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Chapter 1

Introduction

In the last few years, there have been large achievements in the field of neutrino physics. In
1998, SuperKamiokande [1] gave the first evidence of neutrino oscillations for atmospheric
neutrinos which was independently confirmed by K2K [2]. Four years later, it was proven by
the SNO experiment [3] that the solar neutrino deficit measured by the Homestake experiment
[4] for the first time is not due to the sun but due to flavor transitions. The data of the
Kamland experiment [5] independently determined the solar parameters by measuring the
flux of antineutrinos from a reactor. Hence, today, the large mixing angle solution is the
only possible solution to neutrino oscillations and there is one maximal mixing angle (θ23)
and one large mixing angle (θ12). Thus, the mixing angles in the leptonic sector are large
in contrast to the angles in the quark sector. The third angle θ13 has not been measured
yet, but only an upper limit exists. Moreover, the CP phases are unknown. In the next-
generation experiments, the mixing parameters will be measured on a 10 % level [6]. In
order to explain the two mass squared differences, at least two neutrinos have to be massive.
Actually, there is a third mass squared difference measured by the LSND experiment [7]. This
can be most easily explained by sterile neutrinos, but this possibility awaits confirmation and
is currently tested. We will neglect the LSND result in what follows. However, there is still no
information about the absolute mass scale of neutrino masses. The absolute neutrino mass is
only bounded by different experiments from above. The most stringent upper limit of 1 eV on
the sum of the neutrino masses is from cosmology, but this bound is highly model-dependent.
Other measurements are the measurement of neutrinoless double-β decay in the Heidelberg-
Moscow experiment [8] and the model-independent tritium end-point measurement in the
Mainz experiment [9]. Part of the group of the Heidelberg-Moscow experiment claimed to
have measured neutrinoless double-β decay, but this result is not generally accepted and has
to be tested by a number of proposed next-generation experiments. There is also a new
tritium end-point experiment called KATRIN [10]. Combined, these experiments can decide
the nature of neutrinos: whether they are Dirac or Majorana particles. In addition, the
neutrinoless double-β decay experiment will be in principle able to measure the Majorana CP
phases, if neutrinos are Majorana particles. Furthermore, the mass hierarchy of the neutrinos
is not known. Hence, there are 3 different scenarios depending on the sign of ∆m2

atm: either the
neutrino masses have a normal hierarchy, an inverted hierarchy or they are quasi-degenerate.

Contrariwise, there have been a lot of attempts to explain the structure of the neutrino mass
matrix. The two main issues are the explanation of the smallness of neutrino masses and
large mixing angles in contrast to the small angles in the quark sector. Generally, the small
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mass is explained by a large hierarchy between the electroweak scale and the scale at which
the neutrino mass is generated. Thus, most predictions for the leptonic parameters are valid
at some high-energy scale where the symmetry of the model is broken to obtain the symmetry
of the Standard Model (SM). This breaking scale is usually close to the Grand Unified Theory
(GUT) scale. One specific class of models are see-saw models [11–15] explaining the smallness
of the neutrino masses by a heavy particle which is integrated out. Then the scale of the
neutrino mass is given by the ratio of the weak scale squared over the mass scale of the
heavy particle. In particular, minimal see-saw models are favored nowadays where the heavy
particles are right-handed neutrinos in the standard see-saw scenario or a heavy Higgs triplet
in type-II see-saw models. They are minimal in the sense, that only another type of particles is
introduced into the SM. Recently, the type-II see-saw mechanism has received more attention,
because it can naturally explain a quasi-degenerate spectrum of neutrino masses which is
difficult in type-I see-saw models. In order to explain the scale of neutrino masses, the masses
of the right-handed neutrinos are usually assumed to be lower than the GUT scale in an
energy range of 1010 − 1016 GeV. The Higgs triplet in type-II see-saw scenarios resides in the
same energy region. However, the parameters in a quantum field theory are not constant,
but receive radiative corrections. These radiative corrections induce in the parameters a
dependence on the energy scale at which the process is taking place. Hence, processes which
take place at high-energies are described by other parameter values than processes in the
low-energy regime. Therefore, it is important to relate the predictions of the models at high-
energy to the experimental data at low energies. This relation is given by the renormalization
group which describes the dependence of the parameters on the energy scale. It turns out
that the renormalization group effects on the leptonic parameters are especially large for a
quasi-degenerate neutrino mass spectrum.
This diploma thesis is structured in the following way: In the second chapter the possible mass
terms of neutrinos are described and some possible minimal extensions of the SM are given
which explain neutrino masses. The concept of renormalization is introduced and different
renormalization schemes are shortly reviewed in chapter 3. In the following chapter, the
notion of effective field theories is illustrated using the example of the see-saw mechanism.
The extraction of mixing parameters from the neutrino mass matrix is explained and the
evolution of the masses of the right-handed neutrinos is estimated in chapter 5. In chapter 6,
the running of the neutrino masses and mixing parameters is discussed in the type-I see-saw
scenario, especially the case of a hierarchical pattern in the neutrino Yukawa matrix which
is suggested by GUT models. The calculation of the β-functions of the type-II contribution
to the neutrino mass is presented in chapter 7. Furthermore, the differences of a type-II
see-saw scenario to a type-I see-saw scenario are shortly discussed. Finally, in chapter 8, the
numerical code is presented which was developed during this work. After the summary of
the main part, the SM Lagrangian is defined and the Feynman rules of the Higgs triplet are
presented in App. A. The β-function of a tensorial quantity is given in App. B and some useful
formulae which are often needed in renormalization group analysis are compiled in App. C.
Finally, App. D contains tables with the RGEs of the mixing parameters. Throughout this
thesis, natural units ~ = c = 1 are used. Furthermore, the RL convention is used for Yukawa
couplings and the GUT charge normalization is used for the U(1)Y hypercharge in order to
obtain gauge coupling unification at the GUT scale. Part of this work will be published [16].
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Chapter 2

Mass Terms

2.1 Fermion Masses

Every term in the Lagrangian has to be a total singlet under the symmetry group. Both, the
underlying space-time symmetry (See App. C.2.1) and the internal symmetry group have to
be considered in order to decide whether an operator is a total singlet.
There are 2 types of mass terms which are allowed by the underlying space-time symmetry
for uncharged1 spin 1

2 fermions: Dirac and Majorana mass terms.

2.1.1 Dirac Mass Terms

Let us look more closely at the mass term in the Dirac equation. In the chiral representation
of the γ matrices, the left- and right-handed parts of the Dirac spinor separate in the massless
case; i.e.: the representation formed by the Dirac spinor will be reducible in left- and right-
handed parts if parity is not a symmetry of the theory. The reason is that parity interchanges
left- with right-handed fields. The two projection operators onto the left- and right-handed
parts are

PL/R :=
1

2
(1± γ5) .

A Dirac mass term is formed by a product of left- ψL and right-handed ψR fields which is a
singlet under SL(2, � ).

L
Dirac
m =−mψ̄ψ = −m

(
ψ̄R + ψ̄L

)
(ψR + ψL)

=−m
(
ψ̄RψL + ψ̄LψR

) (2.1)

The barred fields are in the conjugate representation of the gauge group. Thus the product
of the barred field with the unbarred field is a singlet under the gauge group and therefore it
is a total singlet.

2.1.2 Majorana Mass Terms

There is another possibility to form a singlet under SL(2, � ) which corresponds to a mass

term. The charge conjugate field ψC := Cψ
T

= iγ2ψ∗ (C = iγ2γ0) has opposite handedness,

1Charged particles can not have a Majorana mass term, because the Majorana mass term is not a singlet
under the U(1)-symmetry corresponding to the charge.
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i.e. a left-handed field is transformed to a right-handed field by charge conjugation (See
App. C.2.1) and vice versa. Thus the product is a singlet under SL(2, � ). Furthermore, the
charge conjugate field is in the conjugate representation of the gauge group. Hence the barred
charge conjugate field is in the same irreducible representation (irrep) as the field. Therefore,

L
Majorana
m,L = −mLψL

CψL + h.c. (2.2)

will also be a mass term, if the product contains a gauge group singlet. In electroweak
interactions (SU(2)L×U(1)Y ), the particle has to be a singlet under U(1)Y . Thus no Majorana
mass terms are allowed in the standard model (SM). The Majorana mass term is symmetric,

i.e. mT = m, since ψL
CψL is invariant under ψL ↔ ψL

C. In addition, Majorana masses
violate lepton number conservation, which is an accidental symmetry of the SM, by a factor
of 2, since they mix particles with their antiparticles.

2.1.3 Masses in the Standard Model

The Standard Model (SM) forbids explicit mass terms for fermions, because the left-handed
fields are in a different representation of the gauge group as the right-handed fields. In par-
ticular, left-handed fields are SU(2)L-doublets and right-handed fields are singlets. Thus it is
not possible to form a total singlet out of the product of left- and right-handed fields alone.
Therefore all fermions of the standard model would be massless without spontaneous sym-
metry breaking. The introduction of a scalar boson – the Higgs boson – leads to interaction
terms of two fermions with the Higgs boson, which is called Yukawa interaction

LYuk = −Yfge
f
R`

g
L · φ+ h.c. . (2.3)

If the ground state of the Higgs potential is not invariant under the symmetry group, the
symmetry will be spontaneously broken and the Higgs acquires a vacuum expectation value
(vev) which leads to a Dirac mass term for the fermions.

Lmass = −Yfge
f
Rve

g
L + · · · + h.c. (2.4)

However, neutrino masses are forbidden in the SM, since there is no right-handed neutrino
to form a Dirac mass term or other particles to form a Majorana mass term.

2.2 Neutrino Mass Terms

There are several extensions of the SM which predict neutrino masses. First, we shall discuss
a bottom-up approach [17] which shows, how the SM can be extended to contain neutrino
masses. Then some examples are given which produce the different possibilities of neutrino
mass terms in their low-energy limit.

Effective neutrino masses can be generated in several different ways. By looking at the
Kronecker products of the irreps of the left-handed lepton doublet `L ∼

(
2,−1

2

)
2 and the

2The representation of a particle is a combination of an irrep of SU(2)L and an irrep of U(1)Y , which can
be characterized by 2 numbers. The dimension of the irrep of SU(2)L is the first number and the hypercharge
Y the second one.
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νµ e− νe

φ−h− φ0

(a) Graph generating the
neutrino mass in the Zee
model to one loop order.

ν lC l

k++

νC

h+ h+

(b) Graph generating the
neutrino mass in the

Babu model to two loop
order.

Figure 2.1: Models generating the neutrino mass radiatively.

right-handed neutrino singlets νR ∼ (1,0), the following products are possible

`LνR ∼
(
2,−1

2

)
⊗ (1,0) =

(
2,−1

2

)
(2.5a)

`L
C`L ∼

(
2,−1

2

)
⊗
(
2,−1

2

)
= (1,−1) ⊕ (3,−1) (2.5b)

νR
CνR ∼ (1,0) ⊗ (1,0) = (1,0) (2.5c)

Thus there are two essentially different possibilities to extend the SM in order to generate
neutrino masses: an extension of the Higgs sector or the introduction of right-handed neutri-
nos.

2.2.1 Extension of the Higgs Sector

Eq. (2.5b) suggests to add either a Higgs singlet or a Higgs triplet. The Higgs singlet s+ must
be charged (Q = 1) to generate a neutrino mass term. Thus the vacuum is charged, when it
acquires a vev which is not desirable.
In the case of the Higgs triplet, the Higgs can acquire a vev which corresponds to an uncharged
vacuum, since the hypercharge is −1. This results in Q−T3 = Y = −1 and T3 in the triplet is
0 or ±1. However, the triplet contributes to other mass terms, too. Especially, the W and Z

boson masses are changed. Hence the ρ =
M2

W

M2
Z cos2 θW

parameter which is sensitive to changes

in the Higgs sector also changes and deviates from 1 at tree level. The value of ρ, however, is
strongly restricted by experiments to 0.9998+0.0008

−0.0005 [18].
Another possibility is that the Higgs particles do not acquire vevs, but the neutrino mass is
generated radiatively. This ensures small neutrino masses, because the mass is proportional to
the loop. Loop diagrams yield small values due to the loop factor of 1

8π2 from the integration
over the loop momentum on the one hand and the proportionality to some power of a small
coupling on the other hand. One example is the Zee model [19] in which a Higgs singlet
is introduced to generate the neutrino mass to one loop order (See Fig. 2.1(a)). Another
possibility is the Babu model [20], where 2 charged Higgs singlets h+ and k++ are introduced
generating the neutrino mass at 2 loop level (See Fig. 2.1(b)).

2.2.2 Introduction of right-handed Neutrinos

The introduction of right-handed neutrinos provides the possibility of a Dirac mass term for
neutrinos as well as a Majorana mass term for the right-handed neutrinos, if lepton number
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is violated. There will be no Majorana mass term for the left-handed neutrinos, since an
extension of the Higgs sector is needed to produce it. Majorana mass terms can be forbidden
by the introduction of a gauged B-L symmetry which leads to Dirac neutrinos, but Yukawa
couplings have to be small to explain the small mass of neutrinos. In the case of Majorana
neutrinos, the smallness of the masses can be explained by the standard see-saw mechanism
which is treated in Sec. 4.4. In the case of one family3, the mass terms for the neutrinos in
the SM are given by

−mDνRνL −
1

2
MνRνR

C + h.c. . (2.6)

Thus the masses of the left- and right-handed neutrinos can be cast in one 2× 2 matrix.

−1

2

(
νL, νR

C
)C
(

0 mD

mD M

)(
νL

νR
C

)
+ h.c. , (2.7)

where mD = Yν 〈φ〉 is the Dirac mass term of the neutrinos. There is one small eigenvalue
which is approximately given by the see-saw formula

mν = −mDM
−1mD , (2.8)

and one large eigenvalue which is approximately given by M . There are variants of the see-
saw mechanism, too. One example is the double see-saw mechanism [21] where the scale of
the neutrino mass generation is lowered by the introduction of another right-handed neutrino
which does not have a Majorana mass term. This leads to the following mass matrix




0 mD 0
mD 0 M
0 M µ


 (2.9)

which will lead to one small and 2 large mass eigenvalues if µ�M . The light mass eigenvalue
is given by mν ∼ mDM

−1µM−1mD. Thus the mass of the neutrino is doubly suppressed
by the large mass M . Hence the mass scale M can be considerably lower than in the type-I
see-saw case.

Finally, the Higgs sector can be enhanced in addition to the introduction of right-handed
neutrinos. The introduction of a Higgs triplet can be motivated from left-right (LR) symmetric
models like the Pati-Salam model [22]

SU(4)PS ⊗ SU(2)L ⊗ SU(2)R
〈φB−L〉−−−−−→ SU(3)c ⊗ SU(2)L ⊗U(1)Y

〈φew〉−−−→ SU(3)c ⊗U(1)em
(2.10)

which contains a triplet Higgs to generate masses. In the context of LR-symmetry, Higgs
triplets have a mass which is of the order of the LR-breaking scale. They can generate a
naturally small effective Majorana mass term for the left-handed neutrinos via the type-II
see-saw mechanism [23–26]. The Pati-Salam model can be embedded in SO(10), E6 and other
GUT models. Thus Higgs triplets appear naturally in the context of GUTs.

3This can be easily generalized to 3 families.
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2.2.3 Smallness of Neutrino Masses

The smallness of the neutrino mass can be explained by a large hierarchy in the particle
spectrum in a given GUT model or by a Planck scale effect [26] where the suppression is
implied by the Planck scale. Then the masses of the neutrinos which are generated at the
high-scale, e.g. by integrating out a particle, are small. This is possible for Majorana neutrinos,
e.g. see-saw scenarios [11–15] as well as for Dirac neutrinos [21,27–29]. On the other hand, the
smallness might be due to a bulk effect in the context of models with extra dimensions, e.g.
the SM particles live on a brane, but the right-handed neutrino can propagate in the bulk.
Thus the Yukawa coupling of the neutrinos are suppressed by the size of the extra dimension
compared to the Yukawa couplings of the other fermions [30]. There are a lot of possibilities
to construct models with extra dimensions, especially models with large extra dimensions are
favored, since the compactification scale is very low.
In the following, we assume, that neutrinos are Majorana particles and the smallness of their
mass is explained by the type-II see-saw mechanism.
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Chapter 3

Renormalization

In perturbative quantum field theory there are divergent Feynman diagrams. These ultra-
violet divergencies are not physical and have to be removed to obtain physical predictions1.
They are removed by introducing counterterms which cancel the UV divergencies. These
counterterms are polynomial in the external momenta and masses [33, 34]. Thus the locality
of the theory is maintained. The systematic determination of the counterterms is achieved
by the renormalization program [35–37].
By the renormalization program, the theories are classifiable in 3 categories:

• super-renormalizable theories which only have a finite number of divergent diagrams.

• renormalizable theories which have an infinite number of divergent theories, but need
only finitely many counterterms.

• non-renormalizable theories which have infinitely many divergent diagrams and need
infinitely many counterterms.

The type of a theory is determined by power counting.

3.1 Power Counting

Each Feynman diagram has a superficial degree of divergence D which is governed by its
vertices and external lines, i.e. the integral behaves as

∫ ∞

kD−1dk . (3.1)

Thus diagrams with negative overall degree of divergence will be super-renormalizable, if
the subdivergencies are removed, diagrams with D ≤ 0 are renormalizable and diagrams with
D > 0 are non-renormalizable by power-counting. There are 3 different types of contributions
to the degree of divergence. Propagators contribute with

∑

f

If (2sf − 2) , (3.2)

1There are infrared divergencies, too. However, they will disappear, if the emission of an arbitrary number
of low-energy massless particles is added, since these can not be measured by a detector, e.g. the emission of
soft photons [31, 32].
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where If is the number of internal lines and sf = A + B characterizes the type of the
particle which is propagating. (A,B) denotes the Lorentz representation (See Sec. C.2.1) of
the particle. Thus scalars (0, 0) have sf = 0. Majorana fermions ( 1

2 , 0) or (0, 1
2) and Dirac

fermions ( 1
2 , 0) ⊕ (0, 1

2) have sf = 1
2 . Every derivative introduces one additional momentum

factor into the integrand. Thus the total contribution from derivatives is

∑

i

Nidi , (3.3)

where Ni is the number of vertices and di is the number of derivatives at vertex i. Finally,
every loop contributes a factor of 4 because of the integration over the loop momentum.
The number of loops equals the number of independent internal momenta. Every internal
line contributes one momentum, but the momentum-conserving δ-distribution at each vertex
decreases the number of independent loop momenta by 1. Thus the contribution from the
loops is

4 ·#loops = 4


∑

f

If −
(
∑

i

Ni − 1

)
 . (3.4)

Combining all these contributions, the degree of divergence of a diagram with loops is

D =
∑

f

If (2sf − 2) +
∑

i

Nidi + 4


∑

f

If −
(
∑

i

Ni − 1

)


=4−
∑

f

Ef (1 + sf )−
∑

i

Ni∆i ,

(3.5)

where ∆i = 4 − di −
∑

f nif (1 + sf ) is the mass dimension of the coupling constant of the
vertex i, nif is the number of lines of particle type f connected to vertex i. In order to derive
the last equality, the topological relation

2If +Ef =
∑

i

Ninif (3.6)

between internal lines If , external lines Ef and vertices Ni was used. This relation states
that internal lines are connected to two vertices in contrast to external lines.

There is an upper bound on the superficial degree of divergence in theories which have only
vertices with ∆i ≥ 0:

D ≤ 4−
∑

f

Ef (1 + sf ) . (3.7)

Thus these theories need only finitely many counterterms and are renormalizable. If all
couplings of a theory satisfy ∆i > 0, there are only finitely many divergent diagrams and the
theory is super-renormalizable. Otherwise, the theory is non-renormalizable. There are some
exceptions to power counting.

• Tree level diagrams are finite, but power counting determines the superficial degree of
divergence to be D = 0.

• Symmetries can reduce the degree of divergence of a diagram.
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• However, anomalies, i.e. classical symmetries which are not symmetries on the quantum
level, introduce additional terms to the Lagrangian which are forbidden by the symme-
tries. Thus in order to show renormalizability of a theory, it has to be proven that there
are no anomalies.

• A diagram can have an negative overall degree of divergence, but there might be
subdivergencies. Subdivergencies can be treated by the Bogoliubov-Parasiuk-Hepp-
Zimmermann (BPHZ) formalism (See Sec. 3.3.3).

The notion of renormalizability used above is in the power counting sense which is defined by
Dyson’s criterion [38], that a renormalizable Lagrangian density should not contain operators
of dimension higher than 4. This is a sufficient but not necessary condition, that all divergen-
cies are canceled by a finite number of terms. Renormalizability in the modern sense [39] just
demands the cancellation of divergencies without imposing the restriction of a finite number
of counterterms. Hence, there might be infinitely many terms in the bare Lagrangian.

3.2 Regularization

Before renormalization, the theory has to be regularized. Obviously, the renormalization
should not depend on the regularization technique. If they were, the result would be mean-
ingless, since it could be changed by simply choosing a different regularization scheme.

3.2.1 UV cutoff

The simplest regularization prescription is to introduce an UV cutoff Λ. This method takes
into account that the divergence stems from high momenta:

∫ ∞

0
dq →

∫ Λ

0
dq . (3.8)

As there are no infinite momenta, this results in finite diagrams, i.e. even if there is some
power of momentum in the numerator, the result will be finite. However, the UV cutoff
violates gauge invariance and therefore the gauge invariance of the renormalized theory has
to be explicitly proven afterwards. Thus a symmetry preserving regularization prescription
is more convenient.

3.2.2 Pauli-Villars Regularization

In the Pauli-Villars regularization method the propagator of particles SF is replaced by a
different propagator rendering the diagrams finite. For a simple scalar theory the propagator
becomes

SPV
F (p,m;M) =

i

p2 −m2 + iε
− i

p2 −M2 + iε
=

i

p2 −m2 + iε

m2 −M2

p2 −M2 + iε
, (3.9)

where M is large and has the dimension of a mass. For M → ∞, this regulated propagator
reduces to the original propagator. The Pauli-Villars regularization is gauge invariant and
can be understood physically. The propagator has an additional pole at p2 = M2. This
pole corresponds to an additional particle of mass M canceling the divergence. After the
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divergence is subtracted, the mass of the introduced particle is taken to infinity. Thus this
additional particle decouples and is basically removed. Sometimes the Pauli-Villars regulated
propagator may look more complicated, since one additional particle is not enough to cancel
the divergencies.

3.2.3 Lattice Regularization

Another possible regularization technique is the discretization of space-time, since the di-
vergencies stem from high momenta or equivalently small distances. Thus the discretization
removes all contributions from distances smaller than the lattice spacing. After the subtrac-
tion of the divergency, the lattice spacing is taken to zero. For a lattice of finite volume, as
they are used in numerical calculations, there is also an IR cutoff. The problem in lattice
regularization is, that Poincaré invariance is explicitly broken. Therefore it has to be proven,
that the renormalized theory is Poincaré-invariant.

3.2.4 Dimensional Regularization

Dimensional regularization [40–42] provides a gauge- and Poincaré invariant regularization
method. The theory is analytically continued to d = 4−ε dimensions. The divergent integrals
become finite and after renormalization the limit d → 4 is taken. If the renormalization
scheme is gauge-invariant and Poincaré invariant, the renormalized theory also preserves these
symmetries. As the mass dimension of couplings depends on the dimension of space-time, the
couplings are multiplied by an arbitrary parameter µ, which has the dimension of mass. The
arbitrariness of this parameter leads to the renormalization group (See Sec. 3.5). Problems
will arise in dimensional regularization, if expressions like tr

(
γ5γ

µγνγξγη
)

show up. These
are due to intrinsic 4 dimensional quantities like γ5 = iγ0γ1γ2γ3 and εµνκλ which can not be
consistently generalized to d dimensions. Hence, the usual relations defined in 4 dimensions
lead to contradictions. However, the γ-algebra can be changed [42] in such a way, that all
expressions are defined consistently2, but as long as these expressions do not show up, naive
dimensional regularization can be used, i.e. the usual γ-algebra which is much easier to use
in calculations.

The dimensional regularization is explained by an explicit calculation of the wave function
renormalization in φ4 theory. The bare Lagrangian is given by

L =
1

2
∂µφB∂

µφB −
m2

B

2
φ2 − λB

4!
φ4

B . (3.10)

Therefore the degree of divergence is D = 4−E where E is the number of external legs and
the only divergent n-point functions are the two-point and the four-point function. The 2
point function is

Γ(2) = + + . . . , (3.11)

2Details are given in App. C.3.3.
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which is divergent with degree of divergence D = 2. Evaluating the Feynman diagram yields

1

2
λ

∫
d4p

(2π)4
1

p2 −m2 + iε
, (3.12)

where 1
2 is a symmetry factor appearing, because the diagram is invariant under the exchange

of the two legs of the loop. The continuation to d dimensions results in

1

2
λµε

∫
ddp

(2π)d

1

p2 −m2 + iε
, (3.13)

As the coupling λ should remain dimensionless, it is rescaled

λ→ λµε , (3.14)

where the mass dimension of µ equals [µ] = 1. Then, the integral can be solved by transform-
ing it to the known form of Passarino-Veltman functions (See App. C.5) or equivalently the
integral can be Wick rotated to Euclidean space-time (x0 → ix4) and solved by the choice of
a convenient coordinate system, as it is done in this case:

−iλµ
ε

2

∫
ddp

(2π)d

1

p2 +m2
(3.15)

Introducing spherical coordinates, the integral reduces to an one dimensional integral

−iλµ
ε

2
(2π)d 2π

d
2

Γ
(

d
2

)
∫ ∞

0
dp

pd−1

p2 +m2
, (3.16)

where the formula for the volume of a d dimensional sphere
∫

dΩd = 2π
d
2

Γ( d
2 )

was used. This

integral can be solved by the Euler Beta function (See Sec. C.4.2):

−i λ

32π2

(
4πµ

m

)ε

m2Γ
(
−1 +

ε

2

)
. (3.17)

The result for the four-point function can be similarly obtained. It is the sum of 3 divergent
diagrams

Γ(4) = + + + , (3.18)

which sum up to

iλ2

32π2
µεΓ

( ε
2

) ∑

l=s,t,u

F (l,m, µ) , (3.19)

where F (s,m, µ) =
∫ 1
0 dz

(
sz(1−z)−m2

4πµ2

) ε
2
.

The way of subtracting the divergence depends on the renormalization scheme.
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3.3 Renormalization Schemes

In order to renormalize a diagram, the divergent part and possibly finite terms are subtracted
from the diagram and absorbed in the coupling constants. There are different renormalization
schemes, because the diagram can be matched to the experimental value at any arbitrary scale.
The result is the same for all schemes.

3.3.1 On-Shell Scheme

In this scheme the divergence is subtracted such that the particles are on-shell, i.e. the pole of
the propagator of the particles is at the physical mass. Hence, the renormalization condition
is that the mass in the renormalized propagator

G(2) =
iZ

p2 −m2 − Σr + iε
, (3.20)

equals the physical mass mph, i.e.

m2
ph = m2 + Σr . (3.21)

This fixes the mass counterterm. Furthermore the wave function renormalization is fixed by
the condition that the residue at the pole p2 = m2

ph is unity, i.e.

Z = 1 . (3.22)

Hence the subtraction can be physically motivated.

3.3.2 Minimal Subtraction Scheme

In the minimal subtraction (MS) scheme, only the divergent part of the integral is subtracted.
In general, it is used together with dimensional regularization. In order to subtract the
divergent part, the Feynman diagram is expanded in ε = 4− d. Then the term proportional
to ε−1 is subtracted. The result generally depends on the renormalization scale µ which has
been introduced in dimensional regularization. This dependence of the MS scheme on the
renormalization scale µ can be interpreted as an one-parameter family of renormalization
schemes. Thus there is not one MS scheme, but there is an one-parameter family of MS
schemes. In calculations, the parameter µ is set to the energy scale at which the process is
taking place, in order to cancel the logarithms which appear in the result.

In general, the result of the diagram is expanded in the parameter governing the regularization.
This is ε in the case of dimensional regularization. Expanding the Γ function in the example
given in Sec. 3.2.4 yields

− iλ

32π2
m2

[
2

ε
+ 1− γE + 2 ln

(
4πµ

m

)
+O(ε)

]
=

iλ

16π2
m2 1

ε
+ finite (3.23)

for the two-point function and

i3λ2µε

16π2ε
+ finite (3.24)
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for the four-point function to 1 loop order. The divergent part is absorbed into the renormal-
ized couplings and masses:

λ =ZλλB =
(
1 + Z

(1)
λ

)
λB (3.25a)

m2 =m2
B + δm2 (3.25b)

φ =
√
ZφφB . (3.25c)

Thus the counterterms are

Zφ =1 , (3.26a)

δm2 =− λ

16π2
m2 1

ε
, (3.26b)

andZ
(1)
λ =− 3λ

16π2ε
µε . (3.26c)

There are variations of the MS scheme, as it is described above. In the modified minimal
subtraction scheme (MS) scheme, the finite terms which do not depend on the external mo-
mentum and naturally appear in dimensional regularization, −γE + ln(4π), are subtracted in
addition to the divergent term.

It will also be possible to have a mixture of the on-shell and the MS scheme, if they are applied
for different counterterms. Often the divergency from the tadpole diagrams is renormalized
by imposing the condition that the vacuum expectation value of the fields vanish. Thus there
is no linear term in the theory.

3.3.3 BPHZ Renormalization

The Bogoliubov-Parasiuk-Hepp-Zimmermann (BPHZ) [43–45] scheme does not need a reg-
ularization, because it directly works with the integrand. At first, all subdivergencies are
renormalized recursively. Then the remaining overall divergency is renormalized. This works
by defining the graph R̄(G) which is the graph G with all subdivergencies renormalized. Then
the renormalized graph R(G) is defined as

R(G) = R̄(G) + C(R̄(G)) , (3.27)

where C is the operation which generates an appropriate counterterm, when it is applied
to a graph. C vanishes for convergent graphs. In the original paper, a zero-momentum
subtraction scheme has been used. In this scheme, the counterterm of a diagram with degree
of divergence D is given by the first D + 1 terms in the expansion of the diagram in terms
of the external momenta. Although this scheme is mathematically elegant, because it does
not need a UV regulator, it is problematic in massless theories, since the counterterms are IR
divergent. However, C can be any renormalization scheme.

The counterterm for a connected one-particle-irreducible (OPI)3 graph is the counterterm
which is determined by the chosen renormalization scheme. The counterterm for a discon-
nected graph is simply the product of the counterterms of the connected components

C(γ1 ∪ γ2) = C(γ1)C(γ2) . (3.28)

3An OPI graph can not be divided in two disconnected graphs by cutting one internal line.



22 CHAPTER 3. Renormalization

Therefore the problem of renormalizing a graph is split in the renormalization of the overall
divergency and the renormalization of subdivergencies. The graph with all subdivergencies
renormalized can be obtained from the unrenormalized graph U(G) by

R̄(G) = U(G) +
∑

γ(G

C(γ) , (3.29)

i.e. the counterterm for any divergent proper subgraph is added. This prescription can be
applied recursively to the subgraphs. As Zimmermann pointed out [46, 47], the sum of the
integrand of the unrenormalized graph and all counterterms is equivalent to the unrenormal-
ized graph where all parameters (couplings, masses, wave functions, . . . ) have been replaced
by their renormalized version. Thus the integral is finite and there are no divergencies left
which need to be regularized. This recursive scheme for renormalization can be cast in one
formula.

Forest Formula

The forest formula summarizes the result of the BPHZ scheme. A forest is a possible set of
boxes which surround the graph and/or its subgraphs in such a way that the boxes might be
nested but do not overlap. Then the renormalized graph can be expressed as a sum over all
forests.

R(G) =
∑

UεF(G)

∏

γεU

Cγ(G) , (3.30)

where F(G) is the set of all forests of G and Cγ(G) is the graph G with the subgraph γ
of G replaced by its counterterm. For a proof of the forest formula, see either the book of
Collins on Renormalization [35] or the original paper of Zimmermann [45]. The forest formula
shows the mathematical structure which is underlying the renormalization procedure4. In the
following, the MS scheme and dimensional regularization are used.

3.4 Renormalization of Gauge Theories

In general, symmetries which exist on a classical level do not necessarily exist in the quantized
theory. This ‘violation’ of a symmetry is called an anomaly. In particular, gauge invariance
will have to be proven, if the renormalization prescription is not gauge invariant or if a gauge
has been fixed before the renormalization which is necessary to quantize the theory. However,
there still remains a symmetry, the Becchi-Rouet-Stora (BRS) symmetry [49]. It relates the
fields with the ghost fields from the quantization procedure by

δψ =itαθψω
α (3.31a)

δAαµ =θDµωα (3.31b)

δωα =− 1

2
θfαβγωβωγ (3.31c)

δω∗
α =− θhα (3.31d)

δhα =0 , (3.31e)

4In fact, the mathematical structure of renormalization is a Hopf algebra which is formed by the forests,
i.e. the algebra of rooted trees. [48]
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where tα is a generator of the gauge group, Dµ is the covariant derivative, fαβγ are the
structure constants, ωα and ω∗

α are the ghost and anti-ghost field, respectively which are
introduced as virtual particles in the quantization procedure. They have the wrong spin-
statistics connection, because they are anti-commuting despite of their scalar nature. hα is
an auxiliary field which does not propagate and θ is a fermionic variable. Thus the BRS-
operator is fermionic and this symmetry is a supersymmetry, since it relates bosons and
fermions. Furthermore, it is nilpotent, i.e. δ2

BRS = 1. In order to prove renormalizability
of a gauge theory, it must be shown that the BRS symmetry is still respected after the
renormalization. This was proven by using Slavnov-Taylor identities [50, 51] to constrain the
renormalized action, such that the renormalized action is BRS-invariant [49, 52–54]. They
reflect the classical gauge symmetry in the quantum field theory context where a gauge has
been chosen.

3.5 Renormalization Group

The renormalization group (RG) describes the invariance of physical observables under the
change of the renormalization prescription. Thus the theory itself does not change under the
renormalization group, but only the renormalized couplings and masses. In the MS scheme
the renormalization group becomes obvious, since the counterterms depend on the renormal-
ization scale µ. Different values of µ correspond to different renormalization prescriptions
and the variation of the parameter µ is described by the renormalization group. Moreover,
in the MS scheme the evolution of the coupling constants and masses can be predicted and,
hence, the parameters of a theory in the high-energy regime can be related to the parameters
in the low-energy limit. This dependence on the energy scale has already been measured for
the electromagnetic fine structure constant αem = e2

4π . On the one hand, αem was determined
to be

α−1
em (181.94GeV) = 126.2+3.5

−3.2 (3.32)

at LEP in the OPAL experiment at a center of mass energy of 181.94GeV [55]. On the other
hand, it was measured at very low energies in the quantum Hall effect [18] to be given by

α−1
em (0GeV) = 137.035999911(46) . (3.33)

These two measurements contradict each other without considering the renormalization group
evolution which reconciles the two values. This dependence on the renormalization scale µ
is described by the Callan-Symanzik equation which expresses the change of renormalized
Green’s functions under the renormalization group.

3.5.1 Callan-Symanzik Equation

As bare quantities do not depend on the renormalization scale µ, the derivative of bare
quantities with respect to the renormalization scale µ has to vanish:

d

dµ
G

(n)
B

∣∣∣∣
bare

= 0 , (3.34)

where G
(n)
B = 〈0|T φB(x1) . . . φB(xn)|0〉 is the bare n-point Green’s function. From this ob-

servation, the Callan-Symanzik equation [56, 57] is derived. It is simply Eq. (3.34) which is
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expressed in renormalized quantities. For a theory with a scalar field φ with mass m and a
gauge field Aµ coupling to the scalar with coupling strength g and gauge fixing parameter ξ,
the Callan-Symanzik equation is given by

[
µ
∂

∂µ
+ β

∂

∂g
− γmm

∂

∂m
− δξξ

∂

∂ξ
+
n

2
γ

]
G(n) (pi, g,m, ξ;µ, ε) = 0 . (3.35)

γ and γm are referred to as anomalous dimensions of the wave function and mass, respectively,
and β is called β-function. It is a quasi-linear first-order partial differential equation (PDE)
describing the variation of the renormalized Green’s functions under a change of µ. These
PDEs can be solved by the method of characteristic curves which transforms the PDE in a
system of ordinary differential equations (ODE) for the coefficients of the derivatives. The
obtained ODEs are called the renormalization group equations (RGE). This example of a
Callan-Symanzik equation is easily translated to arbitrary quantum field theories which have
fermionic degrees of freedom and more fields.

3.5.2 Renormalization Group Equations

The renormalization group equations corresponding to Eq.(3.35)

β :=µ
dg

dµ
(3.36a)

γm :=− 1

m
µ

dm

dµ
(3.36b)

γ :=
1

Zφ
µ

dZφ

dµ
(3.36c)

δξ :=− 1

ξ
µ

dξ

dµ
(3.36d)

can be obtained from the corresponding counterterms by expressing the renormalized quanti-
ties in terms of their counterterms and bare quantities. In the case of φ4 theory, the β-function
of λ is

βλ = µ
d (ZλλB)

µ
= − 3

16π2
λ2µε ε→0−−→ − 3

16π2
λ2 (3.37)

and the anomalous dimension of the mass is given by

γm = − 1

2m2
µ

d
(
m2

B + δm2
)

dµ
=

λ

32π2

(
4πµ

m

)ε
ε→0−−→ λ

32π2
. (3.38)

The anomalous dimsension of the wave function vanishes, because the wave function does
not get renormalized. After the coupling constant and the mass have been fixed at one value
of µ, they are determined at all scales, because this set differential equations is a first-order
ODE which needs only one initial value. As it was already pointed out, the dependence
of the couplings and masses on the energy scale has already been measured in the case
of electromagnetic interactions. The experimental data shows the increase of the coupling
constant with increasing energy. This is a general property of Abelian gauge symmetries,
because the gauge bosons are not charged and therefore they do not couple among each
other. In non-Abelian gauge theories, the evolution of the gauge coupling g depends on
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the particle content of the theory. The β-function for the gauge coupling of an arbitrary
non-Abelian theory is given by

βg =
g3

16π2

[
−11

3
C2(Ad) +

4

3

∑

i

C2(Fi) +
1

3

∑

i

C2(Si)

]
, (3.39)

where C2 is the quadratic Casimir invariant of the gauge group which is defined for a repre-
sentation A as

C2(A) = tr (T a(A)T a(A)) (3.40)

Ad denotes the adjoint representation and Fi and Si designate the representations of the
fermions and scalars of type i, respectively. In particular, the strong coupling in a model with
nF fermions

βg3 = − g3
3

16π2

(
11− 2

3
nF

)
(3.41)

becomes weaker at high energies and tends to zero which is known as asymptotic freedom.
This year’s Nobel prize was awarded for the discovery of asymptotic freedom to Gross, Politzer
and Wilczek [58]. In this section the β-function of a quantity which can be multiplicatively
renormalized has been shown. In general, the parameters of a theory are tensors which have
to be renormalized additively. The β-function of a tensorial quantity can be obtained in a
similar way [59–61]. The general formula is given in App. B.
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Chapter 4

Effective Field Theories

The concept of Effective Field Theories (EFT) provides a framework to systematically look
only at the relevant degrees of freedom. All other degrees of freedom which are off-shell are
integrated out. Hence, heavy particles which can not become on-shell at the energy scale
considered are integrated out. The process of integrating out can be understood in several
ways. In the context of Feynman Path integrals, it results in evaluating the path integral over
the degrees of freedom which do not resonate. By looking at Feynman diagrams, the process
of integrating out shows up as the deletion of all lines of heavy particles. This leads to new
interaction vertices, since lines are contracted. More precisely, the transition to an EFT is
the expansion of the full theory in the inverse of a dimensionful parameter Λ characterizing
the off-shell degrees of freedom. This expansion is characterized by power counting, since all
processes are weighted by the power of the inverse mass scale Λ.

L = L
(0) + L

(1) + L
(2) + . . . , (4.1)

where L (n+1) is suppressed by Λ against L (n). The 0th order part L (0) is not suppressed
by Λ and will have to be renormalizable, if L is renormalizable. Otherwise, there would be
non-renormalizable diagrams in the “full” theory, since L (0) is contained in the Lagrangian
of the “full” theory. Therefore an EFT can be as precise as it is needed, because higher-order
terms can be systematically considered to improve the precision. This systematic approach
is guaranteed by the “Power counting” of the EFT. Basically, there are two cases when EFTs
are interesting.

• Top-Down approach: On the one hand, EFTs are necessary to solve problems which
are too complicated in the full theory, because too many degrees of freedom have to
be considered (e.g. the H-atom is solved more easily in relativistic Quantum Mechan-
ics than in the Standard Model.). It might be even impossible to solve the problem
perturbatively in the full theory whereas it is solvable in the EFT perturbatively.

• Bottom-Up approach: On the other hand, the full theory might be unknown. Then an
EFT can give important hints to find the full theory. At least, it allows to solve problems
in the low-energy regime (e.g. Fermi Theory was known before Glashow-Salam-Weinberg
(GSW) theory of electroweak interactions.). Thus the concept of EFTs is a tool to see
signs of new physics.

Another example, in which EFTs are useful, is the calculation of processes in which several
energy scales are relevant. The problem is that large logarithms from the renormalization
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procedure have to be summed up, but the renormalization scale can not be comparable to
both scales. Using an EFT, the heavy degrees of freedom can be integrated out and only one
energy scale is remaining. Then all large logarithms have been removed.
In order to be a well defined EFT, the low-energy effective theory must decouple from the
high-energy degrees of freedom.

4.1 Decoupling Theorem

Decoupling means that all Feynman graphs containing a propagator for a field whose mass M
is greater than the external momenta of that graph, are suppressed by a power of the external
momenta p over the heavy mass M . Thus the Green’s functions in the effective theory equal
the Green’s functions of the full theory up to corrections O(p/M) and therefore the heavy
particles are unobservable until close to their threshold. The couplings and masses of the
low-energy effective theory have no a-priori value to which the measurements can compared.
Symanzik [62] and later Appelquist and Carazzone [63] showed that the low-energy effective
theory does indeed decouple from the high-energy degrees of freedom and it is a renormalizable
theory in the limit of M → ∞. However, there are exceptions to this decoupling theorem.
One famous example is Fermi theory which is the effective low-energy theory of electroweak
theory. In the Fermi theory without the Four-Fermi interaction, the low-energy symmetries
forbid interactions like β-decay and therefore β-decay is only generated by the Four-Fermi
interaction. This deviation from zero is detectable at low energies and the heavy degrees of
freedom do not completely decouple from the low-energy effective theory, but they induce
new non-renormalizable interactions. Therefore Fermi theory is still a good EFT, but the
non-renormalizable first-order effects are essential. This is a general phenomenon in EFTs:
the EFT contains more symmetries than the full theory and interactions are forbidden which
are allowed in the full theory. Another example are chiral gauge theories and the decoupling of
chiral fermions. In the SM, the top quark is much heavier than the other quarks and therefore
it can be integrated out at low energies. However, the mass of the top quark is generated
by the Higgs mechanism. Thus the limit mt → ∞ corresponds to the limit yt → ∞, i.e. the
coupling of the top quark to the Higgs becomes strong and therefore the top quark does not
decouple. The last example is the gauge hierarchy problem which will be a problem, if the
SM is embedded in a GUT. It can be summed up in the question, why there are so strong
hierarchies and why they are stable against radiative corrections. The question of stability
against radiative corrections is due to the quadratic corrections which the mass of scalar
particles receives. Fermions, on the other hand, receive only logarithmic corrections. Thus
the corrections to the scalar mass are considerably larger than corrections to fermion masses
and therefore scalar masses are expected to be lifted to the scale where the particles with
the highest mass which they couple to reside. Hence, the heavy particles do not necessarily
decouple from the Higgs sector.

4.2 Construction of an EFT from a “full” Theory

The construction of an EFT can be summed up in the following steps:

• The relevant degrees of freedom have to be identified.

• All off-shell degrees of freedom are integrated out.
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• Identify the expansion parameter, like the mass of the W boson in Fermi Theory in
order to establish the power counting.

• Then the terms in the EFT action can be ordered in powers of the expansion parame-
ter. The zeroth order term will be a renormalizable Lagrangian, if the “full” theory is
renormalizable.

• The parameters of the EFT have to be matched to the parameters of the “full” theory.
The matching conditions are obtained by requiring that measurable quantities in both
theories agree at the matching scale. The parameters will be matched at tree level, if
1-loop renormalization group running is used. However, if the renormalization group
equations are calculated in n loop, (n-1)-loop matching will be needed. Then the param-
eters of the EFT have to be evolved down to the low energy regime from the matching
scale.

• Finally the parameters of the EFT have to be run down to the regime at which the
process is taking place.

4.3 Neutrino Mass Operator

Now, the concept of EFTs will be applied to neutrino masses, in particular within the bottom-
up approach. The SM does not contain a neutrino mass term, but it was shown in oscillation
experiments [64] that at least two neutrinos are massive. Therefore the SM is not a “full”
theory describing everything, but it is the 0th order of an EFT.

L
(0) = LSM (4.2)

It is renormalizable, because the SM is renormalizable [40–42], as it is expected for the 0th

order part of an EFT. The next step is the introduction of higher dimensional operators.
There is only one operator of dimension 5 which is compatible with the SM gauge group
SU(3)C × SU(2)L ×U(1)Y and can be constructed with SM fields [65]:

L
(1) ∼ 1

4
κfg`

f
Laεabφb(`

g
Lc)

C
εcdφd . (4.3)

It describes the coupling of two left-handed doublets to two Higgs doublets. After electroweak
symmetry breaking, this operator generates a Majorana mass term for the left-handed neu-
trino νL. One might argue, that the same construction should work for other particles, but
since the other particles are charged, the resulting mass term is not a singlet under U(1)em.
Thus this is the only dimension 5 operator.

`fLa
`gLc

φb φd
κ
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−−−−−−→
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v v
κ

−1
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κfg`
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Laεabφb · (`gLc)

C
εcdφd

φ→〈φ〉+φ′

−−−−−−→ −v
2

4
κfgν

f
L(νg

L)
C

(4.4)
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Therefore, this operator generates a Majorana mass term for νL.

Lνmass = −1

8
κfg (εabεcd + εadεbc) l

f
Laφb(l

g
Lc)

C
φd (4.5)

The coefficient in front of the dimension 5 operator has dimension −1. In particular, it can
be written as a fraction of a dimensionless coupling over a mass scale Λ which can serve as
expansion parameter to control the power counting. As this is the only dimension 5 operator,
other new physics effects are suppressed by another power of Λ.
Since the SM has survived all precision tests so far and explains all measurement in good
agreement except for neutrino masses, the SM plus this effective neutrino mass operator have
to be the low-energy limit of every reasonable theory predicting Majorana neutrino masses.
One possible UV completion of this EFT is the introduction of right-handed neutrinos or a
Higgs triplet which generate the effective neutrino mass operator via the see-saw mechanism.

4.4 See-Saw Mechanism

It is possible to generate small neutrino masses via the see-saw mechanism [11–15] in accor-
dance with phenomenology. There are two variants of the see-saw mechanism, the standard
or type-I and the type-II see-saw mechanism. However, before introducing the see-saw mecha-
nism, the extensions of the Standard Model (SM) are stated which are relevant for the see-saw
mechanism. The SM Lagrangian and its particle content are given in App. A.1.

4.4.1 Extensions of the SM

Extension of SM by right-handed Neutrinos

One conservative extension of the SM is the introduction of another irrep, i.e. another particle.
As the total singlet is the only fundamental irrep not contained in the SM, the introduction of
a total singlet1, i.e. a right-handed neutrino, is suggestive. It allows the following new terms
in the Lagrangian.

LνR
= νR��DνR − (Yν)ij νR

i`Lφ
C − 1

2
MijνR

C
i
νj

R + h.c. (4.6)

The Majorana mass term is possible in the SM for right-handed neutrinos only, because
they are total singlets. Thus neutrinos will naturally be Majorana particles unless there is
an additional symmetry which forbids Majorana mass terms. One such symmetry is lepton
number conservation, but it is only an accidental symmetry in the SM.

Extension of SM by a Higgs Triplet

The SM can also be extended by a charged Higgs triplet1 ∆ ∼ (3,1).

∆ =
σi

√
2
∆i =

(
∆+/
√

2 ∆++

∆0 −∆+/
√

2

)
(4.7)

This extension leads to several additional terms in the Lagrangian which can be obtained
from the decomposition of the product representations of SU(2)L which is given in Tab. 4.1.

1It is also possible to extend the MSSM or the 2HDM by right-handed neutrinos or a Higgs triplet.
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1 2 3 4 5

1 1 2 3 4 5

2 . 1⊕ 3 2⊕ 4 3⊕ 5 4⊕ 6

3 . . 1⊕ 3⊕ 5 2⊕ 4⊕ 6 3⊕ 5⊕ 7

4 . . . 1⊕ 3⊕ 5⊕ 7 2⊕ 4⊕ 6⊕ 8

5 . . . . 1⊕ 3⊕ 5⊕ 7⊕ 9

Table 4.1: Product representations of irreps of SU(2). A ⊗ B =
P

i Ci where A and B are the representation
given in the first column and row, respectively.

All possible SU(2)L-singlets, which can be formed by a Higgs triplet and a Higgs doublet and
are compatible with the U(1)Y and Lorentz group structure, have to be included in the Higgs
potential [65]. In addition, there is a new Yukawa coupling of the left-handed lepton doublets
to the triplet Higgs. Therefore the Lagrangian is given by

L = Lkin + L∆4 + Lφ2∆2 + Lφ∆φ + L`L∆`L
, (4.8)

where the terms are given by

Lkin =tr
[
(Dµ∆)†Dµ∆

]
−M2

∆ tr
(
∆†∆

)
(4.9a)

L∆4 =− Λ1

2

(
tr∆†∆

)2
− Λ2

2

[(
tr∆†∆

)2
− tr

(
∆†∆∆†∆

)]
(4.9b)

Lφ2∆2 =− Λ4φ
†φ tr

(
∆†∆

)
− Λ5φ

†
[
∆†,∆

]
φ (4.9c)

Lφ∆φ =− Λ6√
2
φT iσ2∆

†φ+ h.c. (4.9d)

L`L∆`L
=− 1√

2
(Y∆)fg `

Tf
L iσ2∆`

g
L + h.c. . (4.9e)

The Yukawa coupling between the Higgs triplet and the lepton doublets is described by a
symmetric matrix Y∆. The Feynman rules corresponding to L are given in App. A.5.

As it can be seen in Tab. 4.1, there is a third singlet in the product representation of 4 SU(2)L

triplets2 in addition to the terms given in L∆4 . It is formally given by

LΛ3 = −Λ3

2

(
∆† ⊗∆

)
5

·
(
∆† ⊗∆

)
5

, (4.10)

where the subscript 5 indicates, that the 5 dimensional irrep is extracted from the Kronecker
product of the two triplets which corresponds to a 3 × 3 matrix. The irrep 5 is embedded
in the Kronecker product as the subspace of traceless symmetric matrices. Furthermore, the
SU(2)L structure of the 3 terms is different which can be seen from the Clebsch-Gordan series.
Thus this term has to be added in principle. However, Λ3 is assumed to vanish in this work.
As it turns out that it can not be generated radiatively3, it will remain zero. The effect of Λ3

and the reason, why it is not generated radiatively, has to be studied in a later work.

2In general, every product representation of 4 identical irreps n of SU(2)L contains n singlets.
3See the result of the calculation in Sec. 7.4.4.
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4.4.2 Standard See-Saw Mechanism

The standard/type-I see-saw mechanism is implemented in the framework of the SM extended
by heavy right-handed neutrinos (M = O(1010−1016)GeV). This is the mass scale needed to
explain neutrino masses smaller than 1 eV. In addition, the right-handed neutrinos can explain
the baryon asymmetry of the universe via the leptogenesis mechanism [66,67]. In leptogenesis,
the baryon asymmetry is explained by an out-of-equilibrium decay of right-handed neutrinos.
This produces a lepton asymmetry which is transformed in a baryon asymmetry via sphaleron
processes.

However, the current experiments are taking place at much lower energies. Thus right-handed
neutrinos do not contribute to physical processes anymore. The see-saw mechanism states that
they are integrated out at their mass scale and this leads to an effective operator describing
the masses of the light neutrinos.

νh
R

`fLa φb

φd `gLc

+

νh
R

φd

`fLa

`gLc

φb

q2�M2
k−−−−−→ κ

φd `gLc

`fLa φb

(4.11)
In terms of formulas, we have
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)
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−i (Yν)hg ε

T
cdPL

]

+
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(
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ν

)
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εadPL

] i�q + iMh

q2 −M2
h + iε

[
−i (Yν)hg ε

T
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]

q2�M2
h−−−−−→ i

(
Y T

ν

)
fh
M−1

h (Yν)hg (εabεcd + εadεcb) PL . (4.12)

Thus the matching condition is given by

κ = 2Y T
ν M

−1Yν (4.13)

at tree-level. As the Majorana mass of the right-handed neutrinos is assumed to be of the
order of (1010 − 1016)GeV and the Yukawa couplings are of the order of one, the left-handed

neutrinos have a mass of v2

M ≤ 1 eV.
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4.4.3 Type-II See-Saw Mechanism

In the type-II see-saw scenario, there is a Higgs triplet in addition to the right-handed neu-
trinos which also contributes to the effective mass matrix of the light neutrinos.

∆k

φd

φb

`gLc

`fLa

q2�M2
∆−−−−−→ κ

φd `gLc

`fLa φb

[
(Y∆)fg (σ2σk)ac

]
i

q2−M2
∆

[Λ6 (σ2σk)db]
q2�M2

∆−−−−−→ −i Λ6

M2
∆

(Y∆)fg (εabεcd + εadεcb)

(4.14)

Hence, the tree-level matching condition is given by

κ = −2
Y∆Λ6

M2
∆

. (4.15)

In the high-energy region of this theory, the neutrino mass matrix can be described by a 6×6
mass matrix (See Sec. 2.2.2) which has a non-vanishing entry in the upper-left 3× 3 block in
contrast to the matrix in Sec. 2.2.2. The upper-left block is given by the type-II contribution
of the see-saw mechanism. A quasi-degenerate spectrum can be obtained naturally in the
type II see-saw framework, since the triplet contribution can set the overall mass scale and
the contribution of the right-handed neutrinos which is likely to be hierarchical through the
hierarchy in the Yukawa matrices, determines the splitting of the masses or can be neglected
altogether.

4.4.4 Thresholds

In general, the right-handed neutrinos are non-degenerate. Even if a symmetry at the GUT
scale demands degeneracy of the masses, the renormalization group running will generate a
splitting of the neutrino masses after the symmetry is broken. Thus, in general, there are
several thresholds, at which the right-handed neutrinos are integrated out. This leads to
interesting running effects which is illustrated in Fig. 4.1

In this figure, the evolution of the leptonic mixing angles is shown in a type-I see-saw scenario.
The different grayish regions correspond to different EFTs. At each border, one right-handed
neutrino is integrated out and the renormalization group equations change. This leads to
kinks in the curves at the thresholds. Of course, the same happens at the thresholds of other
particles, like the Higgs triplet. The parameters of each EFT are given in the upper part of

the plot.
(n)

M is the n×n Majorana mass matrix of the right-handed neutrinos,
(n)

Yν is the n× 3

neutrino Yukawa matrix and
(n)
κ is the 3× 3 effective light neutrino mass matrix. Between the

thresholds, the neutrino mass matrix has two contributions. One contribution is the effective
neutrino mass operator and the other is due to the right-handed neutrinos. In general, the
both contributions are not simultaneously diagonalizable.
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Figure 4.1: Transitions between several effective theories illustrating the evolution of the leptonic mixing angles
in the case of non-degenerate right-handed neutrinos

Parameter Best-fit Allowed range (3σ CL)

θ12 [◦] 33.2 28.7 . . . 38.1
θ23 [◦] 45.0 35.7 . . . 55.6
θ13 [◦] 0.000 ≤ 12.5
∆m2

21 [10−5 eV2] 8.1 7.2 . . . 9.1
|∆m2

31| [10−3 eV2] 2.2 1.4 . . . 3.3

me [MeV] 0.510998918 ± 0.000000044
mµ [MeV] 105.6583692 ± 0.0000094

mτ [MeV] 1776.99+0.29
−0.26

Table 4.2: Experimental data in the leptonic sector taken from the Particle Data Group [18] and global fits to
neutrino oscillations [64].

4.4.5 Parameterization of the See-Saw

There are several different parameterizations of the see-saw [68–70]. Today only 12 parameters
are in principle accessible, since processes involving the other parameters are suppressed by
the mass of the right-handed neutrinos. These 12 parameters are the masses of the charged
leptons and of the neutrinos and the mixing angles and CP phases of the (P)MNS (Pontecorvo-
Maki-Nakagawa-Sakata) matrix. However, only the masses of the charged leptons, the mass
squared differences of the neutrinos and the angles θ12 and θ23 have already been measured.
There is an upper bound on the CHOOZ angle θ13 only (See Tab. 4.2). The number of
parameters which is needed for a given model in the leptonic Yukawa sector can be easily
calculated [69]. First the parameters of the Yukawa and mass matrices are counted. Then
the number of parameters of the symmetry group which is broken by the Yukawa matrices is
subtracted.

Yphys = Y −NG +NG′ , (4.16)
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where Yphys is the number of physical parameters in the Yukawa sector, Y is the number of
parameters characterizing the Yukawa matrices and NG and NG′ are the number of generators
of the symmetry group for vanishing Yukawa interactions and the generators of the subgroup
which is unbroken by the Yukawa interactions, respectively. In the following, the number of
physical parameters in the type-II see-saw model is determined as an example.
The starting point is the SM with n flavors extended by m right-handed neutrinos and one
Higgs triplet. The kinetic part of the Lagrangian is given by

Lkin = lL��DlL + eR��DeR + νR��DνR + tr
[
(Dµ∆)†Dµ∆

]
. (4.17)

It is invariant under the following flavor symmetry transformation

lL → VllL (4.18a)

eR → VeeR (4.18b)

νR → VννR , (4.18c)

where Vl and Ve are unitary n×n matrices and Vν is a unitary m×m matrix in flavor space.
Hence, the symmetry group is U(n)l ⊗ U(n)e ⊗ U(m)ν . However, this flavor symmetry is
broken by the Yukawa couplings and the Majorana mass matrix. The part of the Lagrangian
which is relevant for this symmetry breaking, is given by

Lmass = −1

2
(Ye)ij lLjφeRi −

1

2
(Yν)ij lL

α
j εαβφ

βνRi −
1

2
MijνR

C
iνRj

− 1√
2

(Y∆)ij l
T i
L iσ2∆`

j
L , (4.19)

where Ye is the n× n Yukawa matrix for charged leptons, Yν is the m × n neutrino Yukawa
matrix, M is the m × m Majorana mass matrix of the right-handed neutrinos and Y∆ is
the n × n Yukawa matrix for the leptonic left-handed doublet coupling to the Higgs triplet.
As these matrices are not flavor diagonal, they clearly break the symmetry. However, the
complete Lagrangian will be invariant under this symmetry, if the Yukawa matrices Ye, Yν

and Y∆ and also M transform according to

(Ye, Yν , Y∆,M)→
(
Y ′

e , Y
′
ν , Y

′
∆,M

′
)

=
(
VeYeV

†
l , VνYνV

†
l , V

∗
l Y∆V

†
l , V

∗
ν MV †

ν

)
. (4.20)

As the lepton number is not conserved, all flavor symmetries are broken by the Yukawa
matrices and there are

n2 + nm+
n(n+ 1)

2
+
m(m+ 1)

2
− 2

n(n− 1)

2
− m(m− 1)

2
=
n(n+ 3)

2
+m(n+ 1) (4.21a)

physical moduli and

n2 +
n(n+ 1)

2
+
m(m+ 1)

2
− 2

n(n+ 1)

2
− m(m+ 1)

2
=
n(2m+ n− 1)

2
(4.21b)

physical phases4. In the case of the SM extended by 3 right-handed neutrinos, there are 21
moduli and 12 phases. The same can be done as well for other extensions of the SM. The
number of the parameters of different EFTs are summarized in Tab. 4.3.

4Ye is a general complex matrix. Thus it is characterized by n2 moduli and n2 phases. Y∆ is described
by n(n+1)

2
moduli and n(n+1)

2
phases, because it is symmetric. Unitary matrices are characterized by n(n−1)

2

moduli and n(n+1)
2

phases.
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couplings #νR mod. ph.

(Yν , M) 3 15 9
(Yν , Y∆, M) 3 21 12
(Yν , κ, M) 3 21 12
(Yν , κ, M) 2 17 9
(Yν , κ, M) 1 13 6

(κ) n.a. 9 3

Table 4.3: Number of parameters in different see-saw models and parameterization. All models contain the
charged lepton Yukawa matrix Ye besides the given couplings. ‘mod.’ means moduli and ‘ph.’ means phases.

One parameterization is obtained by choosing Ye and M to be diagonal. Then Yν and Y∆ are
described by the product of a diagonal matrix with two unitary matrices.

Yν =UR diag(y1, . . . , yn)U †
L (4.22)

Y∆ =V ∗ diag(z1, . . . , zn)V † (4.23)

UL and UR can be described by 3 angles and 3 phases each and V can be described by 3
angles and 6 phases.
The parameterization used in this thesis is the low-energy parameterization which is valid
in the effective theory. The relevant parameters are the masses of the charged leptons and
neutrinos and in addition the 3 angles and 3 CP phases in the MNS matrix. In the type-I
see-saw scenario, the twisting matrix UL between Y †

e Ye and Y †
ν Yν is used in the discussion of

the running in Sec. 6 in addition. The twisting matrix is the matrix which diagonalizes Y †
ν Yν

in the basis where Y †
e Ye is diagonal. Hence it is defined as

Y †
e Ye =diag U †

LY
†
ν YνUL =diag (4.24)

Moreover, the twisting matrix U∆
L between Y †

e Ye and Y †
∆Y∆ is used in the type-II see-saw

scenario.
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Chapter 5

Evolution of the Mixing Parameters
and Masses

There are two different approaches to solve the renormalization group equations for the lep-
tonic mixing parameters. On the one hand, the evolution of the mass matrices can be solved
and then they are diagonalized to extract the mixing parameters. This approach is used in
the numerical code [71,72]. On the other hand, the mass matrices can be diagonalized at first
and then solved. The latter approach is used to derive the analytic formulae for the mixing
parameters [73–77]. The neutrinos acquire their mass after electroweak symmetry breaking,
but we can consider the ‘would-be’ neutrino mass above the electroweak symmetry breaking
in order to compare it to the prediction of GUT models. At first, the extraction of the RGEs
of the mixing parameters from the RGEs of the mass matrices is described and then it is
applied to the left-handed neutrino mass matrix and the right-handed neutrino masses.

5.1 Extraction of the RGE for the Parameters from the Ma-

trix Equations

5.1.1 Evolution of Majorana Masses

Majorana masses matrices M are symmetric. Thus the evolution of Majorana matrices is
equivalent to the evolution of symmetric matrices. The β-functions are proportional to the
matrix itself to 1 loop order, because the masses can be renormalized multiplicatively [59–61].
Therefore the most general form of the β-function is given by

16π2βM = P TM +MP + αM , (5.1)

where P = P (t) is an arbitrary matrix and α = α(t) is an arbitrary complex number and the
parameter t is defined as t = lnµ. However, if there are more contributions to the Majorana
mass matrix, the different contributions will in general have different RGEs. Therefore, this
analysis only applies to one contribution. From this equation, the evolution of the masses
and mixing parameters has been derived in the papers [73–76]. At first, this equation can be
turned in an equation depending on the mixing matrix U and the mass matrix in the mass
basis D

UTMU = diag(M1, . . . ,Mn) =: D . (5.2)
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Inserting Eq. (5.2) in Eq. (5.1) yields

Ḋ =
1

16π2

(
αD + P ′TD +DP ′

)
− T ∗D +DT , (5.3)

where P ′ := U †
νPUν , T := U †

ν U̇ν and the anti-hermiticity of T was used. This matrix equation
corresponds to a set of 12 equations which govern the evolution of the 3 eigenvalues and the
9 mixing parameters. The real part of the diagonal entries results in

Ṁi =
1

16π2

(
Reα+ 2ReP ′

ii

)
Mi , (5.4)

which are the differential equations describing the evolution of the mass eigenvalues. The 9
mixing parameters are described by the 3 equations for the imaginary diagonal entries

ImTii = − 1

32π2

(
Imα+ 2 ImP ′

ii

)
Mi (5.5)

and the 6 equations of the off-diagonal entries (i 6= j) read:

Re Tij = − 1

16π2

Mi +Mj

Mi −Mj
ReP ′

ij (5.6)

ImTij =
1

16π2

Mi −Mj

Mi +Mj
ImP ′

ij (5.7)

5.1.2 Evolution of Dirac Masses

The derivation for a Dirac mass matrix is analogous. The most general form of the β-function
of a hermitian matrix, which preserves the hermiticity and is proportional to the hermitian
matrix itself, is given by

βH = F †H +HF + α̃H , (5.8)

where F = F (t) is an arbitrary matrix and α̃ = α̃(t) is an arbitrary complex number. Again
the matrix H can be decomposed in a diagonal matrix with the eigenvalues of H on the
diagonal and an unitary matrix describing the transformation of the given basis to the mass
basis.

U †
HHUH = diag(h1, . . . , hn) =: DH (5.9)

Inserting (5.9) in (5.8) yields

ḊH =
1

16π2

(
F ′†DH +DHF

′ + α̃DH

)
−XDH +DHX , (5.10)

where F ′ = U †
HFUH and X = U †

HU̇H . The matrix equation defines the off-diagonal entries
of X and the eigenvalues of H as

ḣi =
1

16π2

(
2ReF ′

ii + α̃
)
hi (5.11)

Xij =
1

16π2

hj + hi

hj − hi
F ′

ij . (5.12)

In addition, Im α̃ = 0 has to be satisfied1. The diagonal entries of X remain undefined.
However, they only influence the unphysical phases appearing in the diagonalization of Ye

which can be absorbed in a redefinition of the fields [16, 74].

1This is automatically satisfied in the SM, MSSM and 2HDM.
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5.2 Evolution of the left-handed Majorana Neutrino Mass Ma-
trix

As it was already noted earlier, the neutrino mass matrix is described by

mν
(4.4)
= −v

2

4
κ (5.13)

below the see-saw scales. Above and in between the see-saw scales, it is given by a combination
of the effective neutrino mass operator and the see-saw formula

mν = −v
2

4

(
κ+ 2Y T

ν M
−1Yν

)
. (5.14)

Above the see-saw scales, the dimension 5 operator κ vanishes in the type-I see-saw scenario,
since the only source for the neutrino mass is the contribution of the right-handed neutrinos via
the type-I see-saw mechanism. However, κ will be non-zero in type-II scenarios, if the Higgs
triplet is heavier than the heaviest right-handed neutrino. Thus, there are two contributions
to the mass matrix which have to be treated separately. In the MSSM, the both terms have
the same RGE due to the non-renormalization theorem in supersymmetric theories, but in
the SM and 2HDM, the two contributions have a different flavor-diagonal contribution. This
results in a changed evolution of all2 parameters. This effect can even give the dominant
contribution [78]. The β function for mν can be derived from the β functions of κ, Yν . In the
SM, MSSM and 2HDM, the matrix P 3, which shows up in Sec. 5.1.1, can be parameterized
by

P := CeY
†
e Ye +CνY

†
ν Yν (5.15)

and α is given by

α := α1g
2
1 + α2g

2
2 + αu trY †

uYu + αd trY †
d Yd + αe trY †

e Ye + αν trY †
ν Yν + αλλ . (5.16)

The coefficients in the definition of P and α in Eqs. (5.15) and (5.16) are given in Tab. 5.1.

5.3 Evolution of the charged Lepton Sector

The derivation for the evolution of the parameters in the charged lepton part is analogous.
The relevant quantity is Y †

e Ye which describes the contribution to the MNS matrix and the
masses of the charged leptons. The matrix F and α̃ are defined in a similar manner to P and
α and read:

F :=DeY
†
e Ye +DνY

†
ν Yν (5.17a)

α̃ :=α̃1g
2
1 + α̃2g

2
2 + α̃u trY †

uYu + α̃d trY †
d Yd + α̃e trY †

e Ye + α̃ν trY †
ν Yν + α̃λλ (5.17b)

The matrix is given by UH = Ue and the coefficients of F and α̃ are given in Tab. 5.2

2Let A and B be two arbitrary symmetric matrices. If UT (A + B)U is diagonal, UT (aA + bB)U will be in
general not diagonal. In general, it will be only diagonal, if there is common scaling (a = b) [16].

3In the type-I see-saw, this is the most general form to 1 loop order, since the only flavor-non-diagonal
contribution comes from the coupling to the charged leptons via the Yukawa term. All other contributions
are flavor-diagonal. In type-II see-saw models, there is an additional contribution from the coupling of the
left-handed lepton doublet to the Higgs triplet.
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Model contrib. Ce Cν α1 α2 αu αd αe αν λ

SM κ −3
2

1
2 0 −3 6 6 2 2 1

SM 2Y T
ν M

−1Yν −3
2

1
2 − 9

10 −9
2 6 6 2 2 0

MSSM κ 1 1 − 6
5 −6 6 0 0 2 0

MSSM 2Y T
ν M

−1Yν 1 1 −6
5 −6 6 0 0 2 0

Table 5.1: Coefficients for the evolution of the neutrino mass. In the case of the effective theory, Cν = 0 and
αν = 0.

Model De Dν α̃1 α̃2 α̃u α̃d α̃e α̃ν λ

SM −3
2 −3

2 −9
2 −9

2 6 6 2 2 0

MSSM 3 1 − 18
5 −6 0 6 2 0 0

Table 5.2: Coefficients for the evolution of the charged leptons. In the case of the effective theory, Dν = 0 and
α̃ν = 0.

5.4 Evolution of the left-handed Leptonic Mixing Parameters

The evolution of the MNS matrix U = U †
eUν is described by

U †U̇ = U̇ †
eUν + U †

e U̇ν = T − U †XU . (5.18)

So far, no basis was specified. The equations are valid in every chosen basis. However, the
calculation considerably simplifies in the basis where Y †

e Ye is diagonal, because the matrices
T and X can be calculated in terms of the mixing parameters describing the MNS matrix. As
the charged leptons are strongly hierarchical, the contribution of the charged lepton part is
negligible compared to the contribution of the neutrinos for the evolution of the mixing angles
and phases. However, in the case of a hierarchical neutrino mass spectrum, both contributions
are of the same order. In the following, we neglect the contribution from the charged leptons,
i.e. we set X=0. The contributions are treated in [16]. In this basis, P can be expressed

by the eigenvalues of Y †
e Ye and Y †

ν Yν in addition to the mixing parameters describing the
twisting matrix UL.

P = Ce diag
(
y2

e , y
2
µ, y

2
τ

)
+ CνUL diag

(
y2
1, y

2
2 , y

2
3

)
U †

L (5.19)

This shows that the renormalization group equations of the mixing parameters are basis-
independent despite the fact that they are derived in a specific basis. As it can be seen in
Eq. (5.19), the phases in the off-diagonal entries of P can be traded against the unphysical
phases. Indeed, the unphysical phases do not decouple from the physical phases in the
renormalization group equations. Thus, they will become non-zero, even if they vanish at
the GUT scale and they will contribute to the running of the physical parameters. Thus the
‘unphysical’ phases are not unphysical. The analytic formulae are given in the basis where all
unphysical phases vanish. The same considerations apply for F . Thus the resulting equations
are still basis-independent, despite the calculation in the basis where Y †

e Ye is diagonal.
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The differential equations governing the parameters which are given in the tables in App. D,
are expanded in the small CHOOZ angle θ13 and the limits ye → 0, yµ → 0 are taken.

5.5 Evolution of the right-handed Neutrino Masses

The same technique can also be used for the right-handed neutrino sector, because the two
matrices describing the right-handed neutrinos are the right-handed Majorana mass matrix
M and the hermitian matrix YνY

†
ν .

The matrix P in Sec. 5.1.1 equals CrYνY
†
ν where Cr = 2 for the MSSM and Cr = 1 for the

SM and 2HDM, and α vanishes for the right-handed neutrinos. Thus the running of the
right-handed neutrino masses is described by

Ṁi =
2

16π2
Re (Pii)Mi , (5.20)

where P is given in the mass basis of the right-handed neutrinos. It can be seen, that there
are no large renormalization group effects for the right-handed neutrino masses, because the
Yukawa couplings are of the order of one. Thus the running can be estimated to

Ṁi

Mi
=

Cr

8π2

∑

j

| (Yν)ij |2 ≈ 0.007CrO(1)� 1 . (5.21)

The RGE for Mi is solved analytically by

Mi(t) = Mi(t0)e
Cr
8π2

R t
t0

dt′
P

j |(Yν(t′))ij |
2

, (5.22)

where Mi(t0) ≤ et0 = µ0, in order that the equation is reasonable, i.e. the mass of the right-
handed neutrinos is lighter than µ0 and they can still become on-shell. From this equation,
the threshold M t

i where the right-handed neutrinos are integrated out4, can be calculated by
requiring Mi(M

t
i ) = M t

i . This yields

M t
i = Mi(µ0)

(
M t

i

µ0

) Cr
8π2

P

j |(Yν(µ̃))ij |
2

, (5.23)

where the mean value theorem for integrals was used which determines µ̃ and M t
i ≤ µ̃ ≤ µ0.

Solving Eq. (5.23) for M t
i yields

M t
i = Mi(µ0)

1
1−ξµ

ξ
ξ−1

0
ξ�1−−−→Mi(µ0)

(
Mi(µ0)

µ0

)ξ

(5.24)

for ξ 6= 1 where ξ is defined as Cr

8π2

∑
j |(Yν(µ̃))ij |2. In the case of ξ = 1, Eq. (5.23) is solved

by M t
i = µ0. For degenerate right-handed neutrino masses, the degeneracy will only persist,

if the neutrino Yukawa couplings satisfy

∑

j

| (Yν(t))ij |2 =
∑

j

| (Yν(t))1j |2 ∀i∀t . (5.25)

4Possible threshold corrections are neglected.
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However, in general, the degeneracy is lifted. In particular, if there is a strong hierarchy in
Yν as it is suggested by GUT models, (Yν)33 � (Yν)22 � (Yν)11, the mass M3 runs strongest.
If it is further assumed, that

∑
j | (Yν)ij |2 does not run very fast, ξ can be approximated by

Cry2
i

8π2 , the value at the GUT scale, and the thresholds of the right-handed neutrinos is given
by

M t
i = M(ΛGUT)

(
M(ΛGUT)

ΛGUT

)Cry2
i

8π2

. (5.26)

Therefore the right-handed neutrinos have an inverted hierarchy

M3 < M2 < M1 (5.27)

and the splitting of the thresholds of the right-handed neutrinos which are degenerate at the
GUT scale, is given by

M t
i −M t

j = M



(

M

ΛGUT

)Cry2
i

8π2

−
(

M

ΛGUT

)Cry2
j

8π2


 . (5.28)

Thus a stronger hierarchy in Yν yields a larger splitting of the right-handed neutrino masses.
Recently, resonant leptogenesis [16,79] has been discussed where this splitting is of the order
of the decay width of the right-handed neutrinos. This results in an enhancement of the
lepton asymmetry. In the resonant leptogenesis scenario, the renormalization group effects
are important, because even small changes in the right-handed neutrino mass can violate the
resonance condition.
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Chapter 6

RG Evolution in type-I See-Saw
Models

6.1 Summary of the Evolution in the Effective Theory

The running of the mixing parameters can be described by simple analytic formulae [75] which
show the same analytic structure

µ
dθij

dµ
, µ

dδ

dµ
, µ

dϕi

dµ
∝
∑

k

fk(masses, δ, ϕ1, ϕ2)

m2
j −m2

i

×F (ij)
k (Yukawa couplings, θ12, θ13, θ23) . (6.1)

In contrast to the quark sector, there will be strong running in the leptonic sector, if the
neutrino masses are quasi-degenerate. This is due to the mass squared differences in the
denominator of each term. Another reason for the strong running are the large mixing angles
of the MNS matrix, because the slope of the angles is proportional to the sine of the angle.
This results in a fixed point for zero mixing. In the MSSM, the running is also enhanced by a
large value of tan β, since the evolution is proportional to y2

τ . Non-zero phases generally damp
the running and the phase difference will tend to decrease, if the parameters are run down
from a high scale. θ12 increases for θ13 = 0 while running the parameters down. These results
which are valid in the effective theory below the see-saw scales change above the lightest
right-handed neutrino.

6.2 General Considerations about the Evolution

The same structure as in Eq. (6.1) also holds above and in between the see-saw scales, but the

formulae become more complicated, because P = CνY
†
ν Yν + CeY

†
e Ye is not diagonal. There-

fore, off-diagonal entries contribute to the running and the evolution gets more interesting,
but often there are only a few dominant contributions from the different matrix elements of
P . Moreover, the contribution from Y †

ν Yν does not strongly depend on tanβ in the MSSM,

because the neutrino mass is proportional to sin2 β = tan2 β
1+tan2 β

. Hence, the contribution from

Y †
ν Yν dominates for small tanβ. In between the see-saw scales, the neutrino mass matrix

consists of 2 contributions which, in general, differently transform under the renormalization
group which was stated in Sec. 5.2. The following discussion applies for one contribution, as
it is the case above the see-saw scales and in the MSSM between the see-saw scales, too. In
the case of 2 contribution, there will be additional effects if the terms are of the same order.
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6.2.1 Different Contributions from P

The matrix P can be written in a basis independent way:

P = Ce diag(y2
e , y

2
µ, y

2
τ ) + CνUL diag(y2

1 , y
2
2 , y

2
3)U

†
L . (5.19)

Furthermore, this equation can be rewritten in a way, that the dominant parts are obvious.
The charged lepton masses show a strong hierarchy and it is suggested by GUT models that
the eigenvalues of Y †

ν Yν are hierarchical, too.

P = Cey
2
τ

[
diag (0, 0, 1) + diag

(
y2

e

y2
τ

,
y2

µ

y2
τ

, 0

)]

+ Cνy
2
3

[(
ULi3UL

∗
j3

)
i,j=1,2,3

+ UL diag(
y2
1

y2
3

,
y2
2

y2
3

, 0)U †
L

]
(6.2)

The first term for the charged lepton part and the neutrino part, respectively, dominate
and the remaining two terms can be neglected for almost all cases. In this approximation,
the main contribution is from the term proportional to P33. However, a large twisting can
generate other large entries, too. The Majorana phases ϕ1 and ϕ2 do not contribute in
this approximation. The contribution from Y †

ν Yν depends on the twist between Y †
e Ye and

Y †
ν Yν . For Yν ∼ Yu, the twisting matrix is UL = V †

CKM. Thus UL is close to the identity
matrix. Another possibility is Yν ∼ Ye, then there is no twist and UL = � 3×3. Therefore, it
is reasonable to assume, that UL is the identity matrix, because in either case, the angles are
small, i.e. UL is close to the identity. In this approximation, P simplifies further to

P =
(
Cey

2
τ + Cνy

2
3

)
diag (0, 0, 1) . (6.3)

Thus the only additional effect above the see-saw scales is the enhancement of the running.
The renormalization group equations for the parameters which do not show large RG effects,
can be approximated analytically. Special care has to be taken for the evolution of θ12 and
∆m2

sol, since their running does not yield a simple rescaling.

In the case of quasi-degenerate eigenvalues of Y †
ν Yν , the evolution of the mixing parameters

is proportional to the parameter characterizing the deviation from degeneracy. This is due to
the fact, that real flavor-diagonal parts only contribute to the evolution of the masses.

P = Cey
2
τ

[
diag (0, 0, 1) + diag

(
y2

e

y2
τ

,
y2

µ

y2
τ

, 0

)]

+ Cνy
2
3

[
� + UL diag

(
y2
1 − y2

3

y2
3

,
y2
2 − y2

3

y2
3

, 0

)
U †

L

]
(6.4)

Hence, there is no contribution from the neutrino Yukawa couplings to the evolution of the
mixing parameters in the approximation of a degenerate spectrum and it is the same as
below the see-saw scales besides the contribution to the running of the mass eigenvalues. A
complete degeneracy of the neutrino Yukawa couplings means, that the contribution of the
right-handed neutrinos is flavor-diagonal and therefore, there is no evolution of the mixing
parameters.



6.3 Evolution of the Angles 45

θ̇12 θ̇13 θ̇23

d. n.h. i.h. d. n.h. i.h. d. n.h. i.h.

P11
m2

∆m2
sol

1 ζ−1 O(θ13) O(θ13) O(θ13) O(θ13) O(θ13) O(θ13)

P22
m2

∆m2
sol

1 ζ−1 m2

∆m2
atm

√
ζ O(θ13)

m2

∆m2
atm

1 1

P33
m2

∆m2
sol

1 ζ−1 m2

∆m2
atm

√
ζ O(θ13)

m2

∆m2
atm

1 1

ReP21
m2

∆m2
sol

1 ζ−1 m2

∆m2
atm

1 1 m2

∆m2
atm

√
ζ O(θ13)

ReP31
m2

∆m2
sol

1 ζ−1 m2

∆m2
atm

1 1 m2

∆m2
atm

√
ζ O(θ13)

ReP32
m2

∆m2
sol

1 ζ−1 m2

∆m2
atm

√
ζ O(θ13)

m2

∆m2
atm

1 1

ImP21
m2

∆m2
sol

O(θ13) ζ−1 m2

∆m2
atm

1 1 m2

∆m2
atm

√
ζ O(θ13)

ImP31
m2

∆m2
sol

O(θ13) ζ−1 m2

∆m2
atm

1 1 m2

∆m2
atm

√
ζ O(θ13)

ImP32 O(θ13) O(θ13) O(θ13)
m2

∆m2
atm

√
ζ O(θ13)

m2

∆m2
atm

√
ζ O(θ13)

Table 6.1: Generic enhancement and suppression factors for the evolution of the angles, yielding an estimate
of the size of the RG effect. The table entries correspond to the terms in the mixing parameter RGEs with the
coefficient given by the first column. A ‘1’ indicates that there is no generic enhancement or suppression. ‘d.’
stands for a degenerate neutrino mass spectrum, i.e. ∆m2

atm � m2
1 ∼ m2

2 ∼ m2
3 ∼ m2. ‘n.h.’ denotes a normally

hierarchical spectrum, i.e. m1 � m2 � m3, and ‘i.h.’ means an inverted hierarchy, i.e. m3 � m1 . m2.

6.2.2 Size of the RG Effect

The equations for the angles and phases have the same general form as below the see-saw
scales:

µ
dθij

dµ
, µ

dδ

dµ
, µ

dϕi

dµ
∝
∑

k

fk(masses, δ, ϕ1, ϕ2)

m2
j −m2

i

×F (ij)
k (Yukawa couplings, θ12, θ13, θ23) . (6.5)

Thus, the maximum of the contribution is governed by a function of the masses and phases
over the mass squared difference corresponding to the involved neutrinos. However, as there
are more contributions above the see-saw scales, the different contributions may cancel. The
coefficients which determine the size are abbreviated and summarized in Tab. D.1.
As the maximum of the coefficient is mainly determined by the mass squared difference in the
denominator, the coefficients Q±

12, S12, C12
13 and C12

23 are generically larger. Non-zero phases
can damp the running for Q±

ij , A±
ij and D2 and increase the running for Sij, B±ij , Ckl

ij and D1.
Below the see-saw scales, the Majorana phases generally damp the running.

6.3 Evolution of the Angles

The evolution of θ12 will be strongly affected by the renormalization group unless there are
cancellations between the different dominant contributions because of the proportionality to
Q+

12 and S12, respectively, which are generically large. The contributions of the real parts of
P are proportional to Q+

12 and thus they are damped for large Majorana phase differences.
On the other hand, the contributions of the imaginary parts are proportional to S12 and
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thus they are enlarged by an increasing phase difference. The term proportional to ImP32

is an exception, since it is proportional to sin θ13. In the case of a strong normal hierarchy,
there is no enhancement. However, in the case of a moderate normal hierarchy (∆m2

sol <

m2
1 � ∆m2

atm), the RG effect is proportional to
m2

1

∆m2
sol

, as it is for an inverted hierarchy where

the evolution of θ12 is generically enhanced by ζ−1 which is the ratio of the mass squared

differences ζ =
∆m2

sol

∆m2
atm

. Thus, there is a large RG effect for a degenerate spectrum and an

inverted hierarchy and a small effect for a normal hierarchy. The radiative generation of θ12

is possible by the terms proportional to P21 and P31 whereby the generation by P31 is only
possible if θ23 > 0.
Recently, the observation of the relation

θ12 + θc =
π

4
(6.6)

in the experimental data was discussed [80–83]. However, this quark-lepton complementarity
(QLC) relation is expected to be a symmetry at the scale of quark-lepton unification which
is at the scale of O(1013 − 1015)GeV in the Pati-Salam model [22] or at the GUT scale
(O(1016)GeV). Thus it must be expected, that the QLC relation is changed by the renor-
malization group [82], especially, because the RG effect on θ12 is generically large. If this
symmetry is realized, it will impose constraints on the parameters influencing the RG evolu-
tion, in order to suppress the RG effect that the symmetry is compatible with the experimental
data. Conditions for a small RG effect on θ12 can be read off from Tab. D.2. Especially, the
term proportional to P33 is relevant, because it describes the evolution in the effective theory.
These conditions are a hierarchical mass spectrum of the neutrinos, opposite CP parity of the
masses m1 and m2 and a small value of tanβ in the MSSM. This is illustrated in Figs. 6.1(a),
6.1(b) and 6.1(c) which show the region in parameter space compatible with QLC realized at
the GUT scale for diagonal Yν with a normal hierarchy. The angles are fixed and the other
parameters are varied in the given ranges. In the plots, the region which is compatible with
QLC is the enveloping of the dots. In Fig. 6.1(a), the dependence on tan β and the absolute
neutrino mass scale are shown. Small values of tan β and a strong hierarchy are compatible
with QLC. For quasi-degenerate neutrino masses, the RG effect on θ12 is too large that QLC
can be realized, unless tanβ is small. In Fig. 6.1(b), the dependence on the Majorana phase
difference is shown. An opposite CP parity of the masses damps the running. Hence, the
parameter region compatible with QLC shows a bulge near a Majorana phase difference of
π. In Fig. 6.1(c), the dependence on the RG effect above the lightest right-handed neutrino
is illustrated. Large neutrino Yukawa couplings enhance the running of θ12 in the same way
as large values of tanβ. Hence, QLC can not be realized for large neutrino Yukawa couplings
and quasi-degenerate neutrino masses. The QLC relation is not affected by the hierarchy
in Yν , because the contribution from the neutrino Yukawa couplings to the evolution of the
mixing parameters cancels in the degenerate case. In particular, the QLC relation can be
realized in the limit of vanishing m1 for almost all parameter values, because the RG change
of θ12 can be estimated to ∆θ12 ≤ 1

64π2 ln ΛGUT
ΛEW

≈ 0.023. Thus, experiments would have to
determine θ12 with an accuracy better than 0.5% to test the QLC relation.
The running of θ23 is generically smaller as the running of θ12, because all contributions are
proportional to some linear combination of either Q+

13 and Q+
23 or S13 and S23, i.e. propor-

tional to m2

∆m2
atm

. The main contributions to the running come from P22, P33 and P32. The

contributions of the terms proportional to P21 and P31 are smaller, since they are proportional
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(a) Dependence of the QLC relation on tanβ.
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(b) Dependence of the QLC relation on the
Majorana phase difference. The different

gray levels of the dots correspond to
different values of tan β ε (15, 50). Darker
dots correspond to larger values of tan β.
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(c) Dependence of the QLC on the strength of
the neutrino Yukawa couplings. The
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to different values of tan β ε (5, 50). Darker
dots correspond to larger values of tan β.

Figure 6.1: Scatters plot indicating the parameter region which is compatible with QLC. All plots show
the dependence on the neutrino mass hierarchy which is described by the lightest neutrino mass. The pa-
rameters at the GUT scale are: θ12 + θc = π

4
, θ13 = 0, θ23 = π

4
, δ, ϕi ε [0, 2π), m1 ε

ˆ

10−10, 0.5
˜

eV,
∆m2

sol ε
ˆ

5 · 10−5, 5 · 10−4
˜

eV2, ∆m2
atm ε

ˆ

1.5 · 10−3, 6 · 10−3
˜

eV2, y3 ε
ˆ

10−3, 1
˜

, y2

y3

= y1

y2

ε
ˆ

10−2, 1
˜

and
tan β ε [5, 50].
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Figure 6.2: This is an example for the evolution from zero mixing to the LMA solution. The initial values are
given by: m1 = 0.1 eV, ∆m2

atm = 1.33 · 10−3 eV2, ∆m2
sol = 1.05 · 10−4 eV2and tanβ = 5.
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to the difference of two almost equal coefficients. In the case of a strong normal hierarchy,
there is no enhancement, as well as in the case of an inverted hierarchy. This can be seen in
Tab. 6.1. Only in the case of a degenerate spectrum, a large RG effect can be expected. It is
possible to generate θ23 radiatively by non-zero P32 and P31 entries, too. The contributions
from P31 will only be possible, if θ12 > 0 and the imaginary parts require non-zero phases.
There are no large RG effects on θ13, because the running is proportional to m2

∆m2
atm

, too. The

main contributions to θ13 are from the off-diagonal terms P21 and P31, because all other terms
are proportional to differences of the abbreviations which are defined in Tab. 6.3. Only for
a degenerate spectrum, there are sizable RG effects. Contrariwise, the generic enhancement
factors are close to unity. The radiative generation of θ13 is possible.
Zero mixing is a fixed point below the see-saw scales [75], because the evolution of the mixing
angles is proportional to the sine of the specific angle. However, above and between the see-
saw scales, there are off-diagonal entries in P whose contribution are non-zero for zero mixing.
Hence, zero mixing is not a fixed point any longer. This is illustrated in Fig. 6.2. However,
this is just an example that zero mixing is not a fixed point above the see-saw scales, because
the choice of the neutrino Yukawa matrix Yν is rather special:

Yν =




0.001 0.0001 −0.01
0.0001 0.1 0.01
−0.01 0.1 1


 . (6.7)

The enhancement factors of the contributions proportional to Pij are given in Tab. 6.1.

6.4 Evolution of the Phases

The CP phases show a fast running in general. The corresponding generic enhancement
and suppression factors are given in Tab. 6.2. As for the RGE of the Dirac phase δ, there
is always a term proportional to θ−1

13 which is further enhanced for a degenerate spectrum.
This implies that the running of δ is in general significant for small θ13, irrespectively of the
hierarchy1. For θ13 = 0, δ and δ̇ are undefined. However, it is possible to define an analytic

1Note, however, that in measurable quantities δ appears always in combination with sin θ13, so that the RG
change of predictions for experiments may not be significant.
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ϕ̇i δ̇

d. n.h. i.h. d. n.h. i.h.

P11
m2

∆m2
sol

O(θ13) ζ−1 m2

∆m2
sol

√
ζ ζ−1

P22
m2

∆m2
sol

√
ζ ζ−1 m2

∆m2
atm

θ−1
13 + m2

∆m2
sol

√
ζθ−1

13 ζ−1

P33
m2

∆m2
sol

√
ζ ζ−1 m2

∆m2
atm

θ−1
13 + m2

∆m2
sol

√
ζθ−1

13 ζ−1

ReP21
m2

∆m2
sol

√
ζ ζ−1 m2

∆m2
atm

θ−1
13 + m2

∆m2
sol

θ−1
13 θ−1

13 + ζ−1

ReP31
m2

∆m2
sol

√
ζ ζ−1 m2

∆m2
atm

θ−1
13 + m2

∆m2
sol

θ−1
13 θ−1

13 + ζ−1

ReP32
m2

∆m2
sol

√
ζ ζ−1 m2

∆m2
atm

θ−1
13 + m2

∆m2
sol

√
ζθ−1

13 ζ−1

ImP21
m2

∆m2
sol

1 ζ−1 m2

∆m2
atm

θ−1
13 + m2

∆m2
sol

θ−1
13 θ−1

13 + ζ−1

ImP31
m2

∆m2
sol

1 ζ−1 m2

∆m2
atm

θ−1
13 + m2

∆m2
sol

θ−1
13 θ−1

13 + ζ−1

ImP32
m2

∆m2
atm

1 1 m2

∆m2
atm

θ−1
13 + m2

∆m2
atm

√
ζθ−1

13 ζ−1

Table 6.2: Generic enhancement and suppression factors for the evolution of the CP phases, yielding an
estimate of the size of the RG effect. The table entries correspond to the terms in the mixing parameter
RGEs with the coefficient given by the first column. A ‘1’ indicates that there is no generic enhancement or
suppression. ‘d.’ denotes a degenerate neutrino mass spectrum, i.e. ∆m2

atm � m2
1 ∼ m2

2 ∼ m2
3 ∼ m2. ‘n.h.’

denotes a normally hierarchical mass spectrum, i.e. m1 � m2 � m3, and ‘i.h.’ means an inverted hierarchy,
i.e. m3 � m1 . m2.

continuation yielding a smooth evolution [75]. In addition, for the degenerate or invertedly
hierarchical spectrum, the running of δ gets enhanced by terms proportional to m2/∆m2

sol or
ζ−1, respectively. The coefficients of Pfg in δ̇ are given in Tab. D.3, from where one obtains
the RGE as δ̇ = θ−1

13 δ̇
(−1) + δ̇(0) + O(θ13).

The situation is similar for the Majorana phases. By the same reasoning as for the running
of the solar angle, the generic RG effects are large for degenerate masses and for an inverted
hierarchy, while they are suppressed for a strong normal hierarchy. The coefficients of Pfg in
ϕ̇i are given in Tab. D.4.

The evolution of the Majorana phase difference is governed by a simple equation which can be
read off from Tab. 6.3. It indicates strong running, since the slope is still inversely proportional
to ∆m2

sol. However, in the case of equal Majorana phases, only the imaginary entries in P and
terms proportional to θ13 contribute to the running. Besides, the contribution proportional
to the real parts is suppressed for large solar mixing.

If Y †
ν Yν is close to the identity matrix, its contribution to the running is very small, since the

terms proportional to the diagonal entries cancel approximately. Then, only the contribution
from Y †

e Ye remains, so that the evolution above the see-saw scales is essentially the same as
below. However, many GUT models suggest a hierarchical structure for Yν like for the other
Yukawa matrices. Then the main contribution will be due to P33 and the next-to-leading
contribution will be from ReP32, if the twisting matrix between Y †

e Ye and Y †
ν Yν is close to

the identity. Thus, the phase difference tends to decrease while running down2, as it is the

2More accurately, it runs away from π and towards either 0 or 2π, i.e. |ϕ1 −ϕ2| decreases for |ϕ1 −ϕ2| < π
and increases for |ϕ1 − ϕ2| > π.
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16π2 (ϕ̇1 − ϕ̇2)

P11 −4S12 cos 2θ12
P22 4S12c

2
23 cos 2θ12

P33 4S12s
2
23 cos 2θ12

ReP21 −8S12c23 cos 2θ12 cot 2θ12
ReP31 8S12s23 cos 2θ12 cot 2θ12
ReP32 −4S12 cos 2θ12 sin 2θ23
ImP21 −4Q−

12c23 cot 2θ12
ImP31 4Q−

12s23 cot 2θ12
ImP32 0

Table 6.3: Coefficients of Pfg in the slope of the Majorana phase difference for θ13 = 0. The abbreviations
Sij and Q±

ij depend on the mass eigenvalues and phases only, and enhance the running for a degenerate mass

spectrum since they are of the form fij(mi, mj , ϕ1, ϕ2)/(m
2
j − m2

i ). They are listed in Tab. D.1.

case below the see-saw scales.

6.5 Evolution of the Masses

In the RGEs for the neutrino mass eigenvalues above the see-saw scales, the contributions
proportional to P become important, if the neutrino Yukawa matrix Yν has entries of the
order of one. In this case, the evolution of the masses depends on the mixing angles, even for
small tan β, because the contribution of Y †

ν Yν is not suppressed then. This is in contrast to
the evolution below the see-saw scales which is a simple rescaling in the SM and in the MSSM
for small tan β [74–76]. The Majorana phases still influence the running only indirectly. The
coefficients of Pfg in ṁi are given in Tab. 6.4.
In the case of Yν ∼ Yu, the flavor-diagonal part in the β-function α is positive but small at
the GUT scale, since the different terms cancel approximately. Therefore, the contribution
of P can become dominant. The terms proportional to the diagonal entries in P enhance the
running, while those involving the real parts of the off-diagonal entries can either enhance or
damp it, depending on their signs.
On the other hand, some GUT models suggest Yν ∼ Ye. This will result in small eigenvalues
of Y †

ν Yν , if tan β is small. Therefore, α dominates the running, but the contribution of P is
not negligible for large tan β, as it is the case below the see-saw scales. Since α is negative at
the GUT scale now, the contributions from the diagonal entries in P decrease the RG effects.
The off-diagonal entries again can both increase and decrease them. As the terms in ṁi that
involve the imaginary part of P are proportional to sin θ13, they do not contribute in the
approximation of vanishing θ13.
The same considerations also apply for the mass squared differences. In the case of Yν ∼ Yu,
the diagonal entries of P enhance the running of ∆m2

sol as long as tan θ12 ≥ m1
m2

. The evolution

of ∆m2
atm is usually enhanced by P22 and P33, but damped by P11. (For an inverted hierarchy,

the term proportional to P11 also causes an enhancement.) The effect of the off-diagonal
entries depends on their signs. In the case of Yν ∼ Ye, the situation is just the other way
around, since α is negative. The coefficients of Pfg in the slope of the mass squared differences
are given in Tab. 6.5.
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16π2 ṁ1/m1 16π2 ṁ2/m2 16π2 ṁ3/m3

α 1 1 1
P11 2c212 2s212 0
P22 2s212c

2
23 2c212c

2
23 2s223

P33 2s212s
2
23 2c212s

2
23 2c223

ReP21 −2 sin 2θ12c23 2 sin 2θ12c23 0
ReP31 2 sin 2θ12s23 −2 sin 2θ12s23 0
ReP32 −2 sin 2θ23s

2
12 −2 sin 2θ23c

2
12 2 sin 2θ23

ImP21 0 0 0
ImP31 0 0 0
ImP32 0 0 0

Table 6.4: Coefficients of Pfg in the slope of the mass eigenvalues for θ13 = 0.

8π2 d
dt∆m

2
sol 8π2 d

dt∆m
2
atm

α ∆m2
sol ∆m2

atm

P11 2s212m
2
2 − 2c212m

2
1 −2s212m

2
2

P22 2c223
[
c212m

2
2 − s212m2

1

]
2s223m

2
3 − 2c212c

2
23m

2
2

P33 2s223
[
c212m

2
2 − s212m2

1

]
2c223m

2
3 − 2c212s

2
23m

2
2

ReP21 2 sin 2θ12c23
[
m2

2 +m2
1

]
−2 sin 2θ12c23m

2
2

ReP31 −2 sin 2θ12s23
[
m2

2 +m2
1

]
2 sin 2θ12s23m

2
2

ReP32 −2 sin 2θ23
[
c212m

2
2 − s212m2

1

]
2 sin 2θ23

[
m2

3 + c212m
2
2

]

ImP21 0 0
ImP31 0 0
ImP32 0 0

Table 6.5: Coefficients of Pfg in the slope of the mass squared differences for θ13 = 0.
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Chapter 7

Renormalization of SM extended by
a Triplet Higgs

7.1 Definition of the additional Renormalization Factors

The same definitions are used as in Jörn Kerstens diploma thesis [59], where the renormal-
ization constants for the SM extended by right-handed neutrinos have been calculated. Here,
only the additional renormalization factors and a few others which show up in the calcula-
tion are given. The counterterms of the SM extended by right-handed neutrinos are given in
Sec. 3.6 of Jörn Kerstens diploma thesis [59], as well as the Feynman rules which are given
in the appendix. The Feynman rules for the additional terms in the Lagrangian are given in
App. A.5.

The wave function of ∆ is renormalized in the usual way by

∆B = Z
1
2
∆∆ . (7.1)

The parameters in the Higgs potential have to be renormalized additively

Z∆

(
M2

∆

)
B

=M2
∆ + δM2

∆ (7.2a)

Z2
∆ (Λ1)B =µε (Λ1 + δΛ1) (7.2b)

Z2
∆ (Λ2)B =µε (Λ2 + δΛ2) (7.2c)

Z∆Zφ (Λ4)B =µε (Λ4 + δΛ4) (7.2d)

Z∆Zφ (Λ5)B =µε (Λ5 + δΛ5) (7.2e)
(
Z†

∆

) 1
2 (
ZT

φ

) 1
2 (Λ6)B Z

1
2
φ =µ

ε
2 (Λ6 + δΛ6) (7.2f)

and the Yukawa vertex is renormalized multiplicatively

((
ZT

`L

) 1
2 (Y∆)B Z

1
2
`L
Z

1
2
∆

)

fg

= µ
ε
2 (Y∆ZY∆

)fg (7.2g)

and δZY∆
is defined as δZY∆

= ZY∆
− 1. The used renormalization factors from the renor-
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malization of the SM extended by right-handed neutrinos [59] are given by

φB =Z
1
2
φ φ (7.3a)

(`L)B =Z
1
2
`L
`L (7.3b)

Zφm
2
B =m2 + δm2 (7.3c)

(
Z

1
2
νR (Yν)B Z

1
2
φ Z

1
2
`L

)

fg

=µ
ε
2 (YνZν)fg . (7.3d)

7.2 Counterterm Lagrangian

The insertion of the definitions of the renormalized quantities into the bare Lagrangian yields
the counterterm part of the Lagrangian which is needed to cancel the divergencies. Thus the
counterterm Lagrangian is given by

C∆(kin) =δZ∆ tr (Dµ∆)† (Dµ∆)− δM2
∆ tr∆†∆

[
i tr (Dµ∆)† δZg1g1B

µ∆ + δZg2g2
σi

2

[
W iµ,∆

]
+ h.c.

]
(7.4a)

C∆(int) =− δΛ1

2

(
tr∆†∆

)2
− δΛ2

2

[(
tr∆†∆

)2
− tr

(
∆†∆∆†∆

)]

− δΛ4φ
†φ tr∆†∆− δΛ5φ

†
[
∆†,∆

]
φ

− δΛ6√
2
φT (iσ2)∆†φ (7.4b)

CY∆
=− Y∆√

2
δY∆`L

C (iσ2)∆`L . (7.4c)

In addition, the used part of the remaining counterterm Lagrangian is stated:

Ckin =`gL (iγµDµ) (δZ`L
)gf `

f
L (7.5a)

Cφ =δZφ (Dµφ)† (Dµφ)− δm2φ†φ− 1

4
δZλλ

(
φ†φ

)2

+

[
i

2
(Dµφ)†

(
δZg1g1B

µ + δZg2g2σiW
iµ
)
φ+ h.c.

]
. (7.5b)

Next, the diagrams contributing to the renormalization constants have to be calculated. First
the self-energy diagrams are calculated for the Higgs triplet and the additional contributions
for the Higgs and lepton doublets. Then the vertex corrections are calculated.

7.3 Self Energy Diagrams

7.3.1 Self Energy of Higgs Triplet Σ∆

There are 3 different types of contributions to the self-energy of the Higgs triplet. At first,
there are contributions from the Higgs sector by the Higgs triplet and the doublet. Moreover,
there are contributions from the gauge bosons which the triplet is coupling to, and finally
there is a contribution from the left-handed doublet in the loop.
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Contributions from the Higgs Potential

i
(
Σ∆

∆

)
ab

:=
p−→ p−→

k←− ∆i

∆a ∆b

=
1

2

∑

i

∫
ddk

(2π)d
[−iµε (Λ1 (δbaδii + δiaδbi) + Λ2δbiδia)]

i

k2 −M2
∆ + iε

=
1

2
[4Λ1 + Λ2]µ

ε

∫
ddk

(2π)d

1

k2 −M2
∆ + iε

=
1

2
[4Λ1 + Λ2]

iπ2

(2π)4
A0(M

2
∆) + UV finite

=
i

16π2ε
M2

∆ [4Λ1 + Λ2] δab + UV finite

(7.6)

The integrals in d dimensions showing up here can be solved by expressing them in Passarino-
Veltman functions, whose divergent part is given in App. C.5. Another possibility to solve
these integrals is sketched in Sec. 3.2.4. However, we use the Passarino-Veltman function,
because it is more convenient. The calculation of the other diagrams is similar. Hence, only
the ansatz and the result are given.

i
(
Σφ

∆

)
ab

:=
p−→ p−→

k←− φi

∆a ∆b

=
∑

i

∫
ddk

(2π)d
[−iµε (Λ4δiiδba + Λ5iεbam (σm)ii)]

i

k2 −m2 + iε

=
iΛ4

4π2ε
m2δab + UV finite

(7.7)

i
(
Σ∆φ

∆

)
ab

:= p−→

φj
p+k−−→

k←− φi

p−→
∆a ∆b

=
1

2

∑

i,j

∫
ddk

(2π)d

[
Λ4µ

ε
2 (σ2σb)ij

] i

k2 −m2 + iε

[
−Λ∗

4µ
ε
2 (σaσ2)ji

]

i

(p+ k)2 −m2 + iε

=
i|Λ4|2
8π2ε

δba + UV finite

(7.8)
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Contributions from Gauge Bosons

i
(
ΣB∆

∆

)
ab

:=
p−→

∆i
p+k−−→

p−→

k←− Bµ

∆a ∆b

=
∑

i

∫
ddk

(2π)d

[
−i
√

3

5
g1µ

ε
2 (2pµ + kµ) δai

]

i
−ηµν + (1− ξ1) kµkν

k2

k2 + iε

[
−i
√

3

5
g1µ

ε
2 (2pν + kν) δbi

]
i

(p+ k)2 −M2
∆ + iε

=− 3

5

ig2
1

8π2ε
δab

[
(3− ξ1) p2 + ξ1M

2
∆

]
+ UV finite

(7.9)

There is a graph with the same topology, but the Bµ boson is replaced by a Wµ boson. It
only differs by the coupling constant, gauge fixing parameter and the SU(2)L structure, but
the integral is the same. The SU(2)L structure changes from δaiδbi to iεbjiiεija = 2δba. Thus
the graph for the Wµ boson results in

i
(
ΣW∆

∆

)
ab

= − ig2
2

4π2ε
δba
[
(3− ξ2) p2 + ξ2M

2
∆

]
+ UV finite (7.10)

The diagrams involving the gauge bosons depend on the corresponding gauge parameter ξi.
This gives a good check for the β-function, because the β-function has to be independent of
the gauge fixing parameter. Thus the gauge parameter has to cancel non-trivially. The other
contribution from the gauge bosons is due to the coupling of two gauge bosons to two Higgs
triplets. It is given by

i
(
ΣB,W

∆

)
ab

:=
p−→ p−→

Bµ,W
j
µ

k−→

∆a ∆b = UV finite . (7.11)

This diagram is UV finite, since it is proportional to the one-point Passarino-Veltman function
A0(0) with m2 = 0. More precisely, it is a scale-less integral in d dimensions which has to
vanish by the definition of dimensional regularization [35].

Contributions from Fermions

Finally, the fermion in the loop1 yields

1Note the minus sign from the closed loop of fermions.
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i
(
ΣLL

∆

)
ab

:= p−→ p−→

`gLi

p+k−−→

k←− `fLj

∆a ∆b

=(−1)
1

2

∫
ddk

(2π)d
tr
[
(Y∆)fg µ

ε
2 (σ2σa)ji PL

] i (�p+�k)

(p+ k)2 + iε[
−
(
Y †

∆

)
gf
µ

ε
2 (σbσ2)ij PR

] −i�k
k2 + iε

=− ip2

8π2ε
tr
(
Y †

∆Y∆

)
δba + UV finite .

(7.12)

Wave Function Renormalization of ∆

The wave function renormalization is obtained from the condition, that the propagator is UV
finite to one-loop order, i.e.

UV finite
!
=

∆ ∆
=

∆
+

∆i

+

φi

+
∆

φ
∆

φ

+
∆

∆
∆

Bµ

+
∑

m ∆
∆

∆

Wm
µ

+
∆ ∆

`L

`L

+
∆ ∆

(7.13)

As the result is required to be UV finite, the divergent part of this equation has to satisfy

4Λ1 + Λ2

16π2ε
M2

∆ +
Λ4

4π2ε
m2 +

|Λ6|2
8π2ε

− 3

5

g2
1

8π2ε

[
(3− ξ1) p2 + ξ1M

2
∆

]

− g2
2

4π2ε

[
(3− ξ2) + ξ2M

2
∆

]
− 1

8π2ε
tr
(
Y †

∆Y∆

)
p2 + p2δZ∆ − δM2

∆
!
= 0 . (7.14)

From this equation, the renormalization factor of the wave function is

δZ∆ =
1

16π2ε

[
6

5
(3− ξ1) g2

1 + 4 (3− ξ2) g2
2 + 2 tr

(
Y †

∆Y∆

)]
(7.15)

and the mass counterterm

δM2
∆ =

1

16π2ε

[(
4Λ1 + Λ2 −

6

5
ξ1g

2
1 − 4ξ2g

2
2

)
M2

∆ + Λ4m
2 + 2|Λ6|2

]
(7.16)

can be read off by requiring, that the counterterms are momentum-independent.
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7.3.2 Self Energy of Doublet Higgs Σφ

There are additional contributions to the self-energy of the Higgs doublet from the Higgs
triplet through the vertices proportional to Λ4 and Λ6 in the Higgs potential.

i
(
Σ∆

φ

)
ab

:=
p−→ p−→

∆i
k−→

φa φb

=
∑

i

∫
ddk

(2π)d
[−iµε (Λ4δbaδii + Λ5iεiim (σm)ba)]

i

k2 −M2
∆ + iε

=
3iΛ4

8π2ε
M2

∆δab + UV finite

(7.17)

i
(
Σ∆φ

φ

)
ab

:= p−→

∆j
p+k−−→

p−→

k←− φi

φa φb

=
∑

i,j

∫
ddk

(2π)d

[
Λ6µ

ε
2 (σ2σj)ai

] i

(p+ k)2 −M2
∆ + iε

[
−Λ∗

6µ
ε
2 (σjσ2)ib

]

i

k2 −m2 + iε

=
3i|Λ6|2
8π2ε

δba + UV finite

(7.18)

Calculation of the Wave Function Renormalization

The wave function renormalization is obtained from the condition, that the propagator is UV
finite to one-loop order, i.e.

UV finite
!
=

∆ ∆
=

∆ ∆
+

φ φ

∆

+
φ

∆
φ

φ

+
φ φ

(7.19)

The divergent parts which have already been calculated [59] are summarized as

∆ ∆
= −i

(
p2δZ0

φ − δm2
0

)
(7.20)



7.3 Self Energy Diagrams 59

Thus the new contribution due to the Higgs triplet just add to the other contributions. The
wave function renormalization does not change [59], i.e.

δZφ = − 1

16π2ε

[
2 tr

(
Y †

ν Yν + Y †
e Ye + 3Y †

uYu + 3Y †
d Yd

)
− 3

10
(3− ξ1) g2

1 −
3

2
(3− ξ2) g2

2

]
,

(7.21)
but the mass renormalization receives an additional contribution

δm2 =δm2
0 +

3Λ4

8π2ε
M2

∆ +
3|Λ6|2
8π2ε

=
1

16π2ε

[(
3λ− 3

10
ξ1g

2
1 −

3

2
ξ2g

2
2

)
m2 − 4 tr

(
Y †

νM
2Yν

)
+ 6Λ4M

2
∆ + 6|Λ6|2

]
.

(7.22)

Self Energy of left-handed Lepton Doublet

The Yukawa coupling of the left-handed lepton doublet to the Higgs triplet results in a
contribution to the self-energy of the left-handed doublet yielding an additional term in the
β function of all vertices involving the left-handed doublet in turn.

i
(
Σ∆

`L

)
ab

:= p−→ p−→

k←− `hLi

∆j
p+k−−→

`fLa
`gLb

=

∫
ddk

(2π)d

[
−
(
Y †

∆

)
gh
µ

ε
2 (σjσ2)bi PR

] −i�k
k2 + iε

[
(Y∆)hf µ

ε
2 (σ2σj)ia PL

] i

(p+ k)2 −M2
∆ + iε

=
3i�p

16π2ε

(
Y †

∆Y∆

)
gf
δbaPL + UV finite

(7.23)

Calculation of the Wave Function Renormalization

The condition determining the counterterm is given by

UV finite
!
=

`L `L
=

`L `L
+

`L `L

`L

∆

+
`L `L

(7.24)

The already calculated terms are summarized as

`fLa
`gLb

= i�p
(
δZ0

`L

)
gf

PLδba . (7.25)
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Hence, the wave function renormalization for the lepton doublet receives an additional con-
tribution from a Higgs triplet in the loop.

δZ`L
=δZ0

`L
+

3

16π2ε
Y †

∆Y∆

=− 1

16π2ε

[
Y †

ν Yν + Y †
e Ye +

3

10
ξ1g

2
1 +

3

2
ξ2g

2
2 − 3Y †

∆Y∆

] (7.26)

7.4 Vertex Corrections

7.4.1 Vertex Corrections to `L∆`L

There are only contributions from gauge bosons to the counterterm of Y∆, because all other
possible diagrams are UV finite by power counting.

iµ
ε
2

(
Γ

B(1)
`L∆`L

)fg

ba
:=

p

q

`eLj(p+ k)

`hLi(q − k)

Bµ(k)
p+ q

`fLb

`gLa

∆c

=
∑

h,e,i,j

∫
ddk

(2π)d

[
i

2
µ

ε
2

√
3

5
g1δef δbjγνPL

]
i
−ηµν + (1− ξ1) kµkν

k2

k2 + iε
[
− i

2
µ

ε
2

√
3

5
g1δghδiaγµPR

]
−i (�q −�k)

(q − k)2 + iε

[
(Y∆)hl µ

ε
2 (σ2σc)ij PL

] i (�p+�k)

(p+ k)2 + iε

=− 3

5

g2
1

32π2ε
(Y∆)gf µ

ε
2 (σ2σc)ab (3 + ξ1) PL + UV finite

(7.27)

The graph with Bµ replaced by Wµ can be obtained by replacing ξ1 with ξ2 and 3
5g

2
1 (σ2σc)ab

by g2
2

∑
m

(
σT

mσ2σcσm

)
ab

. Using Eq. (C.28c), the SU(2)L-structure can be simplified and the
contribution of the graph with Wµ is given by

iµ
ε
2

(
Γ

W (1)
`L∆`L

)fg

ba
= − g2

2

32π2ε
(Y∆)gf µ

ε
2 (σ2σc)ab (3 + ξ2) PL + UV finite . (7.28)

There is another graph with one end of the gauge boson line attached to the Higgs triplet,
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namely

iµ
ε
2

(
Γ

B(2)
`L∆`L

)fg

ba
:=

p

q

∆d(p+ q − k)
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∆c
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ddk

(2π)d

[
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2
µ
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√
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]
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[
(Y∆)hf µ
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2 (σ2σd)ib PL

] i
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√
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=
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ε
2 (σ2σc)ba ξ1 + UV finite .

(7.29)

The graph with Bµ replaced by Wµ can be obtained by replacing ξ1 with ξ2 and 3
5g

2
1 (σ2σc)ab

by −ig2
2

∑
m

(
σT

mσ2σd

)
ab
εdmc. Using Eq. (C.28c), the SU(2)L-structure can be simplified and

the contribution of the graph with Wµ is given by

i
(
Γ

W (2)
`L∆`L

)fg

ba
=

g2
2

8π2ε
(Y∆)gf µ

ε
2 (σ2σc)ba ξ2 + UV finite (7.30)

The same results apply for Bµ or Wµ, respectively, attached to the other fermion. The last
diagram

iµ
ε
2

(
ΓP

`L∆`L

)fg

ba
:=

νR

φ

φ

`fLb

`gLa

∆c (7.31)

is UV finite by power counting, because the vertex φ∆φ has mass dimension 1. Hence, there
is no contribution from the other Yukawa vertices and the counterterm is flavor-diagonal.



62 CHAPTER 7. Renormalization of SM extended by a Triplet Higgs

Vertex Counterterm

Finally, the counterterm for the `L∆`L coupling is determined by

UV finite
!
=

`fL

`gL

∆
=

`L

`L

∆
+

`L

`L ∆

`L

Bµ
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∆
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∆
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∆
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∆
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∆
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`L ∆
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∆
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∆

(7.32)

which leads to the counterterm of the vertex

δZY∆
=

1

32π2ε

[
9

5
(1− ξ1) g2

1 + (3− 7ξ2) g
2
2

]
. (7.33)

7.4.2 Vertex Corrections to νR`Lφ

The only graph which might contribute to the vertex correction of νR`Lφ

iµ
ε
2 (ΓνR`Lφ)fg

ba := `L

φ

∆

`fLb

νg
R

φa (7.34)

is convergent by power counting, since D = 4−
(
2 · 3

2 + 1
)
−1 ·1 = −1. Thus the counterterm

for the neutrino Yukawa coupling does not receive an additional contribution.

7.4.3 Vertex Corrections to φ∆φ

There are 3 different types of graphs: vertex corrections from gauge bosons, the Higgs poten-
tial and fermion loops.
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Contributions from Gauge Bosons
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ε
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(7.35)

The graph with Bµ exchanged by Wµ can be obtained by replacing
√

3
5g1 by g2 and ξ1 by ξ2

because of Eq. (C.28c). Thus the diagram with Wµ is given by
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(7.37)

The graph with Bµ exchanged by Wµ can be obtained by replacing 3
5g

2
1 by 2g2

2 and ξ1 by ξ2
because of Eq. (C.28d). Hence the contribution of Wµ yields

iµ
ε
2

(
Γ

W (2)
φ∆φ

)c

ba
=
g2
2Λ6

8π2ε
ξ2µ

ε
2 (σ2σc)ba + UV finite . (7.38)

The graph with the boson connected to the other Higgs doublet line yields the same result.
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Contributions from the Higgs Potential

Moreover, there is one contribution from the quartic Higgs doublet coupling.
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(7.39)

Furthermore, there is a contribution from the coupling of two Higgs doublets to two Higgs
triplets.
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(7.40)

The Higgs triplet attached to the other vertex yields the same result. Thus twice the contri-
bution has to be added to the counterterm. Finally, there is the contribution from a loop of
fermions.
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Contributions from Fermions
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Vertex Counterterm

The counterterm for the φ∆φ coupling is determined by
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(7.42)

Therefore, the counterterm of the vertex is given by

δΛ6 = − 1

32π2ε

[
8 tr

(
Y †

∆Y
T
ν MYν

)
+

(
9

5
g2
1ξ1 + 7g2

2ξ2 − 2λ+ 8Λ4 − 16Λ5

)
Λ6

]
. (7.43)

7.4.4 More Loop Corrections to the Higgs Potential

The remaining counterterms for the parameters in the Higgs potential can be calculated in
the same way. Here, the results are summarized and the relevant topologies are given in
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Fig. 7.1.
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(7.44d)

Furthermore, there is an additional contribution to the renormalization of the quartic coupling
of the Higgs doublet.

δλ = δλ0 +
3Λ2

4 + 2Λ2
5

8π2ε
, (7.45)

where λ0 describes the contributions from other particles.

7.5 Calculation of the β-Functions

The counterterms of the vertices and the renormalization factors of the wave functions of
the particles which are connected to the vertex, determine the β-function of the parameter
describing the vertex. Here, the β-functions for the relevant parameters of the Higgs triplet
contribution to the neutrino mass matrix (Y∆, Λ6 and M2

∆) are calculated and the β-functions
for the remaining parameters are stated. At first the relevant counterterms are summarized.
The relevant wave function renormalizations are

δZ∆ =
1

16π2ε

[
6

5
(3− ξ1) g2

1 + 4 (3− ξ2) g2
2 + 2 tr

(
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∆Y∆
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δZφ =− 1
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[
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(7.21)

δZ`L
=− 1

16π2ε

[
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ν Yν + Y †
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2
1 +
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2
ξ2g

2
2 − 3Y †

∆Y∆

]
(7.26)
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Figure 7.1: Different topologies of the vertices with 4 external lines in the Higgs sector
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and the counterterms for the vertices are given by

δZY∆
=

1

32π2ε

[
9

5
(1− ξ1) g2

1 + (3− 7ξ2) g
2
2

]
(7.33)

δΛ6 =− 1

32π2ε

[
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(
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∆Y
T
ν MYν

)
+

(
9

5
g2
1ξ1 + 7g2

2ξ2 − 2λ+ 8Λ4 − 16Λ5

)
Λ6

]
(7.43)

δM2
∆ =

1

16π2ε

[(
4Λ1 + Λ2 −

6

5
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2
1 − 4ξ2g

2
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)
M2
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2 + 2|Λ6|2

]
. (7.16)

Note, that GUT charge normalization is used for the U(1)Y hypercharge. Thus the hyper-

charge qSM
Y in the SM is related to the hypercharge in GUT normalization by qGUT

Y =
√

3
5q

SM
Y

and the gauge coupling satisfies
(
gSM
1

)2
= 3

5

(
gGUT
1

)2
.

7.5.1 β-Function of Y∆

The renormalized Yukawa matrix Y∆ is related to the bare one by

(Y∆)B =

(
Z

− 1
2

`L

)T

Y∆µ
ε
2ZY∆

Z
− 1

2
`L
Z

− 1
2

∆ . (7.46)

From this equation, the relevant parameters are determined which are defined in Eq. (B.1).

Zφ1 = ZT
`L
, Zφ2 = Z`L

, Zφ3 = Z∆,

Q = Y∆, n1 = n2 = n3 = −1

2
, DQ =

1

2

(7.47)

Since Y∆ is renormalized multiplicatively, Eq. (B.4) can be used to calculate the β-function
of Y∆. The other parameters VA which show up in Eq. (B.4) are the gauge couplings g1 and
g2, the Yukawa couplings Ye and Yν , their complex conjugates or equivalently their hermitian
conjugates and the gauge fixing parameters ξ1 and ξ2. However, the gauge fixing parameters
do not have to be included in the set of the VA’s, because the gauge fixing parameters remain
dimensionless in d dimensions, i.e. Dξi

= 0. The dimensions of the other parameters change.
Thus they are multiplied by the renormalization scale to some power. In particular, the
relevant parameters obey DYe = DYν = Dg1 = Dg2 = 1

2 . Inserting all definitions in Eq. (B.4)
yields the β-function for Y∆

32π2βY∆
=
[
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ν Yν + Y †
e Ye − 3Y †

∆Y∆

]T
Y∆ + Y∆

[
Y †
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∆Y∆

]

+

[
−9

5
g2
1 − 9g2

2 − 2 tr
(
Y †

∆Y∆

)]
Y∆ . (7.48)

Although the counterterm for the Yukawa vertex is flavor-diagonal, the β-function is not
flavor-diagonal, because of the contributions from the wave function renormalization of the
left-handed lepton doublet. The other contribution to the neutrino mass matrix is from the
φ∆φ interaction in the Higgs potential and M 2

∆.
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7.5.2 β-Functions of Λ6 and the Anomalous Dimension of M∆

The vertex φ∆φ can not be renormalized multiplicatively, because there is a contribution
from a fermion loop which is not proportional to Λ6. Hence, the formula Eq. (B.2) for the
β-function of an additively renormalized quantity has to be used, but the procedure is the
same. At first, the parameters are determined from the relation of the bare coupling to the
renormalized one:

(Λ6)B =

(
Z

− 1
2

φ

)T

Z
− 1

2
∆ µε (Λ6 + δΛ6)Z

− 1
2

φ . (7.49)

Thus it can be read off, that

Zφ1 = ZT
φ , Zφ2 = Z∆, Zφ3 = Zφ,

Q = Λ6, n1 = n2 = n3 = −1

2
, DQ = 1

(7.50)

and the set of the other parameters is given by g1, g2, ξ1, ξ2, Yν , Ye, Yu, Yd, Y∆ and their
hermitian conjugates. The same considerations apply for the dimension of the parameters.
Thus the Yukawa and the gauge couplings obey DYj

= Dgi
= 1

2 . Using Eq. (B.2), the
β-function is determined to be

32π2βΛ6 =
[
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(
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T
ν MYν

)
. (7.51)

Note, that Λ6 receives contributions from the right-handed neutrinos. Thus it is natural to
assume, that Λ6 is of the order of the masses of the right-handed neutrinos. The anomalous
dimension of M 2

∆ can be calculated similarly. In Sec. 3.5.2, the anomalous dimension is
expressed in terms of µ d

dµM
2
∆ which can be calculated in the same way as for Λ6. The only

difference for M 2
∆ is, that M 2

∆ does not change its mass dimension during the continuation
to d dimensions. Hence, DM2

∆
vanishes and some terms drop out in Eq.(B.2). The derivative

with respect to µ is given by
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Therefore, the anomalous dimension of M∆ results in
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(7.53)
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7.5.3 β-Functions of the other Parameters in the Higgs Potential

The β functions of the other parameters in the Higgs potential can be calculated in the same
way. Therefore the calculations are not shown, but only the results are stated.
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(
Y †

e Ye + Y †
ν Yν + 3Y †

uYu + 3Y †
d Yd − Y †

∆Y∆

) ]
Λ4 + 8Λ2

5 − 8 tr
(
Y †

∆Y∆Y
†
ν Yν

)

(7.54c)

32π2βΛ5 =− 9g2
1 − 33g2

2 −
36

5
g2
1g

2
2 + 2

[
2Λ1 − 2Λ2 + λ+ 4Λ4 − 3Λ5

+ 4 tr
(
Y †

e Ye + Y †
ν Yν + 3Y †

uYu + 3Y †
d Yd − Y †

∆Y∆

) ]
Λ5 + 8 tr

(
Y †

∆Y∆Y
†
ν Yν

)

(7.54d)

7.5.4 Corrections to other β-Functions

Moreover, other β-functions receive additional contributions from the Higgs triplet. The
anomalous dimension of the Higgs doublet mass [59] gets an additional contribution from the
Higgs triplet and therefore it is given by

16π2γm =
9

20
g2
1 +

9

4
g2
2 −

3

2
λ− tr

(
Y †

e Ye + Y †
ν Yν + 3Y †

uYu + 3Y †
d Yd

)

+
2

m2
tr
(
Y †

νM
2Yν

)
− 3Λ4

M2
∆

m2
− 3
|Λ6|2
m2

. (7.55)

Furthermore the quartic Higgs doublet coupling in the SM [59–61] receives an additional
contribution resulting in

16π2βλ = 6λ2 − 3λ

(
3g2

2 +
3

5
g2
1

)
+ 3g4

2 +
3

2

(
3

5
g2
1 + g2

2

)2

+ 4λ tr
(
Y †

e Ye + Y †
ν Yν + 3Y †

d Yd + 3Y †
uYu

)

− 8 tr
(
Y †

e YeY
†
e Ye + Y †

ν YνY
†
ν Yν + 3Y †

uYuY
†
uYu + 3Y †

d YdY
†
d Yd

)
+ 6Λ2

4 + 4Λ2
5 (7.56)

As the wave function renormalization constant for the left-handed lepton doublets has an
additional term, all vertices receive an additional contribution per left-handed lepton attached
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to the vertex which is given by

− 1

16π2

3

2
Y †

∆Y∆ (7.57)

multiplied by the matrix characterizing the vertex from the left or from the right, respectively.
In particular, the β-functions for the lepton Yukawa couplings [59–61] change to

16π2βYν =Yν

[
3

2
Y †

ν Yν −
3

2
Y †

e Ye −
3

2
Y †

∆Y∆

]

+ Yν

[
tr
(
Y †

ν Yν + Y †
e Ye + 3Y †

uYu + 3Y †
d Yd

)
− 9

20
g2
1 −

9

4
g2
2

]
(7.58a)

16π2βYe =Ye

[
3

2
Y †

ν Yν −
3

2
Y †

e Ye −
3

2
Y †

∆Y∆

]

+ Ye

[
tr
(
Y †

ν Yν + Y †
e Ye + 3Y †

uYu + 3Y †
d Yd

)
− 9

4
g2
1 −

9

4
g2
2

]
(7.58b)

and the β-function of the effective neutrino mass operator κ function changes to

16π2βκ =

[
1

2
Y †

ν Yν −
3

2
Y †

e Ye −
3

2
Y †

∆Y∆

]T

κ+ κ

[
1

2
Y †

ν Yν −
3

2
Y †

e Ye −
3

2
Y †

∆Y∆

]

+
[
2 tr

(
Y †

ν Yν + Y †
e Ye + 3Y †

uYu + 3Y †
d Yd

)
− 3g2

2 + λ
]
κ . (7.58c)

7.5.5 β-Function of the Neutrino Mass Matrix

The neutrino mass matrix will be given by the type-II see-saw formula above the thresholds

mν = −v
2

2

(
Y T

ν M
−1Yν −

Y∆Λ6

M2
∆

)
, (7.59)

if there are no other contributions to the dimension 5 operator, like from a coupling to
gravity [26]. Thus the β-function of the neutrino mass is given by the sum of the β-function
for the contribution from the right-handed neutrinos and the contribution from the Higgs
triplet.

Contribution from the right-handed Neutrinos

The renormalization group equation for the contribution of the right-handed neutrinos has
an additional term which is proportional to Y †

∆Y∆. Hence, there is an additional contribution
to the matrix P in comparison to the type-I see-saw case which changes the evolution of the
mixing parameters. In case of large quasi-degenerate eigenvalues of Y∆ to explain a quasi-
degenerate spectrum for the neutrino masses (See Sec. 4.4.3) the contribution from the triplet
can be approximated like the degenerate case in the type-I see-saw scenario. This results in
the following formula for P

P = Cey
2
τ

[
diag (0, 0, 1) + diag

(
y2

e

y2
τ

,
y2

µ

y2
τ

, 0

)]

+ Cνy
2
3

[(
ULi3UL

∗
j3

)
i,j=1,2,3

+ UL diag

(
y2
1

y2
3

,
y2
2

y2
3

, 0

)
U †

L

]

+ C∆z
2
3

[
� + U∆

L diag

(
z2
1 − z2

3

z2
3

,
z2
2 − z2

3

z2
3

, 0

)
U∆

L
†
]
, (7.60)
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where C∆ (C∆ = −3
2 in the SM) is the coefficient in front of Y †

∆Y∆. Thus, the triplet mainly
contributes to the running of the masses, but there are only small corrections to the evolution
of the mixing parameters.

Contribution from the Higgs Triplet

The evolution of κ∆ = −2Y∆Λ6

M2
∆

which is proportional to the contribution of the triplet to the

neutrino mass matrix is given by

16π2βκ∆
=
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1

2
Y †
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2
Y †
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2
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∆Y∆
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κ∆ + κ∆

[
1

2
Y †
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2
Y †
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2
Y †

∆Y∆

]

+ κ∆

[
− 3g2

2 + λ− 4Λ1 − Λ2 − 4Λ4 + 8Λ5 − 4
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Y †

∆Y
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ν MYν

)

Λ6
− 4Λ4
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M2
∆

− |Λ6|2
M2

∆

+ tr
(
Y †

e Ye + Y †
ν Yν + 3Y †

uYu + 3Y †
d Yd + 2Y †

∆Y∆

)]
. (7.61)

Hence, the evolution of the contribution from the Higgs triplet is analogous to the evolution
of the contribution from the right-handed neutrinos. However, the coefficients in the matrix
P and α are not the same, as it can be seen in Eq. (7.61). α strongly depends on the
parameters in the Higgs potential. Note, that α depends on the masses of the Higgs doublet
and triplet. As we assume, that the mass of the Higgs triplet is close to the GUT scale,
the other dimensionful parameters, m and Λ6, should be assumed to be of the same order2,
because they receive contributions from the right-handed neutrinos and the Higgs triplet.

Hence, the ratios m2

M2
∆

, |Λ6|2

M2
∆

and
tr

“

Y †
∆Y T

ν MYν

”

Λ6
are of the order of one. The matrix P for

the term from the Higgs triplet is generally larger compared to P in the contribution of
the right-handed neutrino sector. Thus a stronger running for the mixing parameters is
expected from the contribution proportional to the diagonal terms Pii. In the case of quasi-
degenerate neutrinos, the contribution from the Higgs triplet dominates and the other part can
be neglected. Then, the running above the threshold of the Higgs triplet is stronger compared
to the evolution below the threshold where the evolution is described by the effective neutrino
mass operator. If both terms contribute equally, both terms have to be considered and the
sum of the two terms shows a more complicated behavior (See Sec. 5.2.). In this case, it is
difficult to make predictions analytically and the evolution has to be calculated numerically.
Anyway, the evolution of the neutrino masses in type-II see-saw scenarios has to be discussed
further.

2The large mass of the Higgs doublet is called the gauge hierarchy problem which has been stated in Sec. 4.1.
However, the mass of the Higgs doublet should be of the order of the weak scale to explain the masses of the
SM fermions without fine-tuning in the Yukawa couplings.
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Chapter 8

Numerical Code

One part of this diploma thesis was the development of a code to solve the renormalization
group equations for the mass matrices numerically. The approximate analytical formulae and
the numerical code have been checked against each other and they agree very well. The code is
implemented as a Mathematica package in order to provide an interface which is comfortable
to use. It considers the evolution of the right-handed neutrinos and threshold effects of
the right-handed neutrinos can be treated by integrating out the right-handed neutrinos
below its mass threshold. The threshold effects of the MSSM particles are not implemented,
since they are numerically less relevant [84]. Moreover, the code can be easily extended
by other models. For the extraction of the mixing parameters, it relies on the package
MixingParameterTools [72].

The Mathematica package is called Renormalization group Evolution of Angles and Phases
(REAP) [71].

8.1 MixingParameterTools

The package MixingParameterTools consists of a set of functions to extract mixing param-
eters from 3 × 3 matrices on the one hand and to construct orthogonal and unitary 3 × 3
matrices from a set of given mixing parameters in standard parameterization which is given
in App. A.2, on the other hand. In the case of the extraction of mixing parameters, several
special cases have to be considered, because some phases will be undefined, if angles vanish.

8.2 REAP

The package REAP is divided in three parts. The main part is RGESolver which provides
a standard interface between the different models and the user. Thus the user does not
have to know anything about the implementation details of the different models besides the
parameters of the models. The second part are the different models, like RGESM, RGEMSSM,
. . . which contain the model specific parts of the package. So far 3 different models have been
implemented: SM, MSSM and 2HDM. Every model has 3 different versions: without right-
handed neutrinos (*0N), with right-handed Majorana neutrinos (*) and with right-handed
Dirac neutrinos (*Dirac). The extension of the SM by a Higgs triplet will be implemented
soon. The third part is formed by some utility packages (RGEUtilities, RGEParameters,
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RGEInitial, RGEFusaokaYukawa, RGESymbol) which provide several useful functions to the
different models. In principle, a user only needs a limited set of functions of RGESolver.

8.2.1 RGESolver

The package distinguishes between two different kind of functions. On the one hand, there
are functions which directly work with the supplied models. They are named RGE*Model*.
On the other hand, there are functions dealing with the models which are used as an EFT,
i.e. have been added by RGEAddEFT. These functions are named RGE*EFT*.
At the beginning, all models have to be loaded by RGERegisterModel in order to make them
accessible through RGESolver. RGERegisterModel takes as argument different functions to
communicate with the model. After all models have been registered which is done by the pack-
ages, the models are contained in, the user has to specify, how his sequence of EFTs is made
up. Different models can be added as EFT by RGEAddEFT. The cutoff is specified by the option
RGECutoff. Next, the initial values have to be supplied by the function RGESetInitial. Then
the renormalization group equations are solved by executing RGESolve which uses NDSolve

to numerically integrate the differential equations. Finally, the parameters can be obtained
through RGEGetSolution at any scale. In order to illustrate the use of REAP, a small example
is given.

Example

The setup is the MSSM extended by 3 right-handed neutrinos at the GUT scale of 2·1016 GeV
and set the SUSY breaking scale to 1 TeV. The initial values are set to the suggested values
which are specified in the documentation [71].

• At first, we define the model and set the initial values.

RGEAddModel["MSSM"];

RGEAddModel["SM",RGECutoff->1000];

RGESetInitial[2 10^16];

The execution of RGESolve[91.19,2 · 1016] solves the RGE and finds the scales where
the right-handed neutrinos are integrated out.

The algorithm works in the following way:

1. Solve the RGE for the MSSM with 3 right-handed neutrinos between the GUT
scale and the SUSY breaking scale without considering any thresholds.

2. Find the heaviest right-handed neutrino with mass M3 and add a new EFT by
RGEAddEFT["MSSM",RGECutoff->M3, RGEIntegratedOut->1].

3. Calculate initial values for MSSM with 2 right-handed neutrinos by matching κ, Yν ,
M and the other parameters at the scale where the first right-handed neutrino is
integrated out.

4. Solve the RGE for the MSSM with 2 right-handed neutrinos between M3 and the
SUSY breaking scale.

5. Find the second to heaviest right-handed neutrino with mass M2 and add a new
EFT by RGEAddEFT["MSSM", RGECutoff->M2, RGEIntegratedOut->2].
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6. Calculate initial values for MSSM with 1 right-handed neutrino.

7. Solve the RGE for the MSSM with 1 right-handed neutrinos between M2 and the
SUSY breaking scale.

8. Find the lightest right-handed neutrino with mass M1 and add a new EFT by
RGEAddEFT["MSSM0N", RGECutoff->M1].

9. Calculate initial values for MSSM without right-handed neutrinos.

10. Solve the RGE for the MSSM without right-handed neutrinos between M1 and the
SUSY breaking scale.

11. Calculate initial values for the SM

12. Since all right-handed neutrinos have been integrated out already, change SM to
SM0N.

13. Solve the RGE for SM0N between the SUSY breaking scale and the mass of Z 0.

• Using RGEGetSolution[scale,quantity], we can query the value of a parameter
quantity at the energy scale. For example, this returns the mass matrix of the light
neutrinos at 100GeV:

MatrixForm[RGEGetSolution[100,RGEM\[Nu]]]

• To find the leptonic mass parameters, the function MNSParameters[mν,Ye] (which also
needs the Yukawa matrix of the charged leptons) can be used. The results are given in
the order {{θ12, θ13, θ23, δ, δe, δµ, δτ , ϕ1, ϕ2}, {m1,m2,m3}, {ye, yµ, yτ}}.

MNSParameters[RGEGetSolution[100,RGEM\[Nu]],RGEGetSolution[100,RGEYe]]

• Finally, the running of the mixing angles can be plotted:

Needs["Graphics‘Graphics‘"]

mNu[x_]:=RGEGetSolution[x,RGEM\[Nu]]

Ye[x_]:=RGEGetSolution[x,RGEYe]

\[Theta]12[x_]:=MNSParameters[mNu[x],Ye[x]][[1,1]]

\[Theta]13[x_]:=MNSParameters[mNu[x],Ye[x]][[1,2]]

\[Theta]23[x_]:=MNSParameters[mNu[x],Ye[x]][[1,3]]

LogLinearPlot[{\[Theta]12[x],\[Theta]13[x],\[Theta]23[x]},

{x,91.19,2*10^16}]

To produce nicer plots, the notebook RGEPlots.nb which is included in the package,
can be used. One example of a plot is shown in Fig. 8.1. The grayish regions correspond
to the different EFTs. At each border between the regions, one right-handed neutrino
is integrated out. The kink in the curve for the solar angle θ12 is due to the transition
from the MSSM to the SM, because the evolution of θ12 is enhanced by tan2 β in the
MSSM.
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Figure 8.1: Example of a plot of the leptonic mixing angles

8.2.2 Implementation of RGESearchTransitions

The algorithm to find the scale where a right-handed neutrino is integrated out is a fixed-
point iteration. It will be guaranteed to converge by the Banach fixed-point theorem, if
the Lipschitz constant of the function x→ Max(Eigenvalues(Mass(x))) is smaller than 1 for
the relevant interval between the starting point and the fixed-point. Equivalently, the first
derivative of the natural logarithm of this function has to be smaller than 1 in this interval.
In order to decide, whether the fixed-point iteration converges, the RGE for the right-handed
neutrino masses have to be observed. The running is small, as it can be seen in Sec. 5.5 which
yields that it will be smaller than one, if the condition

∑
j | (Yν)ij |2 < 8π2

Cr
is satisfied. Hence,

the algorithm is convergent, since the Yukawa couplings are of the order of one.

8.2.3 Initial Values and Output Functions

The initial values are set via the function RGESetInitial. At first, this function determines
the name of the model which is valid at this scale. Then it calls a function of the model
which generates the initial values from the options which are passed to RGESetInitial. If
an option is not set, the function will use default values which are provided by each model.
All models have default values at the GUT scale and some have default values at the mass of
the Z0 boson.
The function RGEGetSolution is the standard interface to return the parameters of a given
model. It hides the EFTs which are valid in the different energy ranges, by determining
first the name of the valid model and then calling the function which has to be provided by
the model, e.g. although all right-handed neutrinos are integrated out, RGESM0N provides a
function to determine the right-handed neutrino mass matrix and the user does not have to
care about the different ranges of validity of the EFTs.
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Chapter 9

Summary & Conclusions

In this thesis, the dependence of the low-energy leptonic mixing parameters on the renormal-
ization scale µ in see-saw models has been investigated.

In the type-I see-saw scenario, the RGEs of the mixing parameters have been discussed. The
equations show that, above and between the see-saw scales, the running differs from the
evolution in the effective theory, because P is in general non-diagonal and therefore there are
more contributions to the running. These additional contributions can suppress the RG effect
by cancellations or enhance the effect. In addition, it is possible that the evolution above the
see-saw scales is canceled by the RG change in the effective theory. Although the general
form of the expressions is the same, namely

µ
dθij

dµ
, µ

dδ

dµ
, µ

dϕi

dµ
∝
∑

k

fk(masses, δ, ϕ1, ϕ2)

m2
j −m2

i

×F (ij)
k (Yukawa couplings, θ12, θ13, θ23) , (6.5)

above the see-saw scales, some of the statements which are valid in the effective theory do
not hold above the lightest right-handed neutrino. Firstly, the mixing parameters can be
generated radiatively and zero mixing is not a fixed point any longer. In addition, the solar
angle θ12 can evolve towards smaller values for θ13 = 0 when running down and the dependence
on tanβ in the MSSM is not as strong as below the see-saw scales, because the relation between
the neutrino Yukawa couplings and the masses is almost independent of tan β. However, the
size of the RG effect is still governed by the mass squared difference in the denominator.
Hence, the strongest running effects are in the case of a quasi-degenerate spectrum, too.
In addition, the evolution is particularly important between the thresholds. Although the
thresholds are close to each other compared to the large mass of the right-handed neutrinos,
there are large RG effects which can be of the same order as the total effect in the effective
theory. The two different contributions to the neutrino mass matrix from the effective neutrino
mass operator and the see-saw mechanism are generally governed by a different dependence
on the renormalization scale µ which leads to a particularly strong evolution of the angles
and phases. Furthermore, the stability of the quark-lepton complementarity (QLC) relation
against radiative corrections has been discussed. The strong dependence on the neutrino
mass hierarchy, tan β, the strength of the Yukawa couplings and the Majorana CP phase
difference has been pointed out and illustrated in plots showing the region in parameter space
compatible with QLC.

Moreover, it has been shown, that right-handed neutrinos will have an invertedly hierarchical
spectrum, if they are degenerate at some high-energy scale and the neutrino Yukawa matrix
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obeys a normal hierarchy. This is due to the proportionality of the RG effect of the right-
handed neutrinos to the square of the corresponding Yukawa coupling. The generated splitting
might be used in leptogenesis to enhance the lepton asymmetry resonantly. As the resonance
condition is strongly dependent on the mass splitting, the RG evolution of the masses has to
be taken into account in resonant leptogenesis.
Furthermore, the renormalization group equation of the type-II see-saw contribution in the
SM has been calculated, as well as the RGEs of the parameters in the Higgs potential. These
can be used to estimate the RG effects in type-II see-saw models. Besides the additional
contribution to the neutrino mass, also the RGEs of the type-I contribution receive an ad-
ditional term enhancing the RG effect. As the RGE of the type-II contribution differs from
the RGE of the type-I contribution, the situation is the same as between the see-saw scales.
Due to the interplay of both contributions, large RG effects of the mixing angles and phases
can be expected. However, in the case of a quasi-degenerate spectrum, the neutrino mass is
dominantly given by the triplet contribution and the part from the right-handed neutrinos
can be neglected. Hence, the evolution of the neutrino mass matrix is approximately de-
scribed by the β-function of the triplet contribution above the threshold of the triplet. Below
the threshold, it is described by the evolution of the effective neutrino mass operator κ. As
the RG evolution of the mixing angles is generally large in the MSSM, performing the same
calculation in the MSSM would be interesting to estimate the RG effects in supersymmetric
type-II see-saw models.
Finally, a code was developed to calculate the evolution of the mixing parameters numerically.
The numerically calculated evolution of the mixing parameters has been compared to the
approximate analytical formulae and the slopes of the mixing parameters agree well. As the
RG effects are especially important in the case of quasi-degenerate neutrinos and the RGEs in
the complete type-II scenario are difficult to solve analytically, the numerical code REAP will
prove to be useful in the analysis of type-II see-saw models. In general, as soon as there are
several contributions to the neutrino mass matrix of the same order it is difficult to solve the
RGEs analytically and a numerical calculation is necessary. Furthermore, REAP can serve as a
practical tool for model builders to check the consistency of their predictions at an high-energy
scale with the experimental data in the low-energy regime.
Concluding, the renormalization group evolution is important in the lepton sector, because
the mass squared differences are small and the angles are large in contrast to the quark sector.
In the field of the renormalization group evolution in the lepton sector, it will be interesting
to derive the RGEs for the type-II see-saw case in the MSSM to estimate the RG effects, but
the application of the RG effects to specific models will be even more rewarding, in particular,
to models which predict quasi-degenerate neutrinos. REAP can be used in this case to obtain
the low-energy observables from high-energy predictions in order to compare them with the
experiment.
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Appendix A

Models

In this section, the SM model and two extensions are briefly reviewed and the Feynman
rules for the extension of the SM by a Higgs triplet are presented. The main purpose is the
definition of the Lagrangian and the terminology.

A.1 Standard Model (SM)

The SM gauge group is G321 = SU(3)C×SU(2)L×U(1)Y and the fermionic particle content is
given by all combinations of the fundamental representations of the gauge groups, except for
the total singlet corresponding to a right-handed neutrino. The particle content is given in
Tab. A.1. There are 3 different flavors — families — of each particle. The gauge interactions
are mediated by 12 gauge bosons, 8 gauge bosons of strong interactions and 4 gauge bosons
of electroweak interactions. As the gauge group which is measured in the low-energy regime
is not G321 but SU(3)C × U(1)em, the gauge symmetry has to be broken. In the SM, this
is done via the Higgs mechanism which is sketched in Sec. 2.1.3. Therefore, there is also a
scalar SU(2)L-doublet. The Lagrangian is defined as

L = Lfermion + LYukawa + Lgauge + Lgf + Lghost + LHiggs , (A.1)

where the terms are given by

Lfermion =QL��DQL + uR��DuR + dR��DdR

+ `L��D`L + eR��DeR (A.2a)

LYukawa =− (Yd)ij dR
i
Qj

Lφ− (Yu)ij uR
iQj

Lφ
C

− (Ye)ij eR
i`jLφ+ h.c. (A.2b)

LHiggs =DµφD
µφ− V (φ†φ) (A.2c)

Lgauge =− 1

4
BµνB

µν − 1

2
trWµνW

µν − 1

2
trGµνG

µν (A.2d)

Lgauge fixing =− 1

2ξ1
(∂µB

µ)2 −
∑

i

1

2ξ2
(∂µW

µ
i )

2 −
∑

i

1

2ξ3
(∂µG

µ
i )

2
(A.2e)

Lghost =
(
∂µc

i
2

)† (
δij∂µ + g2ε

ijkW kµ
)
cj2 +

(
∂µc

A
3

)† (
δAB∂µ + g3f

ABCWCµ
)
cB3 ,
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SU(3)C SU(2)L qSM
Y qGUT

Y

quarks

QL 3 2 1
6

√
1
60

uR 3 1 2
3

√
4
15

dR 3 1 −1
3 −

√
1
15

leptons

LL 1 2 −1
2 −

√
3
20

eR 1 1 −1 −
√

3
5

νR 1 1 0 0

Higgs

Higgs h 1 2 1
2

√
3
20

gauge bosons

gluon g 8 1 0 0

W boson W 1 3 0 0

B 1 1 0 0

Table A.1: Particle content of the SM extended by right-handed neutrinos. The electric charge is related to
the SU(2)L × U(1)Y quantum numbers by Q = T3 + XSY .

(A.2f)

where εijk and fABC are the structure constants of SU(2)L and SU(3)C , respectively. The
Higgs potential is defined as

V (φ†φ) =
λ

2

(
φ†φ− v2

2

)
(A.3)

and the covariant derivative is given by

Dµ = ∂µ + i

√
3

5
g1Y Bµ + ig2Wµ + ig3Gµ , (A.4)

where Wµ = σm

2 W
m
µ , Bµ are the gauge fields of electroweak interactions (SU(2)L × U(1)Y )

and Gµ = λm

2 G
m
µ

1 is the gauge field of strong interactions (SU(3)C). We use the GUT charge
normalization throughout this thesis which is related to the charge normalization in the SM
by

qGUT
Y =

√
3

5
qSM
Y . (A.5)

1The matrices λm are the Gell–Mann matrices.
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Therefore the coupling constant satisfies

(
gSM
1

)2
=

3

5

(
gGUT
1

)2
. (A.6)

The covariant derivative depends on the representation of the particle, e.g. for leptons, there
is no SU(3)C -term. The field strengths are given by

Bµν =∂µBν − ∂νBµ (A.7a)

W i
µν =∂µW

i
ν − ∂νW

i
µ + ig2ε

ijkW j
µW

k
ν (A.7b)

GA
µν =∂µG

A
ν − ∂νG

A
µ + ig3f

ABCGB
µG

C
ν . (A.7c)

The terms containing the Hodge dual field G̃µν = 1
2εµνκλG

κλ strength,

Ldual = −1

2
tr W̃µνW

µν − 1

2
tr G̃µνG

µν (A.8)

are omitted, since they have not been measured yet. The problem of the smallness of these
terms is called the strong CP problem [85].
Besides the gauge couplings and the Higgs self-coupling, the parameters of the SM are the
masses and the mixing angles and phases in the quark and lepton sector. The mixing matrix
in the quark sector is called Cabbibo-Kobayashi-Maskawa (CKM) matrix and is described by
3 angles and 1 CP phase. In the lepton sector, there is no mixing matrix,as long as neutrinos
are massless. However, if the neutrinos are massive and Majorana particles, the mixing matrix
will be described by 3 angles and 3 phases. In the next section we give our parameterization
of the MNS matrix.

A.2 Standard Parameterization

A unitary matrix can be described by 3 angles and 6 phases. Thus it can be written in the
following way:

U = diag(eiδe , eiδµ , eiδτ ) · V (θ12, θ13, θ23) · diag(e−iϕ1/2, e−iϕ2/2, 1) (A.9)

V is a special unitary matrix and is parameterized in standard parameterization like the CKM
matrix in the quark sector with 3 angles (θ12, θ13, θ23) and 1 CP phase (δ).

V (θ12, θ13, θ23) =




c12c13 s12c13 s13 e
−iδ

−c23s12 − s23s13c12 eiδ c23c12 − s23s13s12 eiδ s23c13
s23s12 − c23s13c12 eiδ −s23c12 − c23s13s12 eiδ c23c13


 (A.10)

where sij and cij are defined assij = sin θij and cij = cos θij , respectively. In addition there are
phase matrices multiplied from both sides. The matrix on the left-hand side is characterized
by the unphysical phases δe, δµ and δτ which can be rotated away by a change of the phases
in the charged left-handed leptons in the extended (MS)SM.

|`L〉 → diag(e−iδe , e−iδµ , e−iδτ ) |`L〉 (A.11)

The matrix on the right-hand side is described by the Majorana phases ϕ1 and ϕ2. These
can not be rotated away by a redefinition of fields, because the effective neutrino mass term
is a Majorana mass term which is diagonalized by an unitary transformation and not by a
biunitary transformation like the Yukawa matrix of the charged leptons.
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A.3
�

2-symmetric Two Higgs Doublet Model

The two Higgs doublet model (2HDM) contains a second Higgs particle in addition to the
SM particles. In the

�
2-symmetric 2HDM all particles obey a

�
2 symmetry. Depending

on the representation 1 or 1′ of the particle, one of the 2 Higgs doublets couples to the
particle. Concretely, the first Higgs is in the 1 representation and the second Higgs in the
1′ representation. Particles which are in the 1 representation, obtain their mass by the first
Higgs and particles which are in the 1′ representation, receive their mass from the second
Higgs.

1× 1 =1 (A.12a)

1× 1′ =1′ (A.12b)

1′ × 1′ =1 (A.12c)

There are 4 different types of
�

2-symmetric two Higgs doublet models which are shown in
Tab. A.2 without right-handed neutrinos and 8 with right-handed neutrinos.

particle (i) (ii) (iii) (iv)

u 1 1′ 1 1′

d 1 1 1′ 1′

Table A.2: Different two Higgs doublet models without right-handed neutrinos. The charged leptons are always
in the trivial representation 1

The Higgs potential of the
�

2-symmetric 2HDM depends on 5 parameters (λ1 . . . λ5).

LHiggs = −λ1

4

(
φ†1φ1

)2
− λ2

4

(
φ†2φ2

)2
− λ3

(
φ†1φ1

)(
φ†2φ2

)

− λ4

(
φ†1φ2

)(
φ†2φ1

)
−
[
λ5

4

(
φ†1φ2

)2
+ h.c.

]
(A.13)

Without an imposed
�

2-symmetry, there are more terms in the Higgs potential allowed, like
φ†1φ1φ

†
1φ2,. . . . The main problem will be flavor changing neutral currents (FCNC), if there

is no
�

2-symmetry or another symmetry ensuring that there are not two mass terms for one
particle. As two mass terms for a fermion usually are not diagonal at the same time, but only
the sum is diagonal in the mass basis, there are off-diagonal elements in the mass matrices
inducing FCNC which already are strongly constrained by experimental upper bounds.

A.4 Minimal Supersymmetric Standard Model

The minimal supersymmetric standard model (MSSM) [86] extends the SM by another space-
time symmetry. This new symmetry is called supersymmetry and transforms bosons into
fermions and vice versa. All space-time symmetries form a super Lie algebra, i.e. a

�
2-graded

Lie algebra. There is not any other extension of the Poincaré symmetry which is based on a
Lie algebra and is compatible with the SM, as it is stated by the Coleman-Mandula theorem.
In addition to the particles of the SM, the MSSM contains a superpartner of every particle
and an additional Higgs particle to give mass to all chiral fermions, because the superpotential
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is required to be analytic and therefore the charge conjugate of a Higgs doublet is forbidden.
Moreover, the particles are arranged in supermultiplets which are the irreps of the super
Lie algebra. Hence, the superpartner has the same quantum numbers as the corresponding
particle. The interactions are described by the superpotential which is formed by products
of supermultiplets. One of the main achievements of supersymmetry is the solution of the
gauge hierarchy problem in the SM (See Sec. 4.1, since the contributions of the fermion in
the multiplet exactly cancels the contributions of the scalars in the loop.

A.5 Feynman Rules for the new Vertices involving the Higgs

Triplet

Feynman rules for theories, in which the fermion number is violated, have to be treated
carefully to get the correct relative sign for the interfering vertices. This is the case in theories
involving Majorana fermions, like the right-handed neutrinos. Therefore, the Feynman rules
are derived according to the prescription given by Denner [87], who has replaced the fermion
number flow by the fermion flow to accommodate for the correct sign between interfering
Feynman diagrams. This fermion flow is of no importance for the additional Higgs triplet,
since the Yukawa matrix Y∆ of the `L`L∆ vertex is symmetric. Hence, the diagram of the
reversed fermion flow gives the same result. However, the fermion flow is important for the
other diagrams which are given in App. A.1 of Jörn Kerstens diploma thesis [59].

Propagator

∆a ∆b

: iS∆(p) =
i

p2 −M2
∆ + iε

δba (A.14)

Higgs - Higgs Interactions

∆a ∆c

∆b ∆d

: −iµε (Λ1 (δbaδdc + δdaδbc) + Λ2δbdδca) (A.15a)

∆a φc

∆b φd

: −iµε (Λ4δdcδba + Λ5iεbam (σm)dc) (A.15b)
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φa

φb

∆c
: Λ6µ

ε
2 (σ2σc)ba (A.15c)

∆c

φb

φa

: −Λ∗
6µ

ε
2 (σcσ2)ab (A.15d)

Gauge Boson - Higgs Interactions

∆a

Bµ

∆b

p

q

: −i
√

3

5
g1µ

ε
2 (pµ + qµ) δba (A.16a)

∆a

W i
µ

∆b

p

q

: −ig2µ
ε
2 (pµ + qµ) (iεbia) (A.16b)

∆a Bµ

Bν∆b

: i
6

5
g2
1µ

εηµνδba (A.16c)

∆a
W i

µ

W j
ν

∆b

: −ig2
2µ

εηµν (δbiδja + δbjδia − 2δijδba) (A.16d)
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∆a Bµ

W i
ν

∆b

: −2

√
3

5
g1g2µ

εηµνεbia (A.16e)

Note, that GUT charge normalization is used for the U(1)Y hypercharge, i.e. the charge qY is

related to the charge in GUT normalization by qU
Y =

√
3
5qY and the gauge coupling satisfies

g2
1 = 3

5

(
gU
1

)2
. Furthermore, the convention is used, that ∂µ in position space corresponds to

−ipµ in momentum space.

Lepton - Higgs Interactions

`fLa

`gLb

∆c

: (Y∆)gf µ
ε
2 (σ2σc)ba PL (A.17a)

`gLb

`fLa

∆c

: −
(
Y †

∆

)
fg
µ

ε
2 (σcσ2)ab PR (A.17b)

Counterterms for 2-Point Functions

∆a ∆b

: i
(
p2δZ∆ − δM2

∆

)
δba (A.18)

Counterterms for Higgs - Higgs Vertices

∆a ∆c

∆b ∆d

: −iµε [δΛ1 (δbaδdc + δdaδbc) + δΛ2δbdδac] (A.19a)
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∆a φc

∆b φd

: −iµε [δΛ4δabδcd + δΛ5iεbam (σm)dc] (A.19b)

φa

φb

∆c
: δΛ6µ

ε
2 (σ2σc)ba (A.19c)

∆c

φb

φa

: −δΛ∗
6µ

ε
2 (σcσ2)ab (A.19d)

Counterterms for Yukawa Vertices

`fLa

`gLb

∆c

: (Y∆δZY∆
)gf µ

ε
2 (σ2σc)ba PL (A.20a)

`gLb

`fLa

∆c

: −
(
δZ†

Y∆
Y †

∆

)
fg
µ

ε
2 (σcσ2)ab PR (A.20b)
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Appendix B

β-Function of a tensorial Quantity

In this section, the formula for the β-function of a tensorial quantity is stated [59]. The β
function of an arbitrary quantity Q, which is defined as

QB =

(
M∏

i=1

Zni

φi

)
[Q+ δQ]µDQε




M+N∏

j=M+1

Z
nj

φj


 , (B.1)

is given by

β
(0)
Q =DQ

〈
dδQ,1

dQ
|Q
〉

+
∑

A

DVA

〈
dδQ,1

dVA
|VA

〉
−DQδQ,1

+

M∑

i=1

ni

[
DQ

〈
dδZφi,1

dQ
|Q
〉

+
∑

A

DVA

〈
dδZφi,1

dVA
|VA

〉]
Q

+Q
M+N∑

j=M

nj

[
DQ

〈
dδZφj ,1

dQ
|Q
〉

+
∑

A

DVA

〈
dδZφj ,1

dVA
|VA

〉]
,

(B.2)

where VA are other independent parameters1 and DVA
are like DQ the exponents of the

renormalization scale. The other used definitions are the expansions of all quantities in
Eq. (B.1)

βQ =β
(0)
Q + β

(1)
Q ε+ . . . (B.3a)

Zni

φi
=1 + niδZφi,1

1

ε
+ . . . (B.3b)

δQ =δQ,1
1

ε
+ . . . (B.3c)

and the definition of the abbreviation

〈
dF

dx
|y
〉

:=





dF
dx y for scalars x,y
dF
dxn

yn for vectors x,y
dF

dxmn
ymn for matrices x,y

. . .

. (B.3d)

1Note, that complex conjugates are independent parameters.
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Note, that parameters VB obeying DVB
= 0 do not have to be included in the set of the

parameters VA, These are for example, the masses of scalar particles and the gauge fixing
parameters. In the case of multiplicative renormalization, i.e. δQ = QδZQ, the formula
simplifies to

β
(0)
Q =Q

[
DQ

〈
dδZQ,1

dQ
|Q
〉

+
∑

A

DVA

〈
dδZQ,1

dVA
|VA

〉]

+

M∑

i=1

ni

[
DQ

〈
dδZφi,1

dQ
|Q
〉

+
∑

A

DVA

〈
dδZφi,1

dVA
|VA

〉]
Q

+Q

M+N∑

j=M

nj

[
DQ

〈
dδZφj ,1

dQ
|Q
〉

+
∑

A

DVA

〈
dδZφj ,1

dVA
|VA

〉]
.

(B.4)
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Appendix C

Mathematics

This chapter is a compilation of useful formulae and theorems which are often needed in the
renormalization group analysis of chiral gauge theories.

C.1 Diagonalization of Matrices

Here, 3 theorems about matrix diagonalization are given [72] which are often used for mass
matrices.

C.1.1 Diagonalization of Hermitian Matrices

Hermitian matrices H have non-negative real eigenvalues µi.

Hui = µiui (C.1)

The eigenvectors ui form a unitary matrix U = [u1, . . . , un] which can be used to diagonalize

H = UDU † , (C.2)

where D = diag (µ1, . . . , µn) is a diagonal matrix. The proof for the eigenvalue decomposition
of hermitian matrices can be found in any linear algebra book.

C.1.2 Singular Value Decomposition (SVD)

The singular values of a complex m× n matrix A are non-negative real numbers µ satisfying

Au =µv (C.3a)

A†v =µu , (C.3b)

where u,v are the singular vectors. These singular values and vectors induce a decomposition
of the matrix A in 3 matrices,

A = V SU † , (C.4)

where U = [u1, . . . , un], V = [v1, . . . , vm] are 2 unitary matrices made up of the singular
vectors and S consists of the corresponding singular values on the first min(m,n) entries
of the form Si,i. This decomposition is unique (up to reordering). In order to prove this
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theorem, assume that n > m. Otherwise look at A†. If no eigenvalue of AA† is zero, define
the hermitian matrix

H2 := AA† (C.5)

and diagonalize H2 by
V †H2V = S2 = diag . (C.6)

Then H = V SV †. Since no eigenvalue equals zero, H is invertible. Define the matrix

Ũ := H−1A (C.7)

which is unitary, because

Ũ †Ũ
H†=H

= A†H−1H−1A = A†
(
AA†

)−1
A = � . (C.8)

Thus the matrix A can be written as

A = HŨ = V SV †Ũ =: V SU † . (C.9)

This decomposition is unique up to reordering by the uniqueness of the eigenvalue decompo-
sition.

C.1.3 Diagonalization of Symmetric Matrices

Complex symmetric matrices A = AT can also be diagonalized. this can be easily seen by
looking at the SVD

V SU † = A = AT = U∗SV T (C.10)

By the uniqueness of the SVD for quadratic matrices

U∗ = V (C.11)

Therefore the symmetric matrix A can be decomposed in

A = V SV T , (C.12)

where S contains the singular values of A on the diagonal.

C.2 Group Theory of SL(2, � )

C.2.1 Lorentz Group

The Lorentz group L ∼= O(3, 1) is the group of rotations in Minkowski space leaving the scalar
product

xµx
µ = t2 − ~x2 (C.13)

invariant. L↑
+
∼= SO(3, 1) is the connected component of the Lorentz group containing the

identity transformation. This subgroup is not simply connected and the same applies for the
Lorentz group L. Thus there is a double cover of L↑

+ which is simply connected:

SL(2, � )
σ−→ L↑

+ . (C.14)
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sign Λ0
0 detΛ

L↑
+ 1 1 proper orthochronous

L↑
− = PL↑

+ 1 −1 improper orthochronous

L↓
− = T L↑

+ −1 −1

L↓
+ = PT L↑

+ −1 1

Table C.1: Connected components of the Lorentz group L. ΛεL

Topology of the Lorentz Group

The Lorentz group L has 4 connected components which are characterized by the sign of the
determinant and the 00-element of the representation on Minkowski space.

The different connected components are related by two discrete Lorentz transformations:

• space-inversion or parity P
~x

P−→ −~x, t
P−→ t (C.15)

• time-reversal T
~x

T−→ ~x, t
T−→ −t (C.16)

Therefore, L↑
+, L↑

+ ∪L↑
−, L↑

+ ∪L↓
− and L↑

+ ∪L↓
+ are normal subgroups with the factor groups

given by {E ,P}, {E , T } and {E ,P, T ,PT }, respectively.

Representations

The irreps of SL(2, � ) can be classified by 2 half-integers (A,B) corresponding to the relation
of SL(2, � ) to SU(2) × SU(2). If A + B is an integer, the irrep V(A,B) will be a vector
representation which is also a representation of SO(3, 1), i.e. the diagram

SL(2, � )
D //

σ

��

GL(V(A,B))

SO(3, 1)

D′
88

q

q

q

q

q

q

(C.17)

commutes. Otherwise A + B is an odd half-integer and the representation is called a spinor
representation which is a double-valued representation of SO(3, 1). In particular ( 1

2 , 0) and
(0, 1

2) are the smallest irreps corresponding to Majorana particles. They are represented by
the transformations

e±iσµxµ

(C.18)

on a 2 dimensional complex vector space (σµ = (1, ~σ)). These irreps as well as all irreps
with A 6= B are not invariant under parity P and time-reversal T , i.e. they are not irreps
of the full Lorentz group L ∼= O(3, 1), but only of the proper orthochronous Lorentz group

L↑
+
∼= SO(3, 1). However, it is easy to construct an irrep of L out of an irrep of L↑

+. If (A,B)

is an irrep of L↑
+, then (A,B) ⊕ (B,A) is an irrep of the full Lorentz group. In particular,

(1
2 , 0)⊕ (0, 1

2) is an irrep of L corresponding to a Dirac particle. A scalar particle is described
by the trivial irrep (0, 0) and a vector particle by ( 1

2 ,
1
2).
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C,P,T in different Representations

The transformation properties of vectors under P and T are the defining relations of the
transformations and they are given in Eqs. (C.15,C.16). Dirac spinors, i.e. states in the
(1
2 , 0)⊕ (0, 1

2) transform under P and T as follows1

ψ(x)
P−→ γ0ψ(Px) (C.19a)

ψ(x)
T−→ iγ1γ3ψ(T x) . (C.19b)

In addition to the discrete transformations, there is charge conjugation C transforming parti-
cles into antiparticles and vice versa. All additive quantum numbers change their sign. Dirac
spinors transform under C like

ψ
C−→ Cψ

T
= iγ2ψ∗ . (C.19c)

The handedness changes under charge conjugation C:
(
ψL/R

)C
= C

(
PL/Rψ

)T
= iγ2PL/Rψ

∗ = PR/Liγ
2ψ∗ = PR/Lψ

C =
(
ψC
)
R/L

. (C.20)

Spinors which are invariant under charge conjugation C, i.e. Cψ = ψ, are their own antiparti-
cles. Thus they are Majorana spinors and are in the ( 1

2 , 0) or (0, 1
2 ) representation. Complex

scalars are changed to their complex conjugate under charge conjugation

φ
C−→ φ∗ , (C.21)

but they are invariant under parity P and time-reversal T . The charge conjugation induces a
transformation in the internal symmetry space as well, e.g. a complex scalar SU(2)L doublet,
like the SM Higgs particle transforms under charge conjugation non-trivially

φ
C−→ iσ2φ

∗ . (C.22)

C.2.2 Poincaré Group

The Poincaré group K is the group of space-time transformations leaving the scalar product
invariant. These are rotations in Minkowski space and translations in space-time. Thus the
Poincaré group can be written as the semi-direct product of the Lorentz-group L with the
group of space-time translations T ∼= � 4.

K = Lo T ∼= SO(3, 1) o � 4 (C.23)

The multiplication in the Poincaré group is given by

(Λ, a)(Λ′, a′) = (ΛΛ′, a+ Λa′) , (C.24)

i.e. the application of two successive Poincaré transformations on a vector yields

(Λ, a)(Λ′, a′)x = (Λ, a)(Λ′x+ a) = ΛΛ′x+ Λa′ + a = (ΛΛ′, a+ Λa′)x , (C.25)

where Λ and Λ′ are Lorentz transformations and a, a′ are translations in Minkowski-space.

1In general, every discrete transformation is accompanied by the multiplication of an arbitrary phase. Here,
the phases are set to zero.
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C.3 Useful Formulae in Group Theory

C.3.1 Pauli Spin Matrices

The Pauli spin matrices are defined as

σ1 :=

(
0 1
1 0

)
, σ2 :=

(
0 −i
i 0

)
, σ3 :=

(
1 0
0 −1

)
. (C.26)

They are proportional to the generators of su(2) which is the Lie algebra of SU(2) and thus
they satisfy the commutation relations

[σi

2
,
σj

2

]
= iεijk

σk

2
(C.27a)

{σi

2
,
σj

2

}
=
δij
2

� . (C.27b)

Some useful identities are the following products and traces of σ-matrices:

σbσa =iεbacσc + δba � (C.28a)

σbσiσa =δbiσa + δiaσb − δbaσi + iεbia (C.28b)

σT
mσ2σcσm =σ2σc (C.28c)

σT
mσ2σdεdmc =2iσ2σc (C.28d)

σm [σ2, σm] σc =− 4σ2σc (C.28e)

1

2
trσb =0 (C.28f)

1

2
tr σbσa =δba (C.28g)

1

2
trσbσiσa =iεbia (C.28h)

1

2
trσjσbσiσa =δjbδia + δjaδib − δbaδji (C.28i)

σi
abσ

i
cd =2δadδbc − δabδcd . (C.28j)

The last relation is a special version of the general group theoretical relation which is valid
for the generators of SU(N)

tAabt
A
cd =

1

2

(
δadδbc −

1

N
δabδcd

)
. (C.29)

Furthermore it is useful to define the creator and annihilator

σ± = σ1 ± iσ2 , (C.30)

which form a basis of the adjoint representation together with σ3. Another useful identity is
the product of two ε symbols

εabcεcde = δadδbe − δaeδbd . (C.31)
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C.3.2 Dirac Matrices

The Dirac matrices γµ are given in the Dirac representation by

γi :=

(
0 σi

−σi 0

)
, γ0 :=

(
1 0
0 −1

)
, (C.32)

where the entries are 2 × 2 matrices. They form the representation
(

1
2 , 0
)
⊕
(
0, 1

2

)
of the

Clifford algebra SL(2, � ). Thus they satisfy the anticommutation relations

{γµ, γν} = 2ηµν (C.33)

Furthermore, γ5 is defined as the product of the matrices γµ, i.e.

γ5 = iγ0γ1γ2γ3 =
i

4!
εµνρσγ

µγνγργσ . (C.34)

In the Dirac representation, γ5 is given by

γ5 =

(
0 1
1 0

)
. (C.35)

It satisfies the following relations

{γ5, γ
µ} =0 (C.36a)

PL/Rγ
µ =γµPR/L (C.36b)

Traces of γ matrices often appear in the evaluation of Feynman diagrams. The traces can be
evaluated by applying Eq. (C.33) successively and using the anticommutation relation of γ5.

tr � =4 (C.37a)

tr γ5 =0 (C.37b)

tr oddnumber of γmatrices =0 (C.37c)

tr γµγν =4ηµν (C.37d)

tr γµγνγργσ =4 (ηµνηρσ + ηµσηνρ − ηµρηνσ) (C.37e)

C.3.3 γ-Algebra in d Dimensions

In d dimensions, the products of γ matrices change because of ηµ
µ = d. Here, some useful

identities are given which can be easily derived from the defining relation of the Clifford
algebra SL(2, � ):

γµγ
µ =d (C.38a)

γλγ
µγλ =(2− d) γµ (C.38b)

γλγ
µγνγλ =4ηµν − (4− d) γµγν (C.38c)

γλγ
µγνγκγλ =− 2γκγνγµ + (4− d) γµγνγκ . (C.38d)

However, there is a problem involving terms like tr
(
γ5γ

µγνγξγη
)
, because it is not possible

to assign a unique value to this expression using the usual anticommutation relations. One
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consistent definition which reduces to the usual definition of γ5 and εµνκλ can be obtained by
treating the first 4 dimensions differently from the other dimensions [42]. Hence, the indices
µ = 0, 1, 2, 3 are treated in the usual way, but the remaining indices are treated differently:

εµνκλ =





1 if (µνκλ) is an even permutation of (0123)
−1 if (µνκλ) is an odd permutation of (0123)

0 otherwise
. (C.39)

This definition leads to the following commutation relations for γ5

{γ5, γ
µ} =0, ifµ = 0, 1, 2, 3 (C.40a)

[γ5, γ
µ] =0, otherwise (C.40b)

(γ5)
2 =1 (C.40c)

γ†5 =γ5 (C.40d)

Apparently, this violates Lorentz symmetry in d dimensions. Thus Lorentz symmetry is a
good symmetry only in the first 4 dimensions. However, as long as tr

(
γ5γ

µγνγξγη
)

does not
show up in the calculations, naive dimensional regularization can be used, i.e.

{γ5, γ
µ} =0 (C.41a)

tr γ5 =0 (C.41b)

tr (γ5γ
µγν) =0 (C.41c)

C.4 Special Functions

In the calculation of d-dimensional integrals, there often show up Gamma functions and the
related Beta function.

C.4.1 Gamma Function

The Gamma function is the natural continuation of the factorial from integers to complex
numbers. It is defined as

Γ(z) :=

∫ ∞

0
e−ttz−1dt ∀zε � , Re z > 0 . (C.42)

It clearly satisfies the recursive definition of factorial

Γ(z + 1) = zΓ(z), Γ(1) = 1 . (C.43)

Furthermore, the Gamma function has first order singularities for all x = 0,−1,−2, . . . . At
these poles the Gamma function can be expanded to

Γ(−n+ ε) =
(−1)n

n!

[
1

ε
+ ψ1(n+ 1) +O(ε)

]
, (C.44)
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where ψ1(n + 1) =
∑n

k=1
1
k − γE = Γ′(x)

Γ(x) and γE = 0.57721 . . . is the Euler Mascheroni
constant. Some useful identities are

Γ(
1

2
) =
√
π (C.45)

Γ(−1

2
) =− 2

√
π (C.46)

Γ(z)Γ(1 − z) =
π

sinπz
∀zε � \ �

(C.47)

Γ(z)Γ(−z) =− π

z sinπz
∀zε � \ �

. (C.48)

C.4.2 Beta Function

The Beta function is related to the Gamma function by

B(x, y) :=
Γ(x)Γ(y)

Γ(x+ y)
x, yε � , x, y, x + y 6= 0,−1,−2, . . . . (C.49)

Moreover, some representations are given by

B(x, y) =

∫ 1

0
tx−1(1− t)y−1dt x > 0, y > 0 (C.50)

B(x, y) =2

∫ ∞

0
t2x−1(1 + t2)−x−y . (C.51)

C.5 Passarino-Veltman Functions

The Passarino-Veltman functions [88, 89] often appear in loop calculations. Thus they are
summarized in this section. The arguments of the functions are omitted in the list, but they
are given before each list. The integrals with a tensor structure can be decomposed in tensors
formed from the momenta in the arguments and ηµν . Here, only the divergent parts are given.

C.5.1 The One-Point Function A0

A0(m
2) :=

µε

iπ2

∫
ddk

1

k2 −m2
(C.52)

The divergent part is

A0(m
2) =

2

ε
m2 + UV finite . (C.53)

C.5.2 The Two-Point Functions B

The three-point functions C are functions of B = B
(
p2,m2

1,m
2
2

)
:
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B0 :=
µε

iπ2

∫
ddk

1
(
k2 −m2

1

) [
(k + p)2 −m2

2

] (C.54a)

Bµ :=
µε

iπ2

∫
ddk

kµ
(
k2 −m2

1

) [
(k + p)2 −m2

2

] (C.54b)

Bµν :=
µε

iπ2

∫
ddk

kµkν
(
k2 −m2

1

) [
(k + p)2 −m2

2

] . (C.54c)

The divergent parts are

B0 =
2

ε
+ UV finite (C.55a)

Bµ = −1

ε
pµ + UV finite (C.55b)

Bµν = − 1

6ε

(
p2 − 3m2

1 − 3m2
2

)
ηµν +

2

3ε
pµpν + UV finite . (C.55c)

C.5.3 The Three-Point Functions C

The three-point functions C are functions of C = C
(
p2, (p− q)2, q2,m2

1,m
2
2,m

2
3

)
:

C0 :=
µε

iπ2

∫
ddk

1
(
k2 −m2

1

) [
(k + p)2 −m2

2

] [
(k + q)2 −m2

3

] (C.56a)

Cµ :=
µε

iπ2

∫
ddk

kµ
(
k2 −m2

1

) [
(k + p)2 −m2

2

] [
(k + q)2 −m2

3

] (C.56b)

Cµν :=
µε

iπ2

∫
ddk

kµkν
(
k2 −m2

1

) [
(k + p)2 −m2

2

] [
(k + q)2 −m2

3

] (C.56c)

Cµνρ :=
µε

iπ2

∫
ddk

kµkνkρ
(
k2 −m2

1

) [
(k + p)2 −m2

2

] [
(k + q)2 −m2

3

] . (C.56d)

The divergent parts are

Cµν =
1

2ε
ηµν + UV finite (C.57a)

Cµνρ = − 1

6ε
[(ηµνpρ + cyclic) + (p→ q)] + UV finite . (C.57b)

C.5.4 The Four-Point Functions D

The four-point functions D are functions of

D = D
(
p2, (p− q)2, (q − l)2, q2, l2,m2

1,m
2
2,m

2
3,m

2
4

)
:
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D0 :=
µε

iπ2

∫
ddk

1
(
k2 −m2

1

) [
(k + p)2 −m2

2

] [
(k + q)2 −m2

3

] [
(k + l)2 −m2

4

]

(C.58a)

Dµ :=
µε

iπ2

∫
ddk

kµ
(
k2 −m2

1

) [
(k + p)2 −m2

2

] [
(k + q)2 −m2

3

] [
(k + l)2 −m2

4

]

(C.58b)

Dµν :=
µε

iπ2

∫
ddk

kµkν
(
k2 −m2

1

) [
(k + p)2 −m2

2

] [
(k + q)2 −m2

3

] [
(k + l)2 −m2

4

]

(C.58c)

Dµνρ :=
µε

iπ2

∫
ddk

kµkνkρ(
k2 −m2

1

) [
(k + p)2 −m2

2

] [
(k + q)2 −m2

3

] [
(k + l)2 −m2

4

]

(C.58d)

Dµνρσ :=
µε

iπ2

∫
ddk

kµkνkρkσ
(
k2 −m2

1

) [
(k + p)2 −m2

2

] [
(k + q)2 −m2

3

] [
(k + l)2 −m2

4

] .

(C.58e)

The only divergent function is Dµνρσ which is given by

Dµνρσ =
1

12ε
(ηµνηρσ + ηµρηνσ + ηµσηνρ) + UV finite . (C.59)
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Tables

Q±
13 = |m3±m1eiϕ1 |2

∆m2
atm(1+ζ)

S13 = m1m3 sinϕ1

∆m2
atm(1+ζ)

Q±
23 = |m3±m2eiϕ2 |2

∆m2
atm

S23 = m2m3 sinϕ2

∆m2
atm

Q±
12 = |m2eiϕ2±m1eiϕ1 |2

∆m2
sol

S12 = m1m2 sin(ϕ1−ϕ2)
∆m2

sol

A±
13 =

(m2
1+m2

3) cos δ±2m1m3 cos(δ−ϕ1)

∆m2
atm(1+ζ)

B±13 =
(m2

1+m2
3) sin δ±2m1m3 sin(δ−ϕ1)

∆m2
atm(1+ζ)

A±
23 =

(m2
2+m2

3) cos δ±2m2m3 cos(δ−ϕ2)

∆m2
atm

B±23 =
(m2

2+m2
3) sin δ±2m2m3 sin(δ−ϕ2)

∆m2
atm

C12
13 = m1

∆m2
sol(1+ζ)

[(1 + ζ)m2 sin (ϕ1 − ϕ2)− ζm3 sin (2δ − ϕ1)]

C23
13 = m3

∆m2
atm(1+ζ)

[m1 sin (2δ − ϕ1) + (1 + ζ)m2 sinϕ2]

C12
23 = m2

∆m2
sol

[m1 sin (ϕ1 − ϕ2)− ζm3 sin (2δ − ϕ2)]

C13
23 = m3

∆m2
atm(1+ζ)

[m1 sinϕ1 + (1 + ζ)m2 sin (2δ − ϕ2)]

D1 = m3

∆m2
atm(1+ζ)

[m1 cos (δ − ϕ1)− (1 + ζ)m2 cos (δ − ϕ2)] sin δ

D2 = m3

∆m2
atm(1+ζ)

[m1 cos (2δ − ϕ1)− (1 + ζ)m2 cos (2δ − ϕ2) + ζm3]

Table D.1: Definition of the abbreviations used in Tabs. D.2,D.4,D.3 and 6.3
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64π2 θ̇12 64π2 θ̇13 64π2 θ̇23

P11 2Q+
12 sin 2θ12 0 0

P22 −2Q+
12 sin 2θ12c

2
23

(
A+

23 −A+
13

)
sin 2θ12 sin 2θ23 2

(
Q+

23c
2
12 +Q+

13s
2
12

)
sin 2θ23

P33 −2Q+
12 sin 2θ12s

2
23 −

(
A+

23 −A+
13

)
sin 2θ12 sin 2θ23 −2

(
Q+

23c
2
12 +Q+

13s
2
12

)
sin 2θ23

ReP21 4Q+
12 cos 2θ12c23 4

(
A+

13c
2
12 +A+

23s
2
12

)
s23 2

(
Q+

23 −Q+
13

)
sin 2θ12s23

ReP31 −4Q+
12 cos 2θ12s23 4

(
A+

13c
2
12 +A+

23s
2
12

)
c23 2

(
Q+

23 −Q+
13

)
sin 2θ12c23

ReP32 2Q+
12 sin 2θ12 sin 2θ23 2

(
A+

23 −A+
13

)
sin 2θ12 cos 2θ23 4

(
Q+

23c
2
12 +Q+

13s
2
12

)
cos 2θ23

ImP21 8S12c23 4
(
B−13c212 + B−23s212

)
s23 4 (S23 − S13) sin 2θ12s23

ImP31 −8S12s23 4
(
B−13c212 + B−23s212

)
c23 4 (S23 − S13) sin 2θ12c23

ImP32 0 2
(
B−23 − B−13

)
sin 2θ12 8

(
S23c

2
12 + S13s

2
12

)

Table D.2: Coefficients of Pfg in the slope of the mixing parameters, θij in the limit θ13 → 0. The abbreviations
A±

ij , B
±
ij , Sij and Q±

ij depend on the mass eigenvalues and phases only, and enhance the running for a degenerate

mass spectrum since they are of the form fij(mi, mj , phases)/(m2
j − m2

i ). They are listed in Tab. D.1.
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64π2 δ̇(−1)

P11 0

P22 −
(
B+

23 −B+
13

)
sin 2θ12 sin 2θ23

P33

(
B+

23 − B+
13

)
sin 2θ12 sin 2θ23

ReP21 −4
(
B+

13c
2
12 + B+

23s
2
12

)
s23

ReP31 −4
(
B+

13c
2
12 + B+

23s
2
12

)
c23

ReP32 −2
(
B+

23 − B+
13

)
sin 2θ12 cos 2θ23

ImP21 4
(
A−

13c
2
12 +A−

23s
2
12

)
s23

ImP31 4
(
A−

13c
2
12 +A−

23s
2
12

)
c23

ImP32 2
(
A−

23 −A−
13

)
sin 2θ12

64π2δ̇(0)

P11 −8
((
C23

13 + S12 − S23

)
c212 +

(
C13

23 + S12 − S13

)
s212
)

P22 8
((

(S12 − S23) c
2
23 + C23

13s
2
23

)
c212 +

(
(S12 − S13) c

2
23 + C13

23s
2
23

)
s212
)

P33 8
((
C23

13c
2
23 + (S12 − S23) s

2
23

)
c212 +

(
C13

23c
2
23 + (S12 − S13) s

2
23

)
s212
)

ReP21 −16S12c23 cot 2θ12 + 4 (2D1c23 + (S23 − S13) s23 tan θ23) sin 2θ12

ReP31 16S12s23 cot 2θ12 − 4 (2D1s23 + (S23 − S13) c23 cot θ23) sin 2θ12

ReP32 −16
(
S23c

2
12 + S13s

2
12

)
cos 2θ23 cot 2θ23 − 8

(
C12

13c
2
12 + C12

23s
2
12

)
sin 2θ23

ImP21 −8Q−
12c23 csc 2θ12 − 2

(
2D2c23 +

(
Q−

23 −Q−
13

)
cos 2θ23 sec θ23

)
sin 2θ12

ImP31 8Q−
12s23 csc 2θ12 + 2

(
2D2s23 −

(
Q−

23 −Q−
13

)
cos 2θ23 csc θ23

)
sin 2θ12

ImP32 −8
(
Q−

23c
2
12 +Q−

13s
2
12

)
cot 2θ23

Table D.3: Coefficients of Pfg in the slope of the Dirac CP phase for θ13 = 0. The abbreviations A±
ij , B

±
ij , Q

±
ij ,

Ckl
ij and Di depend on the mass eigenvalues and phases only, and enhance the running for a degenerate mass

spectrum since they are of the form fij(masses, phases)/(m2
j − m2

i ). They are listed in Tab. D.1
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16π2ϕ̇1

P11 −4S12c
2
12

P22 4S12c
2
12c

2
23 − 4

(
S23c

2
12 + S13s

2
12

)
cos 2θ23

P33 4S12c
2
12s

2
23 + 4

(
S23c

2
12 + S13s

2
12

)
cos 2θ23

ReP21 −4S12c23 cos 2θ12 cot θ12 − 2 (S23 − S13) cos 2θ23 sec θ23 sin 2θ12

ReP31 4S12s23 cos 2θ12 cot θ12 − 2 (S23 − S13) cos 2θ23 csc θ23 sin 2θ12

ReP32 −8
(
S23c

2
12 + S13s

2
12

)
cos 2θ23 cot 2θ23 − 4S12c

2
12 sin 2θ23

ImP21 −2Q−
12c23 cot θ12 −

(
Q−

23 −Q−
13

)
cos 2θ23 sec θ23 sin 2θ12

ImP31 2Q−
12s23 cot θ12 −

(
Q−

23 −Q−
13

)
cos 2θ23 csc θ23 sin 2θ12

ImP32 −4
(
Q−

23c
2
12 +Q−

13s
2
12

)
cot 2θ23

16π2ϕ̇2

P11 −4S12s
2
12

P22 4S12c
2
23s

2
12 − 4

(
S23c

2
12 + S13s

2
12

)
cos 2θ23

P33 4S12s
2
23s

2
12 + 4

(
S23c

2
12 + S13s

2
12

)
cos 2θ23

ReP21 −4S12c23 cos 2θ12 tan θ12 − 2 (S23 − S13) cos 2θ23 sec θ23 sin 2θ12

ReP31 4S12s23 cos 2θ12 tan θ12 − 2 (S23 − S13) cos 2θ23 csc θ23 sin 2θ12

ReP32 −8
(
S23c

2
12 + S13s

2
12

)
cos 2θ23 cot 2θ23 − 4S12s

2
12 sin 2θ23

ImP21 −2Q−
12c23 tan θ12 −

(
Q−

23 −Q−
13

)
cos 2θ23 sec θ23 sin 2θ12

ImP31 2Q−
12s23 tan θ12 −

(
Q−

23 −Q−
13

)
cos 2θ23 csc θ23 sin 2θ12

ImP32 −4
(
Q−

23c
2
12 +Q−

13s
2
12

)
cot 2θ23

Table D.4: Coefficients of Pfg in the slope of the Majorana phases for θ13 = 0. The abbreviations Sij and Q±
ij

depend on the mass eigenvalues and phases only, and enhance the running for a degenerate mass spectrum
since they are of the form fij(mi, mj , phases)/(m2

j − m2
i ). They are listed in Tab. D.1.
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Nomenclature

α̃ Flavor-diagonal part of the β-function of Y †
e Ye, page 39

α Flavor-diagonal part of the β-function of mν , page 39

β β-function of the gauge coupling, page 24

β β-function of the coupling, page 24

Bµ Gauge boson of U(1)Y , page 79

ci Ghost field corresponding to gauge group i, page 79

θc Cabbibo angle, page 46

D Superficial degree of divergence, page 15

d Number of space-time dimensions, page 15

∆ Higgs triplet, page 30

∆B Bare wave function of the Higgs triplet, page 53

δ Dirac CP phase in the leptonic sector, page 81

δΛ1 Counterterm for the divergencies in Λ1, page 53

δΛ2 Counterterm for the divergencies in Λ2, page 53

δΛ3 Counterterm for the divergencies in Λ3, page 53

δΛ4 Counterterm for the divergencies in Λ4, page 53

δΛ5 Counterterm for the divergencies in Λ5, page 53

δΛ6 Counterterm for the divergencies in Λ6, page 53

di Number of derivatives at a vertex of type i, page 16

δξ Anomalous dimension of the gauge parameter, page 24

dR Right-handed down-type quark, page 79

Ef Number of external lines of particle species f , page 16

`L Left-handed lepton doublet, page 79
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ε Dimensional expansion parameter ε = 4− d, page 20

eR Right-handed charged lepton, page 79

F Off-diagonal part of the β-function of Y †
e Ye, page 39

G(n) Renormalized n-point Green’s function, page 24

g1 Gauge coupling of U(1)Y , page 79

g2 Gauge coupling of SU(2)L, page 79

g3 Gauge coupling of SU(3)C , page 79

γ Anomalous dimension of the wave function, page 24

Γ`L∆`L
Vertex correction to the vertex `L∆`L, page 60

Γφ∆φ Vertex correction to the vertex φ∆φ, page 62

γm Anomalous dimension of the mass, page 24

ΓνR`Lφ Vertex correction to νR`Lφ, page 62

G
(n)
B Bare n-point Green’s function, page 24

Gµ Gauge boson of SU(3)C , page 79

Zφ Wave function renormalization of the field φ, page 21

If Number of internal lines of particle species f , page 15

κ Effective neutrino mass operator, page 29

Λ1 First term in the quartic coupling of the triplet Higgs, page 30

Λ2 Second term in the quartic coupling of the triplet Higgs, page 30

Λ3 Third term in the quartic coupling of the triplet Higgs, page 30

Λ4 First term of the coupling of 2 Higgs doublet to 2 Higgs triplets, page 30

Λ5 Second term of the coupling of 2 Higgs doublet to 2 Higgs triplets, page 30

Λ6 Coupling constant of the coupling of 2 Higgs doublets to a Higgs triplet, page 30

M Majorana mass term of the right-handed neutrino, page 30

mν Mass matrix of the left-handed neutrinos, page 39

m2 Mass squared of the Higgs doublet, page 79

µ Renormalization scale, page 18

MW Mass of the W boson, page 11
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MZ Mass of the Z boson, page 11

Ni Number of vertices of type i, page 16

νR Right-handed neutrino, page 30

P Off-diagonal part of the β-function of mν , page 39

φ1 Majorana CP phase in the leptonic sector, page 81

φ2 Majorana CP phase in the leptonic sector, page 81

QL Left-handed quark doublet, page 79

ρ ρ parameter: ρ =
M2

W

M2
Z

cos2 θW
, page 11

sf Number characterizing the nature (scalar, fermion,. . . ) of a particle species f , page
15

Σ∆ Self-energy of the Higgs triplet, page 55

Σ`L
Self-energy of the left-handed lepton doublet, page 59

Σφ Self-energy of the Higgs doublet, page 58

sij, cij sin θij, cos θij, page 81

θij Mixing angles of the MNS matrix, page 81

uR Right-handed up-type quark, page 79

V special unitary matrix in standard parameterization, page 81

Wµ Gauge boson of SU(2)L, page 79

ξ Gauge fixing parameter, page 24

ξi Gauge parameter of gauge group i, page 79

Yd Yukawa coupling of the down-type quarks, page 79

Y∆ Yukawa coupling of the left-handed lepton doublet to the Higgs triplet, page 30

Ye Yukawa coupling of the charged leptons, page 79

Yν Yukawa coupling of the neutrinos, page 30

Yu Yukawa coupling of the up-type quarks, page 79

Z∆ Wave function renormalization factor of the Higgs triplet, page 53

Z`L
Wave function renormalization factor of the left-handed lepton doublet, page 53

ζ ζ =
∆m2

atm

∆m2
sol

, page 46

Zφ Wave function renormalization factor of the Higgs doublet, page 53
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Zλ Gauge coupling renormalization factor of λ, page 21

ZY∆
Vertex renormalization factor of the triplet Yukawa interaction, page 53
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