest when
a supergauge, as for example Wess-Zumino-gauge, is fixed. The supergraph tech-
nique, on the other hand, allows to apply the non-renormalization theorem directly,
since SUSY is kept manifest. The β-functions for operators of the superpoten-
tial can then be calculated from the wavefunction renormalization constants alone.
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These operators can be renormalizable or non-renormalizable, since for the latter
the non-renormalization theorem holds as well [80] and since they do not affect the
wavefunction renormalization constants in leading order in an effective field theory
expansion. For the wavefunction renormalization constants, general formulae exist
in the literature. Thus, it is possible to formulate a construction kit for 2-loop beta
functions in N=1 supersymmetric theories, which can be applied to renormalizable
and non-renormalizable operators of the superpotential [81,66].

Formulae for the Wavefunction Renormalization Constants

We will now summarize the results for the 1- and 2-loop wavefunction renormaliza-
tion constants in a general N = 1 supersymmetric gauge theory. The general La-
grangian under consideration is given in equation (2.44). Apart from possible mass
terms, which are omitted for the moment as they do not affect the β-functions, the
renormalizable part of the superpotential can be written as

Wren =
1

6

N F∑
i,j,k=1

λ(ijk) G (i) G (j) G (k) . (2.69)

The brackets indicate symmetrization of the indices of λ and the indices i, j and k
run over all irreps, families and the representation space. The N H superfields G (i)

transform under the irreducible representations (irreps) R
(i)
1 ×· · ·×R(i)

S of the gauge
group G1 ⊗ · · · ⊗ GS. In the following, we will make use of the group-theoretical
constants

c1(G) δAB :=
∑

C,D

fACDfBCD , (2.70a)

c2(R) δab :=
∑

A

(TATA)ab , (2.70b)

`(R) δAB := Tr(TATB) , (2.70c)

with TA being the matrix representations of the generators of a simple group G
corresponding to the irrep R and with the structure constants fABC defined by
[TA,TB] = ifABCTC . `(R) is known as Dynkin index of the irrep R and c2(R) as
the quadratic Casimir. They are related by

c2(R) =
dimG

dimR
`(R) , (2.71)

with dimG and dimR being the dimension of the group G and the irrep R, respec-
tively. Usually, the generators of the irrep N of SU(N) are normalized such that
`(N) = 1

2
holds. c2 can then be obtained via c2(N) = N2−1

2N
while for a U(1) theory

both `(R) and c2(R) are replaced by q2 where q is the U(1) charge of G . For any
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2.3 The Neutrino Mass Operator in the MSSM

non-trivial irrep of SU(N) the invariant c1(N) is given by N . The quadratic Casimir
of the adjoint representation is also given by c2(G) = c1(G) = N for SU(N).

Due to the non-renormalization theorem, the RGEs for operators of the superpo-
tential are governed by the wavefunction renormalization constants for the super-
fields Zij = I ij + δZij, which relate the bare J (i)

B and the renormalized superfields,

J (i)
B =

N K∑
j=1

Z
1
2
ij J (j) . (2.72)

δZij is given at 1-loop by

−δZ(1)
ij =

1

(4π)2

1

ε

[
N K∑
k,`=1

λ∗ik`λjk` − 4
S∑

n=1

g2
n c2

(
R(i)
n

)
δij

]
(2.73)

and at 2-loop by [82]

−δZ(2)
ij =

−2 + ε

(4π)4 ε2

[
4

S∑

n,m=1

g2
n c2
(
R(i)
n

)
g2
m c2

(
R(j)
m

)
δij

+ 2

S∑

n=1

g4
n c2
(
R(i)
n

) (
`n − 3 c1(Gn)

)
δij

+

S∑

n=1

N K∑
k,`=1

g2
n

(
− c2

(
R(i)
n

)
+ 2 c2

(
R(`)
n

))
λ∗ik`λjk`

− 1

2

N K∑
k,`,r,s,t=1

λ∗ik`λ`st λ
∗
rstλjkr

]
. (2.74)

We have introduced `n, which is defined by

`n :=

N K∑
i=1

`
(
R

(i)
n

)

dim
(
R

(i)
n

) . (2.75)

The results have been obtained with regularization via dimensional reduction [83],
modified minimal subtraction [84] and supersymmetric Fermi-Feynman gauge. The
diagrams relevant for the calculation of the wavefunction renormalization constants
for the matter superfield, equation (2.73) and (2.74), are shown in figure 2.8 and
2.9, respectively. We represent chiral superfields as straight double lines while vector
superfields are indicated by wiggly double lines.
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2 The β-Functions for the Effective Neutrino Mass Matrix

(a) (b)

Figure 2.8: One-loop supergraphs which contribute to the LML propagator.

The Wavefunction Renormalization Constants in the MSSM

To calculate β-functions from the wavefunction renormalization constants, it is con-
venient to subdivide the general indices {i, j, . . . } into indices {r, s, . . . } for the
irreducible representations, {f, g, . . .} for the particle families and {a, b, . . . } for the
representation space, i.e. i = (r, f, a). The wavefunction renormalization constants
Zij are diagonal with respect to the representation and the representation space in-
dices and are matrices in flavour-space. We will write Zij = Zr and suppress flavour
and representation space indices.

From equation (2.73), we obtain the 1/ε-coefficients of the relevant wavefunction
renormalization constants at 1-loop,

−(4π)2 Z
(1)N
(2),1

= 6 Tr(Y †
uYu) −

3

5
(gU

1 )2 − 3 g2
2 , (2.76a)

−(4π)2 Z
(1)O
,1 = 2Y †

e Ye −
3

5
(gU

1 )2 − 3 g2
2 , (2.76b)

where the Yukawa matrices as well as Z O are of course matrices in flavour space.
gU
1 is the U(1)Y gauge coupling constant in GUT charge normalization. The 2-loop

contributions can be calculated from equation (2.74) and are given by

−(4π)4

2
Z

(2)N
(2),1

= −3 Tr(Y †
uYdY

†
d Yu) − 9 Tr(Y †

uYuY
†
uYu) +

4

5
(gU

1 )2 Tr(Y †
uYu)

+ 16 g2
3 Tr(Y †

uYu) +
207

100
(gU

1 )4 +
9

10
(gU

1 )2 g2
2 +

15

4
g4
2 , (2.77a)

−(4π)4

2
Z

(2)O
,1 = −2Y †

e YeY
†
e Ye − 3Y †

e Ye Tr(YdY
†
d ) − Y †

e Ye Tr(YeY
†
e )

+
6

5
(gU

1 )2 Y †
e Ye +

207

100
(gU

1 )4 +
9

10
(gU

1 )2 g2
2 +

15

4
g4
2 . (2.77b)

The 2-Loop RGE for the Neutrino Mass Operator in the MSSM

From the wavefunction renormalization constants of equations (2.105) and (2.106),
we can compute the β-functions for the lowest dimensional effective neutrino mass
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2.3 The Neutrino Mass Operator in the MSSM

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2.9: 2-loop supergraphs, which contribute to the PQP propagator. Chiral superfields are
represented as straight double lines while vector-superfields are indicated by wiggly double lines.
A blob denotes the relevant one-particle irreducible graph including any 1-loop counterterm that
may be required [82].

operator up to the 2-loop order using the formula of equation (2.20). We obtain [81]

(4π)4βMSSM
κ = (4π)2

{
(Y †

e Ye)
T κ+ κ Y †

e Ye +

[
6 Tr(Y †

uYu) −
6

5
(gU

1 )2 − 6g2
2

]
κ

}

+

[
− 6 Tr (Y †

uYdY
†
d Yu) − 18 Tr (Y †

uYuY
†
uYu) +

8

5
(gU

1 )2 Tr (Y †
uYu)

+ 32 g2
3 Tr (Y †

uYu) +
207

25
(gU

1 )4 +
18

5
(gU

1 )2 g2
2 + 15 g4

2

]
κ

−
[
2 (Y †

e YeY
†
e Ye)

T +

(
−6

5
(gU

1 )2 + Tr (YeY
†
e ) + 3 Tr (YdY

†
d )

)
(Y †

e Ye)
T

]
κ

− κ

[
2Y †

e YeY
†
e Ye +

(
−6

5
(gU

1 )2 + Tr (YeY
†
e ) + 3 Tr (YdY

†
d )

)
Y †
e Ye

]
. (2.78)

The 1-loop part provides a second, independent confirmation of the existing MSSM
result. The 2-loop accuracy may be required for the neutrino sector since due to
the absence of hadronic uncertainties, high precision measurements of the neutrino
parameters may be achieved in future experiments.
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2.4 The Effective Theories of Minimal See-Saw

Scenarios

We now calculate the RGEs for the running of the effective neutrino mass matrix
in minimal see-saw scenarios, where the SM, 2HDM or MSSM is extended only by
heavy singlet neutrinos with in general non-degenerate masses. All other particles,
which correspond e.g. to the generation of a type II see-saw or to some GUT-model
degrees of freedom, are assumed to be already integrated out of the theory in the
considered energy range. We will refer to the scale where additional new physics has
to be taken into account as MU. In the MSSM, MU might be the GUT scale MGUT.

The minimal see-saw scenarios lead to various effective theories, where only the
light particles propagate while the heavy degrees of freedom are integrated out.
Below the mass scales of the singlets, to which we will refer as see-saw scales, we
obtain the dimension 5 neutrino mass operator. Above the largest see-saw scale,
the neutrino mass operator is realized at tree-level by the diagrams (a) and (b)
of figure 2.10. If these are the only contributions to the effective neutrino mass
operator, this corresponds to the type I see-saw scenario. In addition, there can be
further contributions which, in the minimal scenario under consideration, stem from
integrating out additional heavy particles with masses larger than MU. In left-right
symmetric extensions after B−L breaking, there can be contributions from Higgs
triplets as shown in diagram (c), yielding a type II see-saw scenario.

`fLb

φd

φa

`gLc
N i

(a) i(Γ
(1)
κi

)abcd
gf

`fLb

φd

φa

`gLc

N i

(b) i(Γ
(2)
κi

)abcd
gf

`fLb

φd

`gLc

φa

∆L

(c) i(Γκ∆)abcd
gf

Figure 2.10: Tree-level realizations of the effective neutrino mass operator in type I (diagram (a)

and (b)) or Type II (diagram (a),(b) and (c)) see-saw scenarios. φ and `f
L are SU(2)L-doublets, N i

are singlets and ∆L is a SU(2)L-triplet.

2.4.1 Tree-Level Matching in Type I See-Saw Scenarios

Let us specify the modifications of the Lagrangians due to the appearance of the
heavy neutrinos. In the SM above the highest mass threshold, the singlets N i

R

(i ∈ {1, . . . , nG}) are added to the Lagrangian. In the MSSM we add the singlet
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2.4 The Effective Theories of Minimal See-Saw Scenarios

superfields R Ci, which contain the Weyl spinors NCi and their superpartners ÑCj. In
addition to the kinetic terms, a Majorana mass term as well as the neutrino Yukawa
interaction appear in the Lagrangians

LN,SM = −1

2
N i

RMijN
Cj
R − (Yν)ifN

i
Rφ̃

†`fL + h.c. , (2.79a)

LN,2HDM = −1

2
N i

RMijN
Cj
R −

2∑

k=1

z(k)
ν (Yν)ifN i

R`
f
Lbε

baφ(k)
a + h.c. , (2.79b)

LN,MSSM =
1

2
R CiMij R Cj

∣∣
θθ

+ (Yν)if R Ci S (2)
a (εT )ab T fb ∣∣θθ + h.c. , (2.79c)

where in the considered 2HDMs the variable z
(k)
ν ∈ {0, 1} specifies whether the

singlet couples to φ(1) or φ(2). The expansion of the superfield R Cj is given by

R Cj = ÑCj +
√

2 θNCj + θθ F j
ν . (2.80)

We now consider the matching at one of the see-saw scales Mi with the neutrino
mass operators, which are given by

L
SM
κ =

1

4
κgf `CL

g

cε
cdφd `

f
Lbε

baφa + h.c. , (2.81a)

L
2HDM
κ(ii) =

1

4
κ

(ii)
gf `

C
L

g

cε
cdφ

(i)
d `fLbε

baφ(i)
a + h.c. , (2.81b)

L
MSSM
κ = −1

4
κgf

T g
cε
cd S (2)

d
T f
b ε
ba S (2)

a

∣∣
θθ

+ h.c. . (2.81c)

In the following, we will consider the extended SM explicitly as an example and
will come back to the other models for the results. The diagrammatic form of the
matching condition is

`fLb

φd

φa

`gLc
N i +

`fLb

φd

φa

`gLc

N i

p2�M2
i=

`fLb

φd

φa

`gLc
κi (2.82)

which is equivalent to

i(Γ(1)
κi

)abcdgf + i(Γ(2)
κi

)abcdgf

p2�M2
i= iκgf

1
2
(εcdεba + εcaεbd) . (2.83)

We have used the notation introduced in figure 2.10. The calculation of the tree-level
4-point vertex functions yields (no summation over i)

i(Γ(1)
κi

)abcdgf =
[
−i(Y T

ν )giεcdPL

] i(�p +Mi)

p2 −M2
i

[
−i(Yν)if(εT )abPL

]
, (2.84a)

i(Γ(2)
κi

)abcdgf =
[
−i(Y T

ν )giεcaPL

] i(�p +Mi)

p2 −M2
i

[
−i(Yν)if(εT )dbPL

]
, (2.84b)
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where p is the momentum of N i. In the approximation p2 �M2
i , we thus obtain

i(Γ(1)
κi

)abcdgf + i(Γ(2)
κi

)abcdgf

p2�M2
i= i 2(Y T

ν M
−1
i Yν)gf

1
2
(εcdεba + εcaεbd)PL , (2.85)

which, from the matching requirement of equation (2.92a), implies the see-saw for-
mula for one singlet,

κi = 2(Y T
ν )giM

−1
i (Yν)if (no sum over i) . (2.86)

Note that the Yukawa matrices (Yν)if for fixed i are just rows. After integrating out
at each threshold, we obtain the complete neutrino mass operator by

UWVXWY
Z\[

Z\]
U_^Xa`b =

nG∑

i=1


`fLb

φd

φa

`gLc
κi




. (2.87)

The neutrino mass matrix below the lowest realization scale M1 is now given by the

full type I see-saw formula. In a general basis, it is determined by the matrix
(1)

κ of
the effective neutrino mass operator,

(1)

κ =
∑

i

κi = 2(Y T
ν )gi(M

−1)ij(Yν)jf . (2.88)

2.4.2 Tree-Level Matching in Type II See-Saw Scenarios

In addition to the contributions from integrating out the heavy singlets, there can be
a contribution to the effective neutrino mass operator from a SU(2)L-triplet Higgs.
As we have discussed in chapter 1, in left-right symmetric models the triplet can
obtain a small induced vev after EW symmetry breaking. In the SU(2)L-unbroken
phase, integrating out the triplet generates the dimension 5 neutrino mass operator.
The mass of the triplet, which arises after B−L breaking, depends on the Higgs
potential of the specific model under consideration. We will not go into the details
here and assume that it is heavier than MU. By considering the interaction terms
which are typical for minimal left-right symmetric models, we will demonstrate the
tree-level matching with the neutrino mass operator, which is rather generic and
can be generalized to the desired specific model.

In minimal left-right symmetric models, the coupling of the lepton doublets `fL
to a triplet ∆L of equation (1.24) as well as a coupling of two bi-doublets and the
triplets ∆L and ∆R are present. As usual, L and R denote representations of SU(2)L

and SU(2)R, respectively. After B−L breaking by a vev vR = 〈∆0
R〉, the Higgs

Lagrangian contains a coupling of two Higgs doublets to ∆L,

−1
2
f∆
ij

2∑

i,j=1

Tr(∆†
LΦi∆RΦ†

j)
contains after−−−−−−−−−−→
B−L breaking

−1
2
f∆

12vRφ
(2)
a (τ iε∆i

L)abφ
(2)
b , (2.89)

56



2.4 The Effective Theories of Minimal See-Saw Scenarios

where we have defined Φ1 := Φ and Φ2 := Φ̃ = τ 2Φτ 2 and the doublet φ(2) is
contained in Φ. The diagrammatic form of the matching condition is given by

`fLb

φ
(2)
d

`gLc

φ
(2)
a

∆L

p2�M2
i=

`fLb

φd

φa

`gLc
κ∆ (2.90)

which is equivalent to

i(Γκ∆
)abcdgf

p2�M2
i= iκgf

1
2
(εcdεba + εcaεbd) , (2.91)

using the notation of figure 2.10. We thus obtain

i(Γκ∆
)abcdgf =

[
−i(Y ∆)gf{(τ iε)cb + (τ iε)bc}PL

] i

p2 −M2
∆

×

×
[
−if∆

12vR
1
2
{(τ iε)da + (τ iε)ad}

]

p2�M2
i= −2i (Y ∆)gfM

−2
∆ (f∆vR) 1

2
(εcdεba + εcaεbd)PL , (2.92a)

where p is the momentum of ∆L and M∆ is its mass, which is generated after B−L
breaking. In the last step, we have used the relation τ iabτ

i
cd = 2δadδbc − δabδcd, which

follows from equation (2.62). We finally obtain the contribution κ∆ of the triplet,

κ∆ = −2(Y ∆)gfM
−2
∆ f∆vR , (2.93)

and together with the type I part, the neutrino mass in the type II see-saw scenario
below all mass thresholds is determined by

(1)

κ = κ∆ +
∑

i

κi = −2(Y ∆)gfM
−2
∆ (f∆

12vR) + 2(Y T
ν )gi(M

−1)ij(Yν)jf . (2.94)

2.4.3 The Effective Theories

As we have described above, in the intermediate region between the (n−1)th and
the nth threshold, the singlets {Nn

R, . . . , N
nG

R } or singlet superfields { c Cn, . . . , c CnG}
are integrated out, leading to effective operators of the type (2.81a) with coupling

constant
(n)

κgf . In this region, the Yukawa matrix for the remaining singlet neutrinos

57



2 The β-Functions for the Effective Neutrino Mass Matrix

is a (n−1) × nF matrix and will be referred to as
(n)

Yν,

Yν →




(Yν)1,1 · · · (Yν)1,nF

...
...

(Yν)n−1,1 · · · (Yν)n−1,nF

0 · · · 0
...

...

0 · · · 0








=:
(n)

Yν ,





nG−n+1 heavy, sterile
neutrinos integrated out .

(2.95)

The tree-level matching condition for the effective coupling constant at the threshold

corresponding to the largest eigenvalue Mn of
(n+1)

M is then given by

(n)

κgf
∣∣
Mn

:=
(n+1)

κgf
∣∣
Mn

+ 2
( (n+1)

Yν
T )

gnM
−1
n

( (n+1)

Yν
)
nf

∣∣
Mn

(no sum over n). (2.96)

(1)

κgf is the neutrino mass operator below the thresholds, which has been called κgf
in the previous chapter.

In the context of the minimal see-saw scenarios, κgf denotes the effective neutrino
mass operator above the mass thresholds of the singlets, which stems from realization
mechanisms at energy scales above MU. For example, in the case of a type II see-saw
mechanism, κgf |MU

can be the contribution from the Higgs triplet

κgf
∣∣
MU

= (κ∆)gf
∣∣
MU

. (2.97)

The various effective theories and the nomenclature for the couplings are illustrated
in figure 2.11. We now calculate the RGEs for the neutrino Yukawa coupling matrix,
the mass matrix of the singlets and for the neutrino mass operator in the various
effective theories.

2.4.4 Component-Field Calculation of the RGEs

The definition and calculation of the counterterms is analogous to the previous
sections, except for the effects of the additional singlets. The counterterms for the
mass matrix and the Yukawa coupling matrix of the sterile neutrinos as well as for
the effective vertex in the extended SM are

(n)

Cmass(N) = −1

2
N i

R δ
(n)

Mij N
Cj
R + h.c. , (2.98a)

(n)

CYν = −
(
δ

(n)

Yν
)
ifN

i
R φ̃

†`fL + h.c. , (2.98b)
(n)

Cκ =
1

4
δ
(n)

κgf `CL
g

cε
cdφd `

f
Lbε

baφa + h.c. , (2.98c)
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Nν

−

nG−

1

µ
|
M1

|
M2

|
M3

|
MnG

. . .

EFT 1

(1)

κ , . . .

EFT 2

(2)

κ ,
(2)

Yν , . . .

EFT 3

(3)

κ ,
(3)

Yν , . . .

“Full”
Theory

κ , Yν , . . .

Figure 2.11: Illustration of the ranges of the different effective theories in minimal see-saw scenarios,
where besides the nG gauge singlets all additional particles have masses above the considered energy
range. The effective field theories (EFTs) emerge from successively integrating out the heavy fields.
“EFT 1” corresponds to the SM, 2HDM or MSSM with an additional dimension 5 operator for
neutrino masses.

where the sums over i and j run from 1 to n−1. The wavefunction renormalization

constants below the nth threshold are denoted by
(n)

Z. In the MSSM and the 2HDMs,
we use analogous definitions.

Calculation of the Counterterms

At 1-loop order, the singlets do not contribute to δκ. They enter the RGEs only
via the wavefunction renormalization constants. The additional diagrams, which
contribute to the self-energies of the Higgs and the lepton doublets, are shown in
figure 2.12 in diagram (a) and (b). The diagrams relevant for the wavefunction
renormalization of the singlets themselves are given in diagram (c) and (d) of figure
2.12. Finally, we obtain the following renormalization constants in the extended
SM,

δ
(n)

ZSM
`L

= − 1

16π2

[
(n)

Y †
ν

(n)

Yν + Y †
e Ye +

1

2
ξBg

2
1 +

3

2
ξWg

2
2

]
1

ε
, (2.99a)

δ
(n)

ZSM
φ = − 1

16π2

[
2 Tr

((n)

Y †
ν

(n)

Yν
)

+ 2 Tr(Y †
e Ye) + 6 Tr(Y †

uYu) + 6 Tr(Y †
d Yd)

+
1

2
(ξB − 3)g2

1 +
3

2
(ξW − 3)g2

2

]
1

ε
, (2.99b)
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φa

N i

`fLc

φb

(a) i(ΣN
φ )ba

`fLa
N i

φc

`gLb

(b) i(ΣN
`L

)ba
gf

N i

φa

`hLb

N j

(c) i(ΣN(R))ji

N i

φa

`hLb

N j

(d) i(ΣN(L))ji

Figure 2.12: Additional 1-loop diagrams which contribute to the self-energies of the Higgs (diagram
(a)) and the lepton doublets (diagram (b)) in the SM extended by heavy singlets and the diagrams
for the wavefunction renormalization of the singlets (diagrams (c) and (d)).

δ
(n)

ZSM
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16π2

[
2

(n)
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(n)

Y †
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]
1
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. (2.99c)

δ
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1
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2
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2

(n)
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ε
, (2.99d)

δ
(n)

MSM = 0 , (2.99e)

δ
(n)

κ SM = − 1

16π2

[
2 (Y †

e Ye)
T (n)

κ+ 2
(n)

κ (Y †
e Ye) − λ
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κ

+
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(2ξB − 3)g2

1

(n)

κ+
3

2
(2ξW − 1)g2

2

(n)

κ

]
1

ε
. (2.99f)

In the extended 2HDMs, we find at one loop

δ
(n)

Z2HDM
`L

= − 1

16π2

[
(n)

Y †
ν

(n)

Yν + Y †
e Ye +

1

2
ξBg

2
1 +

3

2
ξWg

2
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]
1

ε
, (2.100a)

δ
(n)

Z2HDM
φ(i) = − 1

16π2

[
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ν Tr
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Y †
ν
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Yν
)

+ 2 δ1i Tr(Y †
e Ye)
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u Tr(Y †
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d Yd)

+
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2
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δ
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, (2.100c)
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M2HDM = 0 , (2.100e)
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. (2.100f)

The renormalization constants in the MSSM extended by heavy singlets are
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Computation of the RGEs in Minimal See-Saw Scenarios

Using the counterterms calculated above, we can now compute the RGEs. Note that
above the largest see-saw scale, the superscript (n) is omitted. Below the lowest see-
saw scale, the neutrino Yukawa couplings and the mass matrix of the singlets are
set to zero. In the extended SM, we thus obtain [85]
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The RGEs in the 2HDMs are given by
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In the minimal see-saw extension of the MSSM, we find [85]
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The RG evolution of the effective neutrino mass matrix in such scenarios will be
investigated in section 3.3. The RGEs for the remaining parameters are listed in
appendix A.5.
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2.4.5 Calculation of the RGEs at 2-Loop using Supergraphs

We now apply the supergraph method of section 2.3.3 to calculate the 2-loop β-
functions for the effective neutrino mass operator, the neutrino Yukawa coupling
matrix and the mass matrix of the heavy singlet superfields in the minimal see-saw
scenarios.

The Wavefunction Renormalization Constants

We obtain the following 1/ε-coefficients of the relevant wavefunction renormalization
constants at one loop:
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Note that GUT charge normalization has been used for U(1)Y. The 2-loop contri-
butions can be calculated from equation (2.74) and are given by
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Computation of the 2-Loop RGEs

We now evaluate the 2-loop β-functions, which govern the energy scale dependence of
the effective neutrino mass matrix in the minimal see-saw scenarios. This can easily
be done using the wavefunction renormalization constants and equation (2.20). The
β-function for a physical quantity Q at two loop can be written as

µ
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where
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β
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Q is the 1-loop part and

(n)

β
(2)
Q the 2-loop part. The calculation of the 1-loop

part confirms the component-field results of equation (2.104). In addition, for the
2-loop part of the β-functions we obtain
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(4π)4
(n)

β
(2)
M =

(n)

M

[
− 2

(n)

Y ∗
ν Y

T
e Y

∗
e

(n)

Y T
ν − 2

(n)

Y ∗
ν

(n)

Y T
ν

(n)

Y ∗
ν

(n)

Y T
ν − 6

(n)

Y ∗
ν

(n)

Y T
ν Tr(YuY

†
u )

− 2
(n)

Y ∗
ν

(n)

Y T
ν Tr(

(n)

Yν
(n)

Y †
ν ) +

6

5
(gU

1 )2
(n)

Y ∗
ν

(n)

Y T
ν + 6 g2

2

(n)

Y ∗
ν

(n)

Y T
ν

]

+

[
− 2

(n)

YνY
†
e Ye

(n)

Y †
ν − 2

(n)

Yν
(n)

Y †
ν

(n)

Yν
(n)

Y †
ν − 6

(n)

Yν
(n)

Y †
ν Tr(YuY

†
u ) − 2

(n)

Yν
(n)

Y †
ν Tr(

(n)

Yν
(n)

Y †
ν )

+
6

5
(gU

1 )2
(n)

Yν
(n)

Y †
ν + 6 g2

2

(n)

Yν
(n)

Y †
ν

]
(n)

M . (2.108c)

The 2-loop RGEs for the remaining Yukawa couplings, which contain additional
terms proportional to the neutrino Yukawa couplings in the minimal see-saw exten-
sion of the MSSM, are calculated in [81] and summarized in appendix A.5.3.
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3 Analysis of Running Neutrino

Masses, Mixings and CP Phases

In the previous chapter, we have calculated the β-functions which are required to
study the RG running of the effective neutrino mass matrix. It has to be taken
into account whenever neutrino masses, mixings and CP phases at different energy
scales are compared. In order to obtain the running of the physical parameters,
there are two possibilities. One is to calculate the running of the neutrino mass
matrix and of all the other quantities of the theory and to extract the neutrino
parameters afterwards. We will use this “run and diagonalize” procedure for the
numerical studies in this work. The other possibility is to “diagonalize and run”,
which means to extract the parameters first and to derive differential equations for
their RG evolutions. We will use this technique to derive analytical formulae for the
running parameters.

For the analysis, we will first consider the description of neutrino masses by the
lowest dimensional effective neutrino mass operator. There exists a large number of
studies which have investigated the running parameters numerically (e.g. [86–105]).
Exact analytical formulae are given in [90], where CP conservation is assumed, and in
[91] for the general case. However, most of the expressions in [91] become rather long
if one tries to write them explicitly in terms of the mixing parameters, in particular
for non-vanishing CP phases. In order to understand the RG effects in the presence
of CP phases, we derive compact analytical approximations in an expansion in the
small mixing angle θ13. To check and to illustrate the results, we compare them
to numerical solutions of the RGEs. We furthermore investigate whether the RG
corrections can be accessible to future precision experiments.

As we have seen in section 1.4, neutrino masses naturally appear in left-right
symmetric extensions of the SM. Predictions for them might arise for example from
models defined at the GUT scale. Particularly interesting in this context is the type
I see-saw scenario with three generations of singlets. In this case we have to use
the RGEs for the effective theories with the heavy singlets partly integrated out,
which are derived in section 2.4. We investigate the possibility of generating the
experimentally observed large but non-maximal solar mixing of the LMA solution
by RG running in this scenario from vanishing as well as from maximal mixing at
high energy.
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3.1 Analytical Results in the Neutrino Mass Operator

Approach

We will now derive analytical approximations for the running of neutrino masses,
mixing angles and CP phases in an expansion in θ13, where the formulae are pretty
compact even in the presence of CP phases. We compare them to the numerical
solutions of the coupled system of RGEs in the MSSM. For the numerical examples,
we assume that below the SUSY breaking scale, the theory is effectively the SM.

3.1.1 Derivation of Analytical Formulae for the Running

Parameters

The energy dependence of the effective neutrino mass matrix below the scale where
the operator is generated (which we will call M1 in the following) is described by its
RGE. We will restrict ourselves to the SM and the MSSM in this section, where at
the one-loop level the RGEs have the form
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e Ye)
T κ+ C κ (Y †

e Ye) + ακ , (3.1)

with t := ln(µ/µ0). The coefficient C is defined by
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5
(gU

1 )2 − 6g2
2 . (3.3b)

We are interested in the running of the masses, which are proportional to the eigen-
values of κ, and of the mixing angles and physical phases of the MNS matrix UMNS

[106]. The parametrization we use is explained in appendix A.1.
In order to derive the analytical formulae for the running parameters, we follow

the method of [107], which leads to a differential equation for the energy scale
dependence of the MNS matrix. For the RGEs, we use the notation of equation
(3.1) and introduce the abbreviation C (Y †

e Ye) =: P . We further choose the basis
where the charged lepton Yukawa matrix is diagonal. Since it remains diagonal
during its RG evolution, the running of the MNS matrix is given by the running of
the diagonalization matrix of κ, and the relation

UMNS(t)T κ(t)UMNS(t) = D(t) =
4

v2
EW

diag
(
m1(t), m2(t), m3(t)

)
(3.4)
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holds at any energy scale. To describe the evolution of UMNS, we introduce a matrix
T which satisfies

d

dt
UMNS = UMNS T . (3.5)

Clearly, T has to be anti-Hermitian, as can easily be seen by calculating d
dt

(U †
MNSUMNS).

From equation (3.4), we obtain
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where a dot over a quantity denotes differentiation with respect to t. Multiplying
with UT

MNS from the left and with UMNS from the right yields
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Inserting equation (3.5), we find
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where the anti-Hermiticity of T was used. Since the left-hand side of this equation is
diagonal and real per definition, the right-hand side has to possess these properties
as well,
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ii)mi , (3.10)

where we do not sum over the index i. The second bracket is purely imaginary,
hence it has to cancel with the imaginary part of the first one,
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and we further confirm eq. (15) of [91], which translates with our conventions to
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By comparing the off-diagonal parts of (3.9) we find
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Adding and subtracting this equation and its complex conjugate, we obtain for i 6= j

16π2 ReTij = −
mj ReP ′

ji +mi ReP ′
ij

mi −mj
, (3.14a)

16π2 ImTij = −
mj ImP ′

ji +mi ImP ′
ij

mi +mj
. (3.14b)

Since P is Hermitian and α is real, the anti-Hermitian matrix T , which governs the
energy scale dependence of the MNS matrix, is given by

Tij =


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− 1
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(3.15)

where P ′ defined in equation (3.8) is Hermitian as well and where we have used
ReP ′

ji = ReP ′ ∗
ij = ReP ′

ij and an analogous relation for ImP ′
ij.

In order to obtain the RGEs for the mixing angles and phases, we use equation
(3.5) in the form

U †
MNS U̇MNS = T . (3.16)

Inserting the standard parametrization (A.23), we can express the left-hand side of
(3.16) in terms of the mixing parameters and their derivatives. Now we can solve for
the derivatives of the mixing parameters. Due to the separation of the evolution of
the mass eigenvalues in equation (3.12), we have reduced the amount of parameters
from 12 to 9. The discussion so far is very similar to the one of [91]. There, the RG
evolutions of the mixing parameters are expressed in terms of the mixing matrix
elements and P ′. In order to obtain rather short explicit analytic formulae, which
are useful for deriving analytic approximations, we first label the mixing parameters
as

{ξk} = {θ12, θ13, θ23, δ, δe, δµ, δτ , ϕ1, ϕ2} (3.17)

and observe that the left-hand side of (3.16) is linear in ξ̇k. Then, by solving the
corresponding system of linear equations, we express the derivatives of the mix-
ing parameters by the mixing parameters, the mass eigenvalues and the Yukawa
couplings.

The resulting formulae are still too long to be presented here. We therefore
perform an expansion in θ13, which yields compact expressions [108]. They will be
presented in the following sections. In addition, in the analytical expressions for the
slope of the mixing angles, we will neglect ye and yµ against yτ and further introduce
the abbreviation

ζ :=
∆m2

sol

∆m2
atm

, (3.18)
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whose LMA best-fit value is about 0.03. In many cases, the length of the formulae
can be further reduced by neglecting ζ against 1 without losing much accuracy. We
furthermore define mi(t) := v2

EW κi(t)/4 with vEW = 246 GeV in the SM or mi(t) :=
v2
u κi(t)/4 with vu = 246 GeV · sin β in the MSSM and, as usual, ∆m2

sol := m2
2 −m2

1

and ∆m2
atm := m2

3 − m2
2. Note that our formulae cannot be applied if one of the

mass squared differences vanishes.

3.1.2 The Running of the Lepton Mixing Angles

With the conventions described above, we obtain the following analytical expressions
for the mixing angles:

θ̇12 = − Cy2
τ

32π2
sin 2θ12 s

2
23

|m1 e
iϕ1 +m2 e

iϕ2 |2
∆m2

sol

+ O(θ13) , (3.19)

θ̇13 =
Cy2

τ

32π2
sin 2θ12 sin 2θ23

m3

∆m2
atm (1 + ζ)

×

× [m1 cos(ϕ1 − δ) − (1 + ζ)m2 cos(ϕ2 − δ) − ζm3 cos δ]

+O(θ13) , (3.20)

θ̇23 = − Cy2
τ

32π2
sin 2θ23

1

∆m2
atm

[
c212 |m2 e

iϕ2 +m3|2 + s2
12

|m1 e
iϕ1 +m3|2
1 + ζ

]

+ O(θ13) . (3.21)

Note that in order to apply equation (3.20) to the case θ13 = 0, where δ is undefined,
the analytic continuation of the latter, which will be given in equation (3.32), has
to be inserted.

Discussion for θ12

We will now compare the analytical results to the ones obtained by the numerical
evolution of the mixing angles, starting with the best-fit values at low energy. For
the case of θ12, it is shown in figure 3.1. We see that the RG effects are rather strong
in the case of quasi-degenerate neutrinos and vanishing CP phases, since the factor
(m1 +m2)/∆m2

sol is very large. From the analytical formulae, we expect that a non-
vanishing ϕ1 − ϕ2 leads to a suppression of the running. It should be maximal for
|ϕ1−ϕ2| = 180◦, which has also been observed in earlier studies, e.g. [93,94,98]. The
dependence of the RG evolution on |ϕ1 − ϕ2| obtained numerically is in agreement
with this expectation. The O(θ13)-terms can also have interesting effects on the
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Figure 3.1: RG evolution of θ12 in the MSSM with tan β = 50, a normal mass hierarchy and
m1 = 0.1 eV. The dark-gray region shows the evolution with best-fit values for the neutrino
parameters, θ13 ∈ [0◦, 9◦] and all CP phases equal to zero. The medium-gray regions show the
evolution for |ϕ1 − ϕ2| = 0◦, |ϕ1 − ϕ2| ∈ {90◦, 270◦} and |ϕ1 − ϕ2| = 180◦. They emerge from
varying θ13 ∈ [0◦, 9◦] and δ ∈ {0◦, 90◦, 180◦, 270◦}. The light-gray regions can be reached by
choosing specific values for the CP phases different from the ones listed above. The dashed line
shows the RG evolution with |ϕ1 − ϕ2| = 0, θ13 = 9◦ and δ = 180◦. Note that for the numerics
we use the convention where θ12 is restricted to the interval [0◦, 45◦], so that the angle increases
again after reaching 0. The dotted line shows the evolution with |ϕ1 − ϕ2| = 90◦ and θ13 = 0◦.

running of θ12. The dominant contribution to the next-to-leading term is given by

Υθ12 =
Cy2

τ

32π2

m2 +m1

m2 −m1
sin 2θ23 cos

(
ϕ1 − ϕ2

2

)
×

×
[
cos(2θ12) cos δ cos

(
ϕ1 − ϕ2

2

)
+ sin δ sin

(
ϕ1 − ϕ2

2

)]
· θ13 . (3.22)

The largest running, where θ12 can even become zero, occurs for θ13 as large as
experimentally allowed (≈ 9◦), δ = π and ϕ1 − ϕ2 = 0. In this case the leading
and the next-to-leading term add up constructively. It is also interesting to observe
that, due to O(θ13)-effects, θ12 can run to slightly larger values. The damping due
to the Majorana phases is maximal in this case, which almost eliminates the leading
term. Then, the running comes mainly from the next-to-leading term (3.22).

Discussion for θ13 and θ23

An example for the running of the mixing angles θ13 and θ23 is shown in figure 3.2.
As already pointed out, in order to apply the formula for θ̇13 to the case θ13 = 0,
where δ is undefined, the analytic continuation of the latter has to be inserted. It will
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Figure 3.2: RG evolution of θ13 and θ23 in the MSSM with tan β = 50, a normal mass hierarchy
and m1 = 0.1 eV. The dark-gray region shows the evolution with best-fit values for the neutrino
parameters, θ13 ∈ [0◦, 9◦] and all CP phases equal to zero. For the θ23 case, we just obtain a thick
gray line at the bottom of the gray region. The light-gray regions show the evolution which is
possible if arbitrary CP phases are allowed.

be given in equation (3.32) in section 3.1.4, where the phases are treated in detail.
The comparison with the numerical results in figure 3.2 shows that above MSUSY the
mixing angles run linearly on a logarithmic scale to a good approximation. Thus,
using equation (3.20) with a constant right-hand side yields pretty accurate results.
Interestingly, for the running of θ13, cancellations between the first two terms in
the second line of equation (3.20) appear for ϕ1 = ϕ2, in agreement with earlier
studies, for instance [93,102], where it was discussed for the CP-conserving case
ϕ1 = ϕ2 = π. With ϕ1 6= ϕ2, significant RG effects can be expected for nearly
degenerate masses. This is confirmed by the light-gray region in figure 3.2. We
will discuss the RG changes of θ13 and θ23 in more detail in section 3.2, where we
investigate their implications for future precision measurements.

3.1.3 The Running of the Neutrino Masses

The result for the neutrino masses are short enough to present them in the approx-
imation ye = yµ = 0 but for arbitrary θ13. They are given by

16π2 ṁ1 =
[
α + Cy2

τ

(
2s2

12 s
2
23 +X1

)]
m1 , (3.23a)

16π2 ṁ2 =
[
α + Cy2

τ

(
2c212 s

2
23 +X2

)]
m2 , (3.23b)

16π2 ṁ3 =
[
α + 2Cy2

τ c
2
13 c

2
23

]
m3 , (3.23c)
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where X1 and X2 contain terms proportional to sin θ13,

X1 = −s13 sin 2θ12 sin 2θ23 cos δ + 2s2
13 c

2
12 c

2
23 , (3.24a)

X2 = s13 sin 2θ12 sin 2θ23 cos δ + 2s2
13 s

2
12 c

2
23 . (3.24b)

Since only the mass squared differences have been measured so far, we also explicitly
give the RGEs for the mass squared differences,

8π2 d

dt
∆m2

sol = α∆m2
sol + Cy2

τ

[
2s2

23

(
m2

2 c
2
12 −m2

1 s
2
12

)
+Xsol

]
, (3.25a)

8π2 d

dt
∆m2

atm = α∆m2
atm + Cy2

τ

[
2m2

3 c
2
13 c

2
23 − 2m2

2 c
2
12 s

2
23 +Xatm

]
, (3.25b)

where

Xsol =
(
m2

1 +m2
2

)
s13 sin 2θ12 sin 2θ23 cos δ

+ 2s2
13 c

2
23

(
m2

2 s
2
12 −m2

1 c
2
12

)
, (3.26a)

Xatm = −m2
2 s13 sin 2θ12 sin 2θ23 cos δ − 2m2

2 s
2
13 s

2
12 c

2
23 . (3.26b)

Discussion of the Running Neutrino Mass Scale

For the neutrino mass scale, at present there exist only upper bounds as discussed
in section 1.1.3. In order to use them for constraining models of neutrino masses
defined at high energies, the RG evolution of these bounds has to be computed.
From the formulae we see that the running of the mass eigenvalues is significant
even in the SM or for strongly hierarchical neutrino masses due to the factor α
in the RGEs (3.23). Furthermore, the evolution is not directly dependent on the
Majorana phases. This can be understood from equation (3.12) and

P ′
ii =

∑

jk

(U †)ijPjkUki =
∑

jk

U∗
jiPjδjkUki =

∑

j

|Uji|2Pj , (3.27)

which shows that only the moduli of the elements of the MNS matrix enter into ṁi.
Note that we have chosen a basis where P = C (Y †

e Ye) is diagonal. Besides, ṁ3 does
not depend on δ, since only the moduli of the elements of the third column of the
MNS matrix are relevant in this case. There is of course an indirect dependence on
the phases, as these influence the running of the mixing angles.

Since the part which depends on the mixing parameters is proportional to y2
τ ,

apart from the MSSM with large tan β the running of the mass eigenvalues is ap-
proximately independent of the mixings and phases. In the SM, the Higgs mass mH

influences the running via the self-coupling λ – the heavier the Higgs, the larger
the RG effects. Thus, in many cases the running is approximately given by a com-
mon scaling of the mass eigenvalues [98], which is obtained by neglecting yτ and
integrating equation (3.23),

mi(t) ≈ exp

[
1

16π2

∫ t

t0

dτ α(τ)

]
mi(t0) =: s(t, t0)mi(t0) . (3.28)
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Figure 3.3: Scaling of the masses under the renormalization group in the SM and MSSM. The
mixing parameters are chosen to be the LMA best-fit values (cf. Tab. 1.3), but they influence the
running only marginally. We further used a SUSY-breaking scale MSUSY = 1 TeV. The upper
curves show the evolution in the SM for mH = 114 GeV, mH = 165 GeV and mH = 180 GeV, the
lower ones correspond to the MSSM for tan β = 10 and tan β = 50 with mH = 120 GeV. These
plots apply for all mass eigenvalues, except for large tan β in the MSSM where the scaling of m3

is shown (using zero phases). Note also that a different SUSY-breaking scale changes the scaling
factor in the MSSM.

The numerical evaluation of s in the SM and the MSSM is shown in figure 3.3
for some values of mH and tan β, respectively. The three SM curves correspond to
different Higgs masses in the current experimentally allowed region at 95% confi-
dence level, 114 GeV . mH . 200 GeV [109]. mH = 180 GeV is the value for which
the self-coupling λ stays perturbative up to 1016 GeV, and mH = 165 GeV is the
minimal mass for which λ is positive up to 1016 GeV, so that the vacuum is stable
in this region.1 In the MSSM, we choose mH = 120 GeV for the light Higgs mass,
since the allowed range is further restricted by the upper limit at about 130 GeV
here, and since it influences the RG scaling only marginally as long as MSUSY and
MZ differ only by a few orders of magnitude. Moreover, further uncertainties due
to threshold corrections and the unknown value of the SUSY-breaking scale can be
equally important as the one due to the unknown Higgs mass. It turns out that the
RG enhancement of the masses is smallest if tan β ≈ 10.

1 In some models (see, e.g. [50] for a viable model) λ can be larger, in particular if M1 � 1016 GeV.
A negative value of λ at high energy implies a metastable vacuum.
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It is interesting to note that the running of the bound on the effective mass
〈mν〉 = (mν)11 = |

∑
i(UMNS)2

1imi| from neutrinoless double beta decay experiments
(see section 1.1.3) is determined by

16π2 d

dt
〈mν〉 =

(
2C y2

e + α
)
〈mν〉 , (3.29)

as can be seen directly from equation (3.1). Compared to α, the electron Yukawa
coupling ye is tiny and can be neglected. Thus, to a good approximation, 〈mν〉
scales like one of the mass eigenvalues in (3.28) under the RG evolution.

Discussion for ∆m2

sol

We now consider the RGE for the solar mass squared difference, given in equation
(3.25a). As described above, in the SM and the MSSM with small tan β, the run-
ning is due to the common scaling of the masses described in the previous section
and thus approximately independent of the mixing parameters. For large tanβ and
nearly degenerate masses, the influence of CP phases, in particular the Dirac phase,
is crucial. The numerical example in figure 3.4 confirms this expectation and fur-
thermore shows that ∆m2

sol runs dramatically. On the one hand, it can grow by
more than an order of magnitude. On the other hand, it can run to 0 at energy
scales slightly beyond the maximum of 1013 GeV shown in the figure. For large tanβ,
∆m2

sol � m2
1 and not too small θ13, the first term in Xsol is essential for understand-

ing these effects, since it is proportional to the sum of the masses squared rather
than the difference. For δ = π and θ13 near the CHOOZ bound, its sign is negative
and its absolute value maximal, which causes the evolution of ∆m2

sol towards zero.
For δ = 0, the sign becomes positive, so that the running towards larger values is
enhanced, which explains the upper boundary of the light-gray region in figure 3.4.

Discussion for ∆m2

atm

The RGE for the running of ∆m2
atm is given in equation (3.25b). From the numerical

example in figure 3.5, we see that the evolution of ∆m2
atm can be damped by the

phases, but not significantly enhanced. Analogously to the case of the solar mass
squared difference, the maximal damping is mainly due to the first term in Xatm,
so that it occurs for large θ13 and δ = 0. Compared to the case of the solar mass
squared difference, the influence of δ is generically smaller here, because ∆m2

atm/m
2
i

is larger and because the phase-independent terms in the RGE do not nearly cancel.
Depending on the CP phases, ∆m2

atm grows by about 50% – 95%. Note that though
the mass squared differences do not explicitly depend on the Majorana phases, their
influence on the running of the other parameters can have significant effects here.
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Figure 3.4: RG evolution of ∆m2
sol in the MSSM with tan β = 50, a normal mass hierarchy

and m1 = 0.1 eV. The dark-gray region shows the evolution with LMA best-fit values for the
neutrino parameters, θ13 ∈ [0◦, 9◦] and all CP phases equal to zero. The light-gray regions show
the evolution which is possible if arbitrary CP phases are allowed.
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Figure 3.5: RG evolution of ∆m2
atm in the MSSM with the same input parameters as in figure 3.4.
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3.1.4 The Running of the Dirac CP Phase

Like the masses and mixing angles, the CP phases depend on the energy scale as
well. For the RGE of the Dirac CP phase, we obtain in an expansion in θ13,

δ̇ =
Cy2

τ

32π2

δ(−1)

θ13
+
Cy2

τ

8π2
δ(0) + O(θ13) , (3.30)

where δ(−1) and δ(0) are given by

δ(−1) = sin 2θ12 sin 2θ23
m3

∆m2
atm (1 + ζ)

×

× [m1 sin(ϕ1 − δ) − (1 + ζ)m2 sin(ϕ2 − δ) + ζm3 sin δ] , (3.31a)

δ(0) =
m1m2 s

2
23 sin(ϕ1 − ϕ2)

∆m2
sol

+m3 s
2
12

[
m1 cos 2θ23 sinϕ1

∆m2
atm(1 + ζ)

+
m2 c

2
23 sin(2δ − ϕ2)

∆m2
atm

]

+m3 c
2
12

[
m1 c

2
23 sin(2δ − ϕ1)

∆m2
atm(1 + ζ)

+
m2 cos 2θ23 sinϕ2

∆m2
atm

]
. (3.31b)

We see that the limit θ13 → 0 is dangerous, because in this case the RGE (3.30)
diverges. However, we can show that δ̇ remains well-defined: The derivative of the
MNS matrix UMNS is given by (3.5), where UMNS and T are continuous functions
of t = ln(µ/µ0). This implies that the matrix element (UMNS)13(t) describes a
continuously differentiable curve in the complex plane. Consequently, θ13 and δ are
continuously differentiable even for θ13 = 0, if δ is extended continuously at this
point. Note that restricting the parameters to certain ranges can nevertheless result
in discontinuities. For example, if the RG evolution causes θ13 to change its sign
and if we demand 0 ≤ θ13 <

π
2
, then there will be a kink in the evolution of θ13 and

δ will jump by π. However, even in the presence of such artificial discontinuities
there must still be finite one-sided limits for δ and δ̇ as θ13 approaches 0. The limit
for δ is determined by the requirement that δ̇ remains finite. Then the divergence
of θ−1

13 has to be canceled by δ(−1). For ϕ1 = ϕ2 = 0, this obviously implies δ = 0 or
δ = π. In the general case, a short calculation yields

cot δ =
m1 cosϕ1 − (1 + ζ)m2 cosϕ2 − ζm3

m1 sinϕ1 − (1 + ζ)m2 sinϕ2
. (3.32)

Due to the periodicity of cot, there are two solutions differing by π, corresponding
to the different limits on the two sides of a node of θ13. We will use this formula in
section 3.2.1, where we study the corrections to θ13 = 0◦ by RG running.

The running of the Dirac phase δ can have interesting effects. Consider for exam-
ple the case where δ vanishes at some energy scale. Then a non-zero δ is produced
by RG effects, since some of the terms in the RGE (3.30) do not vanish for δ → 0.
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Figure 3.6: Radiative generation of a Dirac phase in the MSSM with tan β = 30 and a normal
hierarchy. Here the running is from high to low energy, i.e. the boundary conditions are given
at the see-saw scale. δ is zero there but large at MZ . The other starting values are θ12 = 18◦,
θ13 ∈ {1◦, 3◦, 6◦}, θ23 = 34◦, m1 = 0.17 eV, ∆m2

atm = 3.8 · 10−3 eV2, ∆m2
sol = 5.7 · 10−4 eV2,

ϕ1 = 16◦, ϕ2 = 140◦.

This radiative generation of a Dirac phase by Majorana phases has previously been
observed in [91]. An example is shown in figure 3.6. Obviously, the effect is en-
hanced for small θ13 because of the factor θ−1

13 in the first term of equation (3.30). If
ϕ1 = ϕ2, this contribution is suppressed since the parts proportional to m1 and m2

nearly cancel. Note that in this case the first term of δ(0) leads to a suppression of
the next-to-leading order contribution as well.

3.1.5 The Running of the Majorana Phases

The RGEs for the evolution of the physical Majorana phases are given by

ϕ̇1 =
Cy2

τ

4π2

{
m3 cos 2θ23

m1s
2
12 sinϕ1 + (1 + ζ)m2 c

2
12 sinϕ2

∆m2
atm (1 + ζ)

+
m1m2 c

2
12 s

2
23 sin(ϕ1 − ϕ2)

∆m2
sol

}
+ O(θ13) , (3.33)

ϕ̇2 =
Cy2

τ

4π2

{
m3 cos 2θ23

m1s
2
12 sinϕ1 + (1 + ζ)m2 c

2
12 sinϕ2

∆m2
atm (1 + ζ)

+
m1m2 s

2
12 s

2
23 sin(ϕ1 − ϕ2)

∆m2
sol

}
+ O(θ13) . (3.34)

Note that singularities can appear in the O(θ13)-terms at points in parameter space
where the phases are not well-defined.
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Figure 3.7: Running of the Majorana phases in the MSSM with a normal hierarchy, tan β = 50,
ϕ1 = 75◦, ϕ2 = 70◦, θ13 = 0, m1 = 0.15 eV, and best-fit values for the mass squared differences,
θ12 and θ23 at MZ . RG effects are substantial, and the difference ϕ1 −ϕ2 increases with increasing
energy.

As we have seen, the Majorana phases can have a strong influence on the running
of the other parameters. While the RGEs for the Majorana phases are somewhat
lengthy, there is a simple expression for the running of their difference for small θ13,

ϕ̇1 − ϕ̇2 =
Cy2

τ

4π2

m1m2

∆m2
sol

cos 2θ12 sin2 θ23 sin(ϕ1 − ϕ2) + O(θ13) . (3.35)

It shows that for θ13 = 0, the phases remain equal, if they are equal at some scale.
Obviously, ϕ̇1 − ϕ̇2 > 0 for ϕ1 > ϕ2 and vice versa, which means that the difference
between the phases tends to increase with increasing energy. In other words, a large
difference at the see-saw scale becomes smaller at low energy. An example is shown
in figure 3.7.

3.1.6 Estimating the Generic Size of the RG Effects

From the analytical formulae for the running of the neutrino masses, mixings and
phases, we can extract generic enhancement and suppression factors for the RG
evolution. They depend on whether the mass scheme is hierarchical, partially de-
generate or nearly degenerate. We have listed these factors in the approximation
of small θ13 in table 3.1. Note that as we have seen, they can be compensated by
cancellations due to a special alignment of the phases.

Table 3.1 is very useful for estimating the generic size of RG effects. The Yukawa
coupling of the τ lepton is given by ySM

τ =
√

2
vEW

mτ ≈ 0.01 in the SM and yMSSM
τ =
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θ̇12 θ̇13 θ̇23 δ̇ ϕ̇i

n.h. 1
√
ζ 1

√
ζ θ−1

13

√
ζ

p.d.(n.)
m2

1

∆m2
sol

m1√
∆m2

atm

1
m1√

∆m2
atm

θ−1
13 +

m2
1

∆m2
sol

m2
1

∆m2
sol

i.h. ζ−1 O(θ13) 1 ζ−1 ζ−1

p.d.(i.) ζ−1 m3√
∆m2

atm

1
m3√

∆m2
atm

θ−1
13 + ζ−1 ζ−1

d.
m2

∆m2
sol

m2

∆m2
atm

m2

∆m2
atm

m2

∆m2
atm

θ−1
13 +

m2

∆m2
sol

m2

∆m2
sol

Table 3.1: Generic enhancement and suppression factors for the RG evolution of the mixing pa-
rameters. A ‘1’ indicates that there is no generic enhancement or suppression. ‘n.h.’ and ‘p.d.(n.)’
denote the hierarchical and partially degenerate mass spectrum in the case of a normal hierarchy,
i.e. m2

1 � ∆m2
sol or ∆m2

sol � m2
1 . ∆m2

atm. ‘i.h.’ and ‘p.d.(i.)’ denote the analogous spectra
in the inverted case, i.e. m2

3 � ∆m2
sol or ∆m2

sol � m2
3 . ∆m2

atm. Finally, ‘d.’ means nearly
degenerate masses, ∆m2

atm � m2
1 ∼ m2

2 ∼ m2
3 ∼ m2.

ySM
τ (1 + tan2 β) in the MSSM. Thus the typical factor in the RGEs for the mixing

angles and phases in the case of the MSSM amounts to

(yMSSM
τ )2

32π2
≈ 0.3 · 10−6

(
1 + tan2 β

)
. (3.36)

If the running was purely logarithmic, the evolution in the range between the EW
scale and for example M1 = 1013 GeV would yield a factor of

ln
M1

MZ

≈ ln
1013

102
≈ 25 . (3.37)

If we assume that the solar and atmospheric angle are large and that the phases do
not cause excessive cancellations, then multiplying the above two contributions with
the enhancement factor Γenh from table 3.1 yields a rough estimate for the change
of the angles and phases due to the RG evolution,

∆RG ∼ 10−5
(
1 + tan2 β

)
Γenh . (3.38)

Obviously, for quasi-degenerate neutrinos large enhancement factors are possible if
the small mass squared differences appear in the denominators of the enhancement
factors. Note that also quite small RG changes might be interesting in combination
with precision measurements of neutrino parameters, as we will see in section 3.2.
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3.2 RG Corrections Compared to Sensitivities of

Future Experiments

At present, the values θ13 = 0◦ and θ23 = 45◦ are experimentally allowed and might
be given by some model at a high energy scale from a specific set of textures. Future
experiments on neutrino oscillations are expected to have high sensitivities to these
mixing angles. Therefore, we calculate in a model-independent way the size of RG
corrections to θ13 and θ23 from the running of the effective neutrino mass operator
between the see-saw scale and the electroweak scale. We find that in large regions
of the currently allowed parameter space, the RG corrections exceed the expected
sensitivities of future precision experiments.

3.2.1 Radiative Corrections for the Mixing Angle θ13

For the analysis of the RG effects, we will apply the analytical formula of equation
(3.20). As pointed out in section 3.1.2, it is a rather good approximation to assume
θ̇13 ' const., which leads to an RG evolution with a constant slope depending on
the Dirac CP phase δ and the Majorana phases ϕ1 and ϕ2. In order to calculate
the RG correction for the initial value θ13 = 0 between some high energy scale M1,
where neutrino masses are generated, and low energy, i.e. 102 GeV, we have to use
the analytic continuation for the CP phase δ of equation (3.32). For the examples,
we take M1 = 1012 GeV. The approximate size of the RG corrections to sin2 2θ13 in
the MSSM is shown in figure 3.8. In the upper diagram it is plotted as a function
of tanβ and the lightest neutrino mass m1 for constant Majorana phases ϕ1 = 0
and ϕ2 = π. The lower diagram shows the dependence of the corrections on ϕ1 and
ϕ2 for tan β = 50 and m1 = 0.08 eV in the case of a normal mass hierarchy. The
diagrams look rather similar for an inverted hierarchy.

Planned reactor experiments [110] and next generation superbeam experiments
[111,112] are expected to have an approximate sensitivity to sin2 2θ13 of 10−2. From
figure 3.8 we find that the radiative corrections exceed this value for large regions
of the currently allowed parameter space, unless there are cancellations due to Ma-
jorana phases, i.e. ϕ1 = ϕ2. If so, the effects are generically smaller than 10−2 as
can be seen from the lower diagram. Future upgraded superbeam experiments like
JHF-HyperKamiokande have the potential to further push the sensitivity to about
10−3 and with a neutrino factory even about 10−4 might be reached.

From the theoretical point of view, one would expect that even if some model
predicted θ13 = 0 at the energy scale of neutrino mass generation, RG effects would
at least produce a non-zero value of the order shown in figure 3.8. Consequently,
experiments with such a sensitivity have a large discovery potential for θ13. We
should point out that this is a conservative estimate, since if neutrino masses are
e.g. determined by GUT scale physics, model-dependent radiative corrections in the
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region between M1 and MGUT contribute as well. On the other hand, if experiments
do not measure θ13, parameter space regions where the corrections are larger than
this bound will then appear unnatural from the theoretical point of view.

3.2.2 Radiative Corrections for the Mixing Angle θ23

RG corrections also induce a deviation of θ23 from 45◦, even if some model predicted
this specific value at high energy. From the analytical formula (3.21) with a constant
right-hand side, we now calculate the running in the MSSM between MZ and the see-
saw scale, which we take as M1 = 1012 GeV for our examples. As initial conditions
we assume small θ13 at M1 and low-energy best-fit values for the remaining lepton
mixings and the neutrino mass squared differences. In leading order in θ13, the
evolution is of course independent of the Dirac phase δ.

Figure 3.9 shows the size of the RG corrections in the MSSM. From the upper
diagram it can be read off for desired values of tan β and the lightest mass eigenvalue
m1 in an example with vanishing Majorana phases. The lower diagram shows its
dependence on the Majorana phases ϕ1 and ϕ2 for tan β = 50, m1 = 0.1 eV and a
normal mass hierarchy. The diagrams look rather similar in the case of an inverted
hierarchy. The effects of the Majorana phases, shown in the lower diagram, can
easily be understood from equation (3.21). In the region with ϕ1 ≈ ϕ2 ≈ π, both
|m2 e

iϕ2 +m3|2 and |m1 e
iϕ1 +m3|2 are small for quasi-degenerate neutrinos, which

gives the ellipse with small radiative corrections in the center of the lower diagram.
Even if a model predicted θ23 = 45◦ at some high energy scale, we would thus expect
radiative corrections to produce at least a deviation from this value of the size shown
in figure 3.9, so that experiments with such a sensitivity are expected to measure a
deviation of θ23 from 45◦.

The expected sensitivity on sin2 2θ23 of future superbeam experiments like JHF-
SuperKamiokande is approximately 1% (see e.g. [113]). This can now be compared
with figure 3.9. We find that the radiative corrections exceed this value for large
regions of the currently allowed parameter space, where no significant cancellations
due to Majorana phases occur. This means that ϕ1 and ϕ2 must not be to close
to π. Otherwise, the effects are generically smaller as can be seen from the lower
diagram. Upgraded superbeam experiments or a neutrino factory might even reach
a sensitivity of about 0.5%. As argued for the case of θ13, if experiments measure
θ23 rather close to 45◦, parameter combinations implying larger radiative corrections
than the measured deviation will appear unnatural from the theoretical side.
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Figure 3.8: Corrections to θ13 from the RG evolution between 102 and 1012 GeV in the MSSM,
calculated using the analytical approximations with initial conditions θ13 = 0 and LMA best-fit
values for the remaining parameters. The upper diagram shows the dependence on tan β and on
the mass of the lightest neutrino for the case of a normal mass hierarchy and phases ϕ1 = 0 and
ϕ2 = π. In the lower diagram the dependence on the Majorana phases ϕ1 and ϕ2 is shown for
tan β = 50 and m1 = 0.08 eV. The contour lines are defined as in the upper diagram. In order
to apply equation (3.20) to the case θ13 = 0, where δ is undefined, the analytic continuation of
equation (3.32) has been used.
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Figure 3.9: Corrections to θ23 from the RG evolution between 102 GeV and 1012 GeV in the MSSM,
calculated from the analytical approximation equation (3.21) with initial conditions θ23 = 45◦,
small θ13 and LMA best-fit values for the remaining parameters. The upper diagram shows the
dependence on tan β and on the mass m1 of the lightest neutrino for the case of a normal mass
hierarchy and phases ϕ1 = ϕ2 = 0. In the lower diagram the dependence on the Majorana phases
ϕ1 and ϕ1 is shown for the example tanβ = 50 and m1 = 0.1. Note that for small θ13 the results
are independent of the Dirac phase to a good approximation.
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3.3 The Running in Type I See-Saw Models

The RGEs required for the RG study of the neutrino mass matrix in minimal see-
saw scenarios have been calculated in section 2.4. We now apply them to investigate
the running of the lepton mixing angles in such minimal type I models with three
generations of singlets. We describe the procedure of solving the coupled systems of
RGEs for the various effective theories which arise from successively integrating out
the heavy fields and discuss the running in the energy ranges above and between
the mass thresholds of the singlets.

3.3.1 Solving the RGEs for Non-Degenerate See-Saw Scales

The notation for the parameters of the effective theories is explained in section 2.4
and illustrated in figure 2.11 on page 59 for the general case of nG singlets. In such
scenarios, the low-energy effective neutrino mass matrix can be calculated as follows:

1. At MU, we start with the Yukawa matrices Yν and the Majorana mass matrix
M for the sterile neutrinos. We calculate the RG running of Yν, M and the
remaining parameters of the theory until we reach the first threshold corre-
sponding to the largest mass eigenvalue MnG

of the mass matrix M of the
singlets using the RGEs for this energy range. A summary of the required
RGEs in the minimal see-saw extensions of the SM, 2HDMs and MSSM can
be found in appendix A.5.

2. At the mass threshold, we integrate out the corresponding sterile neutrino
and perform tree-level matching according to equation (2.96). Note that this
procedure is only possible in the mass eigenbasis at the threshold, which is
different from the original one at MU, since the RG evolution in general pro-
duces non-zero off-diagonal entries in M . Therefore, the mass matrix has to
be diagonalized by a unitary transformation, M → UTM U , which leads to
the redefinitions NR → UTNR, g C → UT g C and Yν → UTYν of the singlet
neutrino fields and their Yukawa matrix.

3. Below the mass threshold, the superscript (n) of
(n)

κ,
(n)

Yν and
(n)

M denotes the
effective theory below the nth threshold. The parameters are now evolved
down to the next threshold, which is the largest eigenvalue of the remaining
mass matrix of the singlets. Next, we continue with step 2. This procedure
finally yields the low-energy effective neutrino mass matrix.

86



3.3 The Running in Type I See-Saw Models

Model Quantity Ce Cν αe αν αd αu αg1 αg2 αλ

SM
(n)

κ −3
2

1
2

2 2 6 6 0 −3 1

SM 2
(n)

Y T
ν

(n)

M−1
(n)

Yν −3
2

1
2

2 2 6 6 −3
2

−9
2

0

MSSM
(n)

κ 1 1 0 2 0 6 −2 −6 0

MSSM 2
(n)

Y T
ν

(n)

M−1
(n)

Yν 1 1 0 2 0 6 −2 −6 0

Table 3.2: Coefficients of the β-functions of equation (3.40), which govern the running of the
effective neutrino mass matrix in minimal see-saw models.

3.3.2 The Running of the Effective Neutrino Mass Matrix

As effective neutrino mass matrix in the various theories, we define the quantity

mν =
v2
EW

4

(
(n)

κ+ 2
(n)

Y T
ν

(n)

M−1
(n)

Yν

)
. (3.39)

Above the largest see-saw scale, the superscripts (n) are omitted. In type I scenarios,
κ is set to zero there. The running of mν is given by the running of the two parts,
where the β-function for the second part has to be composed from the RGEs of the
neutrino Yukawa matrix and the mass matrix of the singlets. In the SM and the
MSSM, the β-functions have the general form

16π2
(n)

βX = Ce(Y
†
e Ye)

T (n)

κ+ Ce
(n)

κ (Y †
e Ye) + Cν

((n)

Y †
ν

(n)

Yν
)T (n)

κ+ Cν
(n)

κ
((n)

Y †
ν

(n)

Yν
)

+ αe Tr(Y †
e Ye)

(n)

κ+ αν Tr
((n)

Y †
ν

(n)

Yν
)

(n)

κ+ αd Tr(Y †
d Yd)

(n)

κ

+ αu Tr(Y †
uYu)

(n)

κ + αg1g
2
1

(n)

κ+ αg2g
2
2

(n)

κ + αλλ
(n)

κ , (3.40)

where X stands for
(n)

κ or 2
(n)

Y T
ν

(n)

M−1
(n)

Yν, respectively. The coefficients Ci and αi are
given in table 3.2.

Let us now specify, which parameters influence the running of the effective neu-
trino mass matrix in type I models, if we start running at MU . We therefore choose
a basis where Ye is diagonal at MU, Ye|MU

= diag (ye|MU
, yµ|MU

, yτ |MU
), and fix the

initial condition for the effective neutrino mass matrix by

mν|MU
= VMNS|MU

·mdiag|MU
· V T

MNS|MU
, (3.41)

with

mdiag|MU
:= diag (m1|MU

, m2|MU
, m3|MU

) (3.42a)

VMNS|MU
:= VMNS(θ12|MU

, θ13|MU
, θ23|MU

, δ|MU
, ϕ1|MU

, ϕ2|MU
) . (3.42b)
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In addition, the running depends on
(n)

Y †
ν

(n)

Yν, which can be decomposed at MU into

(Y †
ν Yν)|MU

= U |MU
· diag (y2

1|MU
, y2

2|MU
, y2

3|MU
) · U †|MU

, (3.43)

where the yi|MU
can be chosen real and U |MU

is an arbitrary unitary matrix. mν

as well as the β-functions are of course invariant under a change of basis for the
singlets.

3.3.3 Analytical Results for the Running of the Mixing Angles

In type I see-saw scenarios, where κ vanishes above the mass thresholds of the
singlets, the running of the mixing angles and CP phases is determined by the
part of the RGEs which has a non-trivial flavour-structure. These are the terms
proportional to Ce and Cν in the β-functions of equation (3.40).

As we have seen, compared to the energy range below the thresholds, the running
of the mixing angles is now additionally influenced by the neutrino Yukawa matrix.
Analytical formulae for the running of the neutrino masses, mixings and CP phases
with all the parameters would be very lengthy. We therefore restrict ourselves to
the case of a real neutrino Yukawa matrix and vanishing CP phases of the MNS
matrix. In this case, we obtain the simpler parametrization

(Y †
ν Yν)|MU

= O|MU
· diag(y1|MU

, y2|MU
, y3|MU

) ·OT |MU
(3.44)

with an orthogonal matrix O|MU
= O(φ1|MU

, φ2|MU
, φ3|MU

) in standard parametriza-
tion, which is defined analogous to the one for a unitary matrix (see appendix A.1).
mν at MU can then be parametrized as

mν |MU
= V (θ12, θ13, θ23)|MU

·mdiag|MU
· V T (θ12, θ13, θ23)|MU

. (3.45)

By differentiating equation (3.45) with respect to t and inserting the RGE (3.39) for
the energy range above the thresholds, we obtain analytical expressions for θ̇ij and
ṁi at MU, which are, however, still too long to be presented here.

We now focus on the running of the mixing angles and assume θ13|MU
= 0◦,

θ23|MU
= 45◦ and specific initial values for θ12|MU

in order to simplify the expressions.
We further assume that the running from the charged lepton Yukawa matrix can
be neglected against the one from the neutrino Yukawa matrix. The ratios θ̇12/θ̇13
and θ̇12/θ̇23 at MU are then given as functions of the remaining initial conditions.
Note that these functions are the same for the SM and the MSSM. We find that
generically the RG evolution of θ12 is much larger than the change of the other
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angles, unless m1 is very small. For the special case θ12|MU
= 0, we obtain

θ̇12

θ̇13

∣∣∣∣∣

θ12=0◦

MU

=
(m2 +m1) (m3 −m1) G1

(m2 −m1) (m3 +m1) G2

≈






± m2 +m1

m2 −m1

G1

G2
for hierarchical neutrino masses

∆m2
atm

∆m2
sol

G1

G2

for degenerate neutrino masses
(3.46a)

θ̇12

θ̇23

∣∣∣∣∣

θ12=0◦

MU

=
(m2 +m1) (m3 −m2)G1

(m2 −m1) (m3 +m2) G3

≈





± m2 +m1

m2 −m1

G1

G3
for hierarchical neutrino masses

∆m2
atm

∆m2
sol

G1

G3
for degenerate neutrino masses

(3.46b)

where G1, G2 and G3 depend on {y1, y2, y3, φ12, φ13, φ32} and are given by

G1 = 8 cos(φ12)
{(

2 y2
1 − y2

2 − y2
3

)
cos(φ13) [sin(φ13) − cos(φ13) sin(φ12)]

}

+ 4 cos(φ12)
{(
y2

2 − y2
3

)
cos(2φ23) [(3 − cos(2φ13)) sin(φ12) + sin(2φ13)]

}

+ 8
(
y2

2 − y2
3

)
(cos(2φ12) sin(φ13) − cos(φ13) sin(φ12)) sin(2φ23) , (3.47a)

G2 = − 8
(
2 y2

1 − y2
2 − y2

3

)
cos(φ12) cos(φ13) (cos(φ13) sin(φ12) + sin(φ13))

− 4
(
y2

2 − y2
3

)
cos(φ12) cos(2φ23) [(cos(2φ13) − 3) sin(φ12) + sin(2φ13)]

+ 8
(
y2

2 − y2
3

)
(cos(φ13) sin(φ12) + cos(2φ12) sin(φ13)) sin(2φ23) , (3.47b)

G3 =
√

2
(
2 y2

1 − y2
2 − y2

3

) [
cos2(φ12) + (cos(2φ12) − 3) cos(2φ13)

]

+
√

2
(
y2

2 − y2
3

) [
(cos(2φ12) − 3) cos(2φ13) − 6 cos2(φ12)

]
cos(2φ23)

+ 4
√

2
(
y2

2 − y2
3

)
sin(2φ12) sin(φ13) sin(2φ23) . (3.47c)

For the case θ12 = 45◦ at MU, the result is

θ̇12

θ̇13

∣∣∣∣∣

bimax

MU

=
2
√

2 (m1 +m2) (m3 −m1) (m3 −m2) F1

(m2 −m1)
[
8 (m2

3 −m1 m2) F2 + 4
√

2 (m2 −m1) m3 F3

]

≈





± 1

2
√

2

m2 +m1

m2 −m1

F1

F2

for hierarchical neutrino masses

1

2
√

2

∆m2
atm

∆m2
sol

F1

F2
for degenerate neutrino masses

(3.48a)
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θ̇12

θ̇23

∣∣∣∣∣

bimax

MU

=
2
√

2 (m1 +m2) (m3 −m1) (m3 −m2) F1

(m2 −m1)
[
8 (m2 −m1) m3 F2 + 4

√
2 (m2

3 −m1m2)F3

]

≈





±1

2

m2 +m1

m2 −m1

F1

F3
for hierarchical neutrino masses

1

2

∆m2
atm

∆m2
sol

F1

F3
for degenerate neutrino masses

(3.48b)

where F1, F2, F3 depend on {y1, y2, y3, φ12, φ13, φ32},

F1 =
(
y2

1 − y2
2

) {
cos(2φ12)

[
(cos(2φ13) − 3) sin(2φ23) − 6 cos2(φ13)

]

− 4 cos(2φ23) sin(2φ12) sin(φ13)
}

(3.49a)

+
(
y2

1 + y2
2 − 2 y2

3

) [
cos(2φ13) (sin(2φ23) − 3) + (1 + sin(2φ23))

]
,

F2 = 2
(
y2

1 − y2
2

)
cos(φ13) sin(2φ12) (sin(φ23) − cos(φ23)) (3.49b)

−
(
y2

1 + y2
2 − 2 y3

2 +
(
y2

1 − y2
2

)
cos(2φ12)

)
sin(2φ13) (cos(φ23) + sin(φ23)) ,

F3 =
(
y2

1 − y2
2

) [
cos(2φ12) (cos(2φ13) − 3) cos(2φ23) (3.49c)

+ 4 sin(2φ12) sin(φ13) sin(2φ23)
]

+ 2
(
y2

1 + y2
2 − 2y2

3

)
cos2(φ13) cos(2φ23) .

Note that the approximations made above for hierarchical neutrino masses are
also valid for relatively weak hierarchies, where m3 is a few times larger or smaller
than m1 or m2. The constants Fi and Gi depend on the choice of Yν|MU

. However,
unless the parameters {y1, y2, y3, φ12, φ13, φ32} are fine-tuned, we expect the ratios
of these quantities to be of the order one.

Consequently, the RG change of θ12 is generically larger than that of the other
angles if the mass-dependent factors in the equations (3.46) and (3.48) are large.
This is always the case for quasi-degenerate neutrino masses, since ∆m2

atm � ∆m2
sol.

As (m1−m2) is related to the small solar mass squared difference, it is also true for
non-degenerate mass schemes, unless m1 is very small.

It is therefore interesting to study, whether it is possible to reach the experimen-
tally confirmed LMA solution for the mixing angle θ12 from these special initial
conditions with θ12 = 45◦ or θ12 = 0◦ at MU.

3.3.4 The Running Between the Thresholds

In the energy ranges between the mass thresholds of the singlets, the running of the
effective neutrino mass matrix of equation (3.39) is given by the RGEs of equation
(3.40).

Running Caused by the Neutrino Yukawa Matrix

Between the see-saw scales, the singlets are partly integrated out, which implies
that only a (n−1)×3-submatrix of the neutrino Yukawa matrix remains. Therefore,
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we expect that the running between the thresholds caused by the neutrino Yukawa
matrix can differ significantly from the running above or below them.

Running Caused by Interactions with Trivial Flavour Structure

We now investigate the running due to the terms in the β-functions with a flavour
structure proportional to the unit matrix. Below the see-saw scales and above them
in type I scenarios, they only cause a common scaling of the elements of the neutrino
mass matrix and thus leave the mixing angles and phases unchanged. Between the
thresholds, where the effective neutrino mass matrix consists of two parts, this is
only the case if both parts are scaled equally.

From table 3.2, we see that
(n)

βκ and
(n)

β2Y T
ν M−1Yν

, which govern the RG scaling
of the two parts, have different coefficients in the terms proportional to the gauge
couplings and to the Higgs self-coupling in the SM. This difference can be understood
by looking at the corresponding diagrams of the “full” and the effective theory. For
instance, the diagram for the correction to the effective vertex proportional to λ and
its counterpart with the heavy singlet running in the loop are shown in figure 3.10.
Diagram (a), which is similar to diagrams calculated in section 2.2.2, is UV divergent,
whereas diagram (b) is UV finite. We thus get no contribution proportional to
λ for the β-function of the composite object. The situation is similar for some
of the diagrams corresponding to the vertex corrections proportional to the gauge
couplings. Due to the non-renormalization theorem in supersymmetric theories, we
immediately conclude that this does not happen in the MSSM.

Thus, in the SM, the RG scaling of the two parts
(n)

κ and 2
(n)

Y T
ν

(n)

M−1
(n)

Yν of the effective
mass matrix between the thresholds, caused by the interactions with trivial flavour
structure, is different. This implies a running of the mixing angles and CP phases
in addition to the running of the mass eigenvalues. Numerical examples, where this
effect gives the dominant contribution to the running of the mixing angles, will be
shown in section 3.4 in figure 3.14.

`fLb

`gLc

φa

φd

φa′

φd′

κi

(a)

`fLb

`gLc

φa

φd
N i

φd′

φa′

(b)

Figure 3.10: Figure (a) shows the diagram which gives the contribution proportional to the Higgs
self-coupling in the β-function of the neutrino mass operator. Figure (b) shows its finite counterpart
with the heavy singlet running in the loop.
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3.4 Radiative Generation of the LMA Solution in

Type I See-Saw Models

As found in section 3.3.3, the running of the angle θ12 is generically enhanced com-
pared to the RG evolution of the other mixing angles. Exceptions are possible, if the
neutrino mass scheme is strongly hierarchical or if the parameters of the neutrino
Yukawa coupling matrix conspire to suppress the running of the solar angle. In
addition, we expect that CP phases can have a damping effect on the running, as
in the energy range below the mass thresholds of the singlets.

Therefore, we now investigate if the large, but not maximal mixing of the LMA
solution can be reached by RG running from the special case of bimaximal mixing
(θ12 = θ23 = 45◦, θ13 = 0◦) [114] or from θ12 = θ13 = 0◦, θ23 = 45◦ [115] at the high
energy scale MU.

3.4.1 The LMA solution from Bimaximal Lepton Mixing

For the special case of bimaximal mixing, θ12 = 45◦, θ13 = 0◦ and θ23 = 45◦, we
obtain the so-called bimaximal mixture form

mbimax
ν |MU

=




a−b c −c
c a b
−c b a


 (3.50)

as initial condition at MU. The parameters a, b and c are related to the mass
eigenvalues of mν by

a =
1

4
(m1 +m2 + 2m3) , b =

1

4
(−m1 −m2 + 2m3) , c =

m2 −m1

2
√

2
. (3.51)

Inverting equations (3.51) yields

m1 = a− b−
√

2 c , m2 = a− b +
√

2 c , m3 = a+ b . (3.52)

From equation (3.51) we see that a > 0. Equations (3.52) imply that the solar mass
squared difference ∆m2

sol = m2
2 − m2

1 is related to c, while the atmospheric one,
∆m2

atm = m2
3 −m2

2, is controlled by b. Thus, a > |b| > |c|. For b > 0 we obtain a
normal mass hierarchy, while for b < 0 the mass hierarchy is inverted. The different
mass schemes are illustrated in figure A.1 on page 108. For positive c, m1 < m2,
otherwise m1 > m2. Hence, ∆m2

sol is positive only if c is. If a� |b|, |c|, the spectrum
is quasi-degenerate. As explained in appendix A.1, we use the convention that the
mass label 2 is attached in such a way that 0 ≤ θ12 ≤ 45◦. This can always be
accomplished by the replacement c↔ −c.
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Figure 3.11: Plot 3.15(a) shows the mass of the lightest neutrino (at low energy) as a function of
parameter a for the SM and the MSSM with normal mass hierarchy, X = 1 and ε ∈ [0.1, 0.99] (grey
region). Plot 3.15(b) shows the degeneracy of the see-saw scales, parametrized by ln(M3/M1) (at
MU), as a function of ε for the same cases with a ∈ [0.04 eV, 0.25 eV] (grey region).

Reduced Parameter Space at MU

To reduce the parameter space for the numerical analysis, we choose a specific
neutrino Yukawa coupling Yν at MU. We assume, as an example, that it is diagonal
and of the form

Yν = X diag
(
1, ε, ε2

)
. (3.53)

Yν and M are now determined by the parameters {ε,X, a, b, c}. Moreover, we fix
the values of b and c at MU by the requirement that the solar and atmospheric mass
squared differences obtained at the EW scale after the RG evolution be compatible
with the allowed experimental regions. Thus, we are left with the free parameters
X, ε and a. Of course, all the other parameters like e.g. quark masses and gauge
couplings are chosen at MU such that they are compatible with experiments at low
energy (see table 1.3 on page 4). The parameter ε controls the hierarchy of the
entries in Yν and thus the degeneracy of the see-saw scales, while a determines the
mass of the lightest neutrino. The dependence of physical quantities on ε and a is
shown in figure 3.11.

Numerical Results for the Allowed Parameter Space Regions

We can now scan over the two relevant parameters at MU and perform the running
down to the EW or SUSY breaking scale. The parameter space regions in which
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the RG evolution produces low-energy values compatible with the LMA solution
are shown in figure 3.12 for the SM and the MSSM (tan β = 5) with a normal
mass hierarchy. We find that for the form of Yν under consideration, hierarchical
and degenerate neutrino mass schemes as well as degenerate and non-degenerate
see-saw scales are possible. For inverted neutrino mass spectra, allowed parameter
space regions exist as well. We would like to stress that the shapes of the allowed
parameter space regions strongly depend on the choice of the initial value of Yν at
MU. One also has to ensure that the sign of ∆m2

sol is positive, as the LMA solution
requires this if the convention is used that the solar mixing angle is smaller than
45◦. With bimaximal mixing at MU, the sign of ∆m2

sol is not defined by the initial
conditions. Using the analytic approximation of section 3.3.3, the sign just below
MU can be calculated. We find ∆m2

sol > 0 for F1 < 0 and vice versa. However,
in order to predict the sign of ∆m2

sol at low energy, the numerical RG evolution
has to be used. This excludes some of the possible choices for the neutrino Yukawa
coupling Yν at MU. For example, among the possibilities with diagonal Yν it excludes
Yν = diag(ε2, ε, 1). From figure 3.12, we see that obtaining the LMA solution from
RG running does not require any fine-tuning. The allowed regions in the parameter
space cover a quite large range of degeneracies of the see-saw scales and lightest
neutrino masses.

Examples for the Running of the Lepton Mixing Angles

We now turn to some examples out of the allowed parameter space regions. Figures
3.13(a) and 3.13(b) show typical numerical examples for the running of the mixing
angles from MU to the EW or SUSY-breaking scale. The kinks in the plots corre-
spond to the mass thresholds at the see-saw scales and the grey-shaded regions mark
the various effective theories. As expected from the analytical formulae of section
3.3.3, the solar angle θ12 changes drastically, while the changes of θ13 and θ23 are
comparatively small. The mixing angles θ13 and θ23 are of course affected by the RG
evolution as well, i.e. they do not stay at their initial values θ13 = 0◦ and θ23 = 45◦.
Their low energy values are compatible with experiments.

As discussed in section 3.3.4, in the SM there can be contributions to the running
of the mixing angles from interactions with a trivial flavour structure. Therefore, it
is possible to obtain the LMA solution by RG running even if the neutrino Yukawa
couplings are small and do not have a sizable effect (figure 3.14(a)). It is thus
also possible to obtain the LMA solution from RG running with a negative CP
parity for the state with mass m2 (i.e. ϕ1 = 0◦ and ϕ2 = 180◦), as shown in figure
3.14(b). For this example we have chosen a different diagonal structure for Yν,
Yν = X diag (ε2, ε, 1), at MU.
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Figure 3.12: Parameter space regions compatible with the LMA solution of the solar neutrino
problem for the example Yν |MU = diag(1, ε, ε2). The initial condition at MU = 1016 GeV is
bimaximal mixing, and the comparison with the experimental data is performed at the EW scale
or at 1 TeV for the SM and the MSSM, respectively. The white regions of the plots are excluded
by the data at 3σ. The black (dark grey) regions have a deviation of the best-fit value smaller than
1
3 ( 2

3 ) of the 3σ-uncertainty. For this example, we consider the case of a normal neutrino mass
hierarchy and X = 1 for the scale factor of the neutrino Yukawa couplings.
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Figure 3.13: RG evolution of the mixing angles in the canonical see-saw model from MU to the
EW or SUSY-breaking scale (taken to be ≈ 1 TeV), respectively. In these examples we have chosen
a normal mass hierarchy and Yν = X diag

(
1, ε, ε2

)
with X = 1. In the MSSM example we have in

addition tanβ = 5, ε = 0.525, a = 0.0675 eV while in the SM example ε = 0.65 and a = 0.0655 eV.
The parameter a, related to the mass of the lightest neutrino, is explained in the text and the
meaning of ε and a are illustrated in figure 3.11. The kinks in the plots correspond to the mass
thresholds at the see-saw scales. The grey-shaded regions mark the various effective theories.
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Figure 3.14: Examples for the RG evolution in the canonical see-saw scenario in the SM, where
the running from bimaximal mixing to the LMA solution takes place between the see-saw scales.
In figure (a), we have chosen X = 0.01, ε = 0.3, a = 0.0535 eV and a normal mass hierarchy. In
figure (b), we have considered the case of a negative CP parity for m2, X = 0.5, ε = 3.5 · 10−3

and a normal mass hierarchy. The lightest neutrino has a mass of 0.004 eV (at low energy) in this
example.
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3.4.2 The LMA Solution from Vanishing Solar Neutrino Mixing

We now illustrate that the LMA solution can be reached in a rather natural way by
RG running from vanishing solar mixing (θ12 = 0◦) and θ13 = 0◦, θ23 = 45◦ at MU.

Reduced Parameter Space at MU

For our examples, we choose the specific form

Yν|MU
= X ·




ε2 ε3 0
ε3 ε 0
0 0 1


 (3.54)

for the neutrino Yukawa coupling at MU. With a given Yν|MU
, M |MU

can be cal-
culated from mν |MU

by the see-saw formula (3.39). The parameter ε introduced in
equation (3.54) controls the hierarchy of the entries in Yν and thus the degeneracy
of the see-saw scales. Moreover, we choose the lightest neutrino mass at MU, m1|MU

for a normal and m3|MU
for an inverted spectrum as a further initial condition. We

fix the values of the two remaining masses at MU by the requirement that the solar
and atmospheric mass squared differences obtained at the EW scale after the RG
evolution be compatible with the allowed experimental regions. Figure 3.15 shows
the dependence of the physical parameters on ε and m1|MU

.
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Figure 3.15: Plot 3.15(a) shows the mass of the lightest neutrino (at low energy) as a function of
m1|MU for the SM and the MSSM with normal mass hierarchy, X = 0.5 and ε ∈ [0.6, 0.99] (grey
region). Plot 3.15(b) shows the degeneracy of the see-saw scales, parametrized by ln(M3/M1) (at
MU), as a function of ε for the same cases with m1|MU ∈ [0.01 eV, 0.15 eV] (grey region).
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Numerical Results for the Allowed Parameter Space Regions

Thus, we are left with the free parameters X, ε and m1|MU
or m3|MU

. The parameter
space regions in which the RG evolution produces low-energy values compatible with
the LMA solution are shown in figure 3.16 for the SM and the MSSM (tan β = 5)
with a normal mass hierarchy and Yν given in equation (3.54).
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Figure 3.16: Parameter space regions compatible with the LMA solution of the solar neutrino
problem for the example with Yν |MU given by equation (3.54). The initial condition at MU = 1016

GeV is vanishing mixing for θ12 and θ13 and maximal mixing for θ23. The comparison with the
experimental data is performed at the EW scale or at 1 TeV for the SM and the MSSM, respectively.
The shaded regions are defined as in figure 3.12. For this example, we consider the case of a normal
neutrino mass hierarchy and X = 0.5 for the scale factor of the neutrino Yukawa couplings.

Examples for the Running of the Lepton Mixing Angles

Figures 3.17(a) and 3.17(b) show numerical examples for the running of the lepton
mixing angles from MU to the EW or SUSY-breaking scale, which produce the mix-
ing angles of the LMA solution. Again we find that the solar mixing angle runs
sizably, whereas the evolution of the other angles is comparatively small. Further-
more, we find examples where most of the running takes place between the see-saw
scales (e.g. figure 3.17(b)). Thus, if the see-saw scales are non-degenerate, it is
crucial to take the running in these energy ranges into account.
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Figure 3.17: RG evolution of the mixing angles in the canonical see-saw scenario from MU to the
EW or SUSY-breaking scale (taken to be ≈ 1 TeV), respectively. For both examples we have
considered a normal mass hierarchy and X = 0.5. The additional parameters for the example in
the MSSM are tan β = 5, ε = 0.65 and m1|MU = 0.076 eV. In the SM, we have shown an example
with ε = 0.6 and m1|MU = 0.049 eV. In the SM example, most of the running takes place between
the see-saw scales.
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Conclusions

In this thesis, we have studied the energy scale dependence of neutrino masses, lepton
mixings and CP phases. Parts of the results have been published in collaborations
with M. Drees, J. Kersten, M. Lindner and M. Ratz in diverse combinations.

We have considered the effective description of neutrino masses by the lowest di-
mensional effective operator and discussed its possible origin. From the point of
view of left-right symmetric extensions of the SM, its realization by type I or II
see-saw scenarios, where heavy singlets and/or SU(2)L-triplets are integrated out
of the theory, appears particularly natural. In addition, neutrinos may also trigger
a dynamical generation of fermion masses. In spite of large Majorana masses of
the singlet neutrinos, the formation of a composite Higgs particle by neutrino con-
densation is possible in a phenomenologically acceptable way in see-saw scenarios
[50].

We have calculated the RGEs for the lowest dimensional neutrino mass operator
in various theories. In the SM, where results in the literature were not in agreement,
we have derived the correct RGE, which differs from the previous ones in the part
with a non-trivial flavour structure [57]. Similar corrections have been made in
2HDMs [67]. In the MSSM, we have confirmed the existing 1-loop RGE [58,59] and
extended it to the 2-loop level [81]. The RGEs govern the energy scale dependence
of the neutrino masses, lepton mixings and CP phases. The correct results are thus
required, whenever these parameters at different energies below the realization scale
of the operator are compared.

We have further calculated the RGEs and the tree-level matching conditions for
minimal see-saw extensions of the SM, 2HDMs and the MSSM, where singlet neu-
trinos with intermediate scale masses are added to the particle spectrum [85]. Inte-
grating them out successively leads to various effective theories. We have performed
the tree-level matching with the neutrino mass operator, which is required at each
mass threshold of the singlets. Additional contributions to the mass operator can
stem from integrating out a heavy triplet of SU(2)L in the context of a type II see-
saw mechanism or from additional higher dimensional operators, for example. The
RGEs can also be applied to these scenarios below the corresponding realization
scales, e.g. below the masses of the triplet-components. They are relevant for the
RG study of many models for fermion masses, which are defined at energies of the
order of the GUT scale.

Using the calculated RGEs, we have analyzed the running of neutrino masses,
lepton mixing angles and CP phases in the SM and the MSSM. In the case of the
description of neutrino masses by the effective neutrino mass operator, we have de-
rived analytical approximations for the running of neutrino masses, lepton mixings
and Dirac and Majorana CP phases in an expansion in the small mixing angle θ13.
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We have compared them with numerical results obtained using the “run and diag-
onalize” procedure and have found that they allow to understand the RG change
qualitatively and to a quite good approximation also quantitatively [108]. For ex-
ample, it can easily be seen from our formulae that Dirac and Majorana CP phases
can have a drastic influence on the RG evolution of the mixing angles. Furthermore,
interesting effects arise for the running of the CP phases themselves. Our formulae
are useful for simplifying the inclusion of the RG effects. As an application, we
have calculated the size of RG corrections to θ13 and θ23 produced by the running
between the lowest see-saw scale and the electroweak scale. We have found that in
large regions of the currently allowed parameter space, future experiments would
measure a deviation from θ13 = 0◦ and θ23 = 45◦, even if some model predicted
these values at high energy.

In the minimal see-saw extensions, we have considered the running of the effective
neutrino mass matrix in the various effective theories, whose energy ranges are given
by the masses of the heavy singlet neutrinos. The structure of the RGEs shows
that the running above and between the thresholds differs substantially from that
below the lowest see-saw scale. First, it depends on additional parameters from
the neutrino Yukawa coupling matrix, which is a (n−1)×3-matrix below the nth
threshold. Next, in non-supersymmetric theories between the thresholds, the part of
the β-functions proportional to the unit matrix in flavour space can contribute to the
running of the lepton mixing angles. This is in contrast to the energy range below
the lowest see-saw scale, where they only run due to the terms with a non-trivial
flavour structure. This effect can lead to a large running of the mixings, even if
the neutrino and charged lepton Yukawa couplings are very small or if the running
from the Yukawa couplings is suppressed by CP phases. If the neutrino Yukawa
couplings are large at high energy, which would for instance be the case in scenarios
with Yukawa unification or in non-perturbative models like [50], the RG corrections
from above and between the thresholds can be considerably larger than those from
the running of the effective neutrino mass operator below the see-saw scales. In
the restricted parameter space with zero CP phases, real neutrino Yukawa matrices,
θ13 = 0◦ and θ23 = 45◦, we have found by an analytical calculation that the running
of θ12 above the thresholds is generically stronger than that of θ13 and θ23, unless
the neutrino masses have a strong normal hierarchy. By a numerical analysis of the
running of the mixing angles we have therefore investigated if the LMA solution
with θ12 ≈ 33◦ at low energy can be generated by RG running from the specific
values θ12 = 0◦ or θ12 = 45◦ at high energy. We have found that in both cases,
this is possible for a quite large range of neutrino masses and degeneracies of the
see-saw scales [114,115]. The running thus opens up new possibilities for building
models towards an explanation of the origin of neutrino masses, lepton mixings and
CP phases.
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A.1 The Mixing Parameters of Quarks and Leptons

A.1 The Mixing Parameters of Quarks and Leptons

A.1.1 Definition of the Mixing Parameters

Mass matrices of Dirac type have complex entries in general. They can be diago-
nalized by bi-unitary transformations,

U
(u)†
R MuU

(u)
L = Du , (A.1)

U
(d)†
R MdU

(d)
L = Dd , (A.2)

U
(e)†
R MeU

(e)
L = De . (A.3)

The masses, i.e. the diagonal elements of Du, Dd and De, can be chosen real and
positive. In the quark sector and for the charged leptons, they are arranged by
increasing magnitude. In the neutrino sector, the arrangement is more subtle. We
will discuss it in detail below. Mass matrices of Majorana type are symmetric and
in general complex. They can therefore be diagonalized by one unitary matrix,

U (ν)TmνU
(ν) = Dν . (A.4)

Marking the flavour basis with a prime, under the change to the mass eigenbasis,
the fields transform as

u′
f
L = (U

(u)
L )fgu

g
L , u′

f
R = (U

(u)
R )fgu

g
R , (A.5)

d′
f
L = (U

(d)
L )fgd

g
L , d′

f
R = (U

(d)
R )fgd

g
R , (A.6)

e′
f
L = (U

(e)
L )fge

g
L , e′

f
R = (U

(e)
R )fge

g
R , (A.7)

ν ′
f
L = (U (ν))fgν

g
L . (A.8)

Definition of the CKM and MNS Matrix

The Maki-Nakagawa-Sakata (MNS) mixing matrix in the lepton sector is the ana-
logue of the Cabibbo-Kobayashi-Maskawa (CKM) matrix in the quark sector. The
mixing of flavour and mass eigenstates is defined by the charged electroweak cur-
rents,

e′L
f
γµν ′

f
L = eL

fγµṼMNSν
f
L for the leptons and (A.9)

u′L
f
γµd′

f
L = uL

fγµṼCKMd
f
L for the quarks. (A.10)

The relation of the mixing matrices to the diagonalization matrices is thus given by

ṼMNS = U
(e)†
L U (ν) , (A.11)

ṼCKM = U
(u)†
L U

(d)
L . (A.12)

ṼMNS and ṼCKM contain unphysical degrees of freedom. They can be eliminated
by unobservable global phase transformations of the fields, as will be discussed
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below. Considering only physical degrees of freedom, the mixing matrices are called
CKM matrix VMNS and MNS matrix VCKM and can be parametrized by

VMNS =

{
R23R13R12 for Dirac neutrinos,

R23R13R12PMaj for Majorana neutrinos,
(A.13)

VCKM = R23R13R12 , (A.14)

where R12, R13, R23 and PMaj are given by

R12 =




c12 s12 0
−s12 c12 0

0 0 1



 , R13 =




c13 0 s13e

−iδ

0 c13 0
−s13e

iδ 0 c13



 ,

R23 =




1 0 0
0 c23 s23

0 −s23 c23


 , PMaj =



e−i

ϕ1

2 0 0

0 e−i
ϕ2

2 0
0 0 1


 . (A.15)

PMaj contains the phases ϕ1 and ϕ2, which are physical degrees of freedom if neu-
trinos are of Majorana type, and we have defined cij := cos θij and sij := sin θij.
θij are the mixing angles and δ is called the Dirac CP phase for the quarks or neu-
trinos, respectively. The Majorana phases ϕ1 and ϕ2 are unobservable in neutrino
oscillations, but they enter the effective mass relevant for neutrinoless double beta
decay experiments.

Unphysical Degrees of Freedom

Changing the mass eigenbasis in a way that the diagonalization matrices are trans-
formed as

U
(u)
L −→ U

(u)
L P (u) , U

(u)
R −→ U

(u)
R P (u) ,

U
(d)
L −→ U

(d)
L P (d) , U

(d)
R −→ U

(d)
R P (d) ,

U
(e)
L −→ U

(e)
L P (e) , U

(e)
R −→ U

(e)
R P (e) ,

U (ν) −→ U (ν)S(ν) , (A.16)

with

P (j) =



e−iδ

(j)
1 0 0

0 e−iδ
(j)
2 0

0 0 e−iδ
(j)
3


 , P (d) =



e−iδ

(d)
4 0 0

0 e−iδ
(d)
5 0

0 0 1


 ,

S(ν) =



±1 0 0
0 ±1 0
0 0 ±1


 , (A.17)
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j ∈ {u, e}, does not alter the mass matrices and is physically unobservable. Note
that only phase differences are considered here because transforming all mass eigen-
states by a global phase has no effect at all. The third phase in P (d) is chosen to
be the overall global phase and therefore set equal to 1 without loss of generality.
ṼMNS and VMNS or ṼCKM and VCKM are related by

ṼMNS = P (e)VMNSS
(ν) , (A.18)

ṼCKM = P (u)VMNSP
(d) . (A.19)

The transformations {P (e), S(ν)} or {P (u), P (d)} can absorb 3 or 5 of the 9 parameters
and they are furthermore used to restrict the parameter space of ϕ1, ϕ2 and θij.

The Lepton Mixing Parameters

We will now specify the convention for the lepton mixing parameters which is used in
this work. Without loss of generality, we change to the flavour basis where the mass
matrix of the charged leptons, or equivalently the Yukawa matrix Ye, is diagonal.
This can be done by the simultaneous transformations

e′
f
L −→ (U

(e)†
L )fge

′g
L ,

e′
f
R −→ (U

(e)†
R )fge

′g
R ,

ν ′
f
L −→ (U

(e)†
L )fgν

′g
L ,

mν −→ U
(e)T
L mνU

(e)
L , (A.20)

where U
(e)
L and U

(e)
R are defined by

U
(e)†
L Y †

e YeU
(e)
L = diag. ,

U
(e)†
R YeY

†
e U

(e)
R = diag. . (A.21)

In this basis, ṼMNS = U (ν) transforms the neutrino mass eigenstates into flavour
eigenstates,




νeL
νµL

ντL


 = ṼMNS




ν1L

ν2L

ν3L


 =




Ṽe1 Ṽe2 Ṽe3
Ṽµ1 Ṽµ2 Ṽµ3

Ṽτ1 Ṽτ2 Ṽτ3







ν1L

ν2L

ν3L


 .

To define the diagonalization matrix for the neutrino Majorana mass mν, we have
to determine how the positive mass eigenvalues are arranged. Let the diagonalized
neutrino mass matrix be

Dν =



m1 0
0 m2 0
0 0 m3


 . (A.22)
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From the experiments, we know that there is a small mass squared difference
corresponding to oscillations of solar neutrinos, called ∆m2

sol = m2
i − m2

j , and a
larger one corresponding to oscillations of atmospheric neutrinos, referred to as
∆m2

atm = m2
k−m2

` . We now choose the convention that the masses are labeled such
that i, j 6= 3 while either k or ` equals 3. This fixes the assignment of the mass m3.
The two possible schemes are illustrated in Figure A.1.

243�5�6276�5�3

278

9
(a) Normal hierarchy

:7;�<�=:4=�<�;

:7>
?

(b) Inverted hierarchy

Figure A.1: Possible mass hierarchies for the light neutrinos. We use the convention that m1 and
m2 are chosen in such a way that 0 ≤ θ12 ≤ 45◦. The LMA solution then requires m2 > m1 at
low energy. If the mass-differences are small compared to the mass of the lightest neutrino, the
spectrum is called quasi-degenerate, otherwise hierarchical.

To diagonalize mν, we calculate the eigenvalues and corresponding eigenvectors of
m†
νmν, where we assume non-degenerate mass eigenvalues. A diagonalization matrix

U with the property U †m†
νmνU = diag(m2

i , m
2
j , m

2
k) := D2

ν, mi ∈ {m1, m2, m3}, has
the eigenvectors corresponding to the eigenvalues m2

i as columns. The assignment of

m3 therefore fixes the third column of ṼMNS. The remaining two mass eigenvalues
and columns are assigned such that |Ve2| ≤ |Ve1|. This will allow to restrict the solar
mixing angle θ12 to the interval [0, π/4]. It turns out that θ23 and θ13 can be chosen
in the range [0, π/2]. For the phases, the range [0, 2π] is required.

A.1.2 Extraction of Mixing Angles and CP Phases

For the RG analysis, we have to extract the mixing angles and physical phases
from ṼMNS for the leptons and from ṼCKM for the quarks. We will now treat the
case of the MNS-matrix in detail and briefly comment on the differences for the
quarks. For each unitary matrix, we use the standard parametrization in the form
Ṽ = diag(eiδ1 , eiδ2, eiδ3) · V · diag(e−iϕ1/2, e−iϕ2/2, 1), which gives




eiδ1−i
ϕ1
2 c12c13 eiδ1−i

ϕ2
2 s12c13 s13e

iδ1−iδ

eiδ2−i
ϕ1
2 (−c23s12 − s23s13c12e

iδ) eiδ2−i
ϕ2
2 (c23c12 − s23s13s12e

iδ) eiδ2s23c13
eiδ3−i

ϕ1
2 (s23s12 − c23s13c12e

iδ) eiδ3−i
ϕ2
2 (−s23c12 − c23s13s12e

iδ) eiδ3c23c13


.
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A.1 The Mixing Parameters of Quarks and Leptons

As we have seen in the previous section, not all of these 9 parameters are physical.
In the lepton sector, we can eliminate δ1, δ2 and δ3 by physically unobservable phase
re-definitions. In the quark sector the phases ϕ1 and ϕ2 can be eliminated as well
while they are physical in the lepton sector, if neutrinos are of Majorana type. The
parameters can be read off by the following procedure:

1. θ13 = arcsin(|U13|)

2. θ12 =





arctan

( |U12|
|U11|

)
if U11 6= 0

π
2

else

3. θ23 =





arctan

( |U23|
|U33|

)
if U33 6= 0

π
2

else

4. δ2 = arg(U23)

5. δ3 = arg(U33)

6. δ = − arg




U∗
iiUijUjiU

∗
jj

c12 c213 c23 s13
+ c12 c23 s13

s12 s23




where i, j ∈ {1, 2, 3} and i 6= j

7. δ1 = arg(eiδ U13)

8. ϕ1 = 2 arg(eiδ1 U∗
11)

9. ϕ2 = 2 arg(eiδ1 U∗
12)

For the extraction of δ, we use the relation

U∗
iiUijUjiU

∗
jj = c12 c

2
13 c23 s13

(
e−iδ s12 s23 − c12 c23 s13

)
,

which holds for i, j ∈ {1, 2, 3} and i 6= j. It is often used in order to introduce the
Jarlskog invariant [116]

JCP =
1

2
|Im(U∗

11U12U21U
∗
22)| =

1

2
|Im(U∗

11U13U31U
∗
33)|

=
1

2
|Im(U∗

22U23U32U
∗
33)| =

1

2

∣∣c12 c213 c23 sin δ s12 s13 s23

∣∣ . (A.23)

In order to increase the numerical stability, one can choose any of the three combi-
nations. In particular, if the modulus of one of the Uij is very small, it turns out to
be more accurate to choose a combination in which this specific Uij does not appear.
We use this procedure for studying the running parameters numerically in the “run
and diagonalize” approach.
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A.2 Useful Formulae and Notations

A.2.1 Weyl, Dirac and Majorana Spinors

The universal covering group of the Lorentz group in four dimensions is Spin(3,1)∼=
SL(2, @ ). The left-handed Weyl spinor representation is the fundamental represen-

tation D( 1
2
,0). D(0, 1

2
) is the non-equivalent complex conjugate representation called

the right-handed Weyl spinor representation. As usual, we denote D( 1
2
,0) spinor in-

dices by Greek letters (e.g. ψα), whereas D(0, 1
2
) spinor indices are denoted by dotted

Greek letters. In addition, we denote spinors of the D(0, 1
2
) representation by a bar

over the field symbol, e.g. ξ̄α̇. Spinor indices can be raised and lowered by

ψα = εαβψβ , ξ̄α̇ = εα̇β̇ ξ̄β̇ , (A.24)

where the ε symbol is defined as

ε = (εαβ) = (εα̇β̇) =

(
0 1
−1 0

)
, εT = (εαβ) = (εα̇β̇) =

(
0 −1
1 0

)
. (A.25)

If a Dirac mass term but no Majorana mass term is present, it is useful to work
with Dirac spinors. In the Weyl basis, where γ5 is diagonal, the generators of the
Clifford algebra are given by

γ5 =

( A
2 0

0 −
A

2

)
, γµ =

(
0 σµ

σ̄µ 0

)
, (A.26)

with the σ-matrices defined by σ0
αα̇ :=

A
2,

σ1
αα̇ :=

(
0 1
1 0

)
, σ2

αα̇ :=

(
0 −i
i 0

)
, σ3

αα̇ :=

(
1 0
0 −1

)
(A.27)

and σ̄0 = σ0, σ̄µ = −σµ (µ = 1, 2, 3). Two Weyl spinors ξ and η can be combined
to a Dirac spinor

Ψ :=

(
ξα
η̄α̇

)
. (A.28)

We can recover the degrees of freedom of the Weyl spinors with the projectors
PL/R = (

A
± γ5)/2. We use them to define left- and right-handed 4-component

spinors,

ΨL := PLΨ and ΨR := PRΨ . (A.29)

The charge conjugate of a Dirac spinor is defined by

ΨC =

(
ξα
η̄α̇

)C

=

(
ηα
ξ̄α̇

)
= C Ψ

T
with C :=

(
εαβ 0

0 εα̇β̇

)
(A.30)
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A.2 Useful Formulae and Notations

in the Weyl basis. The charge conjugation matrix C satisfies C† = C−1, CT = −C
and CγTµ C−1 = −γµ. Spinors which fulfill the condition ΨC =Ψ are called Majorana

spinors. We have introduced the Dirac adjoint Ψ = Ψ†γ0, which is given by

Ψ =

(
ξα
η̄α̇

)
=

(
ηα

ξ̄α̇

)T
. (A.31)

For the Dirac adjoint, the relations ψL = ψPR and ψR = ψPL hold. In the following,
we will furthermore use the abbreviations ψC

L := (ψL)C and ψC
R := (ψR)C.

A.2.2 Clifford Algebra in d Dimensions

For the calculations using dimensional regularization, we have to deal with the
Clifford algebra in d dimensions. Since for the 1-loop calculations in this work it is
sufficient to use naive dimensional regularization, we will not go into detail about
the subtleties concerning γ5 in d dimensions. The Clifford algebra is defined as

{γµ, γν} = 2ηµν , (A.32)

where ηµν is the Minkowski metric tensor in d dimensions. For products of γ-
matrices, we have the rules

γµγ
µ = d , (A.33a)

γνγ
µγν = (2 − d)γµ , (A.33b)

γλγ
µγνγλ = 4ηµν − (4 − d)γµγν , (A.33c)

γργ
µγνγλγρ = −2γλγνγµ + (4 − d)γµγνγλ . (A.33d)

For evaluating traces of γ matrices which do not contain γ5, we use the relations

Tr( B ) = 4 , (A.34a)

Tr(odd number of γ’s) = 0 , (A.34b)

Tr(γµγν) = 4ηµν , (A.34c)

Tr(γµγνγργσ) = 4 (ηµνηρσ − ηµρηνσ + ηµσηνρ) . (A.34d)

For dealing with γ5, we will use the rule that it anti-commutes with all Dirac matrices
as usual, {γ5, γ

µ} = 0 and satisfies the relations Tr(γ5) = 0 and Tr(γ5γ
µγν) = 0.

A.2.3 Passarino Veltman Functions

For calculating the RGEs in mass independent renormalization schemes and dimen-
sional regularization, we are interested in the 1

ε
-poles of the diagrams under con-

sideration. In oder to obtain them, we first calculate the diagrams in a Minkowski
space with d = 4 − ε spacetime dimensions. We then express the integrals in terms
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of Passarino-Veltman functions [117], which have a known pole structure (see table
A.1 on page 114). In this context, the package FeynCalc [60] is very useful, since it
allows to perform the reduction to Passarino-Veltman functions by the computer.

Explicit results for the Passarino-Veltman functions can e.g. be found in reference
[118]. The integral for the one-point function is given by

A0(m2) :=
µε

iπ2

∫
ddk

1

k2 −m2
. (A.35)

For calculating 2-point functions, we use the integrals

B0(p2, m2
1, m

2
2) :=

µε

iπ2

∫
ddk

1

(k2 −m2
1) [(k + p)2 −m2

2]
, (A.36a)

Bµ(p2, m2
1, m

2
2) :=

µε

iπ2

∫
ddk

kµ
(k2 −m2

1) [(k + p)2 −m2
2]
, (A.36b)

Bµν(p
2, m2

1, m
2
2) :=

µε

iπ2

∫
ddk

kµkν
(k2 −m2

1) [(k + p)2 −m2
2]
. (A.36c)

Bµ and Bµν can be expressed in terms of the external momentum p and further
scalar functions,

Bµ = pµB1 , (A.37a)

Bµν = ηµνB00 + pµpνB11 , (A.37b)

where the arguments, which are the same as in equations (A.36), have been omitted.
The integrals for the 3-point functions read

C0 :=
µε

iπ2

∫
ddk

1

(k2 −m2
1) [(k + p)2 −m2

2] [(k + q)2 −m2
3]
, (A.38a)

Cµ :=
µε

iπ2

∫
ddk

kµ
(k2 −m2

1) [(k + p)2 −m2
2] [(k + q)2 −m2

3]
, (A.38b)

Cµν :=
µε

iπ2

∫
ddk

kµkν
(k2 −m2

1) [(k + p)2 −m2
2] [(k + q)2 −m2

3]
, (A.38c)

Cµνρ :=
µε

iπ2

∫
ddk

kµkνkρ
(k2 −m2

1) [(k + p)2 −m2
2] [(k + q)2 −m2

3]
, (A.38d)

where the arguments, which again have been omitted, are as in

C0 = C0

(
p2, (p− q)2, q2, m2

1, m
2
2, m

2
3

)
. (A.39)

Again, the integrals with a tensor structure can be reduced to expressions containing
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coefficient functions with a known pole structure,

Cµ = pµ C1 + qµ C2 , (A.40a)

Cµν = ηµν C00 + pµpν C11 + qµqν C22 + (pµqν + qµpν)C12 , (A.40b)

Cµνρ = (ηµνpρ + ηνρpµ + ηµρpν)C001 + (ηµνqρ + ηνρqµ + ηµρqν)C002 +

+pµpνpρ C111 + qµqνqρ C222 + (pµpνqρ + pµqνpρ + qµpνpρ)C112

+(qµqνpρ + qµpνqρ + pµqνqρ)C122 .

(A.40c)

Note that C0 and Cµ are finite, while some of the Cµν and Cµνρ contain poles in ε.
Finally, we list the integrals for the 4-point functions,

D0 :=

∫
ddk (µε/iπ2)

(k2 −m2
1) [(k + p1)2 −m2

2] [(k + p2)2 −m2
3] [(k + p3)2 −m2

4]
,

(A.41a)

Dµ :=

∫
ddk (µε/iπ2) kµ

(k2 −m2
1) [(k + p1)2 −m2

2] [(k + p2)2 −m2
3] [(k + p3)2 −m2

4]
,

(A.41b)

Dµν :=

∫
ddk (µε/iπ2) kµkν

(k2 −m2
1) [(k + p1)2 −m2

2] [(k + p2)2 −m2
3] [(k + p3)2 −m2

4]
,

(A.41c)

Dµνρ :=

∫
ddk (µε/iπ2) kµkνkρ

(k2 −m2
1) [(k + p1)2 −m2

2] [(k + p2)2 −m2
3] [(k + p3)2 −m2

4]
,

(A.41d)

Dµνρσ :=

∫
ddk (µε/iπ2) kµkνkρkσ

(k2 −m2
1) [(k + p1)2 −m2

2] [(k + p2)2 −m2
3] [(k + p3)2 −m2

4]
.

(A.41e)

They have arguments as in

D0 = D0

(
p2

1, (p1 − p2)2, (p2 − p3)
2, p2

3, p
2
2, (p1 − p3)

2, m2
1, m

2
2, m

2
3, m

2
4

)
. (A.42)

Only the four-point function D0000 has a pole. Dµνρσ can be decomposed as

Dµνρσ = (ηµνηρσ + ηµρηνσ + ηµσηνρ)D0000 + UV finite , (A.43)

where only the part containing a pole in ε has been written explicitly. The poles of
all divergent Passarino-Veltman functions are listed in table A.1.
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Integral Divergent part

A0(m2)
2

ε
m2

B0(p
2, m2

1, m
2
2)

2

ε

B1(p
2, m2

1, m
2
2) −1

ε

B00(p2, m2
1, m

2
2) − 1

6ε
(p2 − 3m2

1 − 3m2
2)

B11(p2, m2
1, m

2
2)

2

3ε

C00
1

2ε

C00i (i ∈ {1, 2}) − 1

6ε

D0000
1

12ε

Table A.1: The divergent parts of the Passarino-Veltman functions [118].
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A.3 Summary of Feynman Rules

We use the notation defined in section 2.4, with the superscript (n) denoting the
effective theories which arise when the SM, 2HDM or the MSSM are extended by
heavy singlets. This allows to present the Feynman rules in the most general form
used for the calculations in this work. The Feynman rules for the SM, 2HDM or
MSSM can be recovered by setting the neutrino Yukawa coupling to zero. For
all calculations, we choose a basis where the mass matrix of the heavy singlets is
diagonal with eigenvalues denoted by Mi. We will perform our calculations in the
SU(2)L-unbroken phase, since the counterterms calculated there also renormalize the
theory in the spontaneously broken phase. In the MSSM, we will consider energy
scales above the SUSY breaking scale, where we can omit the soft breaking terms.

The Feynman rules of the theories under consideration involve Majorana fermions.
We treat them, following the prescription given in [73]. For the calculation of a
diagram which contains Majorana fermions, we introduce a fermion flow for the
leptons, indicated by a gray arrow. It coincides with the lepton number flow, if
lepton number is conserved. However, if this is not the case as in the models we are
considering, the fermion flow may be parallel or antiparallel to the lepton number
flow. We will therefore give the rules for both directions of the fermion flow. One
has to read Feynman diagrams reverse to the direction of the fermion flow and write
down the corresponding analytic expressions from left to right. We further present
the Feynman rules in d = 4− ε dimensions, so that they can directly be used for the
calculations with dimensional regularization.

A.3.1 Feynman Rules in the Extended SM

The most relevant parts of the Lagrangian of the extended SM have been specified
in sections 1.1.1 and 2.4. The complete Lagrangian is given by

L
′
SM = Lkin(F) + LMass + LHiggs + LYuk + Lkin(G) + LFP + LGF + Lκ (A.44)

where Lkin contains the kinetic terms for the fermions and the gauge bosons, LGF is
the gauge fixing part and LFP contains the Faddeev-Popov ghosts. LMass contains
the direct Majorana mass term of the singlet fermions. In this section, we will use
4-component Majorana spinors N i := N i

R + (N i
R)C, where the mass term has the

form

LMass = −1

2
N
j (n)

MjiN
i . (A.45)
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Rules for the Propagators

N i N j

: iSN (p) =
i(�p +Mi)

p2 −M2
i + iε

δji (A.46a)

`fLa `gLb

: iS`L(p) =
i�p

p2 + iε
δgfδba (A.46b)

efR egR

: iSeR(p) =
i�p

p2 + iε
δgf (A.46c)

`fLa `gLb

: iS`L(−p) =
−i�p

p2 + iε
δgfδba (A.46d)

efR egR

: iSeR(−p) =
−i�p

p2 + iε
δgf (A.46e)

qfLa qgLb

: iSqL(p) =
i�p

p2 + iε
δgfδba (A.46f)

ufR ugR

: iSuR
(p) =

i�p

p2 + iε
δgf (A.46g)

dfR dgR

: iSdR(p) =
i�p

p2 + iε
δgf (A.46h)

φa φb
: iSφ(p) =

i

p2 −m2 + iε
δba (A.46i)

Bµ Bν
: iDµν

B (p) = i
−ηµν + (1 − ξB)p

µpν

p2

p2 + iε
(A.46j)

WAµ WBν
: iDµν

WA(p) = i
−ηµν + (1 − ξW )p

µpν

p2

p2 + iε
δAB (A.46k)

The momentum p in the above diagrams flows from left to right. The iε-term in the
denominators, which defines the integration contour for the Fourier transformation
of the propagators to position space, is not written explicitly in the calculations of
the main part.
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Rules for the Yukawa Interactions

`fLb

φa
N j

: −iµ ε
2 (

(n)

Yν)gf(ε
T )abPL

`fLb

φa
N j

: −iµ ε
2 (

(n)

Y T
ν )fgεbaPL

(A.47a)

N j

`fLb
φa

: −iµ ε
2 (

(n)

Y †
ν )fgεbaPR

N j

`fLb
φa

: −iµ ε
2 (

(n)

Y ∗
ν )gf(ε

T )abPR

(A.47b)

`fLb

egR
φa

: −iµ ε
2 (Ye)gfδabPL

`fLb

egR
φa

: −iµ ε
2 (Y T

e )fgδabPL

(A.47c)

egR

φa

`fLb

: −iµ ε
2 (Y †

e )fgδabPR

egR

φa

`fLb

: −iµ ε
2 (Y ∗

e )gfδabPR

(A.47d)

qfLb

φa

ugR

: −iµ ε
2 (Yu)gf (εT )abPL

ugR

qfLb
φa

: −iµ ε
2 (Y †

u )fgεbaPR

(A.47e)

qfLb

dgR
φa

: −iµ ε
2 (Yd)gfδabPL

dgR

φa

qfLb

: −iµ ε
2 (Y †

d )fgδabPR

(A.47f)
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Some Rules for Gauge Boson and Higgs Interactions

`fLa

Bµ

`gLb

: i
2
µ

ε
2 g1δgfδbaγµPL

`fLa

Bµ

`gLb

: − i
2
µ

ε
2g1δfgδabγµPR

(A.48a)

`fLa

W i
µ

`gLb

: − i
2
µ

ε
2 g2δgfτ

i
baγµPL

`fLa

W i
µ

`gLb

: i
2
µ

ε
2 g2δfg(τ iT )abγµPR

(A.48b)

efR

Bµ

egR

: iµ
ε
2g1δgfγµPR

efR

Bµ

egR

: −iµ ε
2g1δfgγµPL

(A.48c)

φa

φb
Bµ

p

q
: − i

2
µ

ε
2 g1(pµ + qµ)δba

φa

φb
W i

µ

p

q
: − i

2
µ

ε
2g2(pµ + qµ)τ iba

(A.48d)

φa
φb Bµ

Bν
: i

2
µεg2

1ηµνδba φa
φb W i

µ

W j
ν

: i
2
µεg2

2ηµνδijδba

(A.48e)

φa

φb Bµ

W i
ν

: i
2
µεg1g2ηµντ

i
ba

φb

φa

φd

φc
: −iµε λ

2
(δcaδdb + δcbδda)

(A.48f)

In the derivation of the rules with derivatives we have used the rule that ∂µφ in the
Lagrangian yields a factor of −ipµ in the Feynman rule.
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Rules for the Effective Dimension 5 Neutrino Mass Operator

`fLb

φd

φa

`gLc
(n)

κ : iµε
(n)

κgf
1
2
(εcdεba + εcaεbd)PL (A.49a)

φd

`fLb φa

`gLc
(n)

κ : iµε(
(n)

κ †)gf
1
2
(εcdεba + εcaεbd)PR . (A.49b)

Definition of the Counterterms

We first give the definition of the counterterms in the SM, which can easily be
generalized to the 2HDMs or to the MSSM component fields. First, the wavefunction
renormalization constants are defined by the following relations of the bare and
renormalized fields

ψfB = (
(n)

Z
1
2
ψ )fgψ

g , (A.50a)

φB =
(n)

Z
1
2
φ φ , (A.50b)

VB =
(n)

Z
1
2
V V (A.50c)

for the fermions ψf , the Higgs field φ and gauge bosons V . For the Majorana
singlets, the wavefunction renormalization constant has a left-handed and a right-
handed part,

(
(n)

ZN)ij := C ij + (δ
(n)

ZN(L))ijPL + (δ
(n)

ZN(R))ijPR , (A.51)

which are related by
(n)

ZN(L) =
(n)

Z∗
N(R). To verify this, note that

NC
B = CNB

T
= C

(n)

Z
1/2
N N

T

= C (γ0)
T
(
N †

(n)

Z
† 1
2

N

)T
= Cγ0

(n)

Z
∗ 1

2
N (N †)

T
. (A.52)

From NC
B = NB we obtain Cγ0

(n)

Z
∗ 1

2
N =

(n)

Z
1
2
NCγ0. Using Cγ0PL = PRCγ0 and the

definition of equation (A.51), we obtain the desired relation. Note that we always
choose the wavefunction renormalization constants to be Hermitian, which is possi-
ble because only the combination (Z

1/2
ψ )†Z

1/2
ψ can be determined from the two-point

functions.
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The counterterms for the vertices which are relevant for our calculations are de-
fined by

Ckin(F) = `gL(iγµDµ)(δ
(n)

Z`L)gf`
f
L + egR(iγµDµ)(δ

(n)

ZeR)gfe
f
R

+ qgL(iγµDµ)(δ
(n)

ZqL)gfq
f
L+ugR(iγµDµ)(δ

(n)

ZuR
)gfu

f
R

+ dgR(iγµDµ)(δ
(n)

ZdR)gfd
f
R

+
1

2
N
j
(iγµ∂µ)

[
(δ

(n)

Z∗
N)jiPL + (δ

(n)

ZN)jiPR

]
N i , (A.53a)

CMass = −1

2
N
j
(

(n)

M + δ
(n)

M)jiN
i , (A.53b)

CHiggs = δ
(n)

Zφ (Dµφ)†(Dµφ) − δ
(n)

m2φ†φ− 1

4
δ

(n)

Zλλ(φ†φ)2

+

[
i
2
(Dµφ)†

(
δ

(n)

Zg1g1B
µ + δ

(n)

Zg2g2 τ
iW iµ

)
φ+ h.c.

]
, (A.53c)

CYuk = −(
(n)

Yν δ
(n)

ZYν )jfN
j
φ̃†`fL − (Ye δ

(n)

ZYe)gfe
g
Rφ

†`fL

−(Yu δ
(n)

ZYu)gfu
g
Rφ̃

†qfL − (Yd δ
(n)

ZYd
)gfd

g
Rφ

†qfL + h.c. , (A.53d)

Cκ =
1

4
δ
(n)

κgf `
C
L

g

cεcdφd `
f
Lbεbaφa + h.c. . (A.53e)

From these definitions, we obtain the following relations for the renormalized and
the bare coupling constants and masses

(n)

Zφm
2
B = m2 + δ

(n)

m2 , (A.54a)

(
(n)

Z
T 1

2
N

(n)

MB

(n)

Z
1
2
N)ij = (

(n)

M + δ
(n)

M)ij , (A.54b)
(n)

Z2
φλB = µε

(n)

Zλλ , (A.54c)

(
(n)

Z
1
2

N(R)

(n)

YνB
(n)

Z
1
2
φ

(n)

Z
1
2
`L

)ig = µ
ε
2 (

(n)

Yν
(n)

ZYν )ig , (A.54d)

(
(n)

Z
1
2
eRYeB

(n)

Z
1
2
φ

(n)

Z
1
2
`L

)fg = µ
ε
2 (Ye

(n)

ZYe)fg , (A.54e)

(
(n)

Z
1
2
uRYuB

(n)

Z
1
2
φ

(n)

Z
1
2
qL)fg = µ

ε
2 (Yu

(n)

ZYu)fg , (A.54f)

(
(n)

Z
1
2
dR
YdB

(n)

Z
1
2
φ

(n)

Z
1
2
qL)fg = µ

ε
2 (Yd

(n)

ZYd
)fg , (A.54g)

(n)

Z
T 1

2
`L

(n)

Z
1
2
φ

(n)

κB

(n)

Z
1
2
φ

(n)

Z
1
2
`L

= µε(
(n)

κ+ δ
(n)

κ) . (A.54h)

We have omitted the counterterms for the gauge sector, since we will not consider
its renormalization in detail.
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Rules for the Counterterms

For the calculation of the renormalization constants, the Feynman rules correspond-
ing to the counterterm vertices are useful. For the wavefunction renormalization
constants, they are given by

N i N j

: i

{
�p

[
(δ

(n)

Z∗
N)gfPL + (δ

(n)

ZN)jiPR

]

− (
(n)

M + δ
(n)

M)gf

}
, (A.55a)

`fLa `gLb

: i�p(δ
(n)

Z`L)gfPLδba , (A.55b)

efR egR

: i�p(δ
(n)

ZeR)gfPR , (A.55c)

`fLa `gLb

: −i�p(δ
(n)

Z`L)gfPLδba , (A.55d)

efR egR

: −i�p(δ
(n)

ZeR)gfPR , (A.55e)

φa φb
: i

(
p2δ

(n)

Zφ − δ
(n)

m2

)
δba . (A.55f)

For the neutrino mass operator, the rules for the counterterms are

D�EF�G
HJI

HLK
D�MFON

: iµε δ
(n)

κgf
1
2
(εcdεba + εcaεbd)PL , (A.56a)

P�QR�S
TJU P�VROW

TLX : iµε (δ
(n)

κ†)gf
1
2
(εcdεba + εcaεbd)PR . (A.56b)
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The counterterm for the Higgs self-interaction yields the rule

φb

φa

φd

φc
: −iµε δλ 1

2
(δcaδdb + δcbδda) . (A.57)

Finally, we give the Feynman rules for the counterterms corresponding to the Yukawa
interactions, which involve the neutrino and the charged lepton Yukawa matrices.

`fLb

φa
N j

: −iµ ε
2 (δ

(n)

Yν)jf(ε
T )abPL

`fLb

φa
N j

: −iµ ε
2 (δ

(n)

Y T
ν )fjεbaPL

(A.58a)

N j

`fLb
φa

: −iµ ε
2 (δ

(n)

Y †
ν )fjεbaPR

N j

`fLb
φa

: −iµ ε
2 (δ

(n)

Y ∗
ν )jf(ε

T )abPR

(A.58b)

`fLb

egR
φa

: −iµ ε
2 (δYe)gfδabPL

`fLb

egR
φa

: −iµ ε
2 (δY T

e )fgδabPL

(A.58c)

egR

φa

`fLb

: −iµ ε
2 (δY †

e )fgδabPR

egR

φa

`fLb

: −iµ ε
2 (δYe

∗)gfδabPR

(A.58d)
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A.3.2 Feynman Rules in Extended 2HDMs

We now summarize the Feynman rules for the Yukawa couplings of the charged
leptons and the neutrinos as well as for the Higgs self-interactions in the classes of
2HDMs, defined in section 2.2.2. To specify the different models, we use the notation
of tables 2.1 and 2.2 (page 36).

Yukawa Interactions

The rules for the Yukawa interactions depend on the specific 2HDM under consid-
eration, which differ in the way the Higgses are coupled to the fermions. In our
convention, the fields egR always couple to the Higgs φ(1).

`fLb

egR
φ

(1)
a

: −iµ ε
2 (Ye)gfδabPL

`fLb

egR
φ

(1)
a

: −iµ ε
2 (Y T

e )fgδabPL (A.59a)

egR

φ
(1)
a

`fLb

: −iµ ε
2 (Y †

e )fgδabPR

egR

φ
(1)
a

`fLb

: −iµ ε
2 (Y ∗

e )gfδabPR (A.59b)

In the 2HDMs we consider in this work, the singlets N i couple either to φ(1) or φ(2).
In the Feynman rules, we use the variable z

(i)
ν , defined analogous to z

(i)
u and z

(i)
d of

table 2.2 for a specific model.

`fLb

φ
(i)
a

N j

: −iz(i)
ν µ

ε
2 (

(n)

Yν)jf(ε
T )abPL

`fLb

φ
(i)
a

N j

: −iz(i)
ν µ

ε
2 (

(n)

Y T
ν )fjεbaPL

(A.60a)

N j

`fLb
φ

(i)
a

: −iz(i)
ν µ

ε
2 (

(n)

Y †
ν )fjεbaPR

N j

`fLb
φ

(i)
a

: −iz(i)
ν µ

ε
2 (

(n)

Y ∗
ν )jf(ε

T )abPR

(A.60b)

The rules for the quarks can be given in a similar notation, using z
(i)
u and z

(i)
d to

specify the couplings to the Higgs doublets.
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Feynman Rules for the Higgs Sector

Y[Z]\�^_
Y Z]\�^` Y[Z]\a^b

Y Z]\a^c
: −iµελ1

1

2
(δacδbd + δadδbc) (A.61a)

d[egf�hi
d egf�hj d[egfkhl

d egfkhm
: −iµελ2

1

2
(δacδbd + δadδbc) (A.61b)

n[ogp�qr
n o]s�qt n[ogpkqu

n o]saqv
: −iµε (λ3δacδbd + λ4δadδbc) (A.61c)

w[x]y�z{
w x]y�z| w[xg}kz~

w xg}kz�
: −iµελ∗5

1

2
(δacδbd + δadδbc) (A.61d)

�[�g����
� �g���� �[�]�a��

� �]�a��
: −iµελ5

1

2
(δacδbd + δadδbc) (A.61e)
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A.3.3 Feynman Rules in the MSSM Extended by Heavy Singlets

For the computation of the Feynman rules, we have to express the interaction La-
grangian in component fields. This has partly been done in section 2.3. We now
consider the component field form of the interactions of the superpotential. They
can be evaluated systematically using equation (2.52).

Rules from the Neutrino Mass Operator

The vertices in the component field formalism, which stem from the neutrino mass
operator in superfield-notation, are derived from

−1

2

∂2Wκ

∂ � i∂ � j
∣∣
θ=0

ψiψj , � i ∈ { � (2)
d , � gc} . (A.62)

In particular, (A.62) contains the dimension 5 neutrino mass operator present in the

SM, which is given in equation (1.15), Lκ = 1
4
κgf `CL

g

cε
cdφ

(2)
d `fLbε

baφ
(2)
a + h.c.. Note

that compared to the 2HDMs, in the MSSM there is only one such neutrino mass
operator in the superpotential. In addition, we obtain further vertices from equation
(2.47). Among them, there is the following vertex, which involves the superpartners

φ̃
(2)
d and ˜̀fb of the Higgs and the lepton doublets:

φ̃
(2)
d

`gLc

˜̀f
b

φ
(2)
a

κ : iµεκgf
1
2
(εcdεba + εcaεbd)PL . (A.63)

It is necessary for calculating the gaugino contributions to the vertex corrections.
We will now consider the other interaction terms of the superpotential more sys-
tematically.

Systematic Computation of the Interaction Terms

To obtain the Feynman rules, we calculate the first derivatives w.r.t. the superfields:

∂WR

∂ � Cj

∣∣∣∣
θ=0

=
(n)

MjiÑ
i + (

(n)

Yν)jfφ
(2)
a (εT )ab ˜̀fb , (A.64a)

∂WR

∂ � Cg

∣∣∣∣
θ=0

= (Ye)gfφ
(1)
a εab˜̀fb , (A.64b)

∂WR

∂ � fb
∣∣∣∣∣
θ=0

= (Ye)gf ẽ
Cgφ(1)

a εab + (
(n)

Yν)jfÑ
Cjφ(2)

a (εT )ab , (A.64c)
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∂WR

∂ � (1)
a

∣∣∣∣
θ=0

= mεabφ
(2)
b + (Ye)gf ẽ

Cgεab ˜̀fb + (Yd)gf d̃
Cgεab ˜̀fb , (A.64d)

∂WR

∂ � (2)
a

∣∣∣∣
θ=0

= mφ
(1)
b εba + (

(n)

Yν)jfÑ
Cj(εT )ab˜̀fb + (Yu)gf ũ

Cg(εT )ab˜̀fb , (A.64e)

∂WR

∂ � Cg

∣∣∣∣
θ=0

= (Yu)gfφ
(2)
a (εT )abq̃fb , (A.64f)

∂WR

∂ � Cg

∣∣∣∣
θ=0

= (Yd)gfφ
(1)
a εabq̃fb , (A.64g)

∂WR

∂ � fb
∣∣∣∣∣
θ=0

= (Yd)gf d̃
Cgφ(1)

a εab + (Yu)gf ũ
Cgφ(2)

a (εT )ab . (A.64h)

The second order derivatives of the superpotential w.r.t. the superfields can be read
off table A.2.

� Cj � Cg � f
b � (1)

a � (2)
a

� Cj
(n)

Mji 0 (
(n)

Yν)jfφ
(2)
a (εT )ab 0 (

(n)

Yν)jf(ε
T )ab ˜̀fb� Cg − (Ye)gfφ

(1)
a εab (Ye)gfε

ab˜̀f
b 0

� f
b − (Ye)gf ẽ

Cgεab (
(n)

Yν)jfÑ
Cj(εT )ab

� (1)
a − mεab

� (2)
a −

� Cg � Cg � f
b � (1)

a � (2)
a

� Cg − 0 (Yu)gfφ
(2)
a (εT )ab 0 (Yu)gf(ε

T )abq̃fb

� Cg − (Yd)gfφ
(1)
a εab (Yd)gfε

abq̃fb 0

� fb − (Yd)gf d̃
Cgεab (Yu)gf ũ

Cg(εT )ab

� (1)
a − mεab

� (2)
a −

Table A.2: The θ = 0-components of the second order derivative of the superpotential. Note that
the table is symmetric because of ∂i∂jWR = ∂j∂iWR.

The interaction terms in the component field formalism can now be obtained using
equation (2.52).
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`fLb

φ
(1)
a

egR

:

`fLb

φ̃
(1)
La

ẽg

:

˜̀f
Lb

φ̃
(1)
La

egR :

−iµ ε
2 (Ye)gfεabPL

`fLb

φ
(1)
a

egR

:

`fLb

φ̃
(1)
La

ẽg

:

˜̀f
Lb

φ̃
(1)
La

egR :

−iµ ε
2 (Y T

e )fgε
T
baPL

egR

`fLb

φ
(1)
a

:

ẽg

`fLb
φ̃

(1)
La

:

egR

˜̀f
Lb
φ̃

(1)
La

:

−iµ ε
2 (Y †

e )fgε
T
baPR

egR

`fLb

φ
(1)
a

:

ẽg

`fLb
φ̃

(1)
La

:

egR

˜̀f
Lb
φ̃

(1)
La

:

−iµ ε
2 (Y ∗

e )gfεabPR

Table A.3: Feynman rules for the Yukawa vertices containing Ye in the MSSM. Similar Feynman
rules can be derived for the down-type Yukawa interactions. Note that εT

ab := (εT )ab.
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`fLb

φ
(1)
a

N j

:

`fLb

φ̃
(1)
La

Ñ j

:

˜̀f
Lb

φ̃
(1)
La

N j
:

−iµ ε
2 (

(n)

Yν)jfε
T
abPL

`fLb

φ
(1)
a

N j

:

`fLb

φ̃
(1)
La

Ñ j

:

˜̀f
Lb

φ̃
(1)
La

N j
:

−iµ ε
2 (

(n)

Y T
ν )fjεbaPL

N j

`fLb

φ
(1)
a

:

Ñ j

`fLb
φ̃

(1)
La

:

N j

˜̀f
Lb
φ̃

(1)
La

:

−iµ ε
2 (

(n)

Y †
ν )fjεbaPR

N j

`fLb

φ
(1)
a

:

Ñ j

`fLb
φ̃

(1)
La

:

N j

˜̀f
Lb
φ̃

(1)
La

:

: −iµ ε
2 (

(n)

Y ∗
ν )jfε

T
abPR

Table A.4: Feynman rules for the Yukawa vertices containing the neutrino Yukawa matrix in the
MSSM extended by singlet Majorana fermions. The analogous Feynman rules can be derived for
the up-type Yukawa interactions.
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Gauge-Matter Interactions

In the used convention, we obtain the following Feynman rules for the coupling to
the gauge bosons:

ψfLa

vAµ
ψgLb

: −iµ ε
2 gAδgf (TA)baγµPL

ψfLa

vAµ
ψgLb

: +iµ
ε
2gAδgf(T

T
A)abγµPR

(A.65)

Aa

p

Ab
vAµq

: −iµ ε
2 gA(pµ + qµ)Tba

A φa

φb vAµ
vBν

: i
2
µεgAgBηµν{TA,TB}ba

(A.66)

{TA,TB} := TATB + TATB is the anti-commutator of the generators. Note that
{TA,TB} = δAB for SU(N). Let λA be the superpartner of the gauge boson vA.
Then the gaugino-matter interactions have the following Feynman rules:

ψfLb

λAR
Aga

: −
√

2µ
ε
2 gATab

A δ
fgPL

ψfLb

λAR
Aga

: −
√

2µ
ε
2 gA(TT

A)baδfgPL

(A.67)

λAR
Aga

ψfLb

:
√

2µ
ε
2gATba

A δ
fgPR

λAR
Aga

ψfLb

:
√

2µ
ε
2gA(TT

A)abδfgPR

(A.68)

{A, ψ} can be replaced by any on-shell chiral multiplet of the theory.
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A.4 Results for Relevant Vertex Corrections and

Self-Energy Diagrams

A.4.1 Summary of Results in the SM

Diagram Divergent Part

i
(
Σe
φ

)
ab

i

16π2
2 Tr

(
Y †
e Ye
)
δab p

2 1

ε

i
(
Σu
φ

)
ab

i

16π2
6 Tr

(
Y †
uYu

)
δab p

2 1

ε

i
(
Σd
φ

)
ab

i

16π2
6 Tr

(
Y †
d Yd

)
δab p

2 1

ε

i
(
Σλ
φ

)
ab

i

16π2
3λm2 1

ε

i
(
ΣX
φ

)
ab

0

i
(
ΣB
φ

)
ab

i

16π2

[
2ξB(p2 −m2) − 6p2

]
y2
φ g

2
1 δab

1

ε

i
(
ΣW
φ

)
ab

i

16π2

[
2ξW (p2 −m2) − 6p2

] 3

4
g2
2 δab

1

ε

Table A.5: 1/ε-poles of the self-energy diagrams for the Higgs doublet in the SM. The diagrams
are shown in figure 2.3 on page 34. A quantity with a superscript W denotes the sum of the
contribution from the three gauge bosons W i ∈ {W 1, W 2, W 3}.

Diagram Divergent Part

i
(
Σe
`L

)gf
ab

i

16π2
(Y †

e Ye)
gf δab �p PL

1

ε

i
(
ΣB
`L

)
ab

i

16π2
2 g2

1 y
2
` ξB δab �p PL

1

ε

i
(
ΣW
`L

)
ab

i

16π2
2 g2

2

3

4
ξW δab �p PL

1

ε

Table A.6: Results for the 1/ε-poles of the self-energy diagrams for the lepton doublets in the SM.
The corresponding diagrams are shown in figure 2.2 on page 34.
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Diagram Divergent Part

i
(

Γ
e(1)
κ

)abcd
gf

i

16π2
2
(
κY †

e Ye
)
gf

1
2
(εcdεba + εcbεda)PL

1

ε

i
(

Γ
e(2)
κ

)abcd
gf

i

16π2
2
(
κY †

e Ye
)
gf

1
2
(εcaεbd − εcbεda)PL

1

ε

i
(

Γ
e(3)
κ

)abcd
gf

i

16π2
2 (Y T

e Y
∗
e κ)gf

1
2
(εcdεba + εcbεda)PL

1

ε

i
(

Γ
e(4)
κ

)abcd
gf

i

16π2
2 (Y T

e Y
∗
e κ)gf

1
2
(εcaεbd − εcbεda)PL

1

ε

i
(
Γλκ
)abcd
gf

i

16π2
(−λ) κgf

1
2
(εcdεba + εcaεbd)PL

1

ε

i
(

Γ
B(1)
κ

)abcd
gf

i

16π2
1
2
ξB g

2
1 κgf

1
2
(εcdεba + εcaεbd)PL

1

ε

i
(

Γ
B(2)
κ

)abcd
gf

i

16π2
1
2
ξB g

2
1 κgf

1
2
(εcdεba + εcaεbd)PL

1

ε

i
(

Γ
B(3)
κ

)abcd
gf

i

16π2
1
2
ξB g

2
1 κgf

1
2
(εcdεba + εcaεbd)PL

1

ε

i
(

Γ
B(4)
κ

)abcd
gf

i

16π2
1
2
ξB g2

1 κgf
1
2
(εcdεba + εcaεbd)PL

1

ε

i
(

Γ
B(5)
κ

)abcd
gf

i

16π2
(−1

2
) ξB g

2
1 κgf

1
2
(εcdεba + εcaεbd)PL

1

ε

i
(

Γ
B(6)
κ

)abcd
gf

i

16π2
(−3

2
− 1

2
ξB) g2

1 κgf
1
2
(εcdεba + εcaεbd)PL

1

ε

i
(

Γ
W (1)
κ

)abcd
gf

i

16π2
1
2
ξW g2

2 κgf
1
2
(εcdεba + 3εcaεbd − 2εcbεda)PL

1

ε

i
(

Γ
W (2)
κ

)abcd
gf

i

16π2
1
2
ξW g2

2 κgf
1
2
(3εcdεba + εcaεbd − 2εcbεad)PL

1

ε

i
(

Γ
W (3)
κ

)abcd
gf

i

16π2
1
2
ξW g2

2 κgf
1
2
(εcdεba + 3εcaεbd − 2εadεbc)PL

1

ε

i
(

Γ
W (4)
κ

)abcd
gf

i

16π2
1
2
ξW g2

2 κgf
1
2
(3εcdεba + εcaεbd − 2εdaεbc)PL

1

ε

i
(

Γ
W (5)
κ

)abcd
gf

i

16π2
(−1

2
) ξW g2

2 κgf
1
2
(εcdεba + εcaεbd)PL

1

ε

i
(

Γ
W (6)
κ

)abcd
gf

i

16π2
(−3

2
− 1

2
ξW ) g2

2 κgf
1
2
(εcdεba + εcaεbd)PL

1

ε

Table A.7: Summary of results for the 1/ε-poles of the vertex corrections for κ in the SM. The
corresponding diagrams are shown in figure 2.1 on page 31.
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A.4.2 Summary of Results in the 2HDMs

We now summarize some results for the 1/ε-poles of vertex corrections and self-
energy diagrams which are relevant for the calculation of the β-functions for the
neutrino mass operators in the 2HDMs classified in table 2.1 on page 36. Most of
the calculations are similar to the ones in the SM and we use an analogous notation
for the diagrams. The results for the self-energy diagrams of the lepton doublets in
the 2HDMs are identical to the SM case (see table A.6).

Diagram Divergent Part

i
(

Σe
φ(1)

)
ab

i

16π2
2 Tr

(
Y †
e Ye
)
δab p

2 1

ε

i
(

Σu
φ(i)

)

ab

i

16π2
6 z(i)

u Tr
(
Y †
uYu

)
δab p

2 1

ε

i
(

Σd
φ(i)

)

ab

i

16π2
6 z

(i)
d Tr

(
Y †
d Yd

)
δab p

2 1

ε

i
(

ΣB
φ(i)

)

ab

i

16π2

[
2ξB(p2 −m2

i ) − 6p2
]
y2
φ g

2
1 δab

1

ε

i
(

ΣW
φ(i)

)

ab

i

16π2

[
2ξW (p2 −m2

i ) − 6p2
] 3

4
g2
2 δab

1

ε

Table A.8: Summary of results for the 1/ε-poles of the self-energy diagrams, which contribute to
the wavefunction renormalization of the Higgs doublets in 2HDMs. We use a notation analogous

to the one for the diagrams in the SM (figure 2.3 on page 34). The constants z
(i)
u and z

(i)
d specify

the couplings to the Higgs doublets and are given in table 2.2 for the models classified in table 2.1
(page 36).
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A.4 Results for Relevant Vertex Corrections and Self-Energy Diagrams

Diagram Divergent Part

i
(
Γλ1

κ(11)

)abcd
gf

i

16π2
(−λ1) κ

(11)
gf

1
2
(εcdεba + εcaεbd)PL

1

ε

i
(
Γλ2

κ(22)

)abcd
gf

i

16π2
(−λ2) κ

(22)
gf

1
2
(εcdεba + εcaεbd)PL

1

ε

i
(
Γλ5

κ(11)

)abcd
gf

i

16π2
(−λ5) κ

(11)
gf

1
2
(εcdεba + εcaεbd)PL

1

ε

i
(
Γλ5

κ(22)

)abcd
gf

i

16π2
(−λ∗5) κ

(22)
gf

1
2
(εcdεba + εcaεbd)PL

1

ε

i
(

Γ
e(1)

κ(ii)

)abcd
gf

i

16π2
2
(
κ(ii)Y †

e Ye
)
gf

1
2
(εcdεba + εcbεda)PL

1

ε

i
(

Γ
e(2)

κ(ii)

)abcd
gf

i

16π2
2
(
κ(ii)Y †

e Ye
)
gf

1
2
(εcaεbd − εcbεda)PL

1

ε

i
(

Γ
e(3)

κ(ii)

)abcd
gf

i

16π2
2 (Y T

e Y
∗
e κ

(ii))gf
1
2
(εcdεba + εcbεda)PL

1

ε

i
(

Γ
e(4)

κ(ii)

)abcd
gf

i

16π2
2 (Y T

e Y
∗
e κ

(ii))gf
1
2
(εcaεbd − εcbεda)PL

1

ε

i
(

Γ
B(n)

κ(ii)

)abcd
gf

i

16π2
1
2
ξB g

2
1 κ

(ii)
gf

1
2
(εcdεba + εcaεbd)PL

1

ε
(n ∈ {1, . . . , 4})

i
(

Γ
B(5)

κ(ii)

)abcd
gf

i

16π2
(−1

2
) ξB g

2
1 κ

(ii)
gf

1
2
(εcdεba + εcaεbd)PL

1

ε

i
(

Γ
B(6)

κ(ii)

)abcd
gf

i

16π2
(−3

2
− 1

2
ξB) g2

1 κ
(ii)
gf

1
2
(εcdεba + εcaεbd)PL

1

ε

i
(

Γ
W (1)

κ(ii)

)abcd
gf

i

16π2
1
2
ξW g2

2 κ
(ii)
gf

1
2
(εcdεba + 3εcaεbd − 2εcbεda)PL

1

ε

i
(

Γ
W (2)

κ(ii)

)abcd
gf

i

16π2
1
2
ξW g2

2 κ
(ii)
gf

1
2
(3εcdεba + εcaεbd − 2εcbεad)PL

1

ε

i
(

Γ
W (3)

κ(ii)

)abcd
gf

i

16π2
1
2
ξW g2

2 κ
(ii)
gf

1
2
(εcdεba + 3εcaεbd − 2εadεbc)PL

1

ε

i
(

Γ
W (4)

κ(ii)

)abcd
gf

i

16π2
1
2
ξW g2

2 κ
(ii)
gf

1
2
(3εcdεba + εcaεbd − 2εdaεbc)PL

1

ε

i
(

Γ
W (5)

κ(ii)

)abcd
gf

i

16π2
(−1

2
) ξW g2

2 κ
(ii)
gf

1
2
(εcdεba + εcaεbd)PL

1

ε

i
(

Γ
W (6)

κ(ii)

)abcd
gf

i

16π2
(−3

2
− 1

2
ξW ) g2

2 κ
(ii)
gf

1
2
(εcdεba + εcaεbd)PL

1

ε

Table A.9: 1/ε-poles of the vertex corrections for the two neutrino mass operators κ(11) and κ(22)

in the 2HDMs, classified in table 2.1 on page 36. The diagrams proportional to the Higgs self-
interactions are shown in figure 2.4 on page 38. The other diagrams are similar to the ones in the
SM (figure 2.1 on page 31) and we use a notation analogous to the one defined there.
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A.4.3 Summary of Results in the MSSM

Diagram Divergent Part

i
(

Σu
φ(2)

)
ab

i

16π2
6 Tr

(
Y †
uYu

)
δab p

2 1

ε

i
(

ΣB
φ(2)

)
ab

i

16π2

[
2 ξB (p2 −m2) − 6 p2

]
y2
φ g

2
1 δab

1

ε

i
(

Σλ0

φ(2)

)
ab

i

16π2

[
−4 p2

]
y2
φ(2) g

2
1 δab

1

ε

i
(

ΣW
φ(2)

)
ab

i

16π2

[
2ξW (p2 −m2) − 6 p2

]
3
4
g2
2 δab

1

ε

i
(

ΣΣλi

φ(2)

)
ab

i

16π2

[
−4 p2

]
3
4
g2
2 δab

1

ε

Table A.10: Results for the 1/ε-poles of the self-energy diagrams, which contribute to the wave-
function renormalization of the Higgs doublet φ(2) in the MSSM. The corresponding diagrams are
shown in figure 2.7 on page 48. A quantity with a superscript W denotes the sum of the contribu-
tion from the gauge bosons W i ∈ {W 1, W 2, W 3} and a quantity with a superscript Σλi denotes the
sum of the contribution from gauginos λi which are the superpartners of the three SU(2)L-gauge
bosons.

Diagram Divergent Part

i
(
Σe
`L

)gf
ab

i

16π2
(Y †

e Ye)
gf δab �pPL

1

ε

i
(
Σee
`L

)gf
ab

i

16π2
(Y †

e Ye)
gf δab �pPL

1

ε

i
(
ΣB
`L

)
ab

i

16π2
2 g2

1 y
2
` ξB δab �pPL

1

ε

i
(

Σλ0

`L

)

ab

i

16π2
2 g2

1 y
2
` δab �pPL

1

ε

i
(
ΣW
`L

)
ab

i

16π2
2 g2

2
3
4
ξW δab �p PL

1

ε

i
(

ΣΣλi

`L

)

ab

i

16π2
2 g2

2
3
4
δab �pPL

1

ε

Table A.11: 1/ε-poles of self-energy diagrams for the lepton doublets in the MSSM. The diagrams
are shown in figure 2.6 on page 47.
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A.4 Results for Relevant Vertex Corrections and Self-Energy Diagrams

Diagram Divergent Part

i
(

Γ
D(1)
κ

)abcd
gf

i

16π2
(−g2

1) κgf
1
2
(εcdεba + εcaεbd)PL

1

ε

i
(

Γ
(D(2))
κ

)abcd
gf

i

16π2
(−g2

2) κgf
1
2
(εcdεba + εcaεbd)PL

1

ε

i
(

Γ
B(n)
κ

)abcd
gf

i

16π2
1
2
ξB g

2
1 κgf

1
2
(εcdεba + εcaεbd)PL

1

ε
(n ∈ {1, . . . , 4})

i
(

Γ
B(5)
κ

)abcd
gf

i

16π2
(−1

2
) ξB g

2
1 κgf

1
2
(εcdεba + εcaεbd)PL

1

ε

i
(

Γ
B(6)
κ

)abcd
gf

i

16π2
(−3

2
− 1

2
ξB) g2

1 κgf
1
2
(εcdεba + εcaεbd)PL

1

ε

i
(

Γ
W (1)
κ

)abcd
gf

i

16π2
1
2
ξW g2

2 κgf
1
2
(εcdεba + 3εcaεbd − 2εcbεda)PL

1

ε

i
(

Γ
W (2)
κ

)abcd
gf

i

16π2
1
2
ξW g2

2 κgf
1
2
(3εcdεba + εcaεbd − 2εcbεad)PL

1

ε

i
(

Γ
W (3)
κ

)abcd
gf

i

16π2
1
2
ξW g2

2 κgf
1
2
(εcdεba + 3εcaεbd − 2εadεbc)PL

1

ε

i
(

Γ
W (4)
κ

)abcd
gf

i

16π2
1
2
ξW g2

2 κgf
1
2
(3εcdεba + εcaεbd − 2εdaεbc)PL

1

ε

i
(

Γ
W (5)
κ

)abcd
gf

i

16π2
(−1

2
) ξW g2

2 κgf
1
2
(εcdεba + εcaεbd)PL

1

ε

i
(

Γ
W (6)
κ

)abcd
gf

i

16π2
(−3

2
− 1

2
ξW ) g2

2 κgf
1
2
(εcdεba + εcaεbd)PL

1

ε

i
(

Γ
λ0(n)
κ

)abcd
gf

i

16π2
g2
1 κgf

1
2
(εcdεba + εcaεbd)PL

1

ε
(n ∈ {1, . . . , 4})

i
(

Γ
Σλi(1)
κ

)abcd
gf

i

16π2
g2
2 κgf

1
2
(εcdεba + 3εcaεbd − 2εcbεda)PL

1

ε

i
(

Γ
Σλi(2)
κ

)abcd
gf

i

16π2
g2
2 κgf

1
2
(3εcdεba + εcaεbd − 2εcbεad)PL

1

ε

i
(

Γ
Σλi(3)
κ

)abcd
gf

i

16π2
g2
2 κgf

1
2
(εcdεba + 3εcaεbd − 2εadεbc)PL

1

ε

i
(

Γ
Σλi(4)
κ

)abcd
gf

i

16π2
g2
2 κgf

1
2
(3εcdεba + εcaεbd − 2εdaεbc)PL

1

ε

Table A.12: Results for the 1/ε-poles of vertex corrections for κ in the MSSM, which are propor-
tional to the gauge couplings. The sum of the 1/ε-poles of the other vertex corrections vanishes
due to the non-renormalization theorem. The corresponding diagrams are shown in figure 2.5 on
page 45.
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A.5 Summary of the RGEs for the Minimal See-Saw

Scenarios

In order to calculate the RG evolution of the effective neutrino mass matrix, we have
to solve the RGEs for all the parameters of the theory simultaneously. We therefore
summarize the RGEs for the parameters in the minimal see-saw extensions of the
SM, 2HDMs and the MSSM, using the notation defined in section 2.4. A superscript
(n) denotes a quantity between the nth and the (n+1)th mass threshold. The RGEs
for the SM, 2HDM or MSSM can be recovered by setting the neutrino Yukawa
coupling to zero. The RGEs for the gauge couplings are well known and are not
affected by the additional singlets at 1-loop order. They are given by

16π2 βgA
= 16π2 µ

dgA
dµ

= bA g
3
A , (A.69)

with (bSU(3)C , bSU(2)L , bU(1)Y) = (−7,−19
6
, 41

10
) in the SM, (−7,−3, 21

5
) in the 2HDMs

and (−3, 1, 33
5

) in the MSSM. For U(1)Y, we use GUT charge normalization and
denote the corresponding gauge coupling constant as gU

1 . The RGEs for the couplings
in the SM and in the 2HDMs which have not been calculated explicitly in this thesis
can be found in [119,120], except for the terms containing the neutrino Yukawa
couplings.

A.5.1 The RGEs in the Extended SM

16π2
(n)

βκ = −3

2
(Y †

e Ye)
T (n)

κ− 3

2

(n)

κ (Y †
e Ye) +

1

2

((n)

Y †
ν

(n)

Yν
)T (n)

κ+
1

2

(n)

κ
((n)

Y †
ν

(n)

Yν
)

+ 2 Tr(Y †
e Ye)

(n)

κ+ 2 Tr
((n)

Y †
ν

(n)

Yν
)

(n)

κ + 6 Tr(Y †
uYu)

(n)

κ

+ 6 Tr(Y †
d Yd)

(n)

κ− 3g2
2

(n)

κ+ λ
(n)

κ , (A.70a)

16π2
(n)

βM =
((n)

Yν
(n)

Y †
ν

) (n)

M +
(n)

M
((n)

Yν
(n)

Y †
ν

)T
, (A.70b)

16π2
(n)

βYν =
(n)

Yν

{
3

2

((n)

Y †
ν

(n)

Yν
)
− 3

2
(Y †

e Ye) + Tr
((n)

Y †
ν

(n)

Yν
)

+ Tr(Y †
e Ye)

+ 3 Tr(Y †
uYu) + 3 Tr(Y †

d Yd) −
9

20
(gU

1 )2 − 9

4
g2
2

}
, (A.70c)

16π2
(n)

βYe = Ye

{
3

2
Y †
e Ye −

3

2

(n)

Y †
ν

(n)

Yν −
9

4
(gU

1 )2 − 9

4
g2
2

+ Tr

[
Y †
e Ye +

(n)

Y †
ν

(n)

Yν + 3Y †
d Yd + 3Y †

uYu

]}
, (A.70d)
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16π2
(n)

βYd
= Yd

{
3

2
Y †
d Yd −

3

2
Y †
uYu −

1

4
(gU

1 )2 − 9

4
g2
2 − 8 g2

3

+ Tr

[
Y †
e Ye +

(n)

Y †
ν

(n)

Yν + 3Y †
d Yd + 3Y †

uYu

]}
, (A.70e)

16π2
(n)

βYu = Yu

{
3

2
Y †
uYu −

3

2
Y †
d Yd −

17

20
(gU

1 )2 − 9

4
g2
2 − 8 g2

3

+ Tr

[
Y †
e Ye +

(n)

Y †
ν

(n)

Yν + 3Y †
d Yd + 3Y †

uYu

]}
, (A.70f)

16π2
(n)

βλ = 6λ2 − 3λ

(
3g2

2 +
3

5
(gU

1 )2

)
+ 3 g4

2 +
3

2

(
3

5
(gU

1 )2 + g2
2

)2

+ 4λ Tr

[
Y †
e Ye +

(n)

Y †
ν

(n)

Yν + 3Y †
d Yd + 3Y †

uYu

]
(A.70g)

− 8 Tr

[
Y †
e Ye Y

†
e Ye +

(n)

Y †
ν

(n)

Yν
(n)

Y †
ν

(n)

Yν + 3Y †
d Yd Y

†
d Yd + 3Y †

uYu Y
†
uYu

]
.

A.5.2 The RGEs in Extended 2HDMs

16π2
(n)

βκ(ii) =
(

1
2
− 2δi1

) [
κ(ii)(Y †

e Ye) + (Y †
e Ye)

Tκ(ii)
]

+ z(i)
ν 2 Tr(

(n)

Y †
ν

(n)

Yν)

+
[
δi1 2 Tr(Y †

e Ye) + z(i)
u 6 Tr(Y †

uYu) + z
(i)
d 6 Tr(Y †

d Yd)
]
κ(ii)

+ λiκ
(ii) + δi1λ

∗
5κ

(22) + δi2λ5κ
(11) − 3g2

2κ
(ii) , (A.71a)

16π2
(n)

βM =
((n)

Yν
(n)

Y †
ν

) (n)

M +
(n)

M
((n)

Yν
(n)

Y †
ν

)T
, (A.71b)

16π2
(n)

βYν =
(n)

Yν

{
3

2

(n)

Y †
ν

(n)

Yν +
(

1
2
− 2 z(1)

ν

) 3

2
Y †
e Ye −

9

20
(gU

1 )2 − 9

4
g2
2 (A.71c)

+
2∑

i=1

z(i)
ν Tr

[
δi1Y

†
e Ye +

(n)

Y †
ν

(n)

Yν + 3z
(i)
d Y †

d Yd + 3z(i)
u Y †

uYu

]}
,

16π2
(n)

βYe = Ye

{
3

2
Y †
e Ye +

(
1
2
− 2 z(1)

ν

) (n)

Y †
ν

(n)

Yν −
9

4
(gU

1 )2 − 9

4
g2
2 (A.71d)

+ Tr

[
Y †
e Ye + z(1)

ν

(n)

Y †
ν

(n)

Yν + 3z
(1)
d Y †

d Yd + 3z(1)
u Y †

uYu

]}
,

16π2
(n)

βYd
= Yd

{
3

2
Y †
d Yd +

(
1

2
− 2

2∑

i=1

z(i)
u z

(i)
d

)
Y †
uYu −

1

4
(gU

1 )2 − 9

4
g2
2 − 8g2

3

+

2∑

i=1

z
(i)
d Tr

[
δi1Y

†
e Ye + z(i)

ν

(n)

Y †
ν

(n)

Yν + 3Y †
d Yd + 3z(i)

u Y
†
uYu

]}
,(A.71e)
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16π2
(n)

βYu = Yu

{
3

2
Y †
uYu +

(
1

2
− 2

2∑

i=1

z(i)
u z

(i)
d

)
Y †
d Yd −17

20
(gU

1 )2 − 9

4
g2
2 − 8g2

3

+

2∑

i=1

z(i)
u Tr

[
δi1Y

†
e Ye + z(i)

ν

(n)

Y †
ν

(n)

Yν + 3z
(i)
d Y

†
d Yd + 3Y †

uYu

]}
.(A.71f)

For the parameters of the Higgs interaction Lagrangian, the β-functions are

16π2
(n)

βλ1 = 6λ2
1 + 8λ2

3 + 6λ3 λ4 + λ2
5 − 3λ1

(
3g2

2 +
3

5
(gU

1 )2

)
+ 3 g4

2

+
3

2

(
3

5
(gU

1 )2 + g2
2

)2

+ 4λ1 Tr

(
Y †
e Ye + z(1)

ν

(n)

Y †
ν

(n)

Yν + 3 z
(1)
d Y †

d Yd

+3 z(1)
u Y †

uYu
)
− 8 Tr

(
Y †
e Ye Y

†
e Ye + z(1)

ν

(n)

Y †
ν

(n)

Yν
(n)

Y †
ν

(n)

Yν

+ 3 z
(1)
d Y †

d Yd Y
†
d Yd + 3 z(1)

u Y †
uYu Y

†
uYu

)
, (A.72a)

16π2
(n)
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2 + 8λ2

3 + 6λ3 λ4 + λ2
5 − 3λ2

(
3g2

2 +
3

5
(gU

1 )2

)
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2

+
3

2
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A.5.3 The RGEs in the MSSM Extended by Heavy Singlets

We give the 2-loop RGEs for the quantities Q ∈
{
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in the form
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The 1-loop parts are given by
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The results for the 2-loop parts are [81]
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[7] G. Senjanović and R. N. Mohapatra, Exact left-right symmetry and sponta-
neous violation of parity, Phys. Rev. D12 (1975), 1502.

[8] J. C. Pati and A. Salam, Unified lepton - hadron symmetry and a gauge theory
of the basic interactions, Phys. Rev. D8 (1973), 1240.

[9] H. Georgi, Particles and fields (edited by Carlson, C. E.), A.I.P., 1975, p. 575.

[10] H. Fritzsch and P. Minkowski, Unified interactions of leptons and hadrons,
Ann. Phys. 93 (1975), 193–266.

[11] M. Fukugita and T. Yanagida, Baryogenesis without grand unification, Phys.
Lett. 174B (1986), 45.

[12] KamLAND, K. Eguchi et al., First results from KamLAND: Evidence for
reactor anti-neutrino disappearance, Phys. Rev. Lett. 90 (2003), 021802,
hep-ex/0212021.

145



Bibliography

[13] P. C. de Holanda and A. Y. Smirnov, LMA MSW solution of the solar neutrino
problem and first KamLAND results, (2002), hep-ph/0212270.

[14] SNO, Q. R. Ahmad et al., Direct evidence for neutrino flavor transformation
from neutral-current interactions in the Sudbury Neutrino Observatory, Phys.
Rev. Lett. 89 (2002), 011301, nucl-ex/0204008.

[15] SuperKamiokande, T. Toshito, Super-Kamiokande atmospheric neutrino re-
sults, (2001), hep-ex/0105023.

[16] CHOOZ, M. Apollonio et al., Limits on neutrino oscillations from the CHOOZ
experiment, Phys. Lett. B466 (1999), 415–430, hep-ex/9907037.

[17] LSND, C. Athanassopoulos et al., Evidence for νµ → νe neutrino oscillations
from LSND, Phys. Rev. Lett. 81 (1998), 1774–1777, nucl-ex/9709006.

[18] M. Freund, Messung der fundamentalen Neutrinoparameter mittels Long-
Baseline-Oszillationsexperimenten an zukünftigen Neutrinofabriken, Ph.D.
thesis, T.U. München, 2002.

[19] D. N. Spergel et al., First year Wilkinson Microwave Anisotropy Probe
(WMAP) observations: Determination of cosmological parameters, (2003),
astro-ph/0302209.

[20] H. V. Klapdor-Kleingrothaus et al., Latest results from the Heidelberg-
Moscow double-beta-decay experiment, Eur. Phys. J. A12 (2001), 147–154,
hep-ph/0103062.

[21] 16EX Collaboration, C. E. Aalseth et al., The IGEX Ge-76 neutrinoless
double-beta decay experiment: Prospects for next generation experiments,
Phys. Rev. D65 (2002), 092007, hep-ex/0202026.

[22] H. Fusaoka and Y. Koide, Updated estimate of running quark masses, Phys.
Rev. D57 (1998), 3986–4001, hep-ph/9712201.

[23] A. J. Buras, F. Parodi, and A. Stocchi, The CKM matrix and the unitarity
triangle: Another look, JHEP 01 (2003), 029, hep-ph/0207101.

[24] R. N. Mohapatra and P. B. Pal, Massive neutrinos in physics and astrophysics
(second edition), World Sci. Lect. Notes Phys. 60 (1998), 1–397.

[25] J. Erler and P. Langacker, Electroweak model and constraints on new physics
(rev.), Phys. Rev. D66 (2002), 010001.

[26] T. Yanagida, in Proceedings of the Workshop on the Unified Theory and the
Baryon Number in the Universe (O. Sawada and A. Sugamoto, eds.), KEK,
Tsukuba, Japan, 1979, p. 95.

146



Bibliography

[27] S. L. Glashow, The future of elementary particle physics, in Proceedings of
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