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Neutrinos and Dark Matter Within an Extended Zee-Babu Model:

Extensions of the Zee-Babu model are investigated to find a common framework
for the neutrino mass problem and the dark matter issue of the universe.
The particle content of the model is enlarged with a complex scalar singlet ϕ and a
right-handed Majorana neutrino NR which serves as a particle dark matter candi-
date. With a specific baryon (B) minus lepton (L) number for ϕ, the model enjoys
a U(1)B−L symmetry.
In a first scenario, the U(1)B−L is gauged. To prevent [U(1)B−L]3 gauge anomalies,
NR is a must. In a second scenario, a Z4 symmetry is imposed. U(1)B−L is global,
i.e., a Majoron enters into the theory after spontaneous symmetry breaking.
In both scenarios, light neutrino masses and the dark matter mass are generated
at the U(1)B−L symmetry breaking scale.
The required thermal relic abundance of NR is predominantly produced through
the Higgs portal.
It is shown that NR could be directly detected.
To complete, the verification of the model at the LHC is discussed.

Neutrinos und Dunkle Materie in einem erweiterten Zee-Babu Model:

Erweiterungen des Zee-Babu Models werden untersucht um das Problem der Neutri-
nomassen und der dunklen Materie im Universum in einem gemeinsamen Rahmen
zu lösen.
Der Teilcheninhalt des Models wird mit einem komplexen sklaren Singlet ϕ und
einem rechtshändigen Majorana Neutrino NR, das als Kandidat für dunkle Materie
dient, vergrößert. Infolge einer speziellen Baryon (B) minus Lepton (L) Zahl für ϕ
hat das Model eine U(1)B−L Symmetrie.
In einer ersten Erweiterung wird die U(1)B−L Symmetrie geeicht. NR ist notwendig
um [U(1)B−L]3 Eichanomalien zu verhindern. In einer zweiten Erweiterung wird
eine Z4 Symmetry eingeführt. U(1)B−L ist nun eine globale Symmetrie, d.h. nach
spontaner Symmetriebrechung tritt ein Majoron in der Theorie auf.
In beiden Erweiterungen werden leichte Neutrinomassen und die Masse der dunklen
Materie an der Skala erzeugt, an der die U(1)B−L Symmetrie zusammenbricht.
Die erforderliche thermische Restmenge an dunkler Materie wird überwiegend durch
das Higgs Portal produziert.
Es wird gezeigt, dass NR direkt nachgewiesen werden kann.
Abschließend wird die Bestätigung des Models am LHC diskutiert.
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Chapter 1

Introduction

Based on the measured dispersion of the velocities of individual galaxies in the Coma
Cluster and applying the virial theorem, the Swiss astronomer Zwicky made a surpris-
ing discovery: the mean matter density of the Coma Cluster has to be at least 400
times larger than the one resulting from observed luminous matter. Zwicky conjec-
tured that non-luminous matter, i.e., dark matter, exists in a much larger amount in
the universe than luminous matter [19].
Dark matter makes itself felt only by gravitational interactions. Its nature remains
unknown. The labeling matter suggests that dark matter is made up of particles. But
it is possible that the missing matter component of the universe does not consist of
particles after all.
The Einstein field equations link the matter content of the universe with the geometry
of space time. From this point of view, there are in general two possibilities to explain
the missing matter component: either modify the geometry of space time, that is,
modify the law of gravity, and consider only normal matter, i.e., baryonic matter, or
describe the geometry as usual and change the matter content to involve a dark matter
particle.
There have been proposals for modified Newtonian dynamics (MOND) to account for
the measured rotation curves of galaxies: considering a galaxy and a massive object in
the disk, e.g., a star with circular velocity vc and distance r from the galactic center.
In an equilibrium between the centripetal and the Newtonian gravitational force F,
one expects that vc decreases like 1√

r
with increasing distance to the center (compare

dashed line in figure 1.1), given that the galaxy consists of baryonic matter.
Instead, figure 1.1 reveals that the observed velocity profile is nearly constant for radii
r between 8 kpc and 20 kpc. This galaxy rotation problem can be solved by an accel-
eration constant a0 which scales with the baryonic mass: if for the absolute value a of
the gravitational acceleration a the relation a � a0 holds, then Newton’s second law
becomes

ma =
a0

a
F , (1.0.1)

producing a constant profile at large distances.
However, this theory in its original form [20] is only valid on galactic scales. It fails
to describe structure formations on larger scales. For example, figure 1.2, the Bullet
Cluster 1E 0657-558, shows the merger of two galaxy clusters.
During a merger of two clusters, the galaxies, modelled as collisionless particles, de-
couple from the X-ray emitting intracluster plasma, which slows down by ram pressure
felt in the fluid-like intergalactic medium. If there were no dark matter mass compo-



2 Chapter 1. Introduction

Figure 1.1.: Rotation curve for the spiral galaxy NGC 6503. The points are the mea-
sured circular rotation velocities as a function of distance from the center
of the galaxy. The dashed and dotted curves are the contribution to the
rotational velocity due to the observed disk and gas, respectively, and the
dot-dash curve is the contribution from the dark halo. Figure from [1].

Figure 1.2.: The Bullet Cluster 1E 0657-558. The X-Ray emitting intracluster plasma
is in red. The gravitational field determined from weak gravitational
lensing is in blue. Figure borrowed from the CHANDRA X-Ray Observa-
tory (http://chandra.harvard.edu/).

http://chandra.harvard.edu/
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nent, the plasma would contribute the largest amount to the total mass of the system
and therefore the gravitational field should be peaked between the two clusters, where
the luminous mass is located. Instead, weak gravitational lensing verifies an offset
between the peaks of the gravitational field and the visible mass distribution: the
gravitational field is not peaked where the plasma is, it is peaked at the positions of
the galaxies. Non standard gravitational forces that scales with baryonic mass cannot
explain this offset without an unseen matter contribution [21]. The view that the
missing matter component of the universe is dark matter, which is indeed composed
of massive weakly interacting particles dominating the total mass of the clusters, is
more reasonable; such particles would follow the movement of the galaxies and induce
the gravitational field observed. Furthermore, particle dark matter explains constant
rotation curves with a dark matter halo density ρ(r) ∝ r−2 for distances r between
8 kpc and 20 kpc. The dot-dash curve in figure 1.1 shows the contribution to the
rotational velocity due to the dark halo.
In this work, we explain the missing matter component without modifying the law of
gravity. We hold the view that dark matter is made up of particles.
Any theory of particle dark matter merges the two pillars of astroparticle physics,
namely astrophysics and particle physics. Astrophysics confirms Zwicky’s conjecture:
we infer from the combined cosmic microwave background signal, the baryon acous-
tic oscillation data and supernovae surveys that the baryonic matter accounts for
just 17 % of the matter content of the universe, the dominant part being dark matter.
The Standard Model of Particle Physics, which describes very well the baryonic matter
component, has no candidate for particle dark matter. Besides this, there is no mass
term for neutrinos in the Standard Model Lagrangian for obvious reasons: a Dirac
mass term relies on right-handed neutrinos which are absent in the Standard Model
particle spectrum. A Majorana mass term violates the Standard Model global baryon
minus lepton number symmetry by two units. But we have learned from neutrino fla-
vor oscillation experiments [22–25] that there are at least two massive neutrinos. The
two main problems of astroparticle physics can thus be summarized in the sentence

Neutrinos have mass and the Universe has dark matter [26].

Our aim is to juggle both of these shortcomings of the Standard Model within one
theory. We proceed as follows:
In section 2, we start with a review of the Electroweak theory. Special emphasis is
attached to the mass generation of fermions and gauge bosons. For the neutrino mass
generation, which is beyond the physics of the Standard Model, we briefly present
the realizations of the seesaw mechanism and then concentrate on radiatively gener-
ated neutrino masses. In this class of models, the Standard Model neutrinos remain
massless at tree level. Masses are induced at loop level. Each loop is suppressed
with a factor 1

16π2 , which in turn suppresses the scale Λ at which physics beyond the
Standard Model emerges. Gauging the Standard Model global baryon minus lepton
number symmetry, gauge anomaly conditions motivate the introduction of a right
handed Majorana neutrino NR which will become our particle dark matter candidate.
Dark matter is enlightened in section 3. Having surveyed the Standard Model of
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Cosmology, we show how the amount of dark matter is determined. Given that this
amount has a thermal origin, the Boltzmann equations predict the relic density of
dark matter (see equation (3.3.20)) to be

ΩDMh
2 ≈ 3 · 10−27 cm3 s−1

〈σ1+2↔3+4 vr〉
.

The calculated relic density matches the observations if the thermal average of the an-
nihilation cross section times the relative velocity, 〈σ1+2↔3+4 vr〉, is of order O(1 pb),
which is the strength of electroweak scale interactions. That means that a stable mas-
sive particle associated with new physics at the electroweak scale can contribute the
dark matter relic density. Apart from the correct relic abundance, we further address
the issue of structure formation setting constraints on any model of dark matter. In
addition, we list strategies to learn about the nature of dark matter. These are di-
rect and indirect detection experiments, and production at colliders. Positive signals
in direct detection experiments would give us a glimpse into the non-gravitational
interactions of dark matter and could therefore provide hints about its couplings to
Standard Model particles. At colliders, the effect of Standard Model annihilations into
dark matter particles would be missing energy. From measurements of the detected
missing energy the mass of the dark matter particles can be reconstructed. These
three aspects, namely the correct relic abundance, constraints from structure forma-
tion and the experimental verification will serve as a three-point test which a particle
dark matter model has to pass.
Finally, we set up our model in section 4. The input is the Zee-Babu model [27], which
generates masses for two Standard Model neutrinos at two-loop level with charged
scalars h+ and k++ running in the loops. We add a right-handed Majorana neutrino
NR with mass at the electroweak scale as particle dark matter candidate and a com-
plex Higgs singlet scalar ϕ to the particle spectrum. In comparision to other models
with right-handed neutrinos as dark matter particles, e.g. [28], we do not need more
than one right-handed neutrino because in our model the right-handed neutrino is not
related to the mass generation of light neutrinos. The new Higgs singlet ϕ mixes with
the Standard Model Higgs doublet φ allowing the particle dark matter to couple to
the Standard Model through the Higgs portal [29]. Two scenarios are investigated: in
Scenario 1, we extend the Standard Model gauge group to contain a local U(1)B−L
and a dark matter stabilization Z2 symmetry. In this framework, the right-handed
Majorana neutrino NR is a natural candidate for particle dark matter due to gauge
anomaly conditions. The (B − L) violating µ term of the Zee-Babu model needed
to produce neutrino masses is generated dynamically. In Scenario 2, we enlarge the
Standard Model gauge group with a Z4 symmetry. Altough this enlargement is more
economic compared to Scenario 1, NR is now an ad-hoc candidate for particle dark
matter. With spontaneous symmetry breakdown of U(1)B−L, which is now a global
symmetry, a Majoron enters into the theory. We point out how the Majoron can lead
to invisible Higgs decays and briefly discuss the self interaction of dark matter particles
mediated by Majoron exchange. To reconcile both scenarios with neutrino oscillation
data, the scale Λ of new physics determined by the masses of the scalars h+ and k++



5

and the (B − L) breaking constant µ has to be the TeV scale. Since we generate the
µ term dynamically, the scale for spontaneous symmetry breaking of U(1)B−L is at
order O(1 TeV). The Majorana mass of NR is then naturally at order O(1 TeV), too.
For these two scenarios, we show that our model passes the three-point test.
In addition, we discuss the verification of our model at the LHC.





Chapter 2

Motivation for a Right-Handed
Majorana Neutrino

This chapter deals with particle physics. We begin with a review of the Lagrangian of
the Standard Model in section 2.1. The mechanism of spontaneous symmetry break-
ing, which gives masses to almost all Standard Model fermions and gauge bosons, is
explained in section 2.2.1. We emphasize almost because the photon is massless due
to the remaining U(1)em symmetry of electromagnetic interactions and for neutrinos,
there are no mass terms in the Standard Model. However, it is now an experimental
fact that neutrinos are massive. In section 2.3, we present the global fit of the neutrino
oscillation data, which reveal that at least two neutrinos carry small masses relative
to all other massive particles. We then briefly describe pathways to naturally small
neutrino masses by introducing right-handed neutrinos. Having discussed the axial
vector current anomaly in section 2.4, we show in section 2.5 that a right-handed Ma-
jorana neutrino NR is a must in an extended Standard Model with a gauged U(1)B−L
in order to prevent gauge anomalies. NR will become our dark matter candidate.

2.1. The Lagrangian of the Electroweak Theory
The Standard Model of Particle Physics is a relativistic quantum field theory with the
gauge symmetry group G(SM) = SU(3)C × SU(2)L × U(1)Y . It characterizes leptons
and quarks as the fundamental building blocks of ordinary matter and describes their
non-gravitational interactions through the exchange of gauge bosons.
Since the temperature of the universe, which we take as the temperature of the pho-
tons, cools down due to expansion (see equation (3.3.8)), there are phase transitions
between gauge symmetries realized by spontaneous symmetry breaking. After the
grand unified phase transition when the photons and all other particles still in ther-
mal equilibrium with the photons had a temperature of 1014 GeV to 1016 GeV [30],
the remaining symmetry is SU(2)L × U(1)Y which governs electroweak interactions.
The fundamental representation of an SU(N) group is the N dimensional complex
vector. The fundamental representation of SU(2)L is generated by the weak isospin
operators IW

a [31] which are equal to the three Pauli matrices σa, σb, σc (see appendix
B) multiplied by a factor 1

2
. The corresponding gauge fields are W a

µ (x) and the gauge
coupling constant is g. a, b, c are SU(2)L gauge indices. The factor 1

2
in the definition

of IW
a is needed to fulfill the Lie algebra of SU(2)L: [IW

a, IW
b] = iεabcIW

c with the
antisymmetric ε tensor being the structure constant of SU(2)L [32]. The commutator
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satisfies the canonical normalization condition tr[IW
a, IW

b] = 1
2
δab.

The generator of U(1)Y is the hypercharge unit matrix YW with corresponding gauge
field Bµ(x) and gauge coupling constant g′. The electromagnetic charge Q is obtained
from the hypercharge Y and the third component I3

W of the weak isospin according
to the charge-hypercharge relation

Q = I3
W + Y .

The chiral fermions (see appendix B) of the theory are arranged into left-handed

doublets Ψ
(i)
L and right-handed singlets Ψ

(i)
R under SU(2)L.

There are i = 1, 2, 3 flavor copies for the doublet and singlet representation. In each
representation, the flavor copies have the same hypercharge (see table 2.1).

The leptons are the doublets Ψ
(i)
L with hypercharge qY = −1

2
and singlets Ψ

(i)
R with

hypercharge qY = −1:

Ψ
(1)
L =

(
νe
e−

)
L

, Ψ
(2)
L =

(
νµ
µ−

)
L

, Ψ
(3)
L =

(
ντ
τ−

)
L

.

ΨR,i = eR, µR, τR .

Observe that there are no right-handed neutrinos.
The quarks are the doublets Ψ

(i)
L,q with hypercharge qY = 1

6
and singlets Ψ

(i)
R,u and Ψ

(i)
R,d

with hypercharges qY,u = 2
3

and qY,d = −1
3
:

Ψ
(1)
L,q =

(
u
d′

)
L

, Ψ
(2)
L,q =

(
c
s′

)
L

, Ψ
(3)
L,q =

(
t
b′

)
L

,

Ψ
(i)
R,u = uR, cR, tR Ψ

(i)
R,d = dR, sR, bR .

For quarks, there are two types of Yukawa terms (see below): the one which forms
a mass term for the upper component of the doublets (Yukawa coupling yu) and the
one which forms a mass term for the lower component (Yukawa coupling yd). So
there are two corresponding mass matrices, however, they can not be diagonalized
at the same time. In general, each type mixes the flavors of the doublets and the
singlets. We choose the doublets in such a way that the upper components are the
mass eigenstates. Then the lower components are a linear combination of lower doublet
flavor fields, indicated by a prime: d′

s′

b′

 =

 Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 d
s
b

 ≡ V

 d
s
b

 . (2.1.1)

This means that in the quark sector there is a flavor mixing expressed by the 3 × 3
unitary Cabibbo [33]-Kobayashi-Maskawa-matrix [34] V.
Clearly, for leptons, there is only the mass term for the lower component of the doublet
because neutrinos are massless in the Standard Model. Therefore, transitions in a
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Particle qC qL qY qB−L Z2 Z4

Standard Model

Ψ
(i)
L 1 2 −1

2
-1 +1 α

Ψ
(i)
R 1 1 -1 -1 +1 α

Ψ
(i)
L,q 3 2 1

6
1
3

+1 1

Ψ
(i)
R,u 3 1 2

3
1
3

+1 1

Ψ
(i)
R,d 3 1 −1

3
1
3

+1 1

φ 1 2 1
2

0 +1 1
Extension

ϕ 1 1 0 2 +1 α2

NR 1 1 0 -1 -1 α3

h+ 1 1 1 2 +1 α2

k++ 1 1 2 2 +1 α2

Table 2.1.: Particle content

lepton doublet mediated by the exchange of W a
µ (x) gauge bosons are flavor conserving.

In the Standard Model, the electroweak symmetry breaking is driven by the complex
Higgs doublet φ(x). In the neighborhood of its vacuum expectation value w, φ(x) can
be written as

φ(x) =
1√
2

(
0

H(x) + w

)
(2.1.2)

with 〈0|φ(x)|0〉 = w√
2
.

In (2.1.2), we use the unitary gauge in which the unphysical degrees of freedom (see
equation (4.2.3)) are absorbed into the gauge transformation. The complex scalar field
H(x) parametrizes fluctuations about w with 〈0|H(x)|0〉 = 0.
The prefactor 1√

2
in (2.1.2) originates from the minimization of the potential (2.2.1).

The charge assignments are listed in table 2.1, where qC denotes the charge under
SU(3)C , qL the charge under SU(2)L, qY the charge under U(1)Y and qB−L the charge
under U(1)B−L. Z2 and Z4 indicate the transformation behavior of the fields under

the abelian discrete symmetries Z2 and Z4 with α = e
i2π
4 .

The full Lagrangian of the theory can be split into separate parts:

LEWSM = Lcov + Lgauge + LY ukawa + V (φ) . (2.1.3)

In the following analysis we suppress the flavor indices. Each term containing Ψ and

Ψ represents a sum over flavor indices in the form of Ψ
(i)

Ψ(j)δ(ij). Recall that the
lower components of quark doublets are mixtures of the corresponding flavor fields.
SU(2)L gauge indices are shown only when needed.
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The part containing the covariant derivative terms of the fields listed in table 2.1 is

Lcov = iΨL,qD/ΨL,q + iΨR,uD/ΨR,u + iΨR,dD/ΨR,d

+ iΨLD/ΨL + iΨRD/ΨR

+ (Dµφ)†(Dµφ) . (2.1.4)

The generators of the covariant derivative Dµ are in the representation to which the
corresponding field belongs, e.g., for SU(2)L doublet fields the Standard Model co-

variant derivative D(SM)
µ is in its fundamental representation:

D(SM)
µ = ∂µ − igIaWW a

µ − ig′YWBµ . (2.1.5)

Furthermore, there are the gauge kinetic terms

Lgauge = −1

4
F1,µν(x)F µν

1 (x)− 1

4
F a

2,µν(x)F a,µν
2 (x) , (2.1.6)

with U(1)Y field strength tensor

F1,µν(x) = ∂µBν(x)− ∂νBµ(x) ,

and SU(2)L field strength tensor

F a
2,µν = ∂µW

a
ν (x)− ∂νW a

µ (x) + gεabcW b
µ(x)W c

ν (x) .

Observe that F a
2,µν involves an additional term compared to F1,µν(x) which accounts

for the fact that SU(2)L is non-abelian whereas U(1)Y is abelian. The Yukawa terms
are

LY ukawa = −ydΨL,qφΨR,d − yuΨL,qφ̃ΨR,u − yLΨLφΨR (2.1.7)

with φ̃ ≡ iσ2φ∗ and Ψ
(1)

L ≡ (ν e)L.
The potential is

V (φ) =
λ

4

(
φ†φ
)2 − µ2

2φ
†φ . (2.1.8)

The parameter µ2 in the potential (2.1.8) with mass dimension 2 is the only dimen-
sionful parameter of the electroweak Lagrangian (2.1.3). Observe that the signs chosen
in (2.1.8) are crucial: only if there is a relative minus sign between the |φ|2 and the
|φ|4 terms, the minima of (2.1.8) occur at φ = φ0 6= 0. The extremum at φ = 0 is
unstable. This means that if the field φ is initially zero, it will make a transition to the
stable state φ0. The degeneracy of φ0 is essential for spontaneous symmetry breaking
(see section 2.2.1).
All terms of the Lagrangian (2.1.3) enjoy a U(1) symmetry which can be either global
or local. This is due to the fact that in the Standard Model, all interactions preserve
lepton number L and baryon number B and hence also (B − L) number. Therefore,
the U(1) symmetry can be U(1)B−L.
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2.2. Mass Terms of the Electroweak Theory

2.2.1. Fermions
Writing Dirac mass terms mD for the chiral fermions in the Lagrangian (2.1.3) violates
the gauge symmetry of the theory. Consider, for example, the Dirac mass term for the
electron: m

(e)
D = meeLeR. The tensor product of an SU(2)L doublet eL and an SU(2)L

singlet eR does not contain an SU(2)L singlet in its direct sum and is thus not gauge
invariant under SU(2)L. Besides, the expression eLeR has a remaining hypercharge
qY = +1

2
− 1 = −1

2
6= 0.

The Standard Model mechanism to obtain Dirac mass terms for chiral fermions is
spontaneous symmetry breaking . To put spontaneous symmetry breaking into action,
we have to introduce the complex Higgs doublet

φ(x) =

(
φ+(x)
φ0(x)

)
.

The charge assignments of its components are a consequence of its hypercharge YW = 1
2

and the charge-hypercharge relation. All the Yukawa terms in (2.1.7) transform as
scalars under SU(2)L × U(1)Y .
The potential (2.1.8) is equivalent to

V (|φ|2) =
λ

4

(
|φ|2
)2 − µ2

2|φ|2 . (2.2.1)

Since |φ|2 = φ†φ is invariant under φ(x) → φ′(x) = eiα(x)φ(x), (2.2.1) is invariant
under a local U(1) transformation with phase α(x). Setting the first derivative of V
with respect to |φ|2 to zero, (2.2.1) shows that the potential (2.1.8) takes its minima
for

0 6= |φ0|2 =
2µ2

2

λ
≡ w2

2
.

These minima also exhibit a local U(1) symmetry. But if the potential is in a certain
minimum φ0 with vacuum expectation value w = 2√

λ
µ and a definite phase α0, then

the potential does not possess the full original symmetry: the symmetry is sponta-
neously broken. With spontaneous breaking of a continuous global symmetry, massless
scalar degrees of freedom, the Goldstone modes , enter the theory. But with sponta-
neous breaking of a continous local symmetry, the Goldstone modes have no physical
significance. For example, in unitary gauge , they can be absorbed into a local trans-
formation of φ(x).

Demanding Qφ0
!

= 0 for an electrically neutral vacuum, where the charge operator Q
for the Higgs field reads

Q =
1

2
σ3 +

1

2
1 =

(
1 0
0 0

)
,

we see that φ0 is given by

φ0 =

(
0

1√
2
w

)
.
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Since the lower component of the Higgs doublet is electrically neutral as mentioned
above, the minimum φ0 is invariant under U(1)em transformations.
Hence, the complex Higgs field φ(x) introduced at the end of section 2.1 accomplishes
the phase transition SU(2)L×U(1)Y → U(1)em. After this symmetry breakdown, the
Yukawa terms (2.1.7) transform into Dirac mass terms for the chiral fermions, which
are still invariant under U(1)em. An important fact is that the Dirac mass cannot be
larger than the symmetry breaking scale set by w.
Dirac mass terms connect the left-handed projection of a Dirac spinor Ψ with its right-
handed projection (see appendix B), i.e., they have the form mDΨLΨR . Majorana
mass terms connect a fermion with its Majorana conjugate (see B.3), i.e., they have
the form mMΨCΨ. Majorana mass terms do in general not rely on spontaneous
symmetry breaking. This means that the tensor product ΨCΨ itself has to be gauge
invariant, in contrast to the Standard Model Dirac mass terms, which arise from gauge
invariant Yukawa terms after spontaneous symmetry breaking and are therefore not
gauge invariant under SU(2)L × U(1)Y . To be gauge invariant, the tensor product
ΨCΨ has to contain a singlet in its decomposition (compare to the beginning of this
section). That means that Ψ has to transform either trivially under the gauge group,
i.e., as a singlet, or in a real representation. A representation r of a Lie algebra is real
if r is equivalent to its conjugate r. So for Ψ transforming in a real representation r,
the tensor product in the Majorana mass term is r× r, which contains a singlet in its
decomposition for any real r and thus is gauge invariant. The adjoint representation,
for which the generators are given by the structure constants, is a real representation
because the structure constants are real. In summary, for a gauge invariant Majorana
mass term mMΨCΨ, the field Ψ has to be a singlet or it has to transform in a real
representation, for example, in the adjoint. In our proposed model, Ψ is a singlet.

2.2.2. Gauge Bosons
The covariant derivative (2.1.5) acting on the Higgs doublet is expanded into

Dµ = ∂µ −
ig

2

(
W 3
µ W 1

µ − iW 2
µ

W 1
µ + iW 2

µ −W 3
µ

)
− ig′

2

(
Bµ 0
0 Bµ

)
.

With the definition W±
µ ≡ 1√

2

(
W 1
µ ∓ iW 2

µ

)
, the covariant derivative term for the Higgs

doublet becomes

(Dµφ)† (Dµφ) =
1

4
g2W−

µ W
µ+
(
H2(x) + 2wH(x) + w2

)
+

1

8

(
H2(x) + 2wH(x) + w2

)
·
(
g2W 3

µW
µ3 − gg′W 3

µB
µ − gg′BµW

µ3 + g′BµB
µ
)

+
1

2
∂µH(x)∂µH(x) . (2.2.2)

The terms proportional to w2 are

1

4
g2w2W−

µ W
µ+ and

1

8
w2(gW 3

µ − g′Bµ)(gW µ3 − g′Bµ) . (2.2.3)
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The first term of (2.2.3) reveals that W± are the electrically charged eigenstates with
mass mW±µ

= 1
2
gw.

The second term of (2.2.3) is equivalent to

1

8
w2
(
Bµ W

3
µ

)
·M2 ·

(
Bµ

W µ3

)
(2.2.4)

with

M2 =

(
g′2 −g′g
−g′g g2

)
. (2.2.5)

M2 is diagonalized by the orthogonal matrix

O =

 g√
g′2+g2

g′√
g′2+g2

− g′√
g′2+g2

g√
g′2+g2

 ≡ ( cos ΘW sin ΘW

− sin ΘW cos ΘW

)
(2.2.6)

with the weak mixing angle ΘW .
Inserting (2.2.6) as unit matrix OTO = 1 into (2.2.4),

1

8
w2
(
Bµ W

3
µ

)
(OTO) ·M2 · (OTO)

(
Bµ

W µ3

)
,

and defining (
Aµ
Zµ

)
≡ O

(
Bµ

Wµ3

)
,

(2.2.4) simplifies to

1

8
w2 (Aµ Zµ)

(
0 0
0 g′2 + g2

)(
Aµ

Zµ

)
=

1

2
· 1

4
w2(g′2 + g2)ZµZ

µ . (2.2.7)

(2.2.7) reveals that the electrically neutral mass eigenstates are Aµ and Zµ with masses

mAµ = 0 and mZµ = 1
2
w
√
g′2 + g2 = 1

cos ΘW
mW±µ

.

So, in the Standard Model, the masses of the W± and Zµ boson obey the relation

ρ ≡
m2
W±µ

m2
Zµ

cos2 ΘW

= 1 . (2.2.8)

Deviations of ρ from 1 are induced by radiative corrections (see end of section 4.2.1).
The covariant derivative term (2.2.2) for the Higgs doublet expressed in mass eigen-
states then reads:

(Dµφ)† (Dµφ) =
1

4
g2W−

µ W
µ+
(
H2(x) + 2wH(x) + w2

)
+

1

8

(
g′2 + g2

)
ZµZ

µ
(
H2(x) + 2wH(x) + w2

)
+

1

2
∂µH(x)∂µH(x) . (2.2.9)
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2.3. Masses for Neutrinos

2.3.1. The Problem

The particle spectrum of the Standard Model does not contain a right-handed neutrino.
So there is no Dirac mass mD for neutrinos. A Majorana mass mM violates the
global U(1)B−L symmetry by two units. Besides this, Majorana mass terms are only
allowed for singlet fields with singlets zero hypercharges or for fields transforming
in a real representation, for example in the adjoint (see section 2.2.1). This special
transformation behavior also accounts for the charge conjugation operation C: by
definition, a Majorana field has to satisfy ΨC = Ψ. But in the Standard Model,
all fermions are charged under U(1)Y and there are no SU(2) triplet fields which
corresponds to the adjoint representation. Therefore, in the framework of the Standard
Model, neutrinos are massless.
Experiments have measured neutrino oscillations. The propability P t

αβ for the flavor
eigenstate να to make the transition to the flavor eigenstate νβ during a time interval t
must therefore be different from zero. It can be shown [35] that P t

αβ is proportional
to the term ∑

i,j

sin2

(
(m2

i −m2
j)L

4E

)
, (2.3.1)

where i and j index mass eigenstates, L is the distance which the propagating mass
eigenstates travel during the time t and E is the energy of the neutrinos.
The term (2.3.1) is different from zero only if m2

i −m2
j 6= 0. Thus neutrinos must be

massive in order to explain the observed oscillations. Note that for three generations
there are two independent mass differences.
Hence the flavor eigenstates νe , νµ , ντ are linear combinations of the mass eigenstates
ν1 , ν2 , ν3:  νe

νµ
ντ

 ≡ U

 ν1

ν2

ν3

 , (2.3.2)

U =

Atmospheric︷ ︸︸ ︷ 1 0 0
0 c23 s23

0 −s23 c23


︸ ︷︷ ︸

Θ23

·

Cross-Mixing︷ ︸︸ ︷ c13 0 s13e
−iδ

0 1 0
−s13e

−iδ 0 c13


︸ ︷︷ ︸

Θ13

·

Solar︷ ︸︸ ︷ c12 s12 0
−s12 c12 0

0 0 1


︸ ︷︷ ︸

Θ12

·

Majorana phases︷ ︸︸ ︷ e
iα1
2 0 0

0 e
iα2
2 0

0 0 1

 ,
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where the Pontecorvo-Maki-Nakagawa-Sakata matrix U expresses the lepton mixing
[36].
For n generations the n × n unitary mixing matrix U has (n − 1)2 free parameters
because (2n − 1) parameters are absorbed into the relative phases between the n
neutrino flavor eigenstates and the n neutrino mass eigenstates. (n− 1)2 equals

(n− 1)2 =
1

2
n(n− 1)︸ ︷︷ ︸

mixing angles

+
1

2
(n− 1)(n− 2)︸ ︷︷ ︸

CP violating phases

.

Thus for n = 3 there are three mixing angles Θ12 (νe−νµ mixing), Θ13 (νe−ντ mixing),
Θ23 (νµ − ντ mixing) and one CP violating phase δ.
We use the abbreviations cij = cos Θij, sij = sin Θij and αi are the Majorana phases
which do not enter into the oscillation phenomena.
According to (2.3.1), only differences of mass squares can be measured in oscillation
experiments and there are the possible cases of normal mass hierarchy with m1 <
m2 < m3 and inverted mass hierarchy with m3 < m1 < m2. The current global fit of
the oscillation data is [37]:

∆m2
sol = m2

2 −m2
1 = (7.59± 0.20)× 10−5 eV2,

∆m2
atm = m2

3 −m2
1 =

{
(−2.36± 0.11)× 10−3 eV2 for Inverted Hierarchy
(+2.46± 0.12)× 10−3 eV2 for Normal Hierarchy

,

sin2 θ12 = 0.319± 0.016, sin2 θ23 = 0.462+0.082
−0.050, sin2 θ13 = 0.0095+0.013

−0.007 .

There are three additional measurable quantities which are formed of the neutrino mass
eigenvalues mi [38]: the kinematic mass mβ =

√∑ |Uei|2m2
i measured in beta decay

experiments, e.g., with KATRIN [39], and currently limited by mβ ≤ 2.3 eV [40]; the
effective mass 〈m〉 = |∑U2

eimi| measured in neutrinoless double beta decay (0νββ)
experiments and limited from above by 0.5 to 1 eV assuming light neutrino exchange
for 0νββ [38]; and the sum Σ ≡∑mi of neutrino masses limited by cosmic microwave
background (CMB) data: Σ < 1.3 eV [41].
We see how particle physics and cosmology cooperate: From particle physics experi-
ments one can get information about the neutrino mixing, from cosmological observa-
tions one can learn about the sum of the neutrino mass eigenvalues.
In summary, at least two neutrinos carry masses that are small relative to all other
particle masses.

2.3.2. Pathways to Naturally Small Neutrino Masses
The problem about the neutrino mass encountered in the previous section indicates
that only physics beyond the Standard Model can create neutrino masses.
Majorana neutrino masses can be generated through the unique dimension five oper-
ator [42]

Λ−1φφνiνj (2.3.3)
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Φ0

Φ0

Νi

Ν j

NR

Figure 2.1.: Tree-level realization of the effective operator (2.3.3) with a heavy right-
handed Majorana neutrino NR

with left-handed neutrino flavor states νi,j.
One possibility to obtain the operator (2.3.3) at tree level is to start with a completed
theory which has heavy right-handed Majorana neutrinos NR with masses mNR as
Standard Model singlet particles and the renormalizable interactions fiνiNRφ leading
to Dirac mass terms fiwνiNR with mi

D = fiw. The relevant parts in the corresponding
Lagrangian are symbolically

L = fiνiNRφ−mNRNRNR .

NR fulfills the classical Euler-Lagrange equations of motion if

∂µ
∂L
∂µNR

− ∂L
∂NR

= 0⇔ fiνiφ = 2mNRNR ⇔ NR =
1

2mNR

fiνiφ . (2.3.4)

Integrating out the spinor NR from the t-channel exchange processes depicted in fig-
ure 2.1, i.e., replacing NR in the vertex fjνjNRφ with equation (2.3.4), the effective

operator (2.3.3) emerges with Λ−1 =
fifj

2mNR
and the neutrino mass matrix becomes

miDm
j
D

mNR
. Assuming the coupling constants fi of order O(0.1), the mass mNR has to be

of order O(1012) GeV to produce the light neutrino mass of order O(0.1) eV. Note
that compared to chiral fermions, mNR is not limited from above by the electroweak
scale w, it can be arbitrarily large. There are two more tree-level realizations of the
operator (2.3.3) [43]. All tree-level realizations rely on heavy extra particles and lead
to the known Type I, II and III seesaw mechanism : Type I is just the described
case in which a fermion singlet is exchanged, whereas in Type II seesaw models scalar
triplets produce the light neutrino masses and in Type III models fermion triplets are
responsible for the neutrino masses.
The operator (2.3.3) can also be realized at loop-level with additional particles run-
ning in the loop [43]. The extra particles in models which generate neutrino masses
radiatively need not be heavy due to additional loop suppression factors and could be
in reach of upcoming experiments.
In section 4.1 we will present a model with radiatively generated neutrino masses.
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2.4. The Axial Vector Current Anomaly
In this section, we present the condition for the conservation of the axial vector current
in a quantum field theory. The result is needed in the following section to motivate
the introduction of a right-handed Majorana neutrino NR in an extended Standard
Model with a gauged U(1)B−L.
In appendix B, the axial vector current is defined as:

jµ5(x) = Ψ(x)γµγ5Ψ(x) . (2.4.1)

In view of Noether’s theorem, the axial vector current is a symmetry current which
follows from the chiral transformation Ψ(x)→ Ψ′(x) = (1 + iαγ5)Ψ(x).
Observe that due to the anticommutation relations of the γ matrices, we have the
equality

(1 + iαγ5)Ψ = (Ψ† − iαΨ†γ5)γ0 = Ψ + iαΨγ5 = Ψ(1 + iαγ5) .

The chiral transformation is a symmetry tranformation of the Dirac Lagrangian (B.2.1)
if m = 0:

Ψ′(i∂/−m)Ψ′ = Ψ(1 + iαγ5)iγµ∂µ(1 + iαγ5)Ψ−mΨ(1 + iαγ5)(1 + iαγ5)Ψ

= Ψiγµ∂µΨ + Ψiγµ∂µ(iαγ5Ψ) + Ψiαγ5iγµ∂µΨ

−ΨmΨ− 2imαΨγ5Ψ +O(α2)

= Ψiγµ∂µΨ−Ψiαγ5iγµ∂µΨ + Ψiαγ5iγµ∂µΨ

−ΨmΨ− 2imαΨγ5Ψ +O(α2)

= Ψ(i∂/−m)Ψ− 2imαΨγ5Ψ +O(α2) .

In fact, using the classical Euler-Lagrange equations (B.2.2) and (B.2.3), we see that
jµ5 is conserved

∂µj
µ5 = 2imΨγ5Ψ = 0 (2.4.2)

for massless fermions Ψ.
However, the conservation of the axial vector current relies on the classical equations
of motion. A conservation law and thus a symmetry which exists on the classical level
need not hold automatically after promoting the classical theory to a quantum field
theory. If the resulting quantum field theory does not possess the original symmetry
of the classical theory, it is said to be anomalous. Local, i.e., gauge symmetries are of
special importance because with a gauge choice one can remove the unphysical degrees
of freedom in a theory, compare, for example, to the Goldstone modes which can be
absorbed in a unitary gauge . A consistent quantum field theory has therefore to be
free of gauge anomalies .
To see how anomalies arise in a quantum field theory, we begin with an abelian gauge
symmetry to simplify the argumentation. Consider the process in which an axial vector
current jµ5(x) creates two photons from the vacuum state |0〉 with momenta and four-
vector components (p, ν) and (k, λ), respectively. We write the matrix element which
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p

kq

Ν

Λ

Μ

l

l+p

l-k

Figure 2.2.: Triangle diagram

we have to study for this process as

〈p, ν; k, λ|jµ5(x)|0〉 . (2.4.3)

The initial state is the vacuum state |0〉 and the final state is the two particle state
〈p, ν; k, λ|. The transition operator is the axial vector current jµ5(x).
To apply the momentum space Feynman rules we have to Fourier transform (2.4.3).
Then we obtain

〈p, ν; k, λ|j̃µ5|0〉 =

∫
d4x e−iqx〈p, ν; k, λ|jµ5(x)|0〉

= (2π)4δ(4)(p+ k − q)ε∗ν(p)ε∗λ(k)Mµνλ(p, k) . (2.4.4)

The four-dimensional delta distribution ensures four-momentum conservation.
ε∗ν(p) is the polarization vector of an outgoing photon Aν with momentum p.
Mµνλ(p, k) is the abbreviation for the rest of a process involving the expression γµγ5

from the axial vector current interaction and two external photons with momenta p
and k. The leading order contribution toMµνλ(p, k) is shown in the triangle diagram
of figure 2.2.
Computing ∂µj̃

µ5 on the left-hand side of (2.4.4) corresponds to multiplying the right-
hand side of (2.4.4) by (−iqµ):

〈p, ν; k, λ|∂µj̃µ5|0〉 =

∫
d4x (−iqµ)e−iqx〈p, ν; k, λ|jµ5(x)|0〉

= (2π)4δ(4)(p+ k − q)ε∗ν(p)ε∗λ(k)(−iqµ)Mµνλ(p, k). (2.4.5)

Evaluating the expression qµMµνλ, the term qµγ
µγ5 emerges in a loop integral over

the unfixed momentum l, which we write as

qµγ
µγ5 = (l/+ k/+ p/− l/)γ5 . (2.4.6)

If one perfoms the loop integral in d dimensions (see appendix D), a generic momentum
p can be written as pd = p4 + pd−4, where p4 has components in four dimensional
spacetime and pd−4 has components in the (d− 4) extra dimensions. γ5 anticommutes
with γµ in four dimensional space time and commutes with γµ in the (d − 4) extra
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dimensions. The unfixed momentum l lives in d dimensions, the external momenta q,
p and k in four dimensions. Equation (2.4.6) is then modified to

qµγ
µγ5 = (l/4 + l/d−4 + k/4 + p/4 − l/4 − l/d−4)γ5

= (l/4 + k/4)γ5 + γ5(l/4 − p/4)

= (l/d + k/4)γ5 − l/d−4γ
5 + γ5(l/d − p/4)− γ5l/d−4

= (l/d + k/4)γ5 + γ5(l/d − p/4)− 2γ5l/d−4 . (2.4.7)

There exists an additional diagram which is obtained from figure 2.2 after crossing
(p, ν) and (k, λ). However, equation (2.4.7) is antisymmetric under crossing (p, ν) and
(k, λ). Hence only the term (−2γ5l/d−4) is left in the loop integral. In [32], it is shown
that this term gives

iqµ · Mµνλ(p, k) ∝ εαλβνkαpβ . (2.4.8)

Inserting (2.4.8) into (2.4.5), we obtain the anomalous nonconservation of the axial
vector current:

〈p, ν; k, λ|∂µj̃µ5|0〉 = const. · 〈p, ν; k, λ|εανβλFανFβλ|0〉 . (2.4.9)

In the derivation of (2.4.9) we used the antisymmetry of εαλβν under interchange of
indices which allows us to rewrite

εανβλ∂αAν =
1

2
· 2 εανβλ∂αAν =

1

2

(
εανβλ∂αAν + εναβλ∂νAα

)
=

1

2
εανβλ(∂αAν − ∂νAα) .

which is equal to 1
2
εανβλFαν in an abelian gauge theory. F̃ βλ = εανβλFαν is the dual

tensor to Fβλ.
In the case of a non-abelian gauge symmetry, the non-conservation of the axial vector
current

jµa(x) = Ψ(x)γµ
(

1− γ5

2

)
taΨ(x)

reads:
〈p, ν, b; k, λ, c|∂µj̃µa|0〉 = const. εανβλ pαkβ · Aabc . (2.4.10)

jµa(x) is a chiral axial vector current; comparing with expression (B.1.10), we see that
jµa(x) projects on left handed fermions.
The variable Aabc is given by Aabc =tr [ta{tb, tc}], where ta are the generators of the
gauge group in a specific representation and the trace is taken over all fermion species
that can run in the loop of the triangle diagram with an extra minus sign for left-
handed fermions.
To ensure that the classically conserved axial vector current is also conserved in a
non-abelian gauge theory, Aabc has to be zero.
The Standard Model with the non-abelian gauge group G(SM) = SU(3)C × SU(2)L ×
U(1)Y is anomaly-free: Aabc equals zero for every possible triangle diagram if one sums
over all the Standard Model fermions. For every extension of G(SM) one has to satisfy

the anomaly condition Aabc !
= 0.
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2.5. The Right-Handed Majorana Neutrino
Within the current experimental limits, all Standard Model interactions seem to pre-
serve lepton number L and baryon number B. In the Standard Model, the combination
(B − L) is therefore conserved, too.
The global U(1)B−L symmetry need not to be an exact symmetry. It can be regarded
as an additional gauge symmetry which is spontaneously broken during a phase tran-
sition by a complex scalar singlet ϕ receiving its vacuum expectation value.
The scale at which ϕ obtains its vacuum expectation value then defines the scale of
new physics. Processes in which (B − L) is violated are suppressed by the symmetry
breaking scale.
The Standard Model gauge group G(SM) is then extended to G(SM) × U(1)B−L.
The covariant derivative (2.1.5) becomes:

Dµ = D(SM)
µ − i gB−LZ

′
µ , (2.5.1)

with U(1)B−L gauge field Z ′µ(x) and coupling constant gB−L.
We want to remark that the ratio of the mass MZ′ of the Z ′ boson to its coupling
constant gB−L is bounded from below by electroweak precision observables which can
be expressed in terms of the S, T and U parameters [44]. Given the measured value
of the electroweak precision observables, one can fit the S, T and U parameters to lie
in certain intervals. In Z ′ models, S, T and U depend on the ratio

MZ′
gB−L

. From the

fitted range for S, T and U , one then obtains the following bound [45]:

MZ′

gB−L
> 6 TeV . (2.5.2)

The Z ′ boson has the gauge kinetic term

LZ′gauge = −1

4
F3,µν(x)F µν

3 (x) (2.5.3)

with U(1)B−L field strength tensor

F3,µν(x) = ∂µZ
′
ν(x)− ∂νZ ′µ(x) .

We assume no gauge kinetic mixing between U(1)Y and U(1)B−L. If we further assume
a flavor-independent qB−L charge assignment for the Standard Model fermions, then
the coupling of the Z ′ boson is unaffected by the fermion mixings expressed in the
matrices (2.1.1) and (2.3.2). So there are no flavor changing neutral currents induced
by the Z ′ couplings. From the [SU(2)L]2U(1)B−L anomaly cancellation (compare
figure 2.3) we conclude [32]:

0
!

=
∑
ΨL

qB−L(ΨL) = −qB−L(ΨL)− 3qB−L(ΨL,q)

⇔ qB−L(ΨL) = −3qB−L(ΨL,q) . (2.5.4)
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Figure 2.3.: [SU(2)L]2U(1)B−L, [SU(3)C ]2U(1)B−L and [U(1)Y ]2U(1)B−L anomaly

The [SU(3)C ]2U(1)B−L anomaly cancellation condition (compare figure 2.3) gives [32]:

0
!

=
∑
Ψq

qB−L(Ψq) = −2qB−L(ΨL,q) + qB−L(ΨR,u) + qB−L(ΨR,d)

⇔ qB−L(ΨR,d) = 2qB−L(ΨL,q)− qB−L(ΨR,u) . (2.5.5)

The [U(1)Y ]2U(1)B−L anomaly cancellation condition (compare figure 2.3) implies [32]:

0
!

=
∑
L ,R

q2
Y (ΨL,R)qB−L(ΨL,R)

= − 2q2
Y (ΨL)qB−L(ΨL) + q2

Y (ΨR)qB−L(ΨR)

+ 3
(
−2q2

Y (ΨL,q)qB−L(ΨL,q)

+ q2
Y (ΨR,u)qB−L(ΨR,u) + q2

Y (ΨR,d)qB−L(ΨR,d)
)

= − 2

(
−1

2

)2

qB−L (ΨL) + (−1)2 qB−L (ΨR)

+ 3

(
−2

(
1

6

)2

qB−L (ΨL,q)

+

(
2

3

)2

qB−L (ΨR,u) +

(
−1

3

)2

qB−L (ΨR,d)

)
(2.5.4),(2.5.5)

= 2qB−L(ΨL,q) + qB−L(ΨR) + qB−L(ΨR,u)

⇔ qB−L(ΨR) = − 2qB−L(ΨL,q)− qB−L(ΨR,u) . (2.5.6)

The conditions (2.5.4), (2.5.5) and (2.5.6) hold for any U(1) gauge extension of G(SM)

[46]. For the special case of U(1)B−L we have the restriction qB−L(ΨR,u) = qB−L(ΨL,q).
Then the qB−L charges of the Standard Model fermions are those included in table
2.1. Other U(1)Z′ extensions and their charge assignments arising from anomaly can-
cellation can be found in [47].
The triangle anomaly of the Standard Model fermion currents coupled to the U(1)B−L
(see figure 2.4) sums up to

∑
L ,R

q3
B−L(ΨL,R) = −2 (−1)3 + (−1)3 + 3

[
−2

(
1

3

)3

+

(
1

3

)3

+

(
1

3

)3
]

= 1.
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Figure 2.4.: [U(1)B−L]3 anomaly

Anomaly cancellation then compels to introduce a Standard Model fermion singlet
NR with U(1)B−L charge qB−L = −1. The only particle to which NR can couple is the
scalar ϕ:

LNR = −1

2
λcϕNC

RNR + h.c. . (2.5.7)

Invariance under U(1)B−L assigns to ϕ the U(1)B−L charge qB−L = 2. λc is a dimen-
sionless coupling constant. Thus NR has to be a right-handed Majorana neutrino. In
its covariant derivative term

LNRcov = iNRD/NR , (2.5.8)

only the U(1)B−L part acts.
Being a Standard Model fermion singlet with hypercharge qY = 0, NR cannot con-
tribute to one-loop corrections of the vacuum polarization amplitudes of W± and Z.
This means that there are no constraints for NR arising from elctroweak precision
parameters (compare to end of section 4.2.1).
The covariant derivative term for the singlet ϕ becomes the mass term of the Z ′ boson
after spontaneous symmetry breaking of U(1)B−L. Let w′ be the vacuum expectation
value of ϕ (see equation (4.2.2)) and recall that qB−L(ϕ) = 2. Then it follows:

(Dµϕ)∗(Dµϕ) =
1

2
· 4g2

B−Lw
′2Z ′µZ

′µ

⇒M2
Z′ = 4g2

B−Lw
′2 .

From the bound (2.5.2), we then infer that the singlet vacuum expectation value w′

must satisfy
w′ > 3 TeV .



Chapter 3

Dark Matter Candidates: A
Three-Point Test

Particle dark matter is the interface of particle physics and astrophysics. This chapter
starts with an introduction into astrophysics by deriving the Friedmann equations in
section 3.1. In section 3.2, based on observational results, we point out that the lion’s
share of the matter content of the universe is dark matter. To match all observations, a
possible particle candidate for dark matter has to fulfill necessary conditions of which
we will study three, assembled in a three point test: Does the particle candidate match
the correct relic density?, Is it cold? and Can it be probed experimentally?. The
thermal relic density of a particle is deduced from the Boltzmann equation in section
3.3. In section 3.4, we argue that a bottum-up approach for structure formation
in the universe favors cold dark matter. The strategies for detecting dark matter
are studied in section 3.5: the principle of direct detection experiments with the
examples of the CDMS II and the DAMA/LIBRA experiment in section 3.5.1, indirect
detection experiments with the example of the Fermi-LAT experiment in section 3.5.2
and collider production with the example of the LHC in section 3.5.3. A critical
discussion of these strategies follows in section 3.5.4.

3.1. Cosmological Equations

The basic equations of the Standard Model of Cosmology [30], the ΛCDM model , rely
on Einstein’s equations of General Relativity, i.e., dynamical equations for a metric
tensor gµν which characterizes the geometry of space time. These can be derived from
the principle of least action.
The geometry of four-dimensional space time is encoded in the Riemann curvature
tensor Rµνρσ which is a unique expression derived from combinations of the metric
tensor gµν . Since an action S is given by integrating a scalar, we have to construct a
scalar from the Riemann curvature tensor to obtain an action for gravity. This is done
by first contracting the indices of the Riemann curvature tensor with the metric tensor
gµν yielding the Ricci tensor Rµρ ≡ Rµνρσ ·gνσ = Rµνρ

ν . In a second step we calculate
the trace of the Ricci tensor resulting in the curvature scalar R = Rµν · gµν = Rµ

µ.
The action S for General Relativity has to lead to the same physics after transforming
the coordinates through a diffeomorphism. The rule for integration by substitution as-
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signs the following diffeomorphism-invariant integral for any integrable function f(x):∫
d4x
√−g f(x) ,

with g ≡ det (gµν).
The minus sign arises because locally gµν can be equal to the Minkowski metric
gµν = diag (−,+,+,+), for which g = −1.
S then follows to

S =

∫
d4x
√−g

(
1

2
√

8πGN

· R+ Lmatter
)
,

with Lmatter containing the energy momentum tensor Tµν and the cosmological con-
stant Λ.
Applying the principle of least action [48], the outcome are Einstein’s equations of
General Relativity :

Rµν −
1

2
gµνR = 8πGNTµν + Λgµν . (3.1.1)

On scales larger than 108 pc, cosmological observations suggest that the universe is
homogeneous and isotropic (compare [49]). The metric satisfying homogeneity and
isotropy is the Robertson-Walker metric

ds2 = xµxνgµν = dt2 −R2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

]
, (3.1.2)

with comoving radial coordinate r, the scale factor R(t) expressing the physical dis-
tance x(t) as x(t) = R(t) ·r and the curvature constant k ∈ {+1,−1, 0} corresponding
to closed (k = +1), open (k = −1) or spatially flat (k = 0) geometries.
The energy momentum tensor Tµν has to be diagonal in a homogeneous universe and
its spatial components have to be equal due to isotropy. If we assume that the matter
content of the universe behaves like a perfect fluid with energy density ρ and pressure
p, then

Tµν = diag (ρ, p, p, p). (3.1.3)

With (3.1.2) and (3.1.3), the (00) component of (3.1.1) is evaluated to

H(t)2 ≡
(
Ṙ(t)

R(t)

)2

=
8πGNρ(t)

3
− k

R(t)2
+

Λ

3
. (3.1.4)

Dividing by the present day Hubble expansion rate H2
0 = H(t = t0)2 and introducing

the critical density

ρc ≡
3H2

0

8πGN

,

equation (3.1.4) is equivalent to

ρ(t)

ρc
− k

H2
0R(t)2

+
Λ

8πGNρc
=
H(t)2

H2
0

. (3.1.5)
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The (ii) components of (3.1.1) are(
R̈(t)

R(t)

)
=

Λ

3
− 4πGN

3
(ρ(t) + 3p(t)) . (3.1.6)

Setting Λ = 0, equation (3.1.6) shows that the universe is either expanding or con-
tracting.
Equations (3.1.4) and (3.1.6) are the Friedmann equations .
Performing the operation

∂

∂t

(
R(t)2 · (3.1.4)

)
− 2Ṙ(t)R(t) · (3.1.6) ,

we find

2Ṙ(t)R̈(t) =
8πGNρ(t)

3
2R(t)Ṙ(t) +

8πGNR(t)2

3
ρ̇(t) +

Λ

3
2R(t)Ṙ(t)

−2Ṙ(t)R̈(t) = −Λ

3
2R(t)Ṙ(t) +

8πGNρ(t)

3
R(t)Ṙ(t) + 8πGNp(t)R(t)Ṙ(t)

⇒ ρ̇(t) = −3H(t)(ρ(t) + p(t)) . (3.1.7)

To solve equation (3.1.7), we use the general equation of state

p = ωρ . (3.1.8)

For this case, (3.1.7) is integrated to

ρ(t) ∝ R(t)−3(1+ω) .

The solutions are classified according to their equation of state parameter:

• For a photon gas ω = 1
3

and ρ(t)γ ∝ R(t)−4.

• For a pressureless gas, i.e., cold and therefore non-relativistic matter, ω = 0 and
ρ(t)m ∝ R(t)−3.

• For the cosmological constant we demand ω = −1 and thus
ρ(t)Λ = ρΛ = const. = Λ

8πGN
= −p leading to an accelerated expansion of the

universe as observed in Type Ia supernovae (SNe) surveys.

We introduce the cosmological density parameter

Ωtot = Ωγ + Ωm + ΩΛ =
ρtot
ρc

(3.1.9)

with the total energy density ρtot = ((ρ0)γ + (ρ0)m) + ρΛ = ρ + ρΛ. Ωm contains
baryonic (b) and dark matter (DM):

Ωm = Ωb + ΩDM .
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Equation (3.1.9) allows to rewrite equation (3.1.5) at present day t = t0 as

k

R2
0

= H2
0 (Ωtot − 1) . (3.1.10)

Equation (3.1.10) reveals that ρc is the critical density for a spatially flat universe:
ρc = ρtot ⇒ Ωtot = 1⇒ k = 0.
Identifying Ωk = − k

H2
0R

2
0

as curvature density parameter and using the classified solu-

tions for the specific energy densities, equation (3.1.5) reads:√
Ωγ

(
R0

R(t)

)4

+ Ωm

(
R0

R(t)

)3

+ Ωk

(
R0

R(t)

)2

+ ΩΛ =
H(t)

H0

. (3.1.11)

With the substitution y ≡ R(t)
R0

it follows that H(t) = ẏ
y
. From equation (3.1.11) the

expansion age of the universe results to:

dt =
dy

yH0

√
Ωγy−4 + Ωmy−3 + Ωky−2 + ΩΛ

. (3.1.12)

An important qualifier has to be made concerning the integration of equation (3.1.12):
(3.1.12) cannot be integrated from t = 0 to t = t′ because general relativity, which
was the starting point in deriving the Friedmann equations, is not valid at the exact
beginning of the universe. We have to split the integration interval into two parts: part
one from t = 0 to t = δt′ is the scope in which a more fundamental theory than classical
general relativity has to be applied, i.e., a quantum field theory of gravity; and part
two from t = δt′ to t = t′ is the validity period of classical general relativity. However,
we assume that δt′ � 1 and neglect quantum gravity effects for the expansion age of
the universe.

3.2. The Amount of Dark Matter
From the fit of the ΛCDM parameters to the WMAP 7-year data of the Cosmic
Microwave Background (CMB) [41] combined with the Baryon Acoustic Oscillations
(BAO) (see section 3.4 and [50]) and the supernovae Type Ia (SNe) data [51], the
following density parameters are found (http://lambda.gsfc.nasa.gov./):

• Ωm = 0.278± 0.015

– Ωb = 0.0461± 0.0015

– ΩDM = 0.232± 0.013

• ΩΛ = 0.722± 0.015 .

All baryonic matter including luminous baryonic matter and non-luminous baryonic
dark matter, e.g., non-luminous baryonic gas, massive astrophysical compact halo

http://lambda.gsfc.nasa.gov./
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Figure 3.1.: 68.3 %, 95.4 % and 99.7% confidence level contours on ΩΛ and Ωm ob-
tained from CMB, BAO and the Union Supernova set, as well as their
combination (assuming w = −1). Figure from [2].
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Figure 3.2.: The abundances of 4He, D, 3He, and 7Li as predicted by the standard
model of Big Bang nucleosynthesis [3]. The bands show the 95 % CL
range. Boxes indicate the observed light element abundances (smaller
boxes: ±2σ statistical errors; larger boxes: ±2σ statistical and system-
atic errors). The narrow vertical band indicates the CMB measurement
of the cosmic baryon density, while the wider band indicates the BBN
concordance range (both at 95 % CL). Figure from [4].

objects, etc. contributes with only about 17 % to the total matter density Ωm.
Figure 3.1 illustrates the combination of WMAP, BAO and SNe data.
The predictions of Big-Bang nucleosynthesis (BBN) are shown in figure 3.2, where
h is the present day normalized Hubble expansion rate (cf.section 3.3) and Yp is the
primordial mass fraction of 4He:

Yp =
2n
p

1 + n
p

. (3.2.1)

n and p denote neutron and proton number densities, respectively. Applied to the
matter content of the universe, the combined data sets of figure 3.1 and figure 3.2
highlight that most of the matter consists of non-baryonic dark matter.
One could argue that neutrinos contribute a large amount to Ωm. But as pointed out
in section 2.3.1, the sum Σ of neutrino masses is limited by

∑
mi ≤ 1.3 eV for three
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light neutrinos. This limit corresponds to a neutrino matter density Ων < 0.05, which
is too small to account for the missing matter density. In principle, Ων could be larger
if there were more than three light neutrinos. However, more light neutrinos would
induce more relativistic degrees of freedom. From equation (3.3.5) it then follows that
the expansion rate would grow. Consequently, the freeze out temperature for n

p
would

increase (compare section 3.3), i.e., the ratio n
p

would decouple earlier leading to a

larger value for Yp (see equation (3.2.1)) because there were more free neutrons. With
a lower estimate for the nucleon density, only one new neutrino flavor with Standard
Model weak interaction strength could be accommodated [52]. Thus we can argue
that the lion’s share of the matter content of the universe is indeed a yet undiscov-
ered non-baryonic new matter component, the dark matter with a density parameter
ΩDM = 0.232.
The Standard Model describes very well baryonic matter but it fails to describe a
particle-like dark matter. Therefore, any theory of a particle dark matter goes beyond
the Standard Model of particle physics. The search for a particle dark matter candi-
date thus merges physics beyond the Standard model with cosmology.
However, possible particle candidates for dark matter have to fulfill necessary condi-
tions to match all observations. We list three points [53] to each of which a good dark
matter candidate must give a positive answer and discuss them in dedicated sections:

A Does it match the correct relic density?

B Is it cold?

C Can it be probed experimentally?

3.3. The Dark Matter Relic Density
In the very earliest epoch of its history, the universe was composed of a gas of radiation,
i.e., hot and therefore relativistic particles. Solving equation (3.1.7) for a gas of photons
one obtains the following proportionality: ργ ∝ R−4.
We want to reproduce this result from thermodynamics and then use the relations
obtained to determine the theoretically expected amount of dark matter.
Given the approximation that the universe was near thermal equilibrium during its
earliest epoch, the total energy density of all present particle species i is expressed in
terms of the photon temperature Tγ [30]:

ρrad = T 4
γ

∑
i

(
Ti
Tγ

)4
gi

2π2

∞∫
xi

du
1

eu−yi ± 1

√
u2 − x2

i u
2 , (3.3.1)

where we have introduced the dimensionless quantity u ≡ E
Tγ

. The temperature Ti is

the temperature of the particle species i, gi is the number of degrees of freedom in
thermal equilibrium, xi = mi

Tγ
and µi are the chemical potentials entering into yi = µi

Tγ
.
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According to the first law of thermodynamics, a change in energy E of a system is
caused by a change in entropy S, a change in volume V and a change in particle
number N :

dE = TdS − pdV + µdN . (3.3.2)

We want to emphasize that the chemical potential µ expresses the change in energy
E due to a change in particle number N .
We have used that any energy density ρ(t) is the integral over phase space of all
possible energy values E weighted with the phase space distribution function f(p, t)

ρ(t) =
g

(2π)3

∫
d3pE(p)f(p, t) , (3.3.3)

where E =
√

p2 +m2.
In thermal equilibrium, f(p, t) is time-independent; for particles with half-integer spin
it is the Fermi-Dirac distribution (+) and for particles with integer spin it is the Bose-
Einstein distribution (−) :

f(E, t) = f(E) =
(
e
E−µ
T ± 1

)−1

.

Assuming that all present particle species i are relativistic, i.e., mi � Tγ, equation
(3.3.1) simplifies to

ρrad =
π2

30
g∗ T

4
γ (3.3.4)

with

g∗ =
∑
Bosons

gi

(
Ti
Tγ

)4

+
7

8

∑
Fermions

gi

(
Ti
Tγ

)4

,

where the sums run over all species [30].
The content of the early universe is dominated by radiation. If we assume that
ρrad = ρc in this epoch, then k = 0 according to equation (3.1.10). In this epoch,
the cosmological constant Λ is zero, too. Equation (3.1.4) then reads

Hrad =

√
8πGNρrad

3

(3.3.4)
=

√
8π3

90

√
g∗

T 2
γ

mpl

, (3.3.5)

with the Planck mass mpl =
√

1
GN

.

Integrating (3.1.12) in a radiation dominated universe the outcome for the expansion
age t of the universe is [30]:

t ≈ 1

2

1

Hrad

(3.3.5)
=

√
45

16π3

√
1

g∗

mpl

T 2
γ

=

√
45

16π3

√
1

g∗

mpl

m2
x2 , (3.3.6)

where we have made the approximation Ωtot ≈ 1.
If we further assume that the expansion of the universe is isentropic, then the entropy
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S is constant in a comoving volume R(t)3. S equals the product of R(t)3 and the
entropy density s. In a radiation dominated universe, s is written as [30]

s =
∑
i

ρrad, i + prad, i
Ti

=
∑
i

1

Ti

(
ρrad, i +

1

3
ρrad, i

)
| equation of state parameter ω =

1

3

=
∑
i

1

Ti

4π2

90
g∗ T

4
γ

=
2π2

45
g∗S T

3
γ (3.3.7)

with

g∗S =
∑
Bosons

gi

(
Ti
Tγ

)3

+
7

8

∑
Fermions

gi

(
Ti
Tγ

)3

.

The constancy of the entropy S implies

Tγ(t) ∝ g∗S
− 1

3 R−1(t) . (3.3.8)

Comparing with equation (3.3.1) we obtain ρrad ∝ R−4.
Equation (3.3.8) displays the decrease in the temperature Tγ due to the expansion of
the universe. This means that any particle with mass m which had been relativistic
becomes non-relativistic when m > Tγ(t). If these massive non-relativistic particles are
in thermal equilibrium with other present massive particles, the Fermi-Dirac and the
Bose-Einstein distribution, respectively, are approximated by the Maxwell-Boltzmann
distribution. In this case, the energy density ρ(t) is given by ρ(t) = mn(t) with
number density

n(t) = g

(
mTγ(t)

2π

) 3
2

e
−m−µ
Tγ (t) . (3.3.9)

Consequently, any massive non-relativistic species, which would stay in thermal equi-
librium, would be nearly absent today due to the exponential decrease of its number
density and could therefore not contribute to the matter content of the universe. But
as it is pointed out in section 3.2, experiments suggest that today the dark matter
contributes about 80 % to the matter content.
If we suppose that the dark matter is made up of stable, weakly interacting massive
particles (WIMPs), it must decouple from thermal equilibrium distribution at some
early time during the evolution of the universe in order to get rid of the exponential
suppression factor. The details of this decoupling process are governed by Boltz-
mann equations which describe the evolution of the phase space distribution functions
fi(E, t) for each species i. fi(E, t) do not depend on spatial coordinates, since in the
Robertson-Walker metric (3.1.2), the phase space distributions are spatially homoge-
neous and isotropic. A single Boltzmann equation can be written as [54]

L [f ](E, t) = C [f ](E, t) , (3.3.10)
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where L is the Liouville operator giving the net rate of change in time of the particle
phase space distribution function and C is the collision operator expressing the number
of particles per phase space volume that are lost or gained per unit time due to
collisions with other particles. We consider the case of annihilations of a particle-
antiparticle pair (1 and 2) into a particle-antiparticle pair (3 and 4).
In the Robertson-Walker metric (3.1.2) the Liouville operator becomes

L [f(E, t)] =

(
∂

∂t
−H |p|

2

E

∂

∂E

)
f(E, t) =

(
∂

∂t
−H E2 −m2

E

∂

∂E

)
f(E, t) .

As in equation (3.3.3), the actual number density n(t) takes the form

n(t) =

∫
dn(t)

=
g

(2π)3

∫
d3p f(p, t)

=
g

(2π)3
4π

∫
dp p2 f(p, t)

=
g

2π2

∫
dE

1

2
√
E2 −m2

2E(E2 −m2) f(E, t)

=
g

2π2

∫
dE E

√
E2 −m2 f(E, t) .

Applying the Liouville operator L to the number density n1(t) of particle 1, the term
becomes

g1

2π2

∫
dE1E1

√
E2

1 −m2

(
∂

∂t
−HE2

1 −m2

E1

∂

∂E1

)
f1(E1, t)

=
∂

∂t

(
g1

2π2

∫
dE1E1

√
E2

1 −m2 f1(E1, t)

)
−H g1

2π2

∫
dE1 (E2

1 −m2)
3
2

∂

∂E1

f1(E1, t)

= ṅ1(t) +H
g1

2π2

∫
dE1

∂

∂E1

(E2
1 −m2)

3
2 f1(E1, t)

= ṅ1(t) + 3H
g1

2π2

∫
dE1E1

√
E2

1 −m2 f1(E1, t)

= ṅ1(t) + 3Hn1(t) .

It is useful to express the integrated Liouville term ṅ1(t) + 3Hn1(t) in terms of a
quantity which scales as R(t)−3. Thus one follows the number of particles per comoving
volume and one has scaled out the expansion of the universe. The entropy density s
calculated in equation (3.3.7) scales as R(t)−3. The conservation of entropy S yields:

0
!

=
d

dt

(
sR(t)3

)
⇒ ṡ = −3Hs .
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Defining the abundance Y as the number density divided by the entropy density,
Y ≡ n1

s
, s times the time derivative of Y equals the integrated Liouville term:

s · Ẏ = s ·
(
ṅ1

s
− n1ṡ

s2

)
= ṅ1 − Y ṡ = ṅ1 + 3Hn1 .

Equation (3.3.6) allows to write the time derivative in terms of a derivative with
respect to x:

dx

dt
=

1

2

1

x

m2

mpl

√
16π3

45

√
g∗

d

dx
=

x

Hm

d

dt

with Hm = 2 m2

mpl

√
g∗

√
π3

45
. It follows:

dY

dx
=

x

Hm

dY

dt
. (3.3.11)

For the process 1 + 2↔ 3 + 4, the integrated collision term reads [54]

g1

(2π)3

∫
d3p1 C [f1]

= −
∑
spins

∫
d3p1

(2π)3 2E1

d3p2

(2π)3 2E2

d3p3

(2π)3 2E3

d3p4

(2π)3 2E4

·(2π)4 δ(4) (p1 + p2 − p3 − p4)

·
(
f1f2(1± f3)(1± f4)|M1+2→3+4|2
−f3f4(1± f1)(1± f2)|M3+4→1+2|2

)
. (3.3.12)

Here we sum over the initial and final spins and integrate over all particle momenta.
The delta distribution ensures energy-momentum conservation. The signs in the Pauli
blocking (−) and enhancing (+) factors 1±fi arise from Fermi-Dirac and Bose-Einstein
distribution, respectively. The squared amplitudes |M|2 are specific for the process
1 + 2↔ 3 + 4.
Under CP invariance we have

∑
spins |M1+2→3+4|2 =

∑
spins |M3+4→1+2|2 ≡ |M|2.

For non-relativistic particles i in thermal equilibrium, the chemical potentials µi are
zero because in thermal equilibrium, the particle numbers Ni adjust to their equilib-
rium value and hence there is no net change in Ni (compare (3.3.2)). The Maxwell-
Boltzmann distribution becomes accurate and all particle species have the phase space

distribution function f eqi (Ei) ∝ e
−Ei
Tγ . In addition, the error we make in the compu-

tation of the phase space integral in equation (3.3.12) by approximating the Pauli
blocking and enhancing factors 1 ± fi with 1 will be small. These assumptions sim-
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plify the collision term to

g1

(2π)3

∫
d3p1 C [f1]

= −
∫

d3p1

(2π)3 2E1

d3p2

(2π)3 2E2

d3p3

(2π)3 2E3

d3p4

(2π)3 2E4

· (2π)4 δ(4) (p1 + p2 − p3 − p4)

· (f1f2 − f3f4) |M|2 .

If the final particles 3 and 4 approach thermal equilibrium, their distribution functions
f3 and f4 become f eq3 and f eq4 . The delta distribution in the collision term then enforces
f eq3 f

eq
4 = f eq1 f

eq
2 .

For the process 1 + 2 ↔ 3 + 4, we introduce the annihilation cross section σ1+2↔3+4

as follows [54]:∫
d3p3

(2π)3 2E3

d3p4

(2π)3 2E4

|M|2 (2π)4 δ(4) (p1 + p2 − p3 − p4) ≡ 4Fg1g2 σ1+2↔3+4 ,

where the Lorentz invariant flux factor F is defined as

F =
√

(p1 · p2)2 −m2
1m

2
2 |m2

1 = m2
2 ≡ m2

=
√

(p1 · p2)2 −m4 |p1 · p2 =
s− 2m2

2

=
1

2

√
s (s− 4m2) (3.3.13)

and the gi result from spin summation.
The collision term can then be written as

g1

(2π)3

∫
d3p1 C [f1] = −

∫
d3p1

(2π)3 2E1

d3p2

(2π)3 2E2

4Fg1g2 σ1+2↔3+4 (f1f2 − f eq1 f
eq
2 )

= −
∫
d3p1 g1

(2π)3

d3p2 g2

(2π)3

F

E1E2

σ1+2↔3+4 (f1f2 − f eq1 f
eq
2 )

= −
∫

(dn1dn2 − dneq1 dneq2 )σ1+2↔3+4 vr ,

with the relative velocity vr = F
E1E2

. According to (C.2.9), in the center of mass frame
the product E1cmE2cm is equal to

E1cmE2cm =
s

4

and the relative velocity becomes

vr =
F

E1cmE2cm

=
4F

s

(3.3.13)
= 2

√
1− 4m2

s
. (3.3.14)
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Solving (3.3.14) for s, we obtain

s =
4m2

1− v2r
4

. (3.3.15)

We assume that for the thermal average of the annihilation cross section σ1+2↔3+4

times the relative velocity vr,

〈σ1+2↔3+4 vr〉 =

∫
σ1+2↔3+4 vr dn

eq
1 dn

eq
2∫

dneq1 dn
eq
2

,

the following relation holds∫
(dn1dn2 − dneq1 dneq2 )σ1+2↔3+4 vr = (n1n2 − neq1 neq2 ) · 〈σ1+2↔3+4 vr〉 ,

and so the collision term finally results to

g1

(2π)3

∫
d3p1 C [f1] = −〈σ1+2↔3+4 vr〉 (n1n2 − neq1 neq2 ) .

Putting the Liouville term and the collision term together, the rate equation for the
particle number density n1(t) follows:

ṅ1(t) = −3Hn1(t)− 〈σ1+2↔3+4 vr〉
(
(n1(t))2 − (neq1 (t))2

)
, (3.3.16)

with n1 = n2 for particle-antiparticle pairs, or equivalently

dY

dx
= −x 〈σ1+2↔3+4 vr〉 s

Hm

(
Y (x)2 − Yeq(x)2

)
, (3.3.17)

using equation (3.3.11). Equation (3.3.16) is the Lee-Weinberg approximation [55] of
the Boltzmann equation (3.3.10).
The rate of change in time of the particle’s actual number density n1(t) originates
from a decrease of n1(t) caused by the expansion of the universe and from interactions
with other particles in which the particle under consideration is lost or gained.
During the radiation-dominated epoch, i.e., x � 1, the equilibrium number density
neq1 is proportional to T 3

γ . Since the entropy density s is also proportional to T 3
γ , the

equilibrium abundance Yeq =
neq1
s

is constant and there is no change in the amount of
particles per comoving volume. Putting it in another way, in the radiation-dominated
epoch, Y = Yeq such that dY

dx
= 0.

But when x � 1, the particle creation process 3 + 4 → 1 + 2 essentially stops and

neq1 (t) begins to decrease like e
− m
Tγ (t) according to equation (3.3.9). Although the

number density n1(t) decreases and the universe keeps expanding, the annihilation
process 1 + 2 → 3 + 4 is still somewhat important, causing a slight reduction in Y
compared to its value at x = xf [56]. The freeze-out value xf is defined by the condition
Y (xf )− Yeq(xf ) ≡ ∆(xf ) = cYeq(xf ), where c is a constant of order unity [30]. Notice
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that Y 2 − Y 2
eq = ∆(2Yeq + ∆).

In the non-relativistic regime x > 1, which is the regime of interest here, the following
relation holds: 〈σ1+2↔3+4 vr〉 ∝ (vr)

2l, where l denotes the order of the partial wave

contributing to the annihilation cross section. Since vr ∝ x−
1
2 , the thermal average of

the cross section times relative velocity can be parametrized as 〈σ1+2↔3+4 vr〉 ≡ σ0x
−l,

where l = 0 for s-wave, l = 1 for p-wave annihilation, and so on. Then with use
of equation (3.3.7) and the definition of Hm, the fraction on the right hand side of
equation (3.3.17) multiplied by x2

x2
equals

x 〈σ1+2↔3+4 vr〉 s
Hm

x2

x2
=

2π2

45

√
90

8π3

g∗S√
g∗
mplmσ0 x

−l−2 .

Equation (3.3.17) can then be written in terms of ∆:

d∆

dx
= −dYeq

dx
− λx−l−2 ∆(2Yeq + ∆) , (3.3.18)

with λ = 2π2

45

√
90

8π3
g∗S√
g∗
mplmσ0.

For x� xf , Yeq(x)� Y (x) such that ∆(x) ≈ Y (x). Then the term −2λx−l−2∆Yeq as

well as the term −dYeq
dx

are negligible [56] and equation (3.3.18) simplifies to

d∆

dx
≡ ∆′ = −λx−l−2∆2

⇔ ∆′

∆2
= −λx−(l+2) .

Integration from x = xf to x =∞ yields:

∞∫
xf

dx
∆′

∆2
=

∞∫
xf

dx (−λ)x−(l+2)

⇔
[
− 1

∆

]∞
xf

=

[
λ

l + 1
x−(l+1)

]∞
xf

⇔ −∆(xf ) + ∆(∞)

∆(xf ) ·∆(∞)
= − λ

l + 1
x
−(l+1)
f |∆(xf )� ∆(∞)

⇒ − ∆(xf )

∆(xf ) ·∆(∞)
= − λ

l + 1
x
−(l+1)
f

⇔ − 1

∆(∞)
= − λ

l + 1
x
−(l+1)
f .

The outcome for the final dark matter abundance Y∞ ≡ ∆(∞) is

Y∞ =
l + 1

λ
xl+1
f =

45

2π2

√
8π3

90

√
g∗

g∗S

(l + 1)xl+1
f

mplmσ0

.
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The definition of Y allows us to express today’s number density nDM0 of dark matter
particles: n0 = s0Y∞.

Since ρDM0 = mDM nDM0 , the density parameter ΩDM =
ρDM0

ρc
of dark matter is com-

puted to

ΩDM =
45

2π2

√
8π3

90
8πGN

s0

3H2
0

√
g∗

g∗S

(l + 1)xl+1
f

mplσ0

.

Inserting the numerical values and assuming that all particle species i have the common
temperature Ti = Tγ in the early universe such that g∗ = g∗S, the outcome is the dark
matter relic density

ΩDMh
2 = 1.04× 109

(l + 1)xl+1
f√

g∗mplσ0

GeV−1 , (3.3.19)

with the present day normalized Hubble expansion rate h and the present day entropy
density s0 = 7.04nγ [30]. Note that in (3.3.19), g∗ is the number of relativistic degrees
of freedom which are not decoupled at the time of freeze-out.
In the approximation of s-wave annihilation, equation (3.3.19) simplifies to [57,58]

ΩDMh
2 ≈ 3 · 10−27 cm3 s−1

〈σ1+2↔3+4 vr〉
. (3.3.20)

To obtain the measured dark matter relic density ΩDMh
2 ≈ 0.1, the order of magnitude

of 〈σ1+2↔3+4 vr〉 has to be

〈σ1+2↔3+4 vr〉 = 3 · 10−26 cm3 s−1 = 1 pb (3.3.21)

according to equation (3.3.20). The strength of weak scale interactions is [58]

〈σ1+2↔3+4 vr〉weak = 1 pb .

This coincidence is called the WIMP-miracle, meaning that a stable particle associated
with new physics at the electroweak scale can contribute the necessary dark matter
relic density.

3.4. Does Dark Matter Have to Be Cold?
In the computation of the relic density in section 3.3, we assumed that at the time
of freeze-out the dark matter is non-relativistic, i.e., cold. The discussion of equation
(3.3.17) reveals that for relativistic, i.e., hot dark matter, the calculation of the relic
density simplifies because Yeq remains constant.
Prototypes for hot dark matter are neutrinos. The bound on Yp and its implications
(see section 3.2) suggest that new neutrinos with Standard Model weak interactions
are disfavored as candidates for hot dark matter. However, Standard Model sterile
neutrinos are allowed if they are not in thermal equilibrium [52].
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Cold and hot dark matter have different impacts on the structure formation of the
universe. The energy in radiation during the radiation-dominated epoch provided
the gravitation according to equation (3.1.1). Due to equation (3.1.8) a gas of ra-
diation has pressure which counteracts the gravitational contraction of small scale
clumps. The radiation fluid interacts with the fluid of protons and electrons through
Thomson scattering. Protons and electrons interact through Coulomb scattering and
therefore they effectively form one fluid, the baryon fluid. Thus there remains the
photon-baryon fluid with a net pressure arising from the radiation fluid. Apart from
the photon-baryon fluid there is the dark matter fluid and the neutrino fluid. All the
different fluids interact via gravity. The interplay between contraction and expan-
sion of the photon-baryon fluid is called the baryon acoustic oscillations (BAO) . On
large scales, clumps collapse under gravity since the radiation pressure is relatively
small [59]. In the matter dominated epoch, the difference between cold and hot dark
matter becomes important. From equation (3.1.8) it follows that cold dark matter is
pressureless. Without pressure, the BAO stop. Small and large scales clump together
and the structures we observe today begin to form in a bottom-up formation.
The first scales to collapse in a hot dark matter universe would correspond to super-
clusters. Galaxies would form by fragmentation of superclusters [60] in a top-down
formation. However, we know from observations that galaxies are older than superclus-
ters [61]. Therefore, the observed structures disfavor hot dark matter. The standard
theory of structure formation thus requires that dark matter is cold [53]. Between
cold and hot there are warm dark matter models which do not contradict structure
formation [62]. We will stick to cold dark matter.

3.5. Strategies for Detection of Dark Matter
Figure 3.3 demonstrates strategies to learn about the nature of dark matter [63]. These
are direct detection and indirect detection experiments and dark matter production
at colliders.

3.5.1. Direct Detection

By crossing symmetry (see figure 3.3), the amplitude for dark matter s-channel annihi-
lation into quarks q is related to the amplitude for t-channel elastic scattering of dark
matter off quarks. Thus a non-zero coupling of dark matter to nuclei is expected [58].
Direct detection experiments aim to measure the recoil energy of a nucleus after the
scattering process. These energies are of order O(10) keV which is far below typical
nuclear excitation energies which are of order O(10) MeV. That means that a dark
matter particle effectively interacts coherently with the entire nucleus.
The detection rate is proportional to the detector mass, the dark matter flux expected
on Earth, and to the dark-matter-nucleus-scattering cross section (see e.g. [57]).
The matrix element for the dark-matter-nucleus-scattering cross section involves the
expectation values 〈N |qΓq|N〉 of quark bilinear operators inside the nucleon N with
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SM

SM

DM

DM

indirect

collider

direct

Figure 3.3.: Elucidating dark matter: Direct detection experiments observe the
t-channel scattering of dark matter off Standard Model nuclei, indirect
detection experiments probe final Standard Model products through dark
matter s-channel annihilation. At colliders, dark matter could be pro-
duced through s-channel annihilation of Standard Model particles.

Γ (see appendix B) representing the Dirac bilinears [64]. In the non-relativistic limit
the vector current qγµq and the tensor current qσµνq have the same form as the scalar
qq and axial vector current qγµγ5q (see (B.2.5) and (B.2.6)), respectively. Thus the
relevant interactions are scalar qq and axial-vector qγµγ5q interactions for dark matter
velocities v smaller than the speed c of light.
In scalar couplings, which are spin-independent (SI), the t-channel-mediated scalar
particle interacts through Yukawa interactions coherently with all the nucleons in the
nucleus. Hence the cross section is enhanced by the squared mass number A2 of the
nucleus and thus the detection rate is larger for heavier nuclei.
Axial-vector couplings lead to spin-dependent (SD) interactions, in which the spins of
the nucleons cancel in pairs.
For SI interactions, the dark matter-nucleus-scattering cross section is larger than for
SD interactions [64]. Therefore we concentrate on SI elastic scattering processes.
Given that the mean density ρ0 of elementary particles trapped in the galactic gravi-
tational field at the position of the Sun is ρ0 ≈ 0.3 GeV cm−3 [65], the number density
n0 of an elementary dark matter particle equals

n0 =
1

mDM

ρ0 ≈ 10−3 cm−3

(
100 GeV

mDM

)
.

We take the velocity v of dark matter particles at the position of the Sun to be the
circular velocity v� of the Sun on its path around the galactic center:

v = v� = 220
km

s
.
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parameter neutron n proton p
fTu 0.018 0.023
fTd 0.042 0.033
fTs 0.26 0.26

Table 3.1.: Nucleon parameters

v is then approximately three orders of magnitude smaller than c, so the non-relativistic
limit applies.
The dark matter flux J0 expected at the Earth is

J0 = n0 v ≈ 105 cm−2 s−1

(
100 GeV

mDM

)
. (3.5.1)

The antagonist of the large dark matter flux is the weakness of the interaction strength,
which makes it hard to distinguish a dark matter signal from background signals.
The calculation of the dark-matter-nucleus-scattering cross section proceeds in two
steps [58]: in a first step, the matrix element of the quark operators in a nucleon has
to be evaluated. In a second step, the effective interaction of dark matter particles with
nuclei has to be determined by computing the matrix elements of nucleon operators
in a nuclear state.
Starting with step one, we define the nucleon parameters f

(N)
Tq by the matrix elements

of the light quarks q = u , d , s inside a nucleon N with mass mN :

〈N |mqqq|N〉 = mNf
(N)
Tq .

The nucleon parameters f
(N)
Tq are associated with hadronic uncertainties in the com-

putation of the σ-term from πN scattering σπN = 1
2
(mu+md)〈N |uu+dd|N〉. In table

3.1, we give the values presented in [66].
For the matrix elements of the heavy quarks Q = c, b, t , the heavy-quark expansion
is used, resulting in [58]:

〈N |mQQQ|N〉 =
2

27
mN

(
1−

∑
q=u, d, s

(
1− f (N)

Tq

))
.

Since we concentrate on SI elastic scattering, the effective coupling of the t-channel
mediated scalar particle to a nucleon N is a Yukawa coupling. Writing the quark mass
terms in the form mq = yq · w, the outcome for the effective coupling is

fN =
mN

w

( ∑
q=u,d,s

f
(N)
Tq +

2

27

(
1−

∑
q=u,d,s

f
(N)
Tq

))
. (3.5.2)

Note that, owing to different valence quark densities for proton and neutron, fp 6= fn.
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Figure 3.4.: 90% C.L. upper limits on the WIMP-nucleon spin-independent cross sec-
tion as a function of WIMP mass. The red (upper) solid line shows the
limit obtained from the exposure analyzed in [5]. The solid black line
shows the combined limit for the full data set recorded at Soudan. The
dotted line indicates the expected sensitivity for this exposure based on the
background in [5] combined with the observed sensitivity of past Soudan
data. Prior results from CDMS [6], EDELWEISS II [7], XENON10 [8],
and ZEPLIN III [9] are shown for comparison. The shaded regions indicate
allowed parameter space calculated from certain Minimal Supersymmetric
Models [10, 11]. Figure borrowed from [5].
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Step two simplifies for SI elastic scattering because the interaction of a dark matter
particle with a nucleus is just the sum of the effective interactions with the nucleons
inside the nucleus. With the proton number Z, the dark-matter-nucleus-scattering
cross section then turns out to be

σSI '
4

π

(
mpmn

mp +mn

)2
1

m4
t

(Zfp + (A− Z) fn)2 . (3.5.3)

Here, mt refers to the mass of the t-channel mediated mass eigenstate. The exact
expression for σSI depends on the model-specific mass eigenstates.
With a given detector mass, the dark matter flux expected on earth (equation (3.5.1))
and the measured detection rate, the dark-matter-nucleus-scattering cross section
(equation (3.5.3)) can be constrained.
In the CDMS II experiment , two events in the signal region were observed with a
total exposure of 612 kg-days. Taking this observation as statistically significant and
combining it with all previous CDMS II data, the dark matter-nucleus-scattering cross
section is limited from above by 3.8 · 10−8 pb [5] for a WIMP mass 70 GeV (compare
figure 3.4). However, one expects 0.8 events as background, and the probability to
detect at least two events is 23 %, which is too low to make any conclusion.
We concentrate on elastic scattering processes in which the final particles are in the
same state as the corresponding initial particles. It is possible that for a particle dark
matter candidate, there exists an excited state with a mass splitting δ to the ground
state, which would allow inelastic scattering processes.
A non-zero δ increases the minimum WIMP speed required to produce a given nu-
clear recoil energy [13,67]. It follows that the detection rate for inelastic dark matter
scattering is more sensitive to the dark matter velocity than for elastic scattering [68].
However, the minimum dark matter velocity changes in the rest frame of the detector
due the combined motion of the Sun in the galactic rest frame and of the earth around
the Sun. Thus, inelastic scattering detection experiments should detect an annual
modulation of their recorded signals. In fact, the DAMA/LIBRA experiment located
at the Gran Sasso National Laboratory has registered an annual modulation in the
signal. This signal could be explained in the context of inelastic dark matter with
a mass splitting of order δ ∼ O(100) keV [12], which is compatible with the CDMS
data for a narrow region of the parameter space (figure 3.5). But the question remains
whether the annual modulation could be traced back to other cyclic changes, e.g., the
composition of the Earth’s atmosphere, the water level at Gran Sasso, etc.

3.5.2. Indirect Detection

Indirect detection experiments search for the dark matter annihilation products (com-
pare figure 3.3). The most promising channel to learn about the nature of dark matter
is the annihilation into photons. Due to their vanishing electric charge, photons do not
experience any deflection in magnetic fields and can provide local information about
the dark matter annihilation and thus about the dark matter distribution.
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Figure 3.5.: The shaded green region represents WIMP masses and mass splittings for
which there exists a cross section compatible at 90% C. L. with the mod-
ulation spectrum of DAMA/LIBRA [12] under the inelastic dark matter
interpretation [13]. Excluded regions for CDMS II (solid-black hatched)
and XENON10 [14] (red-dashed hatched) were calculated in [5] using the
Optimum Interval Method. Figure borrowed from [5].
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In most models, the spectrum of photons produced in dark matter annihilation de-
pends on the details of the dark matter particle [63]. In our proposed model, the
dark matter particle is a right-handed Majorana neutrino. For any dark matter model
of this type, a similar spectrum is expected without dependence on further parame-
ters [69].
The expected gamma ray flux Jγ arriving from the galactic center is proportional to
the number of dark matter annihilation events per time per volume. Dimensional
analysis yields:

Jγ ∝ σavrn
2 = σavf

ρ2(r)

m2
DM

. (3.5.4)

In equation (3.5.4), σa is the annihilation cross section, vr is the relative velocity of the
dark matter particles at freeze-out, n is the dark matter number density and ρ(r) is the
dark matter energy density. In the standard halo model, the dark matter distribution
is spherically symmetric. Therefore, the dark matter energy density only depends on
the distance r to the galactic center. Compared to equation (3.5.1), we see that (3.5.4)
is more sensitive to the dark matter distribution ρ(r).
The gamma ray spectrum is given by [63]

Φγ (Eγ,Ωγ) =
1

8π
〈σavr〉

dNγ

dEγ

∫
∆Ω

dΩ

∫
l.o.s.

ds
ρ2(r)

m2
DM

, (3.5.5)

where 〈σavr〉 is the thermal average of the dark matter annihilation cross section times
relative velocity, dNγ

dEγ
is the gamma ray energy spectrum generated per dark matter

annihilation, Ω is the observation angle relative to the direction of the galactic center
and l.o.s. stands for line-of-sight.
Equation (3.5.5) once again illustrates the merging of particle physics with cosmology:
the thermal average of the annihilation cross section times relative velocity 〈σavr〉
involves all possible annihilation channels of dark matter particles and belongs to the
realm of particle physics. The dark matter energy density profile ρ(r) belongs to the
realm of cosmology and is highly unknown near to the galactic center.
N-body simulations results indicate [70]

ρ(r) =
ρs

( r
rs

)γ[1 + ( r
rs

)α]
β−α
α

,

with scale density ρs and scale radius rs. The Navarro-Frenk-White (NFW) profile has
the parameters α = 1, β = 3 and γ = 1 [71], the Moore profile has the set α = 1.5,
β = 3 and γ = 1.5 [72] and the isothermal profile is given by α = β = 2, γ = 0.
The NFW profile seems to underestimate the dark matter density for small r while
the Moore profile overestimates it [70]; in contrast, the Einasto profile [73], being an
exponential function, seems to estimate the dark matter density correctly for small
radii r. The isothermal profile is nearly constant for radii r � rs. These dark matter
density profiles, shown in figure 3.6, produce the constant galaxy rotation curves for
distances r approximately between 8 kpc and 20 kpc. For larger distances, the dark
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Figure 3.6.: Dark matter density profiles with ρs = ρsun and rs = rsun. Figure bor-
rowed from [15].

matter density profiles decrease faster than r−2. As a consequence, the galaxy rotation
curves decline for large distances, opposed to the constant circular velocity profiles at
large distances predicted by MOND theories (compare to section 1). Indeed, MOND
is in conflict with the determined motion of satellite galaxies around normal galaxies
at distances between 50 kpc and 500 kpc [74], which in turn is in perfect agreement
with the ΛCDM model.
The Fermi-LAT experiment [16] can measure the gamma ray energy spectrum. Know-
ing the gamma ray background and choosing a specific dark matter density profile,
the dark matter annihilation cross section can be constrained by equation (3.5.5). The
results from [16] are presented in figure 3.7. In [16], the properties of dark matter are
deduced from the quantity Λ2(z) which describes the enhancement of the annihilation
signal arising due to the clustering of dark matter into halos and subhalos [75]. In
order to derive Λ2(z), [16] uses four procedures:

(i) In MS II-Res, only the contributions to the dark matter annihilation signal from
halos and subhalos resolved in the Millenium II simulation [76] are considered.

(ii) In MS II-Sub1, the contribution from structures and substructures down to 10−6

solar masses are extrapolated in a very conservative way (compare [16]).

(iii) In MS II-Sub2, subhalos and halos down to 10−6 solar masses are involved.

(iv) BulSub is a semi-analytical procedure to calculate Λ2(z); the contribution from
halos of all masses is integrated based on the Bullock model [77].
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Figure 3.7.: Cross section 〈σv〉 limits on dark matter annihilation into two photons.
The red regions mark the (90, 95, 99.999)% exclusion regions in the MSII-
Sub1 ∆2(z) dark matter structure scenario (and for the other structure
scenarios only 95% upper limit lines). Figure from [16].
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Figure 3.8.: Production of dark matter at colliders with initial state radiated photon.



3.5. Strategies for Detection of Dark Matter 47

3.5.3. Collider Production

A key quantity at colliders is the luminosity L. Integrated over the time interval
in which data are taken, the integrated luminosity

∫
dtL times the production cross

section for a specific particle yields the number of events in which the particle under
consideration is observed.
At colliders, dark matter particles can be produced in s-channel annihilations of Stan-
dard Model particles. The production cross section depends on the mass of the dark
matter particle and the available center of mass energy. The general behavior is a
decreasing production cross section with an increasing dark matter mass by a fixed
center of mass energy. Therefore, to produce dark matter at the LHC , which is a
proton-proton collider, the mass of the dark matter has to be small relative to the
center of mass energy.
Since dark matter is neutral under the Standard Model gauge interactions, it can only
be detected through missing transverse energy E/T . The collider signature γ+E/T of a
mono-photon γ plus large missing transverse energy E/T (see figure 3.8) is most suited
to measure E/T : the energy of the initial state radiated photon γ is detected in the
electromagnetic calorimeters. Given the center of mass energy, the missing energy E/T
is determined. The mass of the dark matter particle follows.

3.5.4. Critical Remarks

The strategies for the detection of dark matter presented above have to be taken with
a pinch of salt. The detection rate in direct detection experiments depends on the dark
matter flux J0 expected on Earth, which in turn depends on the local dark matter
density ρ0. The conclusion of [78] is that the astronomical constraints are consistent
with a local dark matter density between ρ0 = 0.2 GeV cm−3 and ρ0 = 0.4 GeV cm−3.
J0 further depends on the Sun’s circular velocity v�. Different methods obtain differ-
ent results: with the angular velocity of the Sun about the galactic center, which is
the ratio between the total velocity v� of the Sun about the galactic center and the
distance of the Sun from the galactic center [79], and the fitted distance of the Sun
from the galactic center [80], v� results to v� = 242±12 kms−1. In [81], v� = 221±18
kms−1 is used.
However, spin independent elastic scatterings are resistant against these uncertainties
for a dark matter particle with mass higher than 50 GeV [82].
Apart from the highly unknown dark matter density profile, indirect detection ex-
periments rely on the gamma ray background. The astrophysical sources for gamma
ray emission are not known in detail, so it is hard to distinguish between an astro-
physical signal in the gamma ray spectrum and a signal produced by dark matter
annihilations. Anisotropies in the gamma ray background may help to distinguish
between astrophysical sources and dark matter sources: if one assumes that astro-
physical gamma ray sources have the same distribution as the matter distribution ρm,
then the corresponding gamma ray signal depends linearly on ρm. Equation (3.5.5)
shows that the gamma ray signal expected from dark matter annihilations depends
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quadratically on ρm. That means that dark matter annihilations could generate larger
anisotropies in the gamma ray signal than expected from astrophysical sources [83].
The Fermi-LAT experiment may resolve such anisotropies.
The search for dark matter at colliders relies on missing transverse energy, which could
have several sources. Only the combined data analysis of direct and indirect detection
and collider production reveals whether the source for a detected missing transverse
energy is indeed annihilation of Standard Model particles into dark matter: if the
mass of dark matter produced at colliders fits with the mass of dark matter gained
from recoil energy spectra in direct detection experiments and with the mass of dark
matter obtained from gamma ray spectra in indirect detection experiments, then the
missing transverse energy would be due to the creation of dark matter particles [84].



Chapter 4

Zee-Babu in the Dark

To solve the two issues of astroparticle physics, namely the neutrino mass and the
dark matter of the universe, we build a model which generates masses for two Standard
Model neutrinos at the two loop level and which has a right-handed Majorana neutrino
NR as a candidate for particle dark matter. The input is the Zee-Babu model reviewed
in section 4.1. In section 4.2, we consider two possible extensions of it, having both NR

as a particle dark matter: in a first scenario, a local U(1)B−L forces the introduction of
NR in order to cancel the U(1)B−L triangle anomaly as discussed in chapter 2, and in a
second scenario, U(1)B−L is global and NR is put in ad hoc. In both scenarios, U(1)B−L
is spontaneously broken when NR becomes massive, so, in the second scenario, there
enters a Majoron into the theory. In section 4.3, we demonstrate that NR passes the
three point test set up in chapter 3. In addition, we discuss the verification of our
model at the LHC in section 4.4.

4.1. The Zee-Babu Model

As outlined in section 2.3.2, neutrino masses can be produced radiatively. Loop sup-
pression factors entering into radiative mass generation mechanism lead to light masses
for additional particles running in the loops. We focus on the Zee-Babu Model [27]
as an example for radiative neutrino masses and build extensions to describe dark
matter.
While still unobserved, the Standard Model relies on one complex scalar Higgs dou-
blet φ which directs electroweak symmetry breaking in the common lore. Additional
scalars are theoretically motivated.
In addition to the Standard Model Higgs doublet, the scalar sector of the Zee-Babu
Model [27] contains two complex scalar singlets: a singly charged scalar singlet h+

and a doubly charged scalar singlet k++ (see table 2.1). Since the vacuum state is
electrically neutral, the new scalars do not receive a vacuum expectation value, i.e.,
〈0|h+(x)|0〉 = 〈0|k++(x)|0〉 = 0.
The gauge group is the Standard Model gauge group G(SM). Since no right-handed
neutrinos are added, there are no Dirac masses mD for neutrinos.
h+ couples to left-handed leptons

fij

(
Ψi,T
L,aC Ψj

L,b

)
εab h

+ (4.1.1)
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and k++ couples to right-handed leptons

h′ij
(
ΨT
R,iC ΨR,j

)
k++ . (4.1.2)

Yukawa couplings of h+ and k++ to Standard Model quarks have no vanishing hyper-
charge qY and are thus not gauge invariant (compare table 2.1).
i , j are flavor indices and a, b are SU(2)L gauge indices. fij and h′ij are generic com-
plex matrices. The antisymmetric SU(2)L invariant εab tensor together with relation
(B.3.4) forces fij in (4.1.1) to be antisymmetric, i.e., fij = −fji.
For the three Standard Model flavor generations, (4.1.1) and (4.1.2) contribute the
following interaction Lagrangian

LintBabu = 2
[
feµ

(
νCe µL − νCµ eL

)
+ feτ

(
νCe τL − νCτ eL

)
+ fµτ

(
νCµ τL − νCτ µL

)]
h+

+
[
heeeCeR + hµµµCµR + hτττCτR

+ heµeCµR + heτeCτR + hµτµCτR

]
k++ . (4.1.3)

In (4.1.3) we have defined hii = h′ii and hij = 2h′ij for i 6= j because h′ij is symmetric
due to (B.3.4), i.e., h′ij = h′ji.
The interaction terms in equation (4.1.3) are invariant under U(1)B−L in the given
charge assignment of table 2.1. Owing to the U(1)B−L invariance, Majorana mass
terms are not allowed at tree level, so neutrinos are massless in the Zee-Babu model
at tree level.
The scalars h+ and k++ together with the Standard Model Higgs doublet φ give the
following scalar potential:

V (φ) = µ2
2φ
†φ+ µ2

3k
++k−− + µ2

4h
+h−

+λ2(φ†φ)2 + λ3(k++k−−)2 + λ4(h+h−)2

+λ8(φ†φ)(k++k−−) + λ9(φ†φ)(h+h−) + λ10(k++k−−)(h+h−)

+µ (k++h−h− + k−−h+h+) . (4.1.4)

The µ term in (4.1.4) softly breaks the U(1)B−L symmetry. In the Zee-Babu model,
this term has to be introduced by hand in order to generate Majorana neutrino masses
at two-loop level. The induced lepton number violation is then suppressed by 1

(16π2)2
.

The effective Majorana neutrino mass term is

Lν = −1

2
κi (Mν)ij κj , (4.1.5)

where
κi = νi + νCi

and (Mν)ij is the neutrino mass matrix.
In the example of figure 4.1, we calculate the mass matrix element (Mν)ee:
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3
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k

q

q

k-q

Figure 4.1.: Example for two-loop neutrino mass generation

• At vertex 1, we have the interaction 2
(
feτνCe τLh

+
)†

= 2(f †eτ )τLνeh
− with Ma-

jorana condition νCe = νe.

• Similarly, at vertex 2 the interaction is 2
(
feτνCe τLh

+
)

.

• At vertex 3, we have the lepton number violating interaction µ k++h−h−.

• At vertex 4, the interaction is hτττCτR.

• The vertices with Standard Model Higgs insertion 〈φ〉 lead to mass terms mτ .

• One has to integrate over the unfixed momenta k and q. The two-loop integral
is

Iττ =

∫
d4k

(2π)4

∫
d4q

(2π)4

1

k2 −m2
τ

1

k2 −m2
h

1

q2 −m2
τ

1

q2 −m2
h

1

(k − q)2 −m2
k

. (4.1.6)

The mass matrix element (Mν)ee then results to

(Mν)ee = 2 · 4µfeτhττm2
τIττ (feτ )

†

= 8µfeτhττm
2
τIττ (feτ )

† . (4.1.7)

The additional factor 2 in (4.1.7) arises because (Mν)ee is not the mass matrix for νe,
but for the self conjugated field κe = νe + νCe .
From this example, we conclude that a general mass matrix element (Mν)ij has the
form

(Mν)ij = 8µfishstmsmtIst(ftj)
† . (4.1.8)

(4.1.8) has a special texture. If we define

Kst ≡ 8µhstmsmtIst ,

we can write (4.1.8) as
(Mν)ij = (fKf †)ij . (4.1.9)
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The determinant of (4.1.8) is:

det Mν = det f · det K · det f †

= det f · det f ∗ · det K

= |det f |2 · det K . (4.1.10)

For an odd number of flavor generations, the determinant of f is zero because f is
antisymmetric. From (4.1.10) it then follows that for three generations the determinant
of the neutrino mass matrix (4.1.8) vanishes, i.e., det Mν = 0.
The eigenvalue problem for (4.1.8), namely

det (Mν − λ1)
!

= 0 ,

reveals that one eigenvalue of (4.1.8) is zero. Thus we find that in the Zee-Babu model,
one neutrino is massless. From section 2.3.1, we then infer that the heaviest neutrino
mass mν is given by the atmospheric mass difference ∆m2

atm:

mν ≈ 0.05 eV .

To learn more about neutrino masses in the Zee-Babu model, it is essential to further
analyse the integral (4.1.6). If we assume that the masses of the scalars h+ and k++

are at the TeV scale (see below), we can, in a first approximation, neglect the fermion
masses mi and mj in Iij and (4.1.6) becomes∫

d4k

(2π)4

∫
d4q

(2π)4

1

k2

1

k2 −m2
h

1

q2

1

q2 −m2
h

1

(k − q)2 −m2
k

. (4.1.11)

Concentrating on the k integration and using Feynman parameters x1, x2, x3, we arrive
at the equality (see (D.1.1))

1

k2

1

k2 −m2
h

1

(k − q)2 −m2
k

=

1∫
0

dx1 dx2 dx3 δ (x1 + x2 + x3 − 1)
2!

(x1k2 + x2(k2 −m2
h) + x3((k − q)2 −m2

k))
3

=

1∫
0

dx1 dx2
2!

(x1k2 + x2(k2 −m2
h) + (1− x1 − x2)((k − q)2 −m2

k))
3 .

(4.1.12)

We shift the integration variable k to

k → l1 ≡ k − (1− x1 − x2)q

and introduce

∆1 = x2m
2
h + (1− x1 − x2)2q2 − (1− x1 − x2)(q2 −m2

k) .
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Observe that ∆1 is independent of k.
In dimensional regularization (see appendix D), (4.1.12) takes the form∫

d4k

(2π)4

1

k2

1

k2 −m2
h

1

(k − q)2 −m2
k

= 2!

1∫
0

dx1

x1∫
0

dx2 lim
d→4

∫
ddl1

(2π)d
1

(l21 −∆1)3
.

The d dimensional integral over l1 is evaluated to (see (D.2.1))

lim
d→4

∫
ddl1

(2π)d
1

(l21 −∆1)3
= lim

d→4

−i

(4π)
d
2

Γ(3− d
2
)

Γ(3)

(
1

∆1

)3− d
2

=
−i

16π2

1

2

(
1

∆1

)
(4.1.13)

The q integration contributes another factor 1
16π2 , such that (4.1.6) is suppressed by

1
(16π2)2

.

Treating scalar integrals as in [85], the two-loop integral (4.1.6) is evaluated in [86]:
For the case mk � mh, the dominant behavior of (4.1.6) is

Iij '
1

(16π2)2

1

m2
k

(
log2 m

2
h

m2
k

+
π2

3
− 1

)
+O

(
1

m4
k

)
and thus to leading order

Iij ≈
1

(16π2)2

1

m2
k

log2

(
m2
h

m2
k

)
. (4.1.14)

For the case mh � mk, the leading term of (4.1.6) is

Iij ≈
1

(16π2)2

1

m2
h

π2

3
. (4.1.15)

Defining M ≡ max (mh,mk) and using the leading terms (4.1.14) and (4.1.15), re-
spectively, we can approximate (4.1.7) by [87]

Mν ≈
f 2h

(16π2)2

m2
τ

Λ
, (4.1.16)

where Λ = M2

µ
is the scale of physics beyond the Standard Model.

From (4.1.16), we see that for Mν ∼ O(0.1) eV, the scale Λ of new physics has to be
of order Λ ∼ O(1) TeV if we demand that f ∼ h ∼ O(0.1) and use mτ ≈ 1.7 GeV.
As already mentioned in section 2.3.2, this scale Λ for generating neutrino masses is
much below the scale of seesaw models because of the two-loop suppression factor

1
(16π2)2

which is of order O(104).
Hence, Λ is within the range of the LHC and may thus be probed soon.
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4.2. Extensions of the Zee-Babu Model

4.2.1. Scenario 1: G(SM) × local U(1)B−L × Z2

To make neutrinos massive in the Zee-Babu model, one has to add the U(1)B−L
breaking term µ k++h−h− to the potential 4.1.4.
An alternative to explicitly introducing a symmetry breaking term by hand is to
generate it dynamically by spontaneous symmetry breaking of an additional gauge
symmetry. In section 2.5, we have seen that the local U(1)B−L symmetry is broken by
a complex scalar singlet ϕ charged under U(1)B−L. Recall that we assume no gauge
kinetic mixing between U(1)Y and U(1)B−L.
If one extends the Zee-Babu model with a U(1)B−L gauge symmetry and adds ϕ to
the particle content, the term

λµ ϕk
++h−h−

is gauge invariant. In particular, it does not violate U(1)B−L.
If U(1)B−L is spontaneously broken, the µ term in the potential 4.1.4 arises through
the replacement µ→ λµ 〈ϕ〉. Since the scale Λ = M2

µ
for generating neutrino masses at

two-loop level has to be O(1) TeV and given the bounds on the masses of the charged
scalars [88], the breaking scale of U(1)B−L is in the TeV range, i.e., 〈ϕ〉 ∼ O(1) TeV
for the coupling constant λµ ∼ O(1).
The scalar interactions of ϕ have to be included into the scalar potential 4.1.4, yielding
the U(1)B−L invariant potential:

V (ϕ, φ) = µ2
1ϕ
∗ϕ+ µ2

2φ
†φ+ µ2

3k
++k−− + µ2

4h
+h−

+λ1(ϕ∗ϕ)2 + λ2(φ†φ)2 + λ3(k++k−−)2 + λ4(h+h−)2

+λ5(ϕ∗ϕ)(φ†φ) + λ6(ϕ∗ϕ)(k++k−−) + λ7(ϕ∗ϕ)(h+h−)

+λ8(φ†φ)(k++k−−) + λ9(φ†φ)(h+h−) + λ10(k++k−−)(h+h−)

+λµ (ϕk++h−h− + ϕ∗k−−h+h+) . (4.2.1)

Notice that the new electrically neutral complex scalar ϕ is a singlet under the Stan-
dard Model gauge group and thus the Glashow-Weinberg criteria [89] for the natural
absence of neutral current flavor violation are fulfilled.
To obtain the propagating neutral mass eigenstates, we parametrize the Higgs fields
φ(x) and ϕ(x) around their vacuum expectation values w and w′ (compare to equation
(2.1.2)). Here, we work in the t’Hooft-Feynman gauge to separate the physical and
gauge degrees of freedom. φ(x) and ϕ(x) are then given by:

ϕ(x) =
1√
2

(w′ + (R1(x) + iI1(x))) (4.2.2)

φ(x) =
1√
2

(
R3(x) + iI3(x)

w + (R2(x) + iI2(x))

)
. (4.2.3)
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The vacuum expectation values w and w′ have to fulfill the minimization conditions
of the potential (4.2.1):

0
!

=
∂

∂w′
〈0|V (ϕ, φ)|0〉 = µ2

1w
′ + λ1w

′3 +
1

2
λ5w

2w′ (4.2.4)

and

0
!

=
∂

∂w
〈0|V (ϕ, φ)|0〉 = µ2

2w + λ2w
3 +

1

2
λ5w

′2w. (4.2.5)

To determine the masses mR1 , mR2 , mR3 , mI1 , mI2 and mI3 , we have to find, in
(4.2.1), the terms quadratic in the fields and proportional to the corresponding vacuum
expectation values squared (compare section 2.2.2). These are(

1

2
µ2

1 +
3

2
λ1w

′2 +
1

4
λ5w

2

)
R2

1 (4.2.6)

and (
1

2
µ2

2 +
3

2
λ2w

2 +
1

4
λ5w

′2
)
R2

2 . (4.2.7)

Inserting (4.2.4) and (4.2.5) into (4.2.6) and (4.2.7), respectively, we find m2
R1

= 2λ1w
′2

and m2
R2

= 2λ2w
2, where we have used the convention of an explicit factor 1

2
in the

mass term.
The terms quadratic in R3, I1, I2 and I3 are zero due the minimization conditions.
R3(x), I3(x) and I2(x) are the Standard Model massless Goldstone bosons . It can
be shown that Feynman diagrams with s-channel exchange of these Goldstone bosons
cancel with Feynman diagrams in which timelike polarization states of gauge bosons
are exchanged in the s-channel [32]. This means that R3(x) + iI3(x) is eaten by the
Standard Model gauge bosons W±, and I2(x) is eaten by the Z boson. In this way, the
Standard Model gauge bosons have two transversal and one longitudinal polarization
state.
The mass terms of the states R1 and R2 can be written as

1

2
·
(
R1 R2

)
·M2 ·

(
R1

R2

)
,

with

M2 =

(
2λ1w

′2 λ5w
′w

λ5w
′w 2λ2w

2

)
. (4.2.8)

Defining the orthogonal matrix (compare to section 2.2.2)

O =

(
cos β sin β
− sin β cos β

)
,

equation (4.2.8) reads

M2 = OT ·
(
m2
H1

0
0 m2

H2

)
O . (4.2.9)
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From equation (4.2.8) combined with equation (4.2.9), it follows:

2λ1w
′2 = cos2 β m2

H1
+ sin2 β m2

H2
(4.2.10)

2λ5w
′w = sin 2β (m2

H1
−m2

H2
) (4.2.11)

2λ2w
2 = sin2 β m2

H1
+ cos2 β m2

H2
;

so
2λ1w

′2 − 2λ2w
2 = cos 2β (m2

H1
−m2

H2
) ,

and the mixing angle β must satisfy

tan 2β =
λ5w

′w

λ1w′2 − λ2w2
.

The mass eigenstates are (
H1

H2

)
=

(
cos β sin β
− sin β cos β

)
·
(
R1

R2

)
(4.2.12)

with mass eigenvalues

m2
H1

=
1

2

(
2λ1w

′2 + 2λ2w
2
)

+
1

2

√
(2λ1w′2 − 2λ2w2)2 + 4λ2

5w
′2w2

m2
H2

=
1

2

(
2λ1w

′2 + 2λ2w
2
)
− 1

2

√
(2λ1w′2 − 2λ2w2)2 + 4λ2

5w
′2w2 .

Inverting (4.2.12), one obtains:(
R1

R2

)
=

(
cos β − sin β
sin β cos β

)
·
(
H1

H2

)
. (4.2.13)

The potential (4.2.1) written in terms of the Higgs mass eigenstates H1 and H2 is
given in appendix E.
To fulfill the gauge anomaly conditions, one has to introduce a right-handed Majorana
neutrino NR with (B−L) charge qB−L = −1, as shown in section 2.5. To be the candi-
date for dark matter, NR has to be stable. But so far, the following G(SM) × U(1)B−L
invariant coupling leads to decays of NR:

ΨLφ̃NR .

We forbid this interaction by introducing an abelian discrete stabilization Z2 symmetry
under which NR is odd and all other particles are even (compare table 2.1). Then
NR is a Standard Model neutral stable particle and can therefore serve as a particle
dark matter candidate (see section 3). Its mass follows from the term (2.5.7) after
sponteaneous symmetry breaking: mNR = λcw′√

2
, using the convention 1

2
mNRNR for the

dark matter mass terms. So the dark matter mass is naturally in the TeV range where
the U(1)B−L is spontaneously broken. Observe that NR is not weakly interacting.
Thus, we can merge the two issues of astroparticle physics at one common scale: the
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scale for generating neutrino masses and the mass scale of the dark matter particle is
naturally the TeV scale.
Note that in the case of a local U(1)B−L, I1(x) is eaten by the Z ′ gauge boson , so that
there are no massless scalar degrees of freedom in the theory after ϕ obtains a vacuum
expectation value. The stabilization symmetry Z2 is unaffected by the spontaneous
breakdown of U(1)B−L, so NR remains a stable particle dark matter candidate.
In [29] it is shown that for hidden dark matter models, i.e., models in which dark matter
has no Standard Model charges, there are only two renormalizable communication
channels between the hidden sector and the Standard Model. The first possibility
is gauge kinetic mixing between a hidden U(1)H under which dark matter is charged
and the Standard Model U(1)Y . Gauge kinetic mixing is discussed for example in [90].
The second possibility is the Higgs portal which relies on mass mixing between hidden
Higgs fields and the Standard Model Higgs field.
The same reasoning holds for models with additional U(1) gauge symmetries which
are not hidden, i.e., under which Standard Model particles are charged; our U(1)B−L
gauge extension of the Zee-Babu model is just an example. The direct communication
channel between dark matter and the Standard Model via the exchange of a Z ′ boson is
suppressed due to the bound (2.5.2) and is therefore neglected in the following. Thus
the dominant renormalizable communication channel between dark matter and the
Standard Model is the mixing between ϕ and φ. The coupling term λ5 in (4.2.1) opens
the door for dark matter to annihilate into Standard Model particles and contributes
considerably to the relic abundance. Considering the resulting annihilation channels,
our model coincides with the Higgs portal dark matter model published in [18] while
our work was in progress.
With (2.1.4), (2.1.6), (2.1.7), (2.5.1), (2.5.3), (2.5.7), (4.1.3) and (4.2.1) the G(SM) ×
U(1)B−L Lagrangian reads:

LBabu = Lcov + (Dµϕ)∗(Dµϕ) + (Dµk++)∗(Dµk++) + (Dµh+)∗(Dµh+)

+Lgauge + LZ′gauge
+LY ukawa + LintBabu
+LNR
+V (φ, ϕ) . (4.2.14)

Writing the covariant derivative terms of the additional scalars in (4.2.14) in terms
of the physical mass eigenstates, there are couplings of the mass eigenstates to the
Standard Model gauge bosons changing their vacuum polarization amplitudes. The
vacuum polarization amplitudes of the W± and Z bosons affect the ρ parameter (see
equation (2.2.8)). However, precision experiments constrain any contributions beyond
the Standard Model to the ρ parameter, which are encoded in oblique correction
parameters. One of these parameters, the T parameter, is defined as [44]

αT ≡ 4

w2
(Π11(0)− Π33(0))

⇒ ρ = 1 + αT ,
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with fine-structure constant α. Πii represent the vacuum polarization amplitudes of
the W (i = 1) and Z (i = 3) boson. The effect of additional scalar particles on the T
parameter is studied in [91]. We still have to evaluate the T parameter for our model
by generalizing the result of [92], where the contribution to the T parameter arising
from just one Higgs singlet is presented.

4.2.2. Scenario 2: G(SM) × Z4

Furthermore, we investigate the possibility of a dark matter stabilization Z4 symme-
try. The Standard Model gauge group is then only extended with the abelian discrete
Z4 symmetry instead of a local U(1)B−L and an additional Z2 as in [18]. With the
charge assignments given in table 2.1, the Z4 symmetry forbids trilinear couplings in
the scalar sector such that the potential (4.2.1) is reproduced with the λµ term. In
addition to that, NR is stable. Unfortunately, we have to pay the price for the mo-
tivation of the dark matter particle: without the local U(1)B−L, there is no further
gauge anomaly condition to fulfill and therefore no theoretically justified need for the
introduction of NR.
If a potential enjoys only a discrete symmetry, then with the spontaneous breakdown
of this discrete symmetry domain walls appear in the vacuum structure of the poten-
tial [93]. Unless there is a mechanism that leads to the disappearance of domain walls
at a very early stage in the history of the universe, the domain walls dominate the
energy density of the universe [30] which is in contradiction to observations (compare
section 3.2). In scenario 2, however, U(1)B−L is a global symmetry of the Lagrangian.
In particular, all terms in the potential are invariant under global U(1) phase transfor-
mations due to the fact that all scalars are complex fields, such that the zeroth order
homotopy group of the vacuum manifold is trivial, i.e., no domain walls appear [94].
When ϕ receives its vacuum expectation value, Z4 and U(1)B−L are broken to a Z2

which stabilizes NR. After spontaneous symmetry breaking of the global U(1)B−L,
I1(x) survives as a massless Goldstone boson , i.e., a Majoron enters into the the-
ory [95–97]. Since ϕ transforms as a singlet under the Standard Model gauge group,
I1 does not directly couple to the Z boson opposed to triplet Majoron models [98],
which are ruled out by experiment [99] due to their contributions to the invisible Z
width.
The couplings of the Majoron I1 to the Higgs mass eigenstates H1 and H2 (compare
figure 4.2) are obtained from the λ1 and λ5 terms in (4.2.1). These contain:

λ1w
′ (cos β H1 − sin β H2) I2

1 and
1

2
λ5w

′w (sin β H1 + cos β H2) I2
1 . (4.2.15)

(4.2.10) and (4.2.11) allow to express λ1 and λ5 in terms of the vacuum expectation
values w and w′, the mass eigenvalues mH1 and mH2 , and the mixing angle β:

λ1 =
1

2w′2
(
cos2 β m2

H1
+ sin2 β m2

H2

)
λ5 =

1

2w′w
sin 2β

(
m2
H1
−m2

H2

)
. (4.2.16)
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H1,2

I1

I1

Figure 4.2.: Majoron coupling to Higgs mass eigenstates H1 and H2

I1

NR NR
c

NR
c NR

Figure 4.3.: t-channel exchange of Majoron leading to attractive force between dark
matter particles.

The Majoron couplings (4.2.15) to the Higgs mass eigenstates result to:

λ1 term :
1

2w′
(
cos2 β m2

H1
+ sin2 β m2

H2

)
(cos β H1 − sin β H2) I2

1

λ5 term :
1

4
sin 2β

(
m2
H1
−m2

H2

)
(sin β H1 + cos β H2) I2

1 . (4.2.17)

The λ1 term opens the dark matter annihilation channel into Majorons.
The λ5 term lead to a decay of the Standard Model Higgs doublet φ into Majorons
I1. This decay mode is an invisible Higgs decay [96]. Its analysis in our model is
postponed to a future work.
Apart from the couplings to the Higgs mass eigenstates H1 and H2, the Majoron I1

also couples to the dark matter (see figure 4.3) and mediates a Yukawa type force
which is by definition attractive and in our case infinitely long-ranged due to the
vanishing mass of I1. The corresponding potential V (r) is proportional to −1

r
, e.g., for

the Coulomb potential the proportionality factor is the electromagnetic fine-structure
constant α = e2

4π
[32]. The coupling constant of the Majoron I1 to the dark matter

particle NR is λc, i.e., the Majoron fine structure constant is αMaj = λ2c
4π

.
So the Majoron induces a self interaction for dark matter. But from the claim that dark
matter should be non self-interacting in order to explain objects like Bullet Clusters
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(compare to section 1), the Majoron fine structure constant αMaj is limited from above.
In [100] it is shown that for a dark matter particle with mass m, the dark fine-structure
constant α̂ which relies on a dark photon as gauge boson of an unbroken U(1)D dark
gauge symmetry is bounded from above by

α̂ .

√
1

300

( m

TeV

) 3
2
, (4.2.18)

in order to match the observational constraints on the dark matter self interaction.
To be clear, the dark photon is massless and apart from additional γ matrices and an
extra igµν for the propagoator, it produces the same matrix element as the Majoron
I1 for the dark matter self interaction diagram shown in figure 4.3. This means that
we can apply the bound (4.2.18) to αMaj and, accordingly, constrain the coupling
constant λc:

λc =
√

4παMaj .

√
2π

5
√

3

( m

TeV

) 3
4
.

4.3. The Three-Point Test for Dark Matter Revisited
Having set up our model in the previous section, we can answer the three questions
posed in section 3.2 related to dark matter.

4.3.1. A: Does It Match the Correct Relic Density ?

In scenario 1, due to the bound (2.5.2), the annihilation of dark matter into Standard
Model particles through Z ′ exchange is suppressed compared to annihilation channels
through the Higgs portal . For scenario 2, we have checked with micrOMEGAs [66]
that the annihilation of dark matter into Majorons has a minor effect on the relic den-
sity for our chosen parameters in table 4.1. Therefore, we determine the relic density
for the dominant Higgs portal annihilations, which are the same for the two scenarios.
We perform a detailed calculation of the cross sections for s-channel annihilation into
b b quarks and W bosons through Higgs exchange, but we neglect the partial de-
cay widths. However, in a work under progress, we determine the relic density with
micrOMEGAs [66] taking all possible annihialation channels into account with partial
decay widths.
We start with the annihilation into b b quarks through the exchange of the Higgs mass
eigenstate H1 (left part of figure 4.4). At vertex 1, the coupling is (2.5.7):

2 · vs′(p′)us(p)
1

2
λc

1√
2

cos β
1

s−m2
H1

, (4.3.1)

where the additional factor 2 takes into account the Majorana nature of NR (see
comments below (B.3.5)).
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At vertex 2, we have the Yukawa interaction (2.1.7)

ur(k)vr′(k
′)yb

1√
2

sin β .

The matrix element MH1

b b
for the whole process is the product of the vertex terms:

MH1

b b
=

1

2
λcyb cos β sin βvs′(p

′)us(p)ur(k)vr′(k
′)

1

s−m2
H1

. (4.3.2)

To get |MH1

b b
|2, we have to average over the initial spins s, s′ and to sum over the final

spins k, k′ using (B.2.7) and (B.2.8).
The spin average is

1

2

2∑
s′=1

1

2

2∑
s=1

vs′(p)vs′(p
′)us(p)us(p) =

1

4
(p/′ −mNR)(p/+mNR)

= p′ · p−m2
NR

=
s− 4m2

NR

2
, (4.3.3)

and the spin summation gives

2∑
r′=1

2∑
r=1

ur(k)ur(k)vr(k
′)vr′(k

′) = (k/+mb)(k/
′ −mb)

= 4(k′ · k −m2
b)

= 4 · s− 4m2
b

2
. (4.3.4)

With (4.3.2), (4.3.3) and (4.3.4), we can evaluate |MH1

b b
|2:

|MH1

b b
|2 =

1

4
λ2
c y

2
b cos2 β sin2 β

1

2
(s− 4m2

NR
)2(s− 4m2

b)
1

(s−m2
H1

)2

=
1

4
λ2
c y

2
b

1

4
sin2 2β

(
s− 4m2

NR

)
4
(s

4
−m2

b

) 1

(s−m2
H1

)2

=
1

4
λ2
c y

2
b sin2 2β

1

(s−m2
H1

)2

(
s− 4m2

NR

) (s
4
−m2

b

)
. (4.3.5)

The evaluation of the annihilation process into b b quarks through the exchange of
the Higgs mass eigenstate H2 proceeds analogously. The main difference is the minus
sign in MH2

b b
compared to (4.3.2) which arises from Higgs mixing (see (4.2.12)):

MH2

b b
= −1

2
λc yb cos β sin β vs′(p

′)us(p)ur(k)vr′(k
′)

1

s−m2
H2

.
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Figure 4.4.: Dominant annihilation channels

Since both processes have the same initial and final states they are indistinguishable,
and the squared absolute value |Mb b|2 of the total matrix element is the coherent sum
of MH1

b b
and MH2

b b
:

|Mb b|2 = |MH1

b b
+MH2

b b
|2

=
1

4
λ2
c y

2
b sin2 2β

(
s− 4m2

NR

) (s
4
−m2

b

)
·
(

1

(s−m2
H1

)2
− 2

(s−m2
H1

)(s−m2
H2

)
+

1

(s−m2
H2

)2

)
=

1

4
λ2
c y

2
b sin2 2β

(
s− 4m2

NR

) (
s
4
−m2

b

)
(s−m2

H1
)2(s−m2

H2
)2

(
m2
H1
−m2

H1

)2
.

Using (C.2.8) and (C.2.11), the cross section turns out to be

σHb b =
λ2
c y

2
b

64π
· sin2 (2β) ·

(
m2
H1
−m2

H2

)2 ·

√(
s− 4m2

NR

) (
s− 4m2

b b

)
s
(
s−m2

H1

)2 (
s−m2

H2

)2 ·
(s

4
−m2

b

)
.

(4.3.6)
The relic abundance Ωh2 (3.3.20) involves the thermal average 〈σvr〉 of the total anni-
hilation cross section times relative velocity. To see the contributions from annihilation
into b b quarks and W bosons, we calculate the thermal average separately for both
channels.
In the expression (4.3.6), vr enters through the Mandelstam variable s (see (3.3.15))

s =
4m2

NR

1− v2r
4

.

Given that the relative velocity vr follows a Maxwell distribution (compare to the
argumentation in section 3.3), we approximate the thermal average over vr by using
the root mean square velocity

vr ∼ vrms =

√
3T

m
=

√
3

x
.
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w′ mH1 mH2 mZ′ sin β
3000 GeV 200 GeV 120 GeV 1000 GeV 0.7

Table 4.1.: Parameter set (cf. [18])

For WIMPs, xf ≈ 20 at freeze-out [58], so that 〈v2
r〉 ∼ 0.15 < 1 and we can expand

〈σHb bvr〉 in vr. The leading order contribution reads :

〈σHb bvr〉 =
λ2
c y

2
b

128π
· sin2 (2β) ·

(
m2
H1
−m2

H2

)2 · (m2
NR
−m2

b)

(m2
H1
− 4m2

NR
)2(4m2

NR
−m2

H2
)2
·
√

1− m2
b

m2
NR

· 〈v2
r〉 .

(4.3.7)
For the calculation of the annihilation process into W bosons (right part of figure

4.4), the coupling at vertex 1 is the same as in (4.3.1).
To determine the analytic expression for vertex 2, we have to recall (2.2.2). The
relevant term is

1

4
g2W−

µ W
µ+2wH(x) .

The polarization vectors ε∗µ(k) and (ε∗)µ(k′) of the final W bosons enter into the vertex
expression such that we obtain

1

2
g2w ε∗µ(k)(ε∗)µ(k′) sin β . (4.3.8)

The matrix element MH1
W turns into

MH1
W =

1

4
√

2
λc g

2w cos β sin β vs′(p
′)us(p)

1

s−m2
H1

ε∗µ(k)(ε∗)µ(k′) . (4.3.9)

To get |MH1
W |2, we have to average over the initial spins s, s′ and sum over the final

polarization vectors ε∗µ(k) and (ε∗)µ(k′). For a massive gauge boson, there are two
transversal and one longitudinal polarization vector.
The result of the spin average is (4.3.3).
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The summation over the polarization vectors yields:∑
i=1,2,3

∑
j=1,2,3

(ε∗i )µ(k)(ε∗i )
µ(k′)(εj)ν(k)(εi)

ν(k′)

=
∑
i=1,2,3

ε∗µ(k)εν(k) ·
∑
j=1,2,3

(ε∗)µ(k′)εν(k′)

=

(
kµkν
m2
W

− gµν
)
·
(
k′µk′ν

m2
W

− gµν
)

=
(k · k′)2

m4
W

− k2

m2
W

− k′2

m2
W

+ 4 |k2 = k′2 = m2
W

= 2 +
(k · k′)2

m4
W

|s = (k + k′)2 ⇒ k · k′ = s− 2m2
W

2

= 2 ·
(

1 +

(
s
2
−m2

W

)2

2m4
W

)
. (4.3.10)

With (4.3.9), (4.3.3) and (4.3.10) we obtain:

|MH1
W |2 =

1

8
λ2
c g

4w2 cos2 β sin2 β
1

(s−m2
H1

)2

(
s− 4m2

NR

)(
1 +

1

2m4
W

(s
2
−m2

W

)2
)

=
1

8
λ2
c

(
1

2
g2w

)2

sin2 2β
1

(s−m2
H1

)2

(
s− 4m2

NR

)(
1 +

1

2m4
W

(s
2
−m2

W

)2
)
.

(4.3.11)

Again, the evaluation of the annihilation process into W bosons through the exchange
of the Higgs mass eigenstate H2 proceeds analogously. The main difference is the minus
sign in MH2

W compared to (4.3.9), which arises from Higgs mixing (see (4.2.12)):

MH2
W = − 1

4
√

2
λcg

2w cos β sin βvs′(p
′)us(p)

1

s−m2
H2

ε∗µ(k)(ε∗)µ(k′) .

The squared absolute value |MW |2 of the total matrix element is

|MW |2 = |MH1
W +MH2

W |2

=
1

8
λ2
c

(
1

2
g2w

)2

sin2 2β
(m2

H1
−m2

H1
)2(s− 4m2

NR
)

(s−m2
H1

)2(s−m2
H2

)2

·
(

1 +
1

2m4
W

(s
2
−m2

W

)2
)
.

The corresponding annihilation cross section reads

σHW =
λ2
c

128π
·
(

1

2
g2w

)2

· sin2 (2β) ·
(
m2
H1
−m2

H2

)2 ·

√(
s− 4m2

NR

)
(s− 4m2

W )

s
(
s−m2

H1

)2 (
s−m2

H2

)2

·
(

1 +
1

2m4
W

(s
2
−m2

W

)2
)

,
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Figure 4.5.: Test of relic density : s-channel annihilation into b b quarks (red) and into
W bosons (blue) through Higgs exchange using the parameter set of table
4.1.

and the leading-order contribution to the thermal average is

〈σHWvr〉 =
λ2
c

2048π
·
(

1

2
g2w

)2

· sin2 (2β) ·
√

1− m2
W

m2
NR

· 〈v2
r〉

·
(
m2
H1
−m2

H2

)2 · (4m4
NR
− 4m2

NR
m2
W + 3m4

W )

(m2
H1
− 4m2

NR
)2(4m2

NR
−m2

H2
)2m4

W

. (4.3.12)

The denominators of (4.3.7) and (4.3.12) clearly reveal that for mNR = 1
2
mH1,2 , there

are Higgs resonances. In the vicinity of these resonances, we can match the correct
dark matter relic abundance (see figure 4.5).
The 〈v2

r〉 dependence of (4.3.7) and (4.3.12) is linked to the Majorana character of the
dark matter particle NR [101]:
Let l and s denote the angular momentum and the spin, respectively. A generic wave
function has a spatial part and a spin part. From the expansion of a spatial wave
function in terms of spherical harmonics, one can infer that it transforms under a par-
ity operation P like (−1)l. The spin wave function is even under P for triplet states
s = 1 and odd for singlet states s = 0, i.e., it transforms like (−1)s+1. A fermion has
an additional intrinsic parity of (−1) due to the opposite parity of the Dirac spinors
u and v [32], which enter into the plane wave ansatz for the fermion. Thus, a fermion
transforms under P like (−1)l(−1)s+1(−1) = (−1)l+s.
Particle-antiparticle exchange transformations C have the same dependence on l and
s as P : C = (−1)l+s.
Majorana fermions are even under C. That means that l and s must both be either
even or odd. In spin-parity notation JPC with total angular momentum J , the dark
matter particle must be in the 0++ state to obtain the coupling to a scalar in the Higgs
portal channels considered above. In spectroscopic notation, 2S+1LJ , this state is a
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3P0 state, which corresponds to l = 1.
On general grounds, the lth partial wave contribution to the annihilation cross section
times velocity is proportional to v2l (see section 3.3). Thus the leading contribution
in 〈vr〉 is 〈v2

r〉 , which corresponds to p-wave annihilation.
The results (4.3.5) and (4.3.11) are written in a form which allows the direct compar-
ision with the corresponding results in [18].
The results (4.3.7) and (4.3.12) for the leading order contributions to the thermal av-
erage of the annihilation cross section times velocity are inserted into (3.3.19), where
we use the approximation of s-wave annihilation. We assume xf ≈ 20. Since the
additional scalars h+, k++, ϕ are at the same mass scale as the dark matter parti-
cle NR, they are non-relativistic at the time of freeze-out of NR and only Standard
Model particles contribute to the number g∗ of relativistic degrees of freedom, i.e.,
g∗ = 106.75. Figure 4.5 finally reveals that for the parameter set in table 4.1, we can
match the correct relic abundance (compare (3.3.20) and (3.3.21)) in the vicinity of
the Higgs resonances.
In a work under progress, we use the code micrOMEGAs [66] to determine the dark
matter relic abundance by numerically solving the Boltzmann equation for NR in the
Lee-Weinberg approximation ((3.3.16)). To implement our model in micrOMEGAs,
we generate the needed Feynman rules with LanHEP [102].
Numerically solving the Boltzmann equation involves the thermal average of the an-
nihilation cross section times relative velocity vr. So far, we have approximated the
thermal average over a Maxwell distribution by the root mean square velocity. In an
elaborated calculation performed in micrOMEGAs, the thermal average results to [54]:

〈σvr〉 =
1

8m4
NR
TK2

2

(mNR
T

) ∞∫
4m2

NR

ds σ ·
(
s− 4m2

NR

)
· √s ·K1

(√
s

T

)
,

where the modified Bessel functions Ki(z) [103] are solutions to the differential equa-
tion

z2 d
2w

dz2
+ z

dw

dz
−
(
z2 + i2

)
· w = 0 .

The very interesting fact about the thermal average is the contribution of all velocities
instead of just the root mean square velocity vrms, especially of velocities larger than
vrms. For example, let the dark matter mass m be variable and consider the availabel
energy E in the center of mass frame for two annihilating dark matter particles with
equal masses m = m1 and a relative velocity v1 = vrms (see equation (3.3.15)):

E =
4m2

1

1− v21
4

.

Since the relative velocity is thermally distributed, there are velocities v2 with v2 > v1.
To provide the same energy E, a dark matter particle with mass m = m2 must obey
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Figure 4.6.: Direct detection

the relation:

4m2
2

1− v22
4

=
4m2

1

1− v21
4

⇔ m2
2

m2
1

=
1− v22

4

1− v21
4

| v2 > v1

⇒ m2 < m1 .

This means that when we are scanning the thermal relic density as a function of the
dark matter mass m, annihilation channels become possible for a lower m, which would
be kinematically forbidden without taken into account the thermal distribution of the
relative velocity (compare to [104]). Consequently, the resonance peaks in figure 4.5
are broadened to smaller m below the threshold leading to an asymmetric relic density
in the vicinity of the resonance thresholds.

4.3.2. B: Is It Cold?
In scenario 1, the mass scale of the dark matter particle is given by the symmetry
breaking scale of the gauged U(1)B−L, which is the TeV scale. Clearly, dark matter
particles with masses in the TeV range of are non-relativistic, i.e., cold.
In scenario 2, the mass of the dark matter particle is determined by the breaking scale
of the global U(1)B−L. (B−L) is preserved within the experimental range, i.e., up to
O (100 GeV). (B−L) violating interactions are thus expected above the experimental
range and therefore the dark matter is cold in this scenario as well.

4.3.3. C: Can It Be Probed Experimentally?
We have calculated the cross section σproton for elastic spin independent scattering of
dark matter off a proton through t-channel exchange of the mass eigenstates H1 and
H2 (see figure 4.6). The result reads:

σproton =
4m2

red

π
(gNRNRH1 + gNRNRH2)

2 g2
Hp .
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Figure 4.7.: The elastic scattering cross section in pb with a proton. All parameters are
the same as those listed in table 4.1. Red dots correspond to sin β = 0.7,
blue dots correspond to sin β = 0.3.

Figure 4.8.: XENON100 upgrade projected sensitivity: 60,000 kg-d, 5-30 keV, 45% eff.
Figure created with plotter provided in [17].
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Figure 4.9.: Production of dark matter at the LHC with initial state radiated photon.

Here, mred is the reduced mass of the dark-matter-proton system. The terms gNRNRHi
are the couplings between dark matter and the Higgs mass eigenstates:

gNRNRH1 = +
1

2
λc cos β

1

m2
H1

sin β

gNRNRH2 = −1

2
λc cos β

1

m2
H2

sin β .

According to (3.5.2), the coupling gHp between the Standard Model Higgs particle and
the proton is:

gHp =
mp

w

( ∑
q=u,d,s

f
(p)
Tq +

2

27

(
1−

∑
q=u,d,s

f
(p)
Tq

))
,

with the Yukawa couplings yq satisfying mq = w · yq. Figure 4.7 shows the elastic
scattering cross section depending on the mass of the dark matter particle. Comparing
figure 4.7 with figure 3.4, one sees that our model is below the current experimental
sensitivity, but still within the reach of upcoming experiments (see figure 4.8).
Note that, due to the Higgs portal , the considered annihilation channels and the
scattering of NR off protons are governed by one common coupling constant, namely
λc.
Under T transformation, the Feynman diagrams in figure 4.4 result in possible dark
matter search channels at colliders. In our model, figure 3.8 is dominantly realized
through the Higgs portal as depicted in figure 4.9.

4.4. Verification of the Model at the LHC

The most-studied processes to produce new particles at the LHC are Drell-Yan pro-
cesses as shown in figure 4.10: at the collison of two protons p1 and p2, a quark q
of proton p1 annihilates with an antiquark q of proton p2 and a Z boson is created,
which then decays either into a Standard Model lepton pair, which we call background
signals, or into new particles.
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Figure 4.10.: Drell-Yan process for Standard Model background
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Figure 4.11.: Detection channel for the pair-produced doubly charged scalar k++

4.4.1. Scalars h+ and k++

The scalars h+ and k++ can be pair produced at the LHC via Drell-Yan processes. The
corresponding cross section is proportional to the squared charges of the scalars, so that
the cross section for production of the doubly charged pair (k++, k−−) is four times
as large as the cross section for production of the singly charged pair (h+, h−) [105].
Since the scalars must satisfy the LEP lower bound for charged scalar masses, which
is approximately 100 GeV, we can assume that they will decay inside the detectors.
Recall from (4.1.3) that the LHC is more sensitive to the decay channels of k++

because all leptonic decays of h+ involve a neutrino. The best-suited channel to
detect a (k++, k−−) pair is the decay channel which contains four leptons in the final
state (see figure 4.11) [105]. A signature of four leptons would be a clear hint for the
scalar k++.

4.4.2. Z ′ Gauge Boson
In section 4.2.1, we studied the extension of the Zee-Babu model with a minimal
gauged U(1)B−L.
The Z ′ gauge boson, being much heavier than the Standard Model Z boson (compare
bound from electroweak precision observables in (2.5.2)), could be identified through
a resonance in the (e+, e−) invariant mass spectrum above the Standard Model Drell-
Yan background (compare figure 4.10). The position of the resonance in the invariant
mass spectrum directly gives the mass MZ′ of the Z ′ gauge boson. Fitting the res-
onance with a Breit-Wigner resonance curve permits the determination of the decay
width ΓZ′ . The production cross section for a Z ′ decreases exponentially with increas-
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Figure 4.12.: Z ′ gauge boson in dielectron event

ing MZ′ [106].
The CDF Collaboration reported the following result on Z ′ searches at Tevatron: in
proton-antiproton collisions at a center of mass energy of

√
s = 1.96 TeV, using a

dataset corresponding to an integrated luminosity of 0.45 fb−1, no evidence of a Z ′

boson is found in the dielectron invariant mass spectrum [107].
The CMS experiment at the LHC will probe the Z ′ mass range 1 TeV 5 mZ′ 5 2 TeV
at a center of mass energy

√
s = 10 TeV with a dataset corresponding to an integrated

luminosity of 300 pb−1 [4]. Currently, the LHC runs at a center of mass energy of√
s = 7 TeV and a luminosity below 100 pb−1. That means that already with the next

upgrade in energy, the interesting mass range for our model of the Z ′ will be probed.
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Conclusion

Neutrinos have mass and the
Universe has dark matter.

(Ernest Ma)

Motivated by the two main problems of astroparticle physics, a common framework
for radiative neutrino mass generation and dark matter has been presented.
The input was the Zee-Babu model [27] which has in addition to the Standard Model
two complex scalar singlets h+ and k++ coupling to left- and right-handed leptons, re-
spectively. Light neutrino masses are generated at the two-loop level. The advantage
of loop-induced neutrino masses is the relative low scale at which new physics enters.
Compared to tree-level mass models, e.g., the seesaw mechanism, the radiatively pro-
duced neutrino masses are suppressed by a factor of 1

16π2 for each loop. So neutrino
flavor oscillation experiments can be explained at the TeV scale which is in current
experimental reach.
While the Zee-Babu model has special signatures for experimental verification [87,88,
105], of which only one has been discussed, it does not contain a dark matter particle.
Therefore, a right-handed Majorana neutrino NR has been suggested to be the cold
dark matter candidate in the Zee-Babu model.
To realize this idea together with light neutrino mass generation, a U(1)B−L symmetry
was imposed. The trilinear scalar coupling µ of the Zee-Babu potential needed to give
light neutrino masses was realized in a (B − L) invariant way by a complex scalar
singlet ϕ with (B − L) charge qB−L(ϕ) = 2. With spontaneous symmetry breaking
driven by ϕ, the U(1)B−L breaking µ term of the Zee-Babu model arises dynamically
as well as the Majorana mass of NR. Thus light neutrino masses and the mass of the
particle dark matter candidate are generated at one common energy scale, which is
the U(1)B−L breaking scale.
Two scenarios have been analyzed to bring forward the (B−L) symmetry in the Zee-
Babu model. In a first scenario, the U(1)B−L has been gauged. NR is then a must to
prevent [U(1)B−L]3 gauge anomalies. Stabilized by a Z2 symmetry, it is the candidate
for a particle dark matter. In a second scenario, the gauge group has been enlarged
with a Z4 symmetry, i.e., U(1)B−L is global. Although it is a more economic extension
compared to U(1)B−L × Z2 in scenario 1, this scenario does not theoretically justify
the introduction of a dark matter particle, instead, NR has to be introduced by hand
rather than based on gauge anomaly conditions. With the spontaneous symmetry
breaking of the global U(1)B−L, a Majoron enters into the theory. The calculated
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couplings of the Majoron to the Higgs mass eigenstates could lead to interesting Higgs
phenomenology at the LHC, e.g., invisible Higgs decays. These signatures have not
yet been studied in detail for the given model and are postponed to a future work. For
the Majoron scenario, the dark matter couples to the Majoron through the λc term.
To forbid large dark matter self interactions, λc is limited from above.
As it was pointed out, particle candidates for dark matter have to fulfill necessary
conditions. Three of them have been introduced and applied to the underlying model,
namely the observed relic density, bounds from structure formation and possible sig-
nals in detection experiments.
Concerning the thermal relic density, annihilations of NR into Z ′, the gauge boson
of U(1)B−L, do occur in the first scenario, however, are suppressed by the bound
MZ′
gB−L

' 6.7 TeV. The dominant annihilation channels in both scenarios proceed via

the Higgs portal opened by the λ5 coupling, which mixes the Standard Model Higgs
doublet φ with the Higgs singlet ϕ. It has been approximately shown that annihilations
into bb quarks and W bosons could produce the correct dark matter relic abundance.
The approximation is based on the use of the root mean square velocity instead of
performing the average over a Maxwell distribution in the computation of the thermal
average of the annihilation cross section times relative velocity.
It has also been shown that the Higgs portal opens the door for direct detection.
In addition, it has been outlined how the LHC may verify the proposed model by
detection of the charged Zee-Babu scalars.
The phenomenology of the Zee-Babu model and its possible verification are extensively
discussed in the literature. The suggested extension to a (B − L) invariant Zee-Babu
model in the scenario of a gauged U(1)B−L is thus a very promising and verifiable
model to solve both the neutrino mass probelm and the dark matter of the universe.



Appendix A

Units, Constants and Parameters

In this work, we use natural units:

~ = c = k = 1 .

The fundamental dimension is energy:

[Energy]=[Mass]=[Temperature]=[Length]−1=[Time]−1 .

Constants and parameters used in this work are adopted from [4]:
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Quantity Symbol Value
speed of light c 299 792 458 m s−1

Planck constant, reduced ~ 6.582 118 99(16)×10−22 MeV s
conversion constant (~c)2 0.389 379 304(19) GeV2 mb
Planck mass mpl 1.220 89(6)×1019 GeV/c2

Newtonian gravitational constant GN 6.708 81(67)×10−39 ~c(GeV/c2)−2

Boltzmann constant k 8.617 343(15)×10−5 eV K−1

fine-structure constant α 1/137.035 999 679(94)
at Q2 = 0
Fermi coupling constant GF/(~c)3 1.166 37(1)×10−5 GeV−2

weak mixing angle sin2 ΘW 0.231 19(14)
at mZ in MS
W± bosons mass mW 80.398(25) GeV/c2

light year ly 0.946 053...×1016 m
parsec pc 3.085 677 6×1016 m
number density of CMB photons nγ 410.5(T/2.725)3 cm−3

present day normalized h 0.73(3)
Hubble expansion rate
present day Hubble H0 2.1332h ×10−42 GeV
expansion rate
critical density ρc 1.878 35(19)×10−29 h2 g cm−3

Table A.1.: Constants and parameters



Appendix B

Fermions in Four Dimensional
Spacetime

B.1. Dirac and Weyl Spinors
Group theory classifies all particles as members of irreducible representations of an
underlying symmetry group, i.e., particles are classified according to their transfor-
mation behavior under a symmetry group [108]. The Lorentz group SO(3, 1), which
is a Lie group, is the symmetry group of rotations and boosts in four dimensional
spacetime. Fermions live in the spinor representation of SO(3, 1), which we review in
this appendix.
Assume a set of n× n matrices γµ, µ = 0, 1, 2, 3, satisfying the Clifford algebra

{γµ , γν} = 2 gµν 1n×n (B.1.1)

with metric tensor gµν .
Define

Jµν ≡ i

4
[γµ, γν ] . (B.1.2)

Then the Jµν fulfill the Lie algebra of SO(3, 1):

[Jµν , Jρσ] = i(gνρJµσ − gµρJνσ − gνσJµν + gµσJνρ) (B.1.3)

and are thus generators of a special representation of the Lorentz group.
A generic element Λ of the Lie group SO(3, 1) can always be written as Λ = e−

i
2
ωµνMµν

with Mµν being the generators of the corresponding Lie algebra. S(Λ) = e−
i
2
ωµνJµν is

a special representation of Λ, the spinor representation, for which the generators are
Jµν . Notice that Lorentz boosts along the i = 1, 2, 3 directions are generated by

J0i B.1.2
= − i

2

(
σi 0
0 −σi

)
(B.1.4)

with Pauli matrices σi.
A Dirac spinor (ΨD)a(x

µ) , a = 1, 2, 3, 4, is defined as a complex four-component field
which has the following transformation law under a Lorentz transformation Λ:

(ΨD)a(x
µ)

Λ−→ S(Λ)ab(ΨD)b((Λ
−1) ν

µ xν) . (B.1.5)
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In the four dimensional Dirac representation of the Clifford algebra, the γµ are repre-
sented by the Pauli matrices

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
in the following way:

γµ =

(
0 σµ

σµ 0

)
, (B.1.6)

where σµ = (1, σi) and σµ = (1,−σi) with i = 1, 2, 3.
In this representation of the Clifford algebra, the generators Jµν of the Lorentz group
are diagonal and thus the Dirac spinor representation is reducible. In fact, in a space of
even dimension there exists a chirality operator under which reducible representations
factorize into irreducible representations. In four dimensions, we define the chirality
operator γ5 ≡ iγ0γ1γ2γ3. With the anticommutation relation in (B.1.1), the following
properties of γ5 are obvious:

(γ5)† = γ5 (B.1.7)

(γ5)2 = 14×4 (B.1.8)

{γ5, γµ} = 0 . (B.1.9)

With γ5, we build the left- and right-handed projection operators PR and PR:

PL =
1− γ5

2
, PR =

1 + γ5

2
. (B.1.10)

It is easy to check that PL and PR fulfill the defining properties of orthogonal projec-
tion operators: PL+PR = 14×4, PL·PR = PR·PL = 0 and (PL)2 = PL, (PR)2 = PR.
The last two equalities directly follow from (B.1.8). A Dirac fermion (ΨD)a can then
be written as

(ΨD)a =

(
PL (ΨD)a
PR (ΨD)a

)
≡
(

Ψα

χ α̇

)
. (B.1.11)

The left-handed Weyl-spinor Ψα with α = 1, 2 lives in the (1
2
, 0) representation of the

Lorentz group and transforms under Lorentz transformations as Ψα → Ψ′α = M β
α Ψβ.

The right-handed Weyl-spinor χ α̇ with α̇ = 1, 2 lives in the (0, 1
2
) representation of

the Lorentz group and transforms under Lorentz transformations as
χ α̇ → χ′ α̇ = (M∗−1) α̇

β̇
χ β̇.

Here, M ∈ SL(2,C). SL(2,C) is the universal double covering group of SO(3, 1).
In this work, we use the formalism of Dirac spinors, i.e., Ψ is a Dirac fermion.

B.2. Solutions to the Dirac Equation
The lagrangian for a free fermion Ψ with mass m is the Dirac Lagrangian:

LDirac = Ψ (i∂/−m) Ψ , (B.2.1)
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with Ψ = Ψ†γ0 and ∂/ ≡ γµ∂µ.
The classical Euler-Lagrange equations applied to (B.2.1) yield the Dirac equations of
motion for Ψ and Ψ:

− γµ∂µΨ = imΨ (B.2.2)

∂µΨγµ = imΨ . (B.2.3)

Multiplying (B.2.2) with (−i∂/ − m), we see that if Ψ fulfills the Dirac equation, it
automatically satisfies the Klein-Gordon equation:

0 = (−i∂/−m) · (i∂/−m)Ψ

= (γµ∂µγ
ν∂ν +m2)Ψ

=

(
1

2
(γµγν + γνγµ) ∂µ∂ν +m2

)
Ψ

(B.1.1)
= (∂µ∂

µ +m2)Ψ .

Solutions to the Klein-Gordon equation (∂µ∂
µ +m2)Ψ = 0 are plane waves e−ipx, such

that a solution to the Dirac equation can be written as

Ψ(x) = u(p)e−ipx

with Dirac spinor u(p).
For plane wave solutions eipx, we make the ansatz Ψ(x) = v(p)eipx.
In the rest frame of a particle with four momentum p0 = (m,0), there are two linearly
independent solutions of (B.2.2) proportional to

us(p0) =
√
m

(
ξs
ξs

)
; s = 1, 2

with ξ1 =

(
1
0

)
and ξ2 =

(
0
1

)
.

In a general frame, a Dirac spinor u(p) is obtained from the expression in the rest
frame by applying a boost. For example, boosting p0 along the 3 direction one obtains
E = m cosh η and p3 = m sinh η with rapidity η [32], so that

√
E + p3 =

√
m · e η2 (?).

A spinor transforms in the spinor representation of the Lorentz group. Using (B.1.4),
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we then obtain:

u(p) = S(Λ03)u(p0)

= exp

[
− i

2
ω03

(
− i

2

(
σ3 0
0 −σ3

))]√
m

(
ξs
ξs

)
|η ≡ 1

2
ω03

= exp

[
−η

2

(
σ3 0
0 −σ3

)]√
m

(
ξs
ξs

)

= exp



−η

2
0 0 0

0 η
2

0 0
0 0 η

2
0

0 0 0 −η
2


√m(ξsξs

)
| exp(A) =

∞∑
k=0

Ak

k!

=


cosh η

2
− sinh η

2
0 0 0

0 cosh η
2

+ sinh η
2

0 0
0 0 cosh η

2
+ sinh η

2
0

0 0 0 cosh η
2
− sinh η

2


·√m

(
ξs
ξs

)

=


e−

η
2 0 0 0

0 e
η
2 0 0

0 0 e
η
2 0

0 0 0 e−
η
2

√m(ξsξs
)

=

e η2 · (1−σ3

2

)
+ e−

η
2 ·
(

1+σ3

2

)
0

0 e
η
2 ·
(

1+σ3

2

)
+ e−

η
2 ·
(

1−σ3

2

)√m(ξs
ξs

)

(?)
=

(√E + p3

(
1−σ3

2

)
+
√
E − p3

(
1+σ3

2

))
ξs(√

E + p3

(
1+σ3

2

)
+
√
E − p3

(
1−σ3

2

))
ξs


=

(√
p · σξs√
p · σξs

)
. (B.2.4)

From (B.2.4) and the fact that (p ·σ)(p ·σ) =

(
m2 0
0 m2

)
, the field bilinears u(p′)Γu(p)

of table B.1 follow:

u(p)1u(p) = 2mξ†ξ (B.2.5)

u(p)γ5u(p) = 0

u(p)γµu(p) =

(
2p0

(
ξ†ξ
)

2piσi
(
ξ†σiξ

))
u(p)γµγ5u(p) =

(
2pi σi

(
ξ†σiξ

)
2p0

(
ξ†σiξ

) ) . (B.2.6)

The computation of the tensor is similar to the computation of the vector and the
axial vector.
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In the non-relativistic limit vi � 1, the vector can be absorbed into the scalar,

u(p)γµu(p)→
(

2p0
(
ξ†ξ
)

O(vi)

)
,

and similary, the tensor can be absorbed into the axial vector.
The axial vector becomes

u(p)γµγ5u(p)→
(
O(vi)

2p0
(
ξ†σiξ

)) ,

where ξ†σiξ is a spin operator.
Thus, we see that in the non relativistic limit, the scalar and the axial vector are the
relevant interactions.
The spinors u(p) and v(p) of a particle with mass m satisfy the spin summation rules:

2∑
s=1

us(p)us(p) = p/+m (B.2.7)

2∑
s=1

vs(p)vs(p) = p/−m . (B.2.8)

B.3. Charge Conjugation
For any fermion field Ψ(xµ), there exists the charge conjugated field

ΨC(xµ) ≡ CΨ
T

(xµ) .

To get the transformation law of a spinor for ΨC(xµ) under space-time rotations, the
charge conjugation matrix C has to fulfill:

C−1γµC = −γTµ (B.3.1)

C† = C−1 (B.3.2)

CT = −C . (B.3.3)

From (B.3.1),(B.3.2) and (B.3.3), it follows that ΨC = ΨTC.
Another useful relation concerns scalars involving the charge conjugation matrix C.
A scalar s fulfills sT = s. The term ΨC

1 Ψ2 is a scalar. It follows:

ΨC
1 Ψ2 = (ΨC

1 Ψ2)T = (ΨT
1 CΨ2)T = −ΨT

2 CTΨ1 = ΨT
2 CΨ1 = ΨC

2 Ψ1 . (B.3.4)

The minus sign in the third step of (B.3.4) arises due to the anticommutation of Ψ1

and Ψ2. In the fourth step, we have used (B.3.3).
It can be shown that for any representation of the Lorentz group, the matrix C with
the properties given above exists. In the special case of the four dimensional spinor
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Γ Lorentz transformation C
1 scalar +1
γ5 pseudo-scalar +1
γµ vector –1
γµγ5 axial-vector +1

i
2
[γµ, γν ] tensor –1

Table B.1.: Field bilinears

representation, C = iγ2γ0.
A Majorana fermion field ΨM(xµ) has the property that the charge conjugated field
equals the original field: (ΨM)C(xµ) = ΨM(xµ).
If we express the Majorana fermion field ΨM(x) in terms of creation and annihilation
operators b† and b,

ΨM(x) =

∫
d3p

(2π)3
√

2Ep

2∑
s=1

(
bs(p)us(p) e−ipx + b†s(p)vs(p) eipx

)
. (B.3.5)

Using that the charge conjugation matrix C relates the u and v spinors through

us(p) = CvTs (p) (B.3.6)

vs(p) = CuTs (p) , (B.3.7)

and evaluate the transition amplitude Ψ+ΨC → ϕ with B.3.1, B.3.2, B.3.6 and B.3.7,
we find that the factor 1

2
in the term (2.5.7) cancels [109].

B.4. Field Bilinears
Consider now a fermion Ψ. Let Γ be any 4× 4 constant matrix. The term Ψ Γ Ψ [32]
has a definite transformation behaviour under the Lorentz group and under charge
conjugation C for a specific choice of Γ, see table B.1. Since a Majorana fermion
ΨM satisfies (ΨM)C(xµ) = ΨM(xµ), those terms Ψ Γ Ψ which transform non-trivially
under charge conjugation C are forbidden for ΨM . In particular, there are no vector
currents for Majorana fermions.



Appendix C

Two-Body Reactions

C.1. Mandelstam Variables
Two-body reactions (see figure C.1) are described with the Lorentz-invariant Mandel-
stam variables s, t, u defined by

s = (p1 + p2)2 = (p3 + p4)2 (C.1.1)

t = (p1 − p3)2 = (p2 − p4)2 (C.1.2)

u = (p1 − p4)2 = (p2 − p3)2 (C.1.3)

and satisfying s+ t+ u = m2
1 +m2

2 +m2
3 +m2

4.

C.2. Cross Section
The reaction is characterized by the interactions involved in the process. These are
accounted for in the calculation of |M|2, where the Lorentz invariant matrix element
M is determined by use of the Feynman rules. |M|2 yields the observable cross section
σ.
If fermions are involved in the interactions, then M contains γ matrices defined in
Appendix B. In the calculation of |M|2 one then has to evaluate traces of γ matrices,
which obey the following rules:

tr (14×4) = 4 (C.2.1)

tr (any odd # of γ’s) = 0 (C.2.2)

tr (γµγν) = 4gµν (C.2.3)

tr (γµγνγργσ) = 4 (gµνgρσ − gµρgνσ + gµσgνρ) (C.2.4)

tr (γ5) = 0 (C.2.5)

tr (γµγνγ5) = 0 (C.2.6)

tr (γµγνγργσγ5) = −4iεµνρσ . (C.2.7)

Since most of the reactions we consider are s-channel-mediated annihilation reactions
and are thus independently of the Mandelstam variable t, we find it convenient to
calculate σ by integration of the differential cross section with respect to t:

dσ

dt
=

1

64πs

1

|p1cm|2
|M|2 . (C.2.8)
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p3

p4

p1

p2

Figure C.1.: Two-body reaction

The incoming momentum p1cm in the center-of-mass system is given by p1cm =√
E2

1cm −m2
1 with

E1cm =
s+m2

1 −m2
2

2
√
s

. (C.2.9)

The integration limits of (C.2.8) are

t0(t1) =

(
m2

1 −m2
3 −m2

2 +m2
4

2
√
s

)2

− (p1cm ∓ p3cm)2 . (C.2.10)

For equal massive initial state particles and equal massive final state particles, one
obtains

t0 − t1 =
√

(s− 4m2
1)(s− 4m2

3) . (C.2.11)



Appendix D

Dimensional Regularization

We explain the suppression factors 1
16π2 arising in loop diagrams. Therefore, we use

dimensional regularization. This appendix gives by no means a complete introduction
to dimensional regularization.

D.1. Feynman Parameters
In radiative neutrino mass models, light neutrinos become massive at loop level, e.g.,
in the Zee-Babu model [27], the neutrino mass emerges at two-loop level.
Loop integrals can be divergent. A purely mathematical theory with divergencies is
consistent, however, a physical theory with infinities is inconsistent because it will fail
to make measurable predictions. Therefore, in physical theories divergencies have to
be regularized.
Dimensional regularization is one technique to render the theory finite. One computes
loop integrals in d dimensions from the very beginning and treats d as a complex
variable. Then one performs the limit d→ 4.
To start with, one uses Feynman parameters xi ; i = 1, ..., n to combine the propagator

terms Ai in the loop integrals Πm
j=1

∫ ddpj
(2π)d

;m 5 n [32]:

1

A1A2...An
=

∫ 1

0

dx1dx2...dxn δ(
n∑
i=1

xi − 1)
(n− 1)!

(
∑n

i=1 xiAi)
n . (D.1.1)

D.2. Loop Integrals
Observe that each Ai is quadratic in the integration variables pj. For each pj, one
completes the square by shifting pj to lj, such that in (D.1.1) one is left with a
denominator expression of the form (l2j −∆j)

n, where ∆j is independent of pj.
The remaining integrals are calculable:∫

ddlj
(2π)d

1

(l2j −∆j)n
=

(−1)n i

(4π)
d
2

Γ(n− d
2
)

Γ(n)

(
1

∆j

)n− d
2

, (D.2.1)

with the Gamma function

Γ(y) =

∫ ∞
0

dx xy−1e−x .
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A list of d-dimensional integrals is provided in [32].
If the integral in (D.2.1) converges, one can set d = 4. For non-converging integrals
one expands Γ(x) near its poles x = −n, x = 0 and takes the limit d→ 4 [32].
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The Potential 4.2.1 in Terms of
Higgs Mass Eigenstates

V (H1, H2) =

(
µ2

1cw
′ + µ2

2sw + λ1cw
′3 + λ2sw

3 +
1

2
λ5cw

2w′ +
1

2
λ5sww

′2

+ λ6cw
′k−−k++ + λ8swk

−−k++ + λ7cw
′h−h+

+ λ9swh
−h+ +

1√
2
λµ cos βk++h−h−

)
H1

+

(
−µ2

1sw
′ + µ2

2cw − λ1sw
′3 + λ2cw

3 − 1

2
λ5sw

2w′ +
1

2
λ5cww

′2

− λ6sw
′k−−k++ + λ8cwk

−−k++ − λ7sw
′h−h+

+ λ9cwh
−h+ − 1√

2
λµ sin βk++h−h−

)
H2

+

(
1

2
µ2

1c
2 +

1

2
µ2

2s
2 +

3

2
λ1c

2w′2 +
3

2
λ2s

2w2

+
1

4
λ5c

2w2 + λ5csww
′ +

1

4
λ5s

2w′2

+
1

2
λ6c

2k−−k++ +
1

2
λ8s

2k−−k++ +
1

2
λ7c

2h−h+ +
1

2
λ9s

2h−h+

)
H2

1

+

(
1

2
µ2

1s
2 +

1

2
µ2

2c
2 +

3

2
λ1s

2w′2 +
3

2
λ2c

2w2

+
1

4
λ5s

2w2 − λ5csww
′ +

1

4
λ5c

2w′2

+
1

2
λ6s

2k−−k++ +
1

2
λ8c

2k−−k++ +
1

2
λ7s

2h−h+ +
1

2
λ9c

2h−h+

)
H2

2

+

(
λ1c

3w′ + λ2s
3w +

1

2
λ5c

2sw +
1

2
λ5cs

2w′
)
H3

1

+

(
−λ1s

3w′ + λ2c
3w +

1

2
λ5s

2cw − 1

2
λ5sc

2w′
)
H3

2

+

(
1

4
λ1c

4 +
1

4
λ2s

4 +
1

4
λ5c

2s2

)
H4

1 +

(
1

4
λ1s

4 +
1

4
λ2c

4 +
1

4
λ5c

2s2

)
H4

2

+ (...)
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V (H1, H2) = (...)

+
(
−µ2

1cs+ µ2
2cs− 3λ1csw

′2 + 3λ2csw
2

− 1

2
λ5csw

2 + λ5c
2ww′ − λ5s

2ww′ +
1

2
λ5csw

′2

− λ6csk
−−k++ + λ8csk

−−k++ − λ7csh
−h+ + λ9csh

−h+
)
H1H2

+
(
−3λ1c

2sw′ + 3λ2cs
2w

+
1

2
λ5c

3w − λ5cs
2w + λ5c

2sw′ − 1

2
λ5s

3w′
)
H2

1H2

+
(
3λ1s

2cw′ + 3λ2sc
2w

+
1

2
λ5c

3w′ − λ5cs
2w′ − λ5c

2sw +
1

2
λ5s

3w

)
H2

2H1

+

(
3

2
λ1c

2s2 +
3

2
λ2c

2s2 +
1

4
λ5c

4 − λ5c
2s2 +

1

4
λ5s

4

)
H2

1H
2
2

+

(
−λ1c

3s+ λ2s
3c+

1

2
λ5c

3s− 1

2
λ5cs

3

)
H3

1H2

+

(
−λ1s

3c+ λ2c
3s− 1

2
λ5c

3s+
1

2
λ5cs

3

)
H3

2H1

+
1

2
µ2

1w
′2 +

1

2
µ2

2w
2 +

1

4
λ1w

′4 +
1

4
λ2w

4 +
1

4
λ5w

2w′2

+µ2
3k
−−k++ + µ2

4h
−h+

+λ3(k−−k++)2 + λ4(h−h+)2 + λ10k
−−k++h−h+

+
1

2
λ6w

′2k−−k++ +
1

2
λ8w

2k−−k++ +
1

2
λ7w

′2h−h+ +
1

2
λ9w

2h−h+

+
1√
2
λµw

′k++h−h−

We have introduced the abbreviations

c ≡ cos β , s ≡ sin β.
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