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Abstract

A discrete flavor symmetry can serve as an explanation for the strong
mass hierarchy among quarks and charged leptons, the different mix-
ings in the quark and lepton sector or can be used to obtain a certain
mass matrix texture. In this work we introduce in addition to the
standard model the dihedral group D5 and thus obtain certain mass
matrices. From this we develop a model which is in agreement with
current experimental bounds. Thereby we discuss different Higgs sec-
tors containing three and four Higgs respectively as well as their mass
matrices. Finally we show a numerical solution for models containing
Dirac and Majorana neutrinos respectively.

Kurzfassung

Diskrete Flavor Symmetrien können als Erklärung dienen, um die
große Massen-Hierarchie von Quarks und geladenen Leptonen, so-
wie die vollkommen unterschiedlichen Mischungen im Quark- und
Lepton-Sektor zu erklären. Sie können auch dazu dienen, um gewis-
se Texturen in Massen-Matrizen zu erhalten. In dieser Diplomarbeit
führen wir zusätzlich zum Standard Modell die diedrische Gruppe D5

ein und erhalten dadurch bestimmte Massen-Matrizen. Daraus ent-
wickeln wir dann ein Modell, das mit den experimentellen Ergebnissen
in Übereinstimmung ist. Dazu diskutieren wir verschiedene Higgs-
Sektoren mit 3 bzw. 4 Higgs Bosonen, sowie deren Massen-Matrizen.
Abschließend geben wir zwei mögliche numerische Lösungen an, wo-
bei Neutrinos entweder Dirac oder Majorana Teilchen sind.
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Chapter 1

Introduction

In the area of high energy physics symmetries turn out to be the fundamental concept to
explain the properties and behavior of the particles. This is formulated in the standard
model (SM). But it also leaves some open questions like why do we have three generations
of particles with such a strong hierarchy in the quark sector, why is the mixing in the quark
and lepton sector so different or what is the structure of the Higgs sector.

In order to fix the open questions of the standard model, different approaches will be
considered as illustrated in figure 1.1 (taken from [1]). They lead to extensions of the standard
model such as supersymmetry, extra dimensions and SO(10) grand unified theories.

Figure 1.1: The Different Ways to Grand Unification.

In this thesis we will introduce a discrete flavor symmetry besides the known gauge groups
of the standard model.

Our specific choice is D5 which is founded in the general properties of a non-Abelian
discrete symmetry and in particular in its interesting product structure which allows the
product of two doublets to be decomposed into two singlets and one doublet as well as into
two doublets. Since the product structure effects for example the mass matrices we hope to
get new results. In addition, in the context of flavor symmetries, D5 is until now only used to
realize a certain texture for the neutrino mass matrix containing SU(2)L Higgs triplets [2].

In general, such extensions are multi-Higgs models. We therefore encounter a more com-
plicated Higgs spectrum, accompanied by possible flavor changing neutral currents (FCNCs)
and lepton flavor violation (LFV).
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6 Chapter 1 Introduction

This work is structured as follows: In chapter 2 we shortly describe the standard model.
Then in chapter 3 we want to provide an overview of discrete symmetries and in particular
about discrete flavor symmetries. There we will also motivate our choice of the group D5

and show how such a flavor symmetry affects the Higgs sector and consequently the mass
matrices.

After this we begin to construct and discuss various Higgs sectors which are of phenomeno-
logical interest. This we will do in chapter 4–6.

In chapter 7 we summarize and give a short outlook for possible future work. The ex-
perimentally measured values of the standard model are shown in appendix A. A short
introduction to group theory where we also explain basic notations can be found in appendix
B. Properties of the chosen dihedral group D5 are listed in appendix C. This includes
the Clebsch-Gordan coefficients as well as certain mass matrices coming from D5 invariant
Yukawa couplings. The appendices D and E contain the calculated Higgs masses for the three
and four Higgs models.



Chapter 2

The Standard Model and Beyond

2.1 The Standard Model of Particle Physics

Today we have, over some“detours” [3], the so-called standard model (SM) of particle physics.
This model is based on continuous groups, the so-called Lie groups [4]. It is already very good
in explaining the world and phenomena. But it also goes beyond this level and had given
predictions we were (e.g. W± and Z boson) and (hopefully) will be (e.g. Higgs boson) able
to measure.

For this work we are using without loss of generality the usual convention ~ = c = 1.

2.2 Theory of the Standard Model

The SM (described in [5] and its quantum field theoretical basics in [6]) is a renormalizable [7]
gauge theory [8] of the symmetry group

SU(3)C × SU(2)L × U(1)Y , (2.1)

where SU(3)C describes the strong interaction, the quantum chromodynamics (QCD), and
SU(2)L×U(1)Y the Glashow-Weinberg-Salam model of the electroweak interaction. A more
detailed description and derivation can be found e.g. in [3].

The electroweak theory SU(2)L × U(1)Y is spontaneously broken (SSB) to U(1)em, the
symmetry group of quantum electrodynamics (QED), by the Higgs mechanism described in
2.3.1:

SU(2)L × U(1)Y
SSB−−−→ U(1)em . (2.2)

An important property of this model is parity violation which is caused by the dependence
of the transformation behavior of chirality on the fermions (for reviews on flavor physics and
CP violation see for example [9, 10]). Any Dirac spinor Ψ can be decomposed in its right-
and left-handed components, so-called Weyl spinors

Ψ = ΨR + ΨL = R+ L ,

ΨL ,R = 1
2(1 ∓ γ5)Ψ .

(2.3)

In the SM, left-handed (LH) leptons and quarks belong to SU(2)L doublets and the right-
handed (RH) ones are singlets.

7



8 Chapter 2 The Standard Model and Beyond

The electric charge Q of the particles arises from the hypercharge Y and the component T3 of
the weak isospin (Ti = 1

2τi, where i=1,2,3 are the generators of the SU(2)L Lie-algebra and
τi the Pauli matrices) as follows

Q = T3 +
Y

2
. (2.4)

This relations is called the Gell-Mann-Nishijima relation.
For extensions of the SM it is common to take Weyl- instead of Dirac-spinors because

this simplifies the structure of Yukawa couplings to a certain degree. Therefore we are using
instead of a right-handed particle the left-handed component of the anti-particle. To get the
anti-particle we have to use the charge-conjugation C

Ĉ Ψ Ĉ−1 ≡ Ψc = C Ψ̄T with C = i γ0 γ2 , (Ψc)L[R] ≡
(
ΨR[L]

)c
. (2.5)

Then we get the identities

ΨR[L] = C (Ψ̄c
L[R])

T and Ψ̄R[L] = (Ψc
L[R])

T C . (2.6)

The fermions in the SM appear in three families each with the same quantum numbers. Every
family transforms under the symmetry-group of the SM (GSM ), i.e.

(1,2,−1)︸ ︷︷ ︸
LH Leptons

⊕ (1,1,+2)︸ ︷︷ ︸
RH Leptons

⊕ (3,2,+1/3)︸ ︷︷ ︸
LH Quarks

⊕ (3̄,1,−4/3)︸ ︷︷ ︸
RH Up-Quarks

⊕ (3̄,1,+2/3)︸ ︷︷ ︸
RH Down-Quarks

, (2.7)

where the first component denotes the representation under SU(3)C , the second under SU(2)L,
the last component the hypercharge and the bar above the representation their adjoint. It

Fermions Quantum Numbers
1. Family 2. Family 3. Family T T3 Y Q GSM

(
νe
e−

)

L

(
νµ
µ−

)

L

(
ντ
τ−

)

L

1
2
1
2

1
2

−1
2

−1
−1

0
−1

(1,2,−1)

Leptons
ecL µcL τ cL 0 0 2 1 (1,1,+2)

(
u
d

)

L

(
c
s

)

L

(
t
b

)

L

1
2
1
2

1
2

−1
2

1
3
1
3

2
3

−1
3

(3,2,+1
3)

Quarks
ucL
dcL

ccL
scL

tcL
bcL

0
0

0
0

−4
3
2
3

−2
3
1
3

(3̄,1,−4
3)

(3̄,1,+2
3)

Table 2.1: Fermions in the Standard Model.

should be noted that in the SM no right-handed neutrinos are contained and that they trans-
form as (1,1, 0). Therefore they would not take part at any SM gauge interaction. That
is in agreement with experiments in which no right-handed neutrinos and left-handed anti-
neutrinos are yet observed.

The gauge bosons, the exchange particles of the interactions are always in the adjoint
representation of the symmetry-group and so for the SM in (8,1, 0) ⊕ (1,3, 0) ⊕ (1,1, 0).



2.3 Particles Acquire Mass 9

The coupling strength of the gauge bosons with the fermionic currents jµ = Ψ̄γµΨ are
denoted by g′, g2 and g3. In models with non-Abelian symmetry-groups like electroweak
interactions, the gauge bosons have self-coupling. In extensions of the SM, like in grand

unified theories (GUT), g′ will normally replaced by g1 =
√

5
3g

′ which has then the correct

normalization.

Bosons GSM Spin coupling

g [SU(3)C ] (8,1, 0) 1 g3
W [SU(2)L] (1,3, 0) 1 g2

B [U(1)Y ] (1,1, 0) 1 g1 =
√

5
3g

’

Table 2.2: Gauge Bosons of the Standard Model .

2.3 Particles Acquire Mass

2.3.1 The Higgs Mechanism in the Standard Model

Let us now continue with the Higgs mechanism in the SM. For this we introduce a complex
scalar doublet

Φ ≡
(

Φ+

Φ0

)
∼ (1,2,+1) , (2.8)

corresponding to 4 real scalar fields and its Lagrangian

Lscalar = (∂µΦ
†) (∂µΦ) − V (Φ†Φ) , (2.9)

with the potential

V (Φ†Φ) = −µ2(Φ†Φ) + λ(Φ†Φ)2 . (2.10)

Analogous to quantum electrodynamics we introduce the covariant derivative to obtain the
gauge invariance under SU(2)L × U(1)Y , i.e.

∂µ → Dµ = ∂µ + ig
τ i

2
W i
µ + i

g′

2
Y Bµ . (2.11)

Now we choose the vacuum expectation value of the Higgs field to be

〈Φ〉0 =

(
0
1√
2
v

)
,with v =

√
µ2

λ and (2.12)

where we used the gauge freedom to rotate the VEV in a way that it gets real1.
Through this spontaneous symmetry breaking only U(1)em is left as a symmetry of the

vacuum:

SU(2)L × U(1)Y
SSB−−−→ U(1)em .

In figure 2.1 we show the Higgs potential before and after the spontaneous symmetry breaking.
If we now take into account that

1In models which contain more than one Higgs field this freedom can only be used to rotate one of the
VEVs to be real. The others are in general complex.
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|φ| =
√

φ†φ|φ| =
√

φ†φ

V (φ) V (φ)

v√
2

Figure 2.1: Higgs Potential of a Complex Scalar Field.

g

2
√

2
=

(
m2
WGF√

2

) 1
2

, (2.13)

we get for the VEV

v =
(√

2GF

) 1
2 ≃ 246 GeV , (2.14)

where GF is the Fermi coupling constant. If we insert this parametrization in the first term
of (2.9) with (2.11) we get from SSB that the photon γ remains massless while the W± and
Z bosons acquire the following masses,

mW = gv
2 ∼ 80 GeV and mZ = gv

2 cos θW
= mW

cos θW
∼ 90 GeV (2.15)

and a massive Higgs boson with Spin 0 appears with

mH =
√

2µ2 . (2.16)

But since the value of µ2 is a priori not determined by theory we do not have a prediction
for the Higgs boson mass. However, experiments can give a upper and lower bound which
are shown in (A.5).

2.3.2 Mass Terms

Massive Gauge Bosons

In this section we want to concentrate in more detail on mass terms. Before we have already
seen how the gauge bosons (except the photon) acquire mass through the Higgs mechanism.
Let us now again have a look at them from a different point of view:

L
W 3−B
scalar = v2

2

∣∣∣∣
(
g τ

3

2 W
3
µ + g′

2 Y Bµ

)( 0
1

)∣∣∣∣
2

= v2

8

[(
Bµ W 3

µ

)( g′2 −gg′
−gg′ g2

)(
Bµ

W 3µ

)] (2.17)

The eigenvalues of this mass matrix are

0 and 1
2
(g2+g′2)

4 v2 = 1
2mZ , (2.18)
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which corresponds to the photon and to the Z boson mass. This diagonalization can be
achieved through a transformation by the rotation about the Weinberg angle.

The underlying reason why some gauge bosons become massive is formulated in the

• Goldstone theorem:
For every broken generator of a continuous, global symmetry appears a massless particle,
a Goldstone boson.

But in the SM are the three GB which come from the SSB ”eaten” by the gauge fields which
in return become massive.

Now let us have a closer look at these Goldstone bosons as well as the massive Higgs
boson. To do this we expand the Higgs potential which can consist of more then one Higgs
field, about its minimum at φi = vi

V (φi) = V (vi) +
1

2

∂2V

∂φi∂φk

∣∣∣∣
φi=vi

(φi − vi)(φk − vk) + . . . . (2.19)

As we can see, the mass matrix is

(M2)ik =
∂2V

∂φi∂φk

∣∣∣∣
φi=vi

. (2.20)

By calculating now this mass matrix, we get a number of Goldstone bosons as well as massive
Higgs bosons.

Nota bene:
In the SM, the VEVs and the other parameters in the Higgs potential are real. Then, the
mass matrix for the neutral component will break-up into two matrices, one for the real part
and one for the imaginary part.

If the VEVs (or some of the other parameters) are complex, like they are in general
because we can choose through the gauge freedom only one VEV to be real, the real and
imaginary part mix and we get therefore off-diagonal elements which disallows to split the
mass matrix for the charged-neutral Higgs bosons into two separated matrices.

Massive Leptons

Our picture from the SM is nearly complete but we still have a problem: Until here the
fermions are massless because the term

ml ll = ml(RL+ LR) , (2.21)

where L ≡
(
ν
l

)

L

andR equivalent, would break gauge invariance and is therefore forbidden.

But we can change this by keeping our gauge invariance through the couplings of leptons with
the Higgs field, so-called Yukawa couplings Yl:

L l
yuk = −Yl

[
R
(
Φ†L

)
+
(
LΦ
)
R
]

= −Yl v+H√
2

[
R( 0 1 )L+ L

(
0
1

)
R

]

= −Ylv√
2
ll − Yl√

2
llH ,

(2.22)
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where H is the Higgs boson and L and R the left and right-handed fermions. So we see that
the fermions acquire the mass, i.e.

ml =
Ylv√

2
(2.23)

and their coupling strength to the Higgs is

YlHl =
ml

v
. (2.24)

But because v is a priori not known, this value must be measured by experiments and can
then be used to test these predictions.

2.4 The Mixing Matrices

The basis we begin with is the most general renormalizable gauge-invariant coupling, i.e.

Lm = −λdij QiT φdcLj − λuij ǫabQ
a
i
T φ†b u

c
Lj , (2.25)

where Qi =

(
ui

di

)

L

and λiju[d] are general complex-valued matrices which do not have to be

symmetric or Hermitian.
If we now apply a CP transformation on (2.25) we have to replace the operators by their

Hermitian conjugate but let the coefficients be invariant. This means that

λiju[d] →
(
λiju[d]

)∗
(2.26)

would be a symmetry of (2.25) if the matrices
(
λiju[d]

)
would be real valued. If this is not the

case, we will have explicit CP violation.
However, the next step for finding the mixing matrix, i.e. for quarks the so-called CKM

Matrix, is to define the unitary matrices Uu and Wu by

λuλ
†
u = UuD

2
uU

†
u , λ†uλu = WuD

2
uW

†
u , (2.27)

where D2
u is a diagonal matrix with positive eigenvalues and equivalently we do it for the

down-type quarks. From this it follows that

λu = UuDuW
†
u , (2.28)

where Du is the diagonal matrix whose diagonal elements are the positive roots of the eigen-
values of (2.27). Thus if we associate them with the quark masses and combine them with
the VEV, we get

mi
u =

1√
2
Dii
u v , mi

d =
1√
2
Dii
d v . (2.29)

Now, through this we can construct the CKM mixing matrix as following:

VCKM = UTu U
∗
d . (2.30)

(The usual parametrization for the CKM and PMNS matrices is given by (A.2) and (A.3).)
The strategy to get the PMNS matrix is similar to the one for the CKM matrix we have

shown before. Thereby correspond λν to λu and λe to λd respectively. There exist also some



2.5 Masses and Mass Matrices 13

efforts to make a correlation between VCKM and UPMNS . One motivation is the relation
θsol + θC ≃ π

4 which can be interpreted as an hint to quark-lepton complementary (see for
example [11–14]).

For the PMNS matrix we want to mention here two popular forms because we will en-
counter them later in section 6.4.3 which can result from a µτ–symmetry [15–18] in the mixing
matrices, i.e. invariance under a permutation symmetry S2 for the last two components (µτ
generation). These are the so-called bimaximal and tri-bimaximal mixing patterns. They
lead to a mixing angle θ13 = 0 and θ23 = π

4 and, in addition, for the tri-bimaximal mixing to
sin2 θ12 = 1

3 as we will see below. In addition, both do not lead to CP violation in neutrino
oscillations because of θ13 = 0.

• Bimaximal Mixing Pattern:




νe
νµ
ντ



 =





1√
2

1√
2

0

−1
2

1
2

1√
2

1
2 −1

2
1√
2








ν1

ν2

ν3



 ,
θ13 = 0
θ23 = π

4 , no CP violation
θ12 = π

4

(2.31)

• Tri-bimaximal Mixing Pattern:




νe
νµ
ντ



 =





√
2
3

1√
3

0

− 1√
6

1√
3

1√
2

1√
6

− 1√
3

1√
2








ν1

ν2

ν3



 ,

θ13 = 0
θ23 = π

4 , no CP violation
s12 = 1√

3

(2.32)

The tri-bimaximal mixing pattern is difficult to understand only by Abelian discrete sym-
metries because unbroken lepton family symmetries only produce mixing matrices which are
experimentally ruled out [19] and all Abelian representations are equivalent to diagonal rep-
resentations which fixes the mixing angles to be zero or maximal, otherwise the angle depends
on the free parameters of the model and can therefore take any value [20]. Other references
are [21–24] and, for the tri-bimaximal mixing, [25–28].

Nota bene:
Mostly, it is used a base where the diagonalizing matrix for the charged-leptons is the unity
matrix and so the matrix diagonalizing the neutrino mass matrix having a 2-3 symmetry is
identical to the PMNS matrix.

2.5 Masses and Mass Matrices

To determine the parameters of the chosen mass matrices we have to fit them on the measured
masses [29]. But the severity of this undertaking depends on the number of variables and

texture zeros. And if some of the parameters are complex we have to consider MuM
†
u (or

M †
uMu) whose eigenvalues are the squared quark masses. Therefore we need some constraints

on our mass matrix. At best we use for this the strong mass hierarchy in combination with
the trace of the mass matrix, i.e. for example for the up quarks

tr(MuM
†
u) ≈ m2

t . (2.33)
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The trace is one of the so-called invariants so independent if we transform the mass matrix.
Other invariants are the determinant so the product of the squared masses, e.g. for the up
quarks

det
(
MuM

†
u

)
=
∏

i

m2
i (2.34)

with i ∈ {u, c, t}) and the Jarlskog invariant denoted as J or JCP which is related to CP
violation as we will see in the next section. For a good book about CP violation see [9].

2.6 Jarlskog Invariant & Co.

The Jarlskog invariant J describing the CP breaking observables is defined as follows [29–32]:

J = ℑ (V11V22V
∗
12V

∗
21) , (2.35)

where Vij is an element of the CKM or PMNS matrix. But we want to restrict us here on the
quark sector because their CP violating phase is the one which is restricted by experiments
(δ13 = 60◦ ± 14◦). We also introduce the abbreviations MuM

†
u ≡ Hu and MdM

†
d ≡ Hd. If we

now build the commutator of these Hermitian matrices

[Hu, Hd] ≡ i C (2.36)

we will be able to relate it to the Jarlskog invariant in the following way [29].

det C = −2J
∏

i<j

(
m2
i −m2

j

)∏

k<l

(
m2
k −m2

l

)
, (2.37)

where i, j ∈ {u, c, t} and k, l ∈ {d, s, b}.
In this way we have connected our CP violating phases contained in C through our mass

matrices with the measured values contained in the CKM matrix and therefore in J .

2.7 Beyond the Standard Model

2.7.1 Open Questions

As we saw is the Standard Model (SM) already very good to explain the world of particles
we are living in but there are still some questions remaining, e.g.:

• Why do we have three families of fermions and such a strong mass hierarchy?

• If the Higgs particle exists, what will be its mass?

These questions show us that the SM is good but not perfect. More about phenomenology
beyond the SM can be found in [33]. There are a lot of ansätze trying to explain some or all
of these questions, see for example [34,35] or the grand unified theories (GUTs) like SO(10)
(for SO(10) group theory needed for model building, see for instance [36]).

Our approach within this work will be the introduction of a discrete flavor symmetry or
more precisely, of the dihedral group D5. But this choice as well as other discrete symmetries
we will elucidate in more detail in the chapter 3.
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2.7.2 Right-Handed Neutrinos and the Seesaw Mechanism

As we already have pointed out, in the SM no right-handed neutrinos NR are contained and
consequently no mixings of left-handed neutrinos possible because they are assumed to be
massless in the SM. A resume of neutrino theory and mixing is given in [37–40]. But if right-
handed neutrinos exist, they can help us to understand why the left-handed neutrinos are
so much lighter compared to the other particles. The keyword here is the so-called seesaw
mechanism [41, 42] which exist in various forms: type-I, type-II or a mixture of both. Also
double seesaw frameworks are considered [43].

This mechanism is related to the possible Majorana nature of neutrinos which implies
that neutrinos are their own anti-particles. A Majorana mass term would have the form

−1

2
mL
M

(
νL (νL)c + (νL)c (νL)

)
− 1

2
mR
M

(
NR (NR)c + (NR)c (NR)

)
(2.38)

and therefore violates lepton number2.
In addition, for the type-II seesaw a SU(2)L triplet ∆L will be introduced which has the

following interaction:

f∆ LL
T ∆L + h.c. (2.39)

If we now combine Majorana and the usual Dirac masses we get the following Lagrangian
written in matrix form:

Lmass = −1

2

(
νL (NR)c

)
M

(
(νL)c

NR

)
+ h.c. , (2.40)

with the ”seesaw” matrix

M =

(
mL
M mD

mT
D mR

M

)
(2.41)

If we assume a hierarchy in the values of the elements, i.e.

mR
M = M ≫ mD ≫ mL

M , (2.42)

where mL
M is negligible or zero in the type-I seesaw, then for the example of one generation

one particle becomes light while the other one becomes heavy. This is illustrated in figure
2.2 and comes from the following equation:

mν = mL
M −mDM

−1mT
D . (2.43)

So for the simple seesaw model containing three light and the same number of heavy neutrinos

ν

NR

mNR

mν

mD

Figure 2.2: Seesaw Mechanism

2NR exists in the most GUTs, as well as lepton number violation.
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which are not massless the masses are (if all matrices would be diagonal)

m2
D1
M1

,
m2

D2
M2

,
m2

D3
M3

, M1, M2, M3 , (2.44)

where mi and Mi are the eigenvalues of the matrix M and mD respectively. The heavy masses
Mi can be degenerate or follow the same hierarchy as the Dirac masses.

A viable model for neutrino mixings and masses for a type-I and type-II seesaw scenario
is given e.g. by [44] in a minimal formulation of an SO(10) GUT and the running of the
neutrino masses, leptonic mixings and CP violating phase in [45].

But aside from this also other models are conceivable. A classification is for instance given
in [46].



Chapter 3

Discrete Flavor Symmetries

3.1 Discrete Groups

3.1.1 General Remarks on Discrete Groups

One of the main fields in which discrete groups are important is solid state physics, where
the crystallographic point groups are used to describe phenomena related to crystals and in
chemistry to describe the symmetries of atoms and molecules. There exist 32 crystallographic
point groups characterized in table 3.1, where the so-called Schönflies symbols are used and
the improper rotations have the same notation as the symmetric groups Sn, whereas they
are not equivalent but we used it because this is the usual convention. A short introduc-
tion about grouptheory and concepts we are using is provided in appendix B. More about
crystallographic point groups and Schönflies symbols can be found in every solid state book.

Type Point Groups

Nonaxial Ci , Cs
Cyclic C1 , C2 , C3 , C4 , C6

Cyclic with Horizontal Planes C2h , C3h , C4h , C6h

Cyclic with Vertical Planes C2v , C3v , C4v , C6v

Dihedral D2 , D3 , D4 , D6

Dihedral with Horizontal Planes D2v , D3v , D4v , D6v

Dihedral with Planes between Axes D2d , D3d

Improper Rotation S4 , S6

Cubic Groups T , Th , Td , O , Oh

Table 3.1: Crystallographic Point Groups

A point group is a symmetry group which leaves at least one point unmoved. The requirement
in crystallography that this symmetry is present on a lattice requires that only 1, 2, 3, 4 and
6-fold symmetry axes are possible. This restriction is the explanation why there exists 32
crystallographic point groups.

But in general, a discrete group is a topological group with a discrete topology. In
practice, discrete groups often arise as discrete subgroups of continuous Lie groups acting on
a geometric space but also appear naturally as symmetries of discrete structures (e.g. graphs,
tilings, lattices), fundamental groups of topological spaces and so on.

17
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In the following sections we want to introduce some of the discrete group which can be
(and have already been) used as flavor symmetries as well as in other contexts.

3.1.2 Symmetric Groups Sn

The symmetric group Sn is the group of all permutations of n symbols. As an example we
show a permutation of degree n = 8, namely

(
12345678
23154768

)
. (3.1)

In this notation are the upper components in original order and the lower ones after the
permutation, i.e. the permutation takes 1 into 2, 2 into 3, 3 into 1 and so on. Only the
element 8 is unchanged.

This group is of great importance for mathematics as well as for physics. E.g. if we have
a set of n identical particles the Hamiltonian will contain the group Sn. Another example
is that it is easy to classify tensors into irreducible sets with respect to any group of linear
transformations in n dimensions if the representations of the symmetric groups are known.
The order of Sn is n!.

3.1.3 Alternating Groups An

The alternating group An contain all even1 permutation of n elements, where even means
that the number of performed permutation is even and is a subgroup of the symmetric group
Sn. As an example we show an element of A4, which is constructed through two permutation,
e.g.

[(
1234
1234

)
1→3−−−→

(
1234
3214

)
2→3−−−→

](
1234
2314

)
. (3.2)

It therefore has n!
2 elements.

3.1.4 Cyclic Groups Cn

A cyclic group of finite group order n denoted as Cn is a group generated by a single element,
the group generator, and it is Abelian. The generator A satisfies the relation

An = E , (3.3)

where E is the identity. If we take again example (3.1) we can see that 1 → 2, 2 → 3 and 3 goes
again into 1, so they are forming a ”cycle”. If we now write this as (123) ≡ ”(1 → 2 → 3 → 1)”,
we can rewrite (3.1) as

(123)(45)(67)(8) (3.4)

and see that it consist of four cycles, whereas the cycle (8) is trivial because it only consist
of one element.

There exists a unique cyclic group of every order n ≥ 2. Therefore cyclic groups of the
same order are always isomorphic. Furthermore, subgroups of cyclic groups are again cyclic
and all groups of prime group order too. In fact, the cyclic groups of order one or a prime

1Since the product of two even (or odd) permutations is even as well as the product of an even and an odd
one, the odd permutation of degree n cannot form a group unlike even permutations.
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are the only simple Abelian groups. Every Abelian group can be written as a direct product
of cyclic subgroups, by computing the characteristic factors.

In addition the structure of the multiplication table of all cyclic groups is the same.

3.1.5 Icosahedral group I

The icosahedral group I is the point group of an icosahedron and dodecahedron and has
order 120. This group is equivalent to A5 ×Z2 and a subgroup of SO(3). Its pure rotational
subgroup Ih is of order 60 and isomorphic to A5. The icosahedral group is in contrast to the
following octahedral and tetrahedral group not observed in solid states.

3.1.6 Octahedral Group O

The symmetry group of the octahedron, cube, cuboctahedron and truncated octahedron is O
which has the pure rotation subgroup Oh and has order 48. Oh has order 24 and is isomorphic
to T .

3.1.7 Tetrahedral Group T

The tetrahedral groups T is the symmetry group of the tetrahedron plus the inversion oper-
ation and has order 24. Its isomorphic to the group A4 × C2 and is therefore one of the 12
non-Abelian groups of order 24. The symmetry operations for this group are illustrated for
a tetrahedron in figure 3.1.

x

1

2

3

4

4

x 1

2

3 x1

2

3

4

x

x

Figure 3.1: Td, the Symmetry Group of a Tetrahedron

Thereby the first picture shows a rotation about the axis going through one corner and the
center of the opposite side (3-fold). In the second one goes the axis through the midpoints
of two edges (2-fold). The third figure shows the symmetry on a mirror plane going through
two corners and the center of their opposite edge. The second row illustrate the improper
rotations, resulting through a quarter rotation about the 2-fold axis described before and an
inversion afterwards in order to get again a tetrahedron.
The pure rotational subgroup of T is denoted as Td and is isomorphic to A4. Its order is 12.
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3.1.8 Dihedral Groups Dn

The dihedral groups Dn is the symmetry group of an n-sided regular polygon for n > 1.
The group order is 2n. They are non-Abelian rotation groups for n > 2. A two-dimensional
reducible representation of Dn consisting of real matrices has a generator which is a rotation
by π radiants around an axis passing through the center of the regular n-sided polygon and
one of its vertices and another generator which is a rotation by 2π

n about the center. A
visualization of the group D5 which we will use as a flavor symmetry to build a model is
shown in figure 3.2.

A

A

A

A B

BA

BA

BA

BA

E

4

3

2

4

3
2

Figure 3.2: D5, the Symmetry Group of a Regular Pentagon

3.1.9 Double Groups

The double groups descend from the point groups by adding the operation R which has the
matrix representation ±1n×n for a n dimensional representation. Their elements are called
single-valued if the matrix representation of R is +1n×n otherwise double-valued. The order
of the double group is twice the one of the originate group and the groups are denoted with
a ’. So the double group of Dn is D′

n and the one of Tn is T ′
n. Another notation for D′

2 is Q
and Q2n for D′

n with n ≥ 3. Since the single-valued representations are the same as the ones
for single groups, the double-valued representations are new. For Abelian single groups the
corresponding double group can (for example D2) but do not have to be non-Abelian like it is
the case for the cyclic groups Cn which double groups are isomorphic to C2n and so Abelian.

3.2 Discrete Flavor Symmetries

A flavor-, family-, generation- or also called horizontal-symmetry is a symmetry which acts
at the generation space and is in general broken at low energies.

But what is the maximal possible flavor symmetry compatible with the SM gauge groups?
Because there are five particle assignments in the SM or six if we add right-handed neutrinos,
i.e.
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(
ui
di

)

L

, uciL , dciL ,
(
νi
ei

)

L

, eciL , N c
i L ,

(3.5)

where i denotes the flavor, the maximal possible flavor symmetry is U(3)6 or U(3)5 without
N c
i L. The reason is that there are three flavors (i=1,2 or 3) and that gauge interactions

are flavor-blind. Therefore are all particles invariant under an U(3) flavor symmetry. This
independence of the flavor index can also be interpreted as the invariance of a permutation
among the families, i.e. invariance under a S3 symmetry. Some of the first papers that
consider permutation symmetries are [47–54] or for a review [29]. An outdated model can
be found e.g. in [55]. For extentsions of the SM we can get more restrictions like in a LR-
symmetric model where left- and right-handed particles in a SU(2)L[R] doublet arranged and
consequently the maximal flavor symmetry2 is U(3)4 or in a SO(10) GUT are all particles
assigned in a 16 dimensional representation and hence Gf = U(3). A look at the Higgs sector
in LR models is e.g. given by [56,57].

Therefore the maximal possible flavor symmetry which we want to classify (and motivate
with our choice of a D5 symmetry) in the next sections is an U(3)6 (if we assume the existence
of right-handed neutrinos and no other extensions of the SM as LR-symmetric models etc.)
or subgroups3 of it.

The three generations of quarks and leptons form a three dimensional representation which
can be reducible or irreducible. In general, in the SM left- and right-handed particles as well
as quark and lepton generations can transform in different or in the same way. Furthermore,
it is not necessary that all generations unify in one three dimensional representation but from
the point of grand unification it would be desirable. An older example for such a model would
be [58]. But also a combination of a singlet and a doublet is possible. If for example the top
quark transforms as a singlet under Gf and the doublet contains the up- and charm-quark
then this separation can serve as an explanation why the top-quark is so much heavier than
the others. Also in supersymmetric models the unification of the first two generations is
used, namely to suppress FCNC in the sfermion sector of these generations. An introductory
literature to supersymmetry (SUSY) is provided by [59–63] and an examples to solve the
SUSY flavor problem by an horizontal symmetry is [64].

In this thesis we consider an extension of the SM based on the discrete, non-Abelian flavor
symmetry D5. This symmetry as well as other discrete flavor symmetries can be used to favor
a certain mass-matrix texture [29,65–69] which is useful to describe the mixings or rather the
mass hierarchy and/or make predictions for one or the other. Besides that, a flavor symmetry
can help us to understand the existence of three generations. A possible argument for this is
that they contain a finite number of irreducible representation with dimension usually smaller
than four. It also commutes with the gauge groups in every model we know. Therefore the
transformation properties of fermions under a flavor symmetry are equal under the gauge
groups and the gauge bosons transform only trivially and it can be assumed in addition to a
GUT, e.g. SO(10) ×D5.

In general, a flavor symmetry can be continuous or discrete, Abelian or non-Abelian, global
or local and can be broken in different ways. But other possibilities are also supposable like

2If the LR symmetry should not be broken by Gf .
3To avoid the breaking of Gf by gravitational quantum corrections for theories valid up to the Planck-scale,

is the origin of it assumed to be a continuous gauge symmetry.
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product groups. But here we want to restrict on the more apparent categories mentioned
before. A very good and systematic classification of flavor symmetries is done in [70], where
our flavor symmetry D5 is denoted as the way mathematicians do it, i.e. D5 ⇔ type 10/2,
where the first number denotes the group order and the second one is just a counter for the
case that more than one group of the same order exits.

3.2.1 Continuous or Discrete Flavor Symmetries?

The first question arising with the search of a suitable flavor symmetry is if it should be
a continuous one like the other groups of the SM or a discrete one like for crystals. The
advantage of a discrete flavor symmetry is the already mentioned: They have a finite number
of representations whose dimension usually is smaller than four because we only expect to
unify three generations. In addition no further GB or gauge bosons arise what is not the
case for continuous symmetries according to the Goldstone theorem. So our choice drops to
a discrete symmetry.

3.2.2 Abelian or non-Abelian Flavor Symmetries?

For the question if we favor an Abelian or a non-Abelian flavor symmetry we have to think
in the direction of GUTs. This means, that if we want (and we do) to unify at least two of
the generations, we will favor a non-Abelian symmetry because it contains representations
whose dimension is larger than one.

From the point of model building, discrete non-Abelian flavor symmetries have a further
advantage over continuous ones: Most of them have several two or three dimensional rep-
resentations which leaves more freedom for the particle assignment and therefore to embed
experimental results like masses and mixings.

3.2.3 Local or Global Flavor Symmetries?

Now we have to decide if a flavor symmetry should be a local or a global one or in other
words: Should Gf be gauged or not? To answer this question we first of all have to explain
how a discrete flavor symmetry can be gauged.

For this we assume at high energies (e.g. GUT scale) a continuous group which is free of
anomalies and which will be broken spontaneously to our residual discrete flavor symmetry.
This continuous group can now be gauged in the conventional way. The problem with this
is just that this can lead to heavy particles which have to be introduced to cancel possible
anomalies coming from the known particles or strictly speaking their representation.

A model based on the double tetrahedral flavor symmetry T ′ and explaining in more detail
what a gauged discrete symmetry is, is shown in [71].

3.2.4 Breaking a Flavor Symmetry

Before we numerate the different breaking mechanism of a flavor symmetry: Why do we have
to break it at all? The reason is simply that we did not observe further symmetries than the
ones in the SM at low energies so we have to break it before.

In principle we have two possibilities at our disposal, namely spontaneous (SSB) and
explicit symmetry breaking.

A precondition for SSB is the existence of at least one Higgs boson transforming non-
trivial under Gf and acquiring a VEV. Models using this mechanism (like ours) are in general
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multi-Higgs models and therefore have the problems associated with it like flavor changing
neutral currents (FCNCs) and lepton flavor violation (LFV) which are strongly bounded by
experiments.

Another important aspect is that the demand for invariance of the Higgs potential under
Gf often yields a further symmetry of the Higgs potential, a so-called accidental symmetry
and so to additional GBs which are not found in experiments. A solution for this problem is
given in chapter 5, the so-called soft-breaking (SB).

3.2.5 Why exactly D5 as flavor symmetry?

In the sections before we already narrowed our choice of a possible flavor symmetry down,
but: Why D5 and not for example D3 or D4?

To answer this we have to deal in more detail with the dihedral group. One aspect is that
Dn for n ∈ {1, 2} are Abelian groups. Another one is the number of different representations
since this is important from the point of model building. Because if we have more than one
possibility to accommodate our generations this will enhance our chances to build a model
which is in agreement with measured values. It is also important if the representations include
only singlets what will eliminate the possibility to unify at least two generations. For Dn we
have to distinguish between even and odd n. If n is even, Dn has four singlets and n

2 − 1
doublets. For odd n it has two one-dimensional and n−1

2 two-dimensional representations.
For illustration we show in table 3.2 some dihedral groups and their representations.

Group Singlets Doublets

D3 11, 12 2

D4 11, 12, 13, 14 2

D5 11, 12 21, 22

D6 11, 12, 13, 14 21, 22

D7 11, 12 21, 22, 23

D8 11, 12, 13, 14 21, 22, 23

Table 3.2: Dihedral Groups and Their Representations

Here we can see that the groups D5 and D8 are the most promising ones since they contain
more than one doublet. But since D3 is isomorphic to S3 this group is anyway discussed
as shown in table 3.3. The same is true for D4. The ”missing” group D6 is isomorphic to
S3 × C2 = D3 × C2 and D7 to type 14/2.

But the most important aspect for the choice of the group is the product structure of the
groups which will affect the structure of the mass matrices. For the product of two doublets
exist in general the following three possibilities:

2 × 2 = 1 + 1 + 1 + 1 (3.6)

2 × 2 = 1 + 1 + 2 (3.7)

2 × 2 = 2 + 2 (3.8)

Thereby D3 possess the product structure 3.7, D4 the one of 3.6 and D5 3.7 and 3.8. The
smallest group where all of the structures shown before appear is D8.

Therefore we have the choice of the symmetries D5 and D8. Both containing as favored
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more than one doublet and possess further product structures which consequently affects the
structure of the mass matrices we want to learn from. But our choice is D5 as flavor symmetry
since it has a manageable number of representations and product structures. In addition this
group is used until now only once in the context of flavor symmetries [2]. Thereby the D5

symmetry is used to realize a certain texture for the neutrino mass matrix containing SU(2)L
Higgs triplets.

3.3 Models with Discrete Flavor Symmetries

In the last section we have shown some categories which can be used to distinguish models
by means of their underlying flavor symmetry. But often not a whole model is proposed but
only a part of it, e.g. to explain the quark or neutrino mixings. In the following we want to
give a short list of some currently available models.

Models separated by their discrete flavor symmetry can be found in table 3.3. Another
possibility is to classify them in the context they are used, e.g. SUSY, SO(10) etc. This is
done in [70]. But beside of taking only one symmetry also products of e.g. Abelian discrete
symmetries are used to perform viable models [72–76]. And aside from this [77–81].

Discrete Symmetry References

S3 [55, 82–91]

A4 [91–100]

D4 [101,102]

D7 [103]

Q8 [104]

T ′ [58, 71]

Table 3.3: Models with Discrete Flavor Symmetries

An important aspect in a viable model is as we will see the Higgs potential. Therefore we
want to give some references in which the Higgs potential of the probably most used flavor
symmetry S3 is discussed. These are for instance [47, 82, 88]. Similar potentials with non-
Abelian discrete symmetries and their discussion can be found in [48,49,101,105].

Another aspect is the usage of a discrete flavor symmetry in the context of extra dimen-
sions (for introductory literature see for instance [106]). An example for this is [28], where a
A4 flavor symmetry is used.

3.4 D5 Invariant Masses and Higgs Potential

3.4.1 D5 Invariant Masses

Now that we have an idea about the SM and group theory, we can go on with our actual
topic, the extension of the SM by the discrete flavor symmetry D5. The content of this section
is also shown in [107]. For this we denote L = {L1, L2, L3}, where Li is the ith left-handed
generation and LC similar.

We will now show now how to calculate the general form of fermion mass matrices, where
we use Clebsch-Gordan coefficients for complex generators:



3.4 D5 Invariant Masses and Higgs Potential 25

1. As we already know, a mass term for fermions arises from Yukawa couplings. For Dirac
particles they have the form

λijL
T
i ǫφL

c
j (3.9)

for charged leptons and down-type quarks, where

ǫ =

(
0 1
−1 0

)
in SU(2)L. (3.10)

For neutrinos and up-type quarks we have to replace φ by its conjugate φc = ǫφ∗.
The equivalent Yukawa term for Majorana particles is

λijL
T
i ∆LLj , with ∆L =

(
ξ0 − ξ+√

2

− ξ+√
2

ξ++

)
∼ (1,3,+2) (3.11)

and the mass term for the neutrinos

mR
ijν

c
iLν

c
jL , (3.12)

where mR
ij is symmetric and M the matrix consisting of the elements mij .

2. The maybe best way to start this is to calculate all possible combinations4 of

LT × Lc . (3.13)

3. Then we take these terms and calculate every possible combination with φ which gives
the singlet5 11 at the end: (

LT × Lc
)
× φ . (3.14)

4. In the final step we arrange our results in a matrix form and we are done.

In the following we want to illustrate this proceeding on an example:

1. We are searching for the Dirac term of charged leptons and down-type quarks, i.e. (3.9)
transforming e.g. as

L ∼ (12,11,11) and
LC ∼ (21,11) .

(3.15)

2. For this we search for the combinations6 LT × LC :

11 × 11 = 11 ∼ LT1[2] × Lc3

11 × 21 = 21 ∼ LT1[2] × Lc1−2

12 × 11 = 12 ∼ LT1 × Lc3

12 × 21 = 21 ∼ LT1 × Lc1−2

(3.16)

4To break the flavor symmetry at weak scale as well as to constrain our arbitrary λij(mij), the transfor-
mation behavior of L, Lc, φ and Ξ is assumed to be non-trivial.

5Each term has to transform as the trivial singlet 11 to ensure invariance under our D5 flavor symmetry.
6All Kronecker products of D5 are shown in table C.3.
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3. Now we “add” one of the Higgs bosons transforming under D5 as φ1[2] ∼ 11[2] or ψ1[2] ∼
21[2]. But we only take terms having the trivial singlet 11 at the end.

11︸︷︷︸
=11×11

× 11︸︷︷︸
∼φ1

= 11 ,

12︸︷︷︸
=12×11

× 12︸︷︷︸
∼φ2

= 11 ,

21︸︷︷︸
=11[2]×21

× 21︸︷︷︸
∼ψ1

= 11 (+12 + 22) ,

(3.17)

4. In the last step we now arrange the last results in matrix from. For this we have to
exchange each “×” by the corresponding Clebsch-Gordan coefficient7 in table C.5 and
get as the final result

L LC Mass Matrix

(12,11,11) (21,11)




κ1ψ

1
2 −κ1ψ

1
1 κ4φ

2

κ2ψ
1
2 κ2ψ

1
1 κ5φ

1

κ3ψ
1
2 κ3ψ

1
1 κ6φ

1





where we have absorbed the numerical prefactors we got from the CGs in the Yukawa
couplings.

But the in this way obtained mass matrices shown in table C.6 are not specified in the way
that we can interchange the generation assignment and so have to modify the mass matrices.
This can be achieved by the following transformation depending if we switch the last two,
the first and third or the first two generations, i.e.

Mnew = QM QT , (3.18)

where the matrix Q is one of the following permutation matrices:




1 0 0
0 1 0
0 0 1



 ,




0 0 1
0 1 0
1 0 0



 ,




0 1 0
1 0 0
0 0 1



 ,




0 1 0
0 0 1
1 0 0



 ,




1 0 0
0 0 1
0 1 0



 ,




0 0 1
1 0 0
0 1 0



 .

(3.19)

7By using CGs for complex generators the multiplication is in general not commutative, e.g. 21 × 22 6=
22 × 21, contrary by using CGs for real generators. Because for example D(2∗

1) = D(21)
∗ 6= D(21)
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3.4.2 D5 Invariant Higgs Potentials

The procedure to get a D5 invariant Higgs potential is very similar to the one we used to get
invariant masses:

1. First we have to decide how our Higgs bosons transform under D5.

2. Then we calculate all possible combinations of φ† × φ and separate those which have
already lead to the trivial singlets because they are the terms in our Higgs potential of
order two, the mass terms.

3. The next step is to find for each term from before all possible representations which
can be added in order to obtain the trivial singlet.

4. And last but not least we have to identify the in this way received representations with
all feasible products we got in step 2.
Then we only have to join it together and our D5 invariant potential is done.

And again an example:

1. For simplicity we assume that we only have two Higgs transforming as φ1 ∼ 11 and
φ2 ∼ 12.

2. Then we build all combinations with them:

11 × 11 = 11 ∼ φ1 × φ1

12 × 12 = 11 ∼ φ2 × φ2

11 × 12 = 12 ∼ φ1 × φ2

12 × 11 = 12 ∼ φ2 × φ1

(3.20)

and write the first two terms as the µ1 and µ2 term of our potential, where we use the
CG from table C.4 to execute the group multiplication.

3. Now we search for factors we have to apply to the combinations from above to get 11.

11︸︷︷︸
11 × 11 ∼ φ1 × φ1

12 × 12 ∼ φ2 × φ2

×11 = 11

12︸︷︷︸
11 × 12 ∼ φ1 × φ2

12 × 11 ∼ φ2 × φ1

×12 = 11

(3.21)

4. And for the last step we have to search which combinations give us 11 and 12. But this
we can already see in step 2.
Therefore our Higgs potential with two Higgs, transforming as φ1 ∼ 11 and φ2 ∼ 12, is:

V = −µ2
1φ

†
1φ1 − µ2

2φ
†
2φ2

λ1(φ
†
1φ1)

2 + λ2(φ
†
2φ2)

2 + λ3(φ
†
1φ1)(φ

†
2φ2)+

[
λ4(φ

†
1φ2)

2 + h.c.
]

+ λ5(φ
†
1φ2)(φ

†
2φ1) ,

(3.22)
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where λ4 is in general complex and for the multiplication of terms (φ†iφj)
T × (φ†kφl) we

used the CGs in table C.5.

With the two Higgs potential (3.22) we now could start to construct a model. But before we
get enthusiastic, let us have a look at the previously calculated mass matrices in table C.6.
There we can see that by assuming only one or two Higgs bosons we are not able to explain
the particle masses at tree-level and/or their mass hierarchy. Thus the Higgs potential (3.22)
is too simple and we have to fix this what we will do in the chapter 4.

The most considered multi-Higgs model is the two Higgs doublet model (THDM or 2HDM)
whose Higgs potential is not to mix up with the one we got in 3.22 from the D5 symmetry.
But with an additional Z2 symmetry, so φ1 → −φ1 and φ2 → +φ2 the general THDM pass
into 3.22. For the THDM aspects like CP violation [108,109], symmetries [109], phenomenol-
ogy [110] as well as other properties or perspectives [111–113] were considered.

Annotation:
A problem arising in multi-Higgs models are so-called flavor changing neutral currents (FCNC)
[114]. In the SM, where only one Higgs doublet is contained, the Yukawa couplings are pro-
portional to the fermion mass matrix. Therefore, the transformation diagonalizing the mass
matrix also diagonalizes the Yukawa couplings. But in multi-Higgs models the Yukawa cou-
plings are in general flavor changing [115], which is strongly bounded by experiments. One
possibility to suppress this FCNC is to make the additional Higgs bosons sufficiently heavy
(& 10 TeV).



Chapter 4

The Three Higgs Model

4.1 Three Higgs Potential

In the chapters before we have provided the tools which we will need to build a model. And we
already derived the two Higgs potential but have to find out that this is phenomenologically
not viable. Therefore we go to an improved Higgs potential which allows us describe the mass
hierarchy at tree-level, i.e. we add a third Higgs boson.

In the model to be constructed we want that every single Higgs we are considering is a
copy of the SM Higgs and therefore a SU(2)L doublet. Hence when we say that a Higgs
transforms as a singlet or doublet we mean it with respect to our flavor symmetry D5 in case
nothing else is mentioned.

For three SU(2)L Higgs doublets from which one transforms1 as a singlet (e.g. φ ∼ 11)
and the other two as a doublet (e.g. ψ = (ψ1, ψ2)

T ∼ 21) under D5, where we used the CG
from table C.5, the Higgs potential has the form.

V3H = −µ2
1(ψ

†
1ψ1 + ψ†

2ψ2) − µ2
2(φ

†φ)

+λ1(ψ
†
1ψ1 + ψ†

2ψ2)
2 + λ2(ψ

†
1ψ1 − ψ†

2ψ2)
2

+λ3(ψ
†
1ψ2)(ψ

†
2ψ1) + λ4(φ

†φ)2

+σ1(φ
†φ)(ψ†

1ψ1 + ψ†
2ψ2) + σ2[(φ

†ψ1)(φ
†ψ2) + h.c.]

+σ3[(φ
†ψ1)(ψ

†
1φ) + (φ†ψ2)(ψ

†
2φ)] ,

(4.1)

in which we absorbed the phase ζ of σ2 by a redefinition of φ with the phase − ζ
2 without

changing other parameters. Since every term containing φ also contain φ† they are invariant
under a phase transformation of φ.

4.2 Minimization Conditions

Now we parametrize our Higgs doublets as

1The form of the Higgs potential is invariant by the exchange of φ ∼ 11 ↔ 12 and ψ ∼ 21 ↔ 22. Therefore
our choice of the singlet or the doublet is unimportant and consequently the Higgs potential for three Higgs is
unique.

29
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φ =

(
φ+

1√
2

(
φr + iφi

)
)
, ψ1 =

(
ψ+

1
1√
2

(
ψr1 + iψi1

)
)
, ψ2 =

(
ψ+

2
1√
2

(
ψr2 + iψi2

)
)

(4.2)

and insert this parametrization in V . There we define

< φr >= w ,
< ψ1 >= v+e

iα = v+ cosα+ i v+ sinα = 〈ψr1〉 + i
〈
ψi1
〉
,

< ψ2 >= v−eiβ = v− cosβ + i v− sinβ = 〈ψr2〉 + i
〈
ψi2
〉
,

(4.3)

with real2 w, v+, v−, α and β. For the case that w = 0 we choose the “next” VEV 6= 0 to be
real, so α or β equal zero.

The resulting minimization conditions for the Higgs potential are

0 = ∂V
∂φ0

r

∣∣∣
min

= [λ4w
2 + 1

2(σ1 + σ3)( v+
2 + v−2) + σ2 cos(α+ β) v− v+ − µ2

2]w (4.4)

0 = ∂V
∂φ0

i

∣∣∣
min

= σ2 v+ v−w sin(α+ β) (4.5)

0 = ∂V
∂ψr

1

∣∣∣
min

= [12(σ1 + σ3) cosα v+ + 1
2σ2 v− cosβ]w2 + (λ1 + λ2) cosα v+

3+

((λ1 − λ2 + 1
2λ3) v−2 − µ2

1) v+ cosα

(4.6)

0 = ∂V
∂ψi

1

∣∣∣
min

= 1
2 [(σ1 + σ3) sinα v+ − σ2 v− sinβ]w2 + (λ1 + λ2) sinα v3

+

+[(λ1 − λ2 + 1
2λ3) v−2 − µ2

1] sinα v+

(4.7)

0 = ∂V
∂ψr

2

∣∣∣
min

=
[
(λ1 − λ2 + 1

2λ3) v+
2(λ1 + λ2) v−2 − µ2

1

]
v− cosβ

+(1
2σ2 v+ cosα+ 1

2(σ1 + σ3) cosβ v−)w2

(4.8)

0 = ∂V
∂ψi

2

∣∣∣
min

=
[
(λ1 − λ2 + 1

2λ3) v+
2 + (λ1 + λ2) v−2 − µ2

1

]
sinβ v−

+1
2(−σ2 sinα v+ + (σ3 + σ1) sinβ v−)w2

(4.9)

By having a closer look at these equations we can see that (4.5) provides the most constraints
for the classification of solutions since all equations have to be zero. E.g. if we demand that
all Higgs acquire a non-vanishing VEV a necessary condition fulfill (4.5) is that σ2 = 0 and/or
sin(α + β) = 0. This we will see in the next section, where all solutions of the minimization
conditions are listed.

2Because we can always rotate our system in a way that one VEV gets real; here we choose < φ > as real
without loss of generality (w.l.o.g.).
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4.3 Suitable VEV Structures

If we solve the minimization conditions, we get the following possibilities, subdivided into the
ones in which one, two or all of the three Higgs acquire a VEV:

1. One Higgs acquire a VEV:

(a) For w 6= 0:

w2 =
µ2

2
λ4

(b) For v± 6= 0:

v2
± =

µ2
1

λ1+λ2

2. Two Higgs acquire a VEV:

(a) For w = α = 0
(Because of w = 0 we are free to choose another VEV, i.e. 〈ψ1〉 or 〈ψ2〉 to be real.
We decided α to be 0 which has no effects or restrictions on β.)

i. and λ3 = 4λ2:

v2
+ + v2

− =
µ2

1
λ1+λ2

ii. and λ3 6= 4λ2:

v2
+ = v2

− =
2µ2

1
4λ1+λ3

(b) For v± = 0 and σ2 = 0:

w2 = 2
2(λ1+λ2)µ2

2−(σ1+σ3)µ2
1

4λ4(λ1+λ2)−(σ1+σ3)2
,

v2
∓ = 2

2λ4µ2
1−(σ1+σ3)µ2

2
4λ4(λ1+λ2)−(σ1+σ3)2

3. All three Higgs acquire a VEV:
(The following three cases σ2 = 0, α = −β and α = π − β coming from minimization
condition (4.5).)

(a) For σ2 = 0

i. and λ3 = 4λ2:

w2 =
2µ2

1(σ1+σ3)−4µ2
2(λ1+λ2)

(σ1+σ3)2−4λ4(λ1+λ2)
,

v2
+ + v2

− =
−4µ2

1λ4+2µ2
2(σ1+σ3)

(σ1+σ3)2−4λ4(λ1+λ2)
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ii. and v2
+ = v2

−:

w2 =
2µ2

1(σ1σ3)−µ2
2(4λ1+λ3)

(σ1+σ3)2−λ4(4λ1+λ3)
,

v2
+ = v2

− =
−2µ2

1λ4+µ2
2(σ1+σ3)

(σ1+σ3)2−λ4(4λ1+λ3)

(b) For α = −β
i. and v2

+ 6= v2
−:

(Here we give for simplicity the minimization conditions. But this case is any-
way of minor interest because, as we will see from (4.4.2), we get more than
the three wanted GBs.)

0 = ∂V
∂φ0

r

∣∣∣
min

= λ4w
2 + 1

2(σ1 + σ3)(v
2
+ + v2

−) + σ2 v+v− − µ2
2 ,

0 = ∂V
∂ψr

1

∣∣∣
min

= ∂V
∂ψi

1

∣∣∣
min

=

[(σ1 + σ3) v+ + σ2v−]w2 + 2 (λ1 + λ2) v+
3 +
[
(2λ1 − 2λ2 + λ3) v−2 − 2µ2

1

]
v+ ,

0 = ∂V
∂ψr

2

∣∣∣
min

= ∂V
∂ψi

2

∣∣∣
min

=

[(σ1 + σ3) v− + σ2 v+]w2 + 2 (λ1 + λ2) v−3 +
[
(2λ1 − 2λ2 + λ3) v+

2 − 2µ2
1

]
v−

ii. and v2
+ = v2

−:

w2 = −2(σ1+σ2+σ3)µ2
1−(4λ1+λ3)µ2

2
λ4(4λ1+λ3)−(σ1+σ2+σ3)2

,

v2
+ = v2

− = − (σ1+σ2+σ3)µ2
2−2λ4µ2

1
λ4(4λ1+λ3)−(σ1+σ2+σ3)2

(c) For α = π − β:
This leads to case 3b with σ2 → −σ2.

Apart from the restrictions we get from the minimization conditions we also have to consider
the compulsory constraint that our potential has to be bounded from below. The conditions
on the parameters of the Higgs potential which we get from this have to be calculated for
each case. But we renounce on this now and come back to it later if we will need it.

4.4 Higgs Masses and Goldstone Bosons

4.4.1 General Considerations of Higgs Mass Matrices

Now we begin to calculate the masses for the Higgs bosons that we get from the 2nd derivative
of V , evaluated at the minimum, i.e. the squared mass matrices for the neutral component
are

(
M2
ri

)
kl

=
∂2V

∂φ̃k∂φ̃l

∣∣∣∣
min

= 6 × 6matrix , (4.10)

with φ̃ = (φ0
r , ψ

0
+r, ψ

0
−r, φ

0
i , ψ

0
+i, ψ

0
−i)

T , according to the notation of (4.2). And equivalent for
the charged components
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(
M2
pm

)
kl

=
∂2V

∂φ́+∂φ́−

∣∣∣∣
min

= 3 × 3matrix , (4.11)

with φ́± = (φ±, ψ±
1 , ψ

±
2 )T .

The mass eigenvalues of these matrices including the corresponding eigenvectors are shown
in appendix D.

Nota bene:
In a models in which all VEVs and Yukawa couplings are real, like in the SM, the matrix
M2
ri is block diagonal. This fact makes it possible to calculate the masses for the scalars and

pseudo-scalars separately, thus in our case with 3 Higgs we have two 3 × 3 matrices instead
of one 6× 6. The reason is that a complex parameter mixes these parts and we therefore get
off-diagonal elements.

4.4.2 Symmetries and Goldstone-Bosons

Like we already mentioned, every Higgs in this model is a copy of the standard model Higgs,
i.e.

φsm =

(
φ+
sm

1√
2

(
φsm

0
r + iφsm

0
i

)
)

(4.12)

in which the zero eigenvalue in the φsm
0
i base is ”responsible” for the Z boson mass and the

two eigenvalues in the φ± base for the one of W±. Thus we need 3 Goldstone-bosons, not
more or less 3.

Because of this fact and the Goldstone-theorem 2.3.2, symmetries of a Higgs-potential
are very important to get the “correct” number of Goldstone-bosons (one neutral and two
charged ones) and not more. Therefore we analyze the symmetries of our Higgs potential in
the following.

The maximal symmetry of our Higgs potential is

SU(2)L × U(1)Y ×X
V EV−−−→ U(1)em × Y , (4.13)

where X is a further symmetry4, broken by a VEV to Y (X → Y ). This means, that if at
least one Higgs acquires a VEV which breaks X, we will get 3 + Z Goldstone-bosons, where
Z is the number of broken generators of X → Y according to the Goldstone-theorem and
therefore the number of additional, unwanted Goldstone-bosons.

As an example for the procedure how to determine an accidental symmetry and VEV
configuration which break it we introduce for the Higgs the following charges ρi and do not
make any assumption on parameters of the Higgs potential:

φ→ φ eiρ1 ,
ψ1 → ψ1 e

iρ2 ,
ψ2 → ψ2 e

iρ3 .
(4.14)

If we insert this transformation in the Higgs potential 4.1 we can see that every term except
σ2[(φ

†ψ1)(φ
†ψ2) + h.c.] is invariant. If the charges fulfill the relation

−2ρ1 + ρ2 + ρ3 = 0 (4.15)

3But less is anyway not possible because of the breaking of SU(2)L × U(1)Y → U(1)em, we get always at
least three Goldstone-bosons according to the Goldstone theorem.

4But in general, X can ”mix” with SU(2)L × U(1)Y .
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then also this term will be invariant. This means that all terms have an U(1)3 symmetry
except the one including σ2 which possess an U(1)2 symmetry (thereby is U(1)Y included).
Now we introduce the following notation:

Q(φ)ρ1 , (4.16)

which denotes the charge of φ under ρ1. So in our case (where ρ3 = 2ρ1 − ρ2) holds

Q(φ)ρ1 = 1 , Q(φ)ρ2 = 0 ,
Q(ψ1)

ρ1 = 0 , Q(ψ1)
ρ2 = 1 ,

Q(ψ2)
ρ1 = 2 , Q(ψ2)

ρ2 = −1 .

And if we define a new charge ρ̂2 by ρ̂2 = ρ1 + ρ2 (and consequently, ρ3 = 3ρ1 − ρ̂2) we can
identify the charge ρ1 as the one of U(1)Y :

Q(φ)ρ1 = 1 , Q(φ)cρ2 = 0 ,

Q(ψ1)
ρ1 = 1 , Q(ψ1)

cρ2 = 1 ,

Q(ψ2)
ρ1 = 1 , Q(ψ2)

cρ2 = −1 .

(4.17)

There we can see if any of the Higgs acquires a VEV, U(1)Y will be broken as expected, and
that a VEV of ψ1 or ψ2 would break the additional U(1) symmetry denoted in the following
as U

′′′

(1).
For our three Higgs potential we have in general three possible cases of accidental sym-

metries (a more specified discussion is done in 4.5) which are shown below and where Z = 0
will hold if we have a VEV configuration which lets X unbroken:

• Without restrictions:
(But none of the following cases)

X = U
′′′

(1)
〈ψ1[2]〉−−−−→ ∅ (4.18)

Z=0 or 1.

• For σ2 = 0 and

– if only ψ1 or ψ2 acquires a VEV:

X = U
′

(1) × U
′′

(1)
〈ψ1[2]〉−−−−→ U

′′[′](1) (4.19)

– if ψ1 and ψ2 acquire a VEV:

X = U
′

(1) × U
′′

(1)
〈ψ1〉,〈ψ2〉−−−−−−→ ∅ (4.20)

Z=0, 1 or 2.

• For σ2 = 0 ∧ λ3 = 4λ2 and

– if only ψ1 or ψ2 acquires a VEV:

X = SU
′

(2)
〈ψ1[2]〉−−−−→ U

′′[′](1) (4.21)
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– if ψ1 and ψ2 acquire a VEV:

X = SU
′

(2)
〈ψ1〉,〈ψ2〉−−−−−−→ ∅ (4.22)

Z=0, 1, 2 or 3,

where ”
〈
ψ1[2]

〉
” means, that the VEV of ψ1 or ψ2 breaks the symmetry and ”〈ψ1〉 , 〈ψ2〉”

that ψ1 and ψ2 need to acquire a VEV to break the symmetry. Thereby the Higgs doublet
(ψ1, ψ2)

T transforms under SU
′

(2), ψ1 under U
′

(1), ψ2 under U
′′

(1) and ψ1 or ψ2 under
U

′′′

(1).

4.5 Phenomenologically Possible Structures

Now that we know the symmetries of the 3 Higgs potential and how they will be broken
as well as the Higgs mass matrices, we can start to separate phenomenologically possible
structures from disallowed ones.

To do this and because our model should be valid at tree-level, we will have to check if it
is able to explain the mass hierarchy in the fermion sector without loop-corrections5, i.e. we
do not want eigenvalues to be zero or degenerate. If we now consider the mass-matrices for
D5 (table C.6) we will see that if the number of Higgs-bosons acquiring a VEV is less than
3, it will not be auspicious to succeed. That is the reason why we have begun with a three
Higgs potential.

The detailed calculation of the eigenvalues and eigenvectors as well as the characteristic
polynomials of the Higgs mass matrices are done in appendix D.

Now, let us summarize the results and subdivide them into the different cases, where we
understand the symmetries as the ones of the Higgs potential:

Problems / Further Symmetries
Number of Goldstone-bosons(

green [light gray] if 3 (what we want),
red [dark gray] if 6= 3 (too many GBs)

)

1. One Higgs acquire a VEV:

(a) for w 6= 0:

Mass hierarchy problem at tree-level and
unbroken U

′′′

(1).
3

(b) for v± 6= 0:

Mass hierarchy problem at tree-level and
unbroken U

′′′

(1).
3

2. Two Higgs acquire a VEV:

(a) For w = α = 0, σ2 = 0
(Because of 〈φ〉 = 0, the vacuum is independent of σ2 and therefore we are free to
choose σ2 = 0.)

5That our model should be valid at tree-level is an assumption and not a necessity.
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i. and λ3 = 4λ2:

Mass hierarchy problem at tree-level.

SU
′

(2)
〈ψ1〉,〈ψ2〉−−−−−−→ U

′′′

(1)
5

ii. and v2
+ = v2

−:

Mass hierarchy problem at tree-level.

U
′

(1) × U
′′

(1)
〈ψ1〉,〈ψ2〉−−−−−−→ ∅ 5

(b) and v± = 0, σ2 = 0:

Mass hierarchy problem at tree-level.

U
′

(1) × U
′′

(1)
〈ψ1[2]〉−−−−→ U

′′[′](1)
4

3. All Three Higgs acquire a VEV:

(a) For σ2 = 0

i. and 4λ2 = λ3:

SU
′

(2)
〈ψ1〉,〈ψ2〉−−−−−−→ ∅ 6

ii. and v2
+ = v2

−:

U
′

(1) × U
′′

(1)
〈ψ1〉,〈ψ2〉−−−−−−→ ∅ 5

(b) For α = −β ∨ α = π − β

i. and v2
+ 6= v2

−:

U
′′′

(1)
〈ψ1[2]〉−−−−→ ∅ 4

ii. and v2
+ = v2

− (if v+ = −v− : σ2 → −σ2):

U
′′′

(1)
〈ψ1[2]〉−−−−→ ∅ 4

Here we can see that only one Higgs-boson can acquire a VEV to get the right number of
GBs. But in these cases we get at tree-level at least one eigenvalue equal to 0 in the fermion
mass sector. Therefore a “normal” three Higgs boson model under D5 cannot work.

To fix this we have two possibilities which we will discuss in the next chapters: Adding
so-called soft-breaking terms to our “normal” three Higgs potential and keeping in this way
the number of Higgs bosons or to take a further Higgs boson into account, so consider a four
Higgs model.



Chapter 5

Three Higgs Model with
Soft-Breaking Terms

5.1 Soft-Breaking Terms

As mentioned before, one possibility to avoid accidental symmetries and consequently unob-
served GB is by adding so-called soft-breaking (SB) terms. These terms are of the dimension
two and therefore these mass terms are the “softest” operators we can work with in order not
to loose the consistency and prediction of our D5 model.

Sometimes it is quoted that such terms can for example drop out from a break-down of
a GUT and then “disturb” our Higgs potential through additional terms in a way that no
further accidental symmetry is left and only the SU(2)L × U(1)Y symmetry remains. But
other terms can also remain and bother us. To avoid this, a further symmetry can be assumed
which then bans these terms.

If we consider soft-breaking terms in our model, we will first of all have to find all possible
terms of dimension two, even if they do not give the trivial singlet under D5 (that is the
breaking of our flavor symmetry) and add them to our “normal” three Higgs potential. To do
this, the µ1 term is replaced (because it is already included in these terms) by the following
ones:

[µ3ψ
†
1ψ2 + h.c] , µ4ψ

†
1ψ1 , µ5ψ

†
2ψ2 , [µ6φ

†ψ1 + h.c.] and [µ7φ
†ψ2 + h.c.] (5.1)

These terms now destroy our additional accidental symmetry as we will see below and we
therefore expect no further Goldstone bosons than the three we get by SU(2)L × U(1)Y →
U(1)em. By taking the same notation for the charges as in (4.14) we get from the soft-breaking
terms the following constraints:

µ3 : −ρ2 + ρ3 = 0 ,
µ6 : −ρ1 + ρ2 = 0 ,
µ7 : −ρ1 + ρ3 = 0 .

⇒ ρ1 = ρ2 = ρ3

(5.2)

and consequently no accidental symmetry.
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5.2 Three Higgs-Potential with Soft-Breaking

In the chapter before we have done a full discussion of the Higgs potential. But as we know, we
need at least three Higgs with a non-vanishing VEV to explain the fermion masses. Therefore
from now on we assume all VEVs to be unequal to zero.

With this assumption we can start discussing the three Higgs potential including soft-
breaking terms which now has 18 real parameters and the following form:

V =
(

(
(

(
(

(
(

(
((h

h
h

h
h

h
h

h
hh

−µ2
1(ψ

†
1ψ1 + ψ†

2ψ2) − µ2
2(φ

†φ)

+[µ3ψ
†
1ψ2 + h.c] + µ4ψ

†
1ψ1 + µ5ψ

†
2ψ2 + [µ6φ

†ψ1 + h.c.] + [µ7φ
†ψ2 + h.c.]

+λ1(ψ
†
1ψ1 + ψ†

2ψ2)
2 + λ2(ψ

†
1ψ1 − ψ†

2ψ2)
2 + λ3(ψ

†
1ψ2)(ψ

†
2ψ1) + λ4(φ

†φ)2

+σ1(φ
†φ)(ψ†

1ψ1 + ψ†
2ψ2) + [σ2(φ

†ψ1)(φ
†ψ2) + h.c.]

+σ3[(φ
†ψ1)(ψ

†
1φ) + (φ†ψ2)(ψ

†
2φ)] ,

(5.3)

where the soft-breaking terms are colored blue (gray) and µ3, µ6, µ7 as well as σ2 are complex1

and not real as the other coefficients.
Now let us make a separation of favored and disfavored cases. By parameter counting

we cannot disfavor any of our mass matrices for 3 Higgs because if we have a look at them
(table C.6), we can see that the number of Yukawa couplings varies from 3 to 5 and because
there is no need that the up and down quarks have the same transformation behavior under
D5, we can choose one mass matrix having 5 and the the other one 3 Yukawa couplings
which makes together with the two independent2 VEVs 10 parameters like the number of
parameters describing the quark sector which is shown in table 5.1. For example, if we had
altogether 6 parameters it could be hard to describe the quark sector with its 10 parameters
but this does not mean that it is impossible through a ”piece of luck” or the correct theory.

Quark Masses 6
Mixing Angles 3
CP-Phase 1

Number of Parameters 10

Table 5.1: Parameter Counting in the Quark Sector

Now we go into more details for the example of the singlet φ1 ∼ 11 and doublet ψ1 ∼ 21,
where we will use the notation of table C.6. First of all, we eliminate all mass matrices
containing a zero eigenvalue because our model should be valid at tree-level. Then only the
matrices M1, M6, M9, M11, M12, M14, M15 and M18 are left over. But if we also call for
some unification we can discard M1 and M6 because in these cases only two fermions of one
chirality transform as a D5 doublet and the rest as singlets. Furthermore the texture of M15

1By a phase transformation of the Higgs fields it can be achieved that one of the complex coefficients will
be real-valued without making real coefficients complex.

2We have to reduce the number of VEV by one because we have the constraint that the sum of the VEV
squared must be the electroweak scale in order not to violate experimental facts, i.e.

P

i

v2
i = (246 GeV)2.
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and M18 is phenomenologically unfavorable. E.g. to achieve one of the textures in [29], we
have to set one of the Yukawa couplings or the VEVs to zero which then leads to a zero
eigenvalue. In addition we only have 3 Yukawa couplings which can make it difficult to
achieve the experimental bounds just because of the number of parameters. But this we will
see in more detail in the next paragraph. Therefore only M9, M11, M12 and M14 are left
as possible mass matrices, where all have the elegance of equal transformation of L and Lc

under D5 what e.g. can argue for LR-models. Apart from this M12 and M14 have a block
structure which would e.g. separate the 3rd generation from the first two and is in this way
able to explain why the top quark is so much heavier than the other ones. For the other
combination of a D5 singlet and doublet we can see that φ1 and ψ2 lead to the same result
as before, whereas this time M9 and M11 are block diagonal. For φ2, ψ1 and φ2, ψ2 M10 and
M13 are interesting candidates, where M13 has block structure for the first case and M10 for
the second one. Again we want to remind the reader that the structure of the Higgs potential
does not change its form by the choice of the composition of the three Higgs.

But our considerations are just qualitative. We cannot exclude something definitively
before it is calculated in detail.
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Chapter 6

The Four Higgs Model

6.1 Possibilities with Four Higgs

Another way to avoid unobserved GB can be adding of a further Higgs boson. This may also
help us to get rid of the additional accidental symmetries, plus has the bonus that the model
is self-consistent in the meaning that there are no additional terms “falling from the sky” like
soft-breaking terms in the chapter before.

But in return, the potentials will have numerous parameters and are therefore not anymore
analytic solvable. Only cases of special interest can be calculated and not anymore the whole
potential in general, like we did before for three Higgs.

For four Higgs, in principle, three different possibilities exist to transform under D5.
But we can a priori exclude the case of four singlets since, as we already pointed out, the
mass matrices containing only 〈φ1〉 and 〈φ2〉 have a zero eigenvalue and/or do not allow a
description of the mass hierarchy. Then, the two possibilities left are:

1. One doublet and two singlets or

2. Two doublets

In the first case we have 24 real parameters and in the second one 20. This should be compared
to the case before with soft-breaking terms where we had 18 real parameters.

6.2 One D5 Doublet and Two Singlets

For this case we add to our original three Higgs potential (4.1) (φ1 ∼ 11 and ψ1[2] ∼ 21[2]) the

other D5 Higgs singlet (φ2 ∼ 12) and get the following Higgs potential, where ψ =

(
ψ1

ψ2

)

and can transform1 as 21 or 22:

1The potential has the same form by taking the doublet 21 or 22.
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V = −1
2µ

2
1(ψ

†
1ψ1 + ψ†

2ψ2) − µ2
2(φ

†
1φ1)

+1
4λ1(ψ

†
1ψ1 + ψ†

2ψ2)
2 − 1

4λ2(ψ
†
1ψ1 − ψ†

2ψ2)
2

+λ3(ψ
†
1ψ2)(ψ

†
2ψ1) + λ4(φ

†
1φ1)

2

+1
2σ1(φ

†
1φ1)(ψ

†
1ψ1 + ψ†

2ψ2) + σ2[(φ
†
1ψ1)(φ

†
1ψ2) + h.c.]

+1
2σ3[(φ

†
1ψ1)(ψ

†
1φ1) + (φ†1ψ2)(ψ

†
2φ1)]+

+τ1φ
†
2φ2 + τ2(φ

†
2φ2)

2

+τ3(φ
†
1φ1)(φ

†
2φ2) + τ4(φ

†
2φ2)(ψ

†
1ψ1 + ψ†

2ψ2)

+[τ5(φ
†
2φ1)

2 + h.c.] + [τ6(φ
†
2φ1)(ψ

†
1ψ1 − ψ†

2ψ2) + h.c.]

+τ7(φ
†
2φ1)(φ

†
1φ2) + [τ8(ψ

†
2φ2)(ψ

†
1φ2) + h.c.]

+τ9[(ψ
†
2φ2)(φ

†
2ψ2) + (ψ†

1φ2)(φ
†
2ψ1)]

+[τ10[(ψ
†
2φ2)(φ

†
1ψ2) − (ψ†

1φ2)(φ
†
1ψ1)] + h.c.]

+[τ11[(ψ
†
2φ2)(ψ

†
1φ1) − (ψ†

1φ2)(ψ
†
2φ1)] + h.c.] ,

(6.1)

where the second half are the added terms. As mentioned before, this potential has 24 real
parameters. If we have a closer look at it, we can see that there is still a further U(1)
remaining. With the charge assignment

φ1 → φ1 e
iρ1 ,

φ2 → φ2 e
iρ2 ,

ψ1 → ψ1 e
iρ3 ,

ψ2 → ψ2 e
iρ4 ,

(6.2)

we obtain from the Higgs potential

σ2 : −2ρ1 + ρ3 + ρ4 = 0
τ5, τ6, τ10 : ρ1 − ρ2 = 0

τ8 : 2ρ2 − ρ3 − ρ4 = 0
τ11 : ρ1 + ρ2 − ρ3 − ρ4 = 0

(6.3)

and so can illustrate this accidental U(1) symmetry by:

Q(φ1)
ρ2 = 1 , Q(φ1)

ρ3 = 0 ,
Q(φ2)

ρ2 = 1 , Q(φ2)
ρ3 = 0 ,

Q(ψ1)
ρ2 = 0 , Q(ψ1)

ρ3 = 1 ,
Q(ψ2)

ρ2 = 2 , Q(ψ2)
ρ3 = −1 .

cρ3=ρ2+ρ3−−−−−−→
Q(φ1)

ρ2 = 1 , Q(φ1)
cρ3 = 0 ,

Q(φ2)
ρ2 = 1 , Q(φ2)

cρ3 = 0 ,

Q(ψ1)
ρ2 = 1 , Q(ψ1)

cρ3 = 1 ,

Q(ψ2)
ρ2 = 1 , Q(ψ2)

cρ3 = −1 .
(6.4)
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where ρ1 = ρ2 and ρ4 = 2ρ2 − ρ3. Through the definition of ρ̂3 we now can identify ρ2 as the
charge of U(1)Y and see that the additional symmetry will be broken if ψ1 or ψ2 acquires a
VEV and is therefore unwanted. The reason is that we maximally can2 give φ1, φ2 and ψi,
with i=1 or 2, a VEV if we do not want to break the additional symmetry. But then we have
problems with explaining the mass hierarchy and do not to get a mass eigenvalue equal to
zero at tree-level from the mass matrices in table C.6.

Therefore this possibility will not help us to avoid additional Goldstone-bosons.

6.3 Two D5 Doublets

The other possibility for four Higgs is to take the two doublets ψ1 =

(
ψ1

1

ψ1
2

)
∼ 21 and

ψ2 =

(
ψ2

1

ψ2
2

)
∼ 22 under D5. The Higgs potential then has 20 real parameters and the

following form:

V = −µ2
1(ψ

1†
1 ψ

1
1 + ψ1†

2 ψ
1
2) − µ2

2(ψ
2†
1 ψ

2
1 + ψ2†

2 ψ
2
2)

+λ1(ψ
1†
1 ψ

1
1 + ψ1†

2 ψ
1
2)

2 + λ2(ψ
1†
1 ψ

1
1 − ψ1†

2 ψ
1
2)

2

+λ3(ψ
1†
1 ψ

1
2)(ψ

1†
2 ψ

1
1) + λ4(ψ

2†
1 ψ

2
1 + ψ2†

2 ψ
2
2)

2

+λ5(ψ
2†
1 ψ

2
1 − ψ2†

2 ψ
2
2)

2 + λ6(ψ
2†
2 ψ

2
1)(ψ

2†
1 ψ

2
2)

+λ7(ψ
1†
1 ψ

1
1 + ψ1†

2 ψ
1
2)(ψ

2†
1 ψ

2
1 + ψ2†

2 ψ
2
2) + λ8(ψ

1†
1 ψ

1
1 − ψ1†

2 ψ
1
2)(ψ

2†
1 ψ

2
1 − ψ2†

2 ψ
2
2)

+
[
λ9(ψ

1†
1 ψ

2
1)(ψ

1†
2 ψ

2
2) + h.c.

]
+
[
λ10(ψ

1†
1 ψ

2
2)(ψ

1†
2 ψ

2
1) + h.c.

]

+
[
λ11((ψ

1†
1 ψ

2
2)(ψ

1†
1 ψ

1
2) + (ψ1†

2 ψ
2
1)(ψ

1†
2 ψ

1
1)) + h.c.

]

+
[
λ12((ψ

1†
1 ψ

2
1)(ψ

2†
2 ψ

2
1) + (ψ1†

2 ψ
2
2)(ψ

2†
1 ψ

2
2)) + h.c.

]

+λ13[(ψ
2†
1 ψ

1
1)(ψ

1†
1 ψ

2
1) + (ψ2†

2 ψ
1
2)(ψ

1†
2 ψ

2
2)]

+λ14[(ψ
2†
2 ψ

1
1)(ψ

1†
1 ψ

2
2) + (ψ2†

1 ψ
1
2)(ψ

1†
2 ψ

2
1)]

(6.5)

6.3.1 Symmetries of the Higgs Potential

In the following we see that the potential (6.5) has no accidental symmetry anymore. This
changes of course if we choose some parameters in an unfavorable way. E.g. if we choose
λ9 = λ10 = λ11 = λ12 = 0 the Higgs potential has a further U(1)4 symmetry. For this we

2If 〈ψ1〉 = 〈ψ2〉 = 0 we could also drop the doublet in order not to confuse the issue.
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introduce the charges
ψ1

1 → ψ1
1 e

iρ1 ,
ψ1

2 → ψ1
2 e

iρ2 ,
ψ2

1 → ψ2
1 e

iρ3 ,
ψ2

2 → ψ2
2 e

iρ4 ,

(6.6)

and obtain from the Higgs potential

λ9 : −ρ1 − ρ2 + ρ3 + ρ4 = 0
λ10 : −ρ1 − ρ2 + ρ3 + ρ4 = 0
λ11 : −2ρ1 + ρ2 + ρ4 = 0

ρ1 − 2ρ2 + ρ3 = 0
λ12 : −ρ1 + 2ρ3 − ρ4 = 0

−ρ2 − ρ3 + 2ρ4 = 0

(6.7)

This means that these terms break our accidental symmetry. All terms have a U(1) symmetry,
whereas the λ9 and the λ10 term possess the same one. Therefore we have to discard cases
which force this parameters to be zero (in the case of λ9 and λ10 at least one of them). But
we will revert to this in more detail in section 6.3.3. Theoretically it could be possible that
a VEV configuration exists which does not break this accidental symmetry. Therefore we
discuss in the following how they will be broken.

On the example of the λ11 term we can see that every VEV except the one of ψ1
1 breaks

the additional U(1) symmetry:

Q(ψ1
1)
ρ1 = 1 , Q(ψ1

1)
ρ2 = 0 ,

Q(ψ1
2)
ρ1 = 0 , Q(ψ1

2)
ρ2 = 1 ,

Q(ψ2
1)
ρ1 = −1 , Q(ψ2

1)
ρ2 = 2 ,

Q(ψ2
2)
ρ1 = 2 , Q(ψ2

2)
ρ2 = −1 .

cρ2=ρ1+ρ2−−−−−−→
Q(ψ1

1)
ρ1 = 1 , Q(ψ1

1)
cρ2 = 0 ,

Q(ψ1
2)
ρ1 = 1 , Q(ψ1

2)
cρ2 = 1 ,

Q(ψ2
1)
ρ1 = 1 , Q(ψ2

1)
cρ2 = 2 ,

Q(ψ2
2)
ρ1 = 1 , Q(ψ2

2)
cρ2 = −1 .

(6.8)
This we want to summarize below:

• λ9/10 term:

U(1)3
〈ψ2

2〉−−−→ ∅

U(1)3
〈ψ1

2〉−−−→ U ′(1)

U(1)3
〈ψ2

1〉−−−→ U ′′(1)

U(1)3
〈ψ1

2〉, 〈ψ2
1〉−−−−−−→ ∅

(6.9)

• λ11 term:

U(1)2
〈ψ1

2〉, 〈ψ2
1〉 or 〈ψ2

2〉−−−−−−−−−−−−→ ∅ (6.10)

• λ12 term:

U(1)2
〈ψ1

2〉, 〈ψ2
1〉 or 〈ψ2

2〉−−−−−−−−−−−−→ ∅ (6.11)

As we can see we always break these symmetries if we use 2 or more VEVs. But this we have
to do because of the fermion mass matrices. Therefore we have no other choice as to protect
the λ9[10], λ11 and λ12 term in order not to get an accidental symmetry.
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6.3.2 Minimization Conditions

Now parametrize the fields in the following way

ψlk =




ψl+k

1√
2

(
ψl rk + i ψl ik

)



 , (6.12)

where k, l ∈ {1, 2} and the VEV are denoted as

〈
ψ1

1

〉
= v1

1 = v1
1 + i · 0 =

〈
ψ1 r

1

〉
+ i
〈
ψ1 i

1

〉
,

〈
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2

〉
= v1

2e
iα = v1

2 cosα+ i v1
2 sinα =

〈
ψ1 r

2

〉
+ i
〈
ψ1 i

2

〉
,

〈
ψ2

1

〉
= v2

1e
iβ = v2

1 cosβ + i v2
1 sinβ =

〈
ψ2 r

1

〉
+ i
〈
ψ2 i

1

〉
and

〈
ψ2

2

〉
= v2

2e
iγ = v2

2 cos γ + i v2
2 sin γ =

〈
ψ2 r

2

〉
+ i
〈
ψ2 i

2

〉
.

(6.13)

Then the first derivatives of V at the minimum are given as

∂V
∂ψ1r

1

∣∣∣
min

= 1
2 (λ7 − λ8 + λ14) v
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1(v

2
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2
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(6.14)
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(6.15)
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(6.17)
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Here we used the notation λj = λrj + i λij to split the complex Yukawa couplings into their
real and imaginary parts.

Since the potential has a very complicated structure we cannot make a full discussion of
it. But e.g. if we assume that all VEVs are real we can make some predictions.
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6.3.3 Restrictions on the Potential

A systematic investigation of meaningful VEV structures leads to the result that certain
ones are phenomenologically forbidden because they force some parameters to be zero3 which
leads to accidental symmetries. This VEV structures are summarized for real VEVs, i.e.
α = β = γ = 0 in table 6.1 and the origin is shown below:

• v1
1 = v2

2 = 0:

(6.14) ⇒ 1
2v

2
1(v

1
2)

2λr11 = 0
(6.15) ⇒ −1

2v
2
1(v

1
2)

2λi11 = 0

• v1
1 = v2

1 = 0:

(6.18) ⇒ 1
2v

1
2(v

2
2)

2λr12 = 0
(6.19) ⇒ 1

2v
1
2(v

2
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2λi12 = 0

• v1
2 = v2

1 = 0:

(6.16) ⇒ 1
2v

2
2(v

1
1)

2λr11 = 0
(6.17) ⇒ −1

2v
2
2(v

1
1)

2λi11 = 0

• v1
2 = v2

2 = 0:

(6.20) ⇒ 1
2v

1
1(v

2
1)

2λr12 = 0
(6.21) ⇒ 1

2v
1
1(v

2
1)

2λi12 = 0

All of them lead to a further U(1) symmetry which would be broken if the remaining VEVs
were unequal to zero and therefore to unwanted GB.

VEV Structure Causes Accidental Symmetry

v1
1 = v2

2 = 0 λr11 = λi11 = 0 U ′(1)

v1
1 = v2

1 = 0 λr12 = λi12 = 0 U ′′(1)

v1
2 = v2

1 = 0 λr11 = λi11 = 0 U ′(1)

v1
2 = v2

2 = 0 λr12 = λi12 = 0 U ′′(1)

Table 6.1: Unfavorable VEV-Structures

6.4 Four Higgs Model with Further Discrete Symmetry

Another possibility to restrict the number of parameters in the Higgs potential is to assume
a auxiliary symmetry. Often a Z2 symmetry is used, see e.g. [85,86,102] viz invariance by the
exchange of the doublets ψ1 and ψ2. But in our case this would force λ11 = λ12 = 0 which
we already forbid.

But a possibility which work and which we will apply is the exchange of ψ1 and ψ2 together
with the components of ψ1 shown in table 6.2 a) or ψ2 in table 6.2 b).

3The origin of that lies in the minimization conditions.
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ψ1
1 −→ ψ2

1

ψ1
2 −→ ψ2

2

ψ2
1 −→ ψ1

2

ψ2
2 −→ ψ1

1

or

ψ1
1 −→ ψ2

2

ψ1
2 −→ ψ2

1

ψ2
1 −→ ψ1

1

ψ2
2 −→ ψ1

2

a) b)

Table 6.2: Possible Additional Discrete Symmetry of the Two Doublet Potential

Both symmetries lead to the same restrictions on our Higgs potential, e.g. for the λ1 and λ4

term it holds:

λ1(ψ
1†
1 ψ

1
1 + ψ1†

2 ψ
1
2)

2 6.4 a) or b)−−−−−−−→ λ1(ψ
2†
1 ψ

2
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2 ψ
2
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2 ,
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1 + ψ2†

2 ψ
2
2)

2 6.4 a) or b)−−−−−−−→ λ4(ψ
1†
1 ψ

1
1 + ψ1†

2 ψ
1
2)

2 .

(6.22)

So if the potential has to be invariant under this auxiliary symmetry then it will hold that
λ1 = λ4. For the other terms we get:

µ2
1 = µ2

2 , λ8 = 0 ,
λ1 = λ4 , λ9 = λ∗10 ,
λ2 = λ5 , λ11 = λ∗12 ,
λ3 = λ6 , λ13 = λ14 .

(6.23)

6.4.1 Higgs Potential

Accordingly we get a ”new”, restricted Higgs potential, namely
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(6.24)
With this restricted Higgs potential Vdis we will now continue our investigations for special
cases and assumptions on our Higgs potential and/or the VEV structure because the number
of parameter is still too much to discuss it in general.
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6.4.2 Minimization Conditions

For this and the following chapters we are not using anymore the notation of (6.13) for the
VEVs. The reason is simply because some of the VEV configurations we are considering,
assuming a phase for ψ1

1 what we excluded by our choice in (6.13). But w.l.o.g. we can
also rotate our Higgs fields in a way that the phase of another VEV disappears and as a
consequence in general, therefore ψ1

1 obtain a phase.
Therefore we give every VEV a phase but keep in mind that we can choose one of them

to be zero. By using this convention and using notation (6.25),

v1
1 = v eiα

v1
2 = v eiβ

v2
1 = v eiγ

v2
2 = v eiδ

(6.25)

it follows for the first derivatives of V at the minimum:
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6.4.3 Various VEV and Parameter Configurations

Real VEVs but Complex Parameters

In this and the following sections we want to discuss some promising VEV configurations. To
do this we will make assumptions on the VEV and/or the parameters to enable a calculation.

Annotation:
Under parameters we understand here the ones of the Higgs potential, so µ2

1 and λi.
If we now assume the VEVs to be real in order to obtain as simple as possible minimization

conditions and non-vanishing, we will only get two VEV configurations4 which solve the
minimization conditions, namely

v1
1 = v1

2 = v2
1 = v2

2 ≡ v (6.34)

and

v1
1 = v1

2 = −v2
1 = −v2

2 ≡ v . (6.35)

The full solution as well as the Higgs masses including their eigenvectors for (6.34) and (6.35)
is given in appendix E.

But both VEV configurations force a µτ–symmetry as described in section 2.4. This
means that θ13 = 0 and θ23 = π

4 in the diagonalizing matrices, where we have used the usual
parametrization shown in (A.3).

But actually it is not a surprise that both solutions lead to the same mixings because
since the minus signs of (6.35) can be absorbed in the Yukawa couplings (see table C.6) they
lead to the same lepton and quark mass matrices as solution (6.34).

Now we want to present a deeper insight on this mixing pattern. The reason why the
diagonalizing matrices have such a form is as already mentioned a µτ–symmetry (2-3 symme-
try) in the mass matrices, so invariance under a S2 permutation symmetry [15,18]. A model
based on S3 that also explains this pattern can be found in [116].

Now, we want to consider possible mass matrices for the down-quarks, i.e. we have to
select those having no zero eigenvalue. Then the phenomenologically possible ones have the
following form:

4We show the solutions of the minimization conditions without the restriction on other parameters than
the VEVs.
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M =




0 ±A A

±B C D
B D C



 , (6.36)

where we changed the original generation assignment like described in 3.4.1, strictly speaking
we interchanged the first and the third generation assignment, i.e.

M = QM15−18Q
T ,with Q =




0 0 1
0 1 0
1 0 0



 . (6.37)

But as shown in [18] it is not possible that the left- and right-handed quark mass matrix
obtain a 2-3 symmetry since this would mean that there is no mixing between the third and
the other two generations, so θ13 = θ23 = 0 what is manifestly false.

The same is true for the lepton mass matrix. Even if we consider the possibility that one
neutrino is massless this will not help us since the mass matrices having one zero eigenvalue
also possess a µτ–symmetry. And if we pass to Majorana neutrinos and assume the existence
of three right-handed neutrinos in a type–I seesaw scenario we will not avoid this mixing
pattern.

Some possibilities to maintain a viable model are the introduction of a SU(2)L triplet
and pass so to the type–II seesaw mechanism (see section 2.7.2 for references) or to introduce
scalar singlets at high scales which have to respect the D5 symmetry. But if we introduce
them we have to break the flavor symmetry already at these high energies and not anymore
as originally intended at the electroweak scale. Both possibilities then give contributions to
the ”original” mass matrices and can eliminate in this way their 2-3 symmetry.

But now we renounce on this and hope to find another VEV configuration which will
allow us a better phenomenological description. For this we have to modify and/or broaden
our assumption that all VEVs are real and the parameters are complex to get new VEV
configurations.

Real VEV and Real Parameters

Maybe the more convenient assumption that all VEVs and parameters are real can help us
to escape from these dilemma. For the scenario of real VEVs and parameters we obtain the
reasonable solutions

v1
1 = v1

2 ≡ v ,
v2
1 ≡ v ω ,
v2
2 ≡ v

ω .

v1
1 = −v1

2 ≡ v ,
v2
1 ≡ v ω ,
v2
2 ≡ v

ω .

v2
1 = v2

2 ≡ v ,
v1
1 ≡ v ω ,
v1
2 ≡ v

ω .

v2
1 = −v2

2 ≡ v ,
v1
1 ≡ v ω ,
v1
2 ≡ v

ω .
(6.38)

That we get such a ratio as solution can be understood by taking the ratio term by term of
6.26 and 6.28 as well as of 6.30 and 6.32 (since all VEVs and parameters are real the other
minimization conditions are anyway zero). Then the resulting terms are only dependend of
the ratios

v1
1/v

1
2 and v2

1/v
2
2 . (6.39)

For the limit ω → ±1 we get 1 (expected) + 2 (unwanted) GB from the uncharged Higgs
matrix and see that this limit does not lead to case (6.34) or (6.35) as one might assume.
If we would already set ω → ±1 in the minimization condition, this would lead to the same
equations as with (6.34) and (6.35). This also shows us that these solutions are independent
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ones and therefore not equivalent. Thus even if we want ω to be near ±1 in order not to
loose the results we got in section 6.4.3 we have to demand ω 6= ±1. However, for this cases
a problem with the Higgs mass arise. More precisely, two of the uncharged Higgs bosons do
not acquire a mass above about 60 GeV and are therefore too small because phenomenology
demands a mass above 115 GeV. To calculate the range of the Higgs masses, we assumed
the following numerical ranges:

|ω| = 0.85..1.15 , λ7 = −3..3 ,
v = 123 GeV , λr9 = −3..3 ,
µ1 = 200 GeV , λ13 = −3..3 ,

(6.40)

Thereby, the two problematical Higgs masses do not depend much on the mass parameter
µ1, so a variation of ±100 GeV does not affect them appreciable and we do not have to vary
it. But since we get in the limit ω → ±1 two more GBs in the uncharged Higgs boson sector
we anyway have to reject (6.38) as a possible ansatz for our model.

A further possibility would be that the VEVs of one doublet are pairwise equal except
for a possible sign, whereas the VEV of the first doublet has to be unequal to the one of the
second Higgs doublet, i.e.

v1
1 = v1

2 ≡ v ,
v2
1 = v2

2 ≡ u ,
u 6= v .

v1
1 = −v1

2 ≡ v ,
v2
1 = −v2

2 ≡ u ,
u 6= v .

(6.41)

But the bad news is that all of these six VEV configuration (6.38) and (6.41) lead again to
a µτ -symmetry in the mass matrices (θ13 = 0 and θ23 = π

4 ) and are therefore phenomenolog-
ically disfavored.

Complex VEV and Real/Complex Parameters

Now we assume some of the VEVs to be complex and the parameters to be real what allows
us to obtain spontaneous CP violation and filter out VEV configurations which do not fulfill
the minimization conditions and/or their phases can be absorbed in the Yukawa couplings
and hence yield nothing new. Then the plainest VEV configurations are (6.42) and (6.47) (by
taking notice of the ratios (6.39) as solution and knowing that only one phase do not work).

〈
ψ1

1

〉
= v eiα ,〈

ψ1
2

〉
= v ,〈

ψ2
1

〉
= v eiβ ,〈

ψ2
2

〉
= v .

(6.42)

This leads to clearly determined values for α and β, thereby they fulfill the relations

α+ 2β = 0 ,
e5iβ = 1 .

(6.43)

These relations reflecting the structure of our flavor symmetryD5. One solution is for example

α = 4π
5 ,

β = −2π
5 .

(6.44)

In addition we get a constraint on λr9 from the minimization conditions, i.e.

λr9 = −1

2
λr11

(
1 ±

√
5
)
. (6.45)
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Annotation:
If we insert (6.45) together with VEV configuration (6.42) in the Higgs potential (6.24)

then the solutions (6.43) for α and β (we originally got from the minimization conditions)
are the only solutions which let the Higgs potential invariant, i.e. with λr9 = −1

2λ
r
11

(
1 ±

√
5
)

it holds (shown for one solution of α and β) that

Vdis (α = 0, β = 0) ⇔ Vdis (α = 4π/5, β = −2π/5) . (6.46)

So this are degenerate minima.

If we assume complex parameters instead of real ones in VEV configuration (6.42) and
make a multiple Taylor expansion to the first order around the numerical values of α and β
we calculated before, we observe that this does not help us to solve the problem.

The other mentioned VEV configuration is

〈
ψ1

1

〉
= v ,〈

ψ1
2

〉
= v ,〈

ψ2
1

〉
= v ω eiα ,〈

ψ2
2

〉
= v

ω e
−iα ,

(6.47)

where the parameters are assumed to be complex5. This leads to clearly determined values
of α, i.e. α = ±π

2 . But one of the uncharged Higgs does not acquire a mass above roughly
85 GeV by using the parameterspace of (6.40). Therefore we also have to reject this VEV
configuration.

6.5 A Viable Model

So far we have not found a suitable VEV configuration solving the minimization conditions
and is able to explain the particle masses and mixings. Therefore, to show that it is never-
theless possible we try to fit the mass matrix numerically in order to obtain the masses and
mixings within experimental bounds.

6.5.1 Particle Assignment and Notation

The first step to for our model is to choose the transformation properties of quarks and
leptons under D5. This is shown in the following:

Q1 ∼ 11 ,

(
Q2

Q3

)
∼ 22 ,

uc1 ∼ 11 ,

(
uc2
uc3

)
∼ 21 ,

dc1 ∼ 11 ,

(
dc2
dc3

)
∼ 21 ,

(6.48)

L1 ∼ 11 ,

(
L2

L3

)
∼ 22 ,

ec1 ∼ 11 ,

(
ec2
ec3

)
∼ 21 ,

νc1 ∼ 11 ,

(
νc2
νc3

)
∼ 21 ,

(6.49)

With this assignment we obtain the following mass matrices, where we assume MR to be real:

5This VEV configuration forces λr
11 = 0 and therefore λi

11 6= 0 in order not to obtain an accidental symmetry
in the Higgs potential.
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Mu, ν =




0 κu, ν3

〈
ψ1

1

〉
κu, ν3

〈
ψ1

2

〉

κu, ν4

〈
ψ2

1

〉
κu, ν1

〈
ψ2

2

〉
κu, ν2

〈
ψ1

1

〉

κu, ν4

〈
ψ2

2

〉
κu, ν2

〈
ψ1

2

〉
κu, ν1

〈
ψ2

1

〉



 ,

Md, e =




0 ξd, e3

〈
ψ1

2

〉
ξd, e3

〈
ψ1

1

〉

ξd, e4

〈
ψ2

2

〉
ξd, e1

〈
ψ2

1

〉
ξd, e2

〈
ψ1

2

〉

ξd, e4

〈
ψ2

1

〉
ξd, e2

〈
ψ1

1

〉
ξd, e1

〈
ψ2

2

〉



 ,

MR =




A 0 0
0 0 B
0 B 0



 .

(6.50)

6.5.2 Model with Dirac Neutrinos

Now that we have obtained the mass matrices we try to find by a numerical analysis values
for the Yukawa couplings and VEVs allowing us to describe the masses and mixings within
their experimental bounds [117]. This we will do for the assumption of Dirac neutrinos. As
solution for our investigation we have received the values below, whereas we round after the
fourth significant decimal place and give the masses at the energy scale of mW .

The VEVs are therefore:
〈
ψ1

1

〉
= 133.8841 e−i 0.04008 GeV ,

〈
ψ1

2

〉
= 112.8433 ei 0.05335 GeV ,

〈
ψ2

1

〉
= 128.8769 ei 0.05583 GeV ,

〈
ψ2

2

〉
= 117.1846 e−i 0.03769 GeV .

(6.51)

The up-type quark Yukawa couplings are:

κu1 = 0.6878 − i 0.001249 ,
κu2 = −0.6942 + i 0.003655 ,
κu3 = (0.2670 − i 3.7909) · 10−4 ,
κu4 = 0.15497 · 10−3 .

(6.52)

The down-type quark Yukawa couplings are:

ξd1 = 0.01228 + i 0.0002213 ,
ξd2 = −0.01285 − i 0.00003 ,
ξd3 = (9.4676 − i 0.3100) · 10−5 ,
ξd4 = 0.0001167 + i 0.00003840 .

(6.53)

The neutrino Yukawa couplings are:

κν1 = (−0.1206 − i 0.07110) · 10−11/3.45 ,
κν2 = (0.1098 + i 0.06753) · 10−11/3.45 ,
κν3 = (0.1630 − i 0.07656) · 10−11/3.45 ,
κν4 = (0.06504 + i 0.1794) · 10−11/3.45 .

(6.54)

The charged lepton Yukawa couplings are:

ξe1 = 0.006914 + i 0.00009900 ,
ξe2 = −0.007469 − i 0.0007630 ,
ξe3 = 0.00008625 + i 0.00005939 ,
ξe4 = 0.00001707 + i 8.0000 · 10−7 .

(6.55)
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Quarks

For this values we can now calculate the quark masses, mixings and JCP and one can see
that they are in agreement with experiments:

mu = 0.002201 GeV , md = 0.004399 GeV ,
mc = 0.8098 GeV , ms = 0.08002 GeV ,
mt = 170.6638 GeV , mb = 3.1039 GeV .

(6.56)

s12 = 0.2249 ,
s23 = 0.04144 ,
s13 = 0.003683 ,

JCP = 2.98 · 10−5 .

(6.57)

Leptons

The values for charged leptons are shown below:

me = 0.0005111 GeV ,
mµ = 0.1060 GeV ,
mτ = 1.7799 GeV .

(6.58)

And for neutrinos one gets:

∆m2
21 = 2.22 · 10−3 eV2 ,

∑
i
mi = 0.284 eV ,

∆m2
32 = 7.94 · 10−5 eV2 , R =

∆m2
21

∆m2
32

= 27.97 .
(6.59)

s212 = 0.2999 ,
s223 = 0.4992 ,
s213 = 0.0274 ,

JCP = −0.01548 .

(6.60)

Annotation:
In some publications the inverse of our definition of the ratio R is used, so

R =
∆m2

⊙
∆m2

A

=
m2

2 −m2
1∣∣m2

3 −m2
1

∣∣ . (6.61)

6.5.3 Model with Majorana Neutrinos

The model we have shown before assumed the neutrinos to be Dirac particles. For the case
of Majorana neutrinos in a type-I seesaw scenario we obtain the follwowing values [117]:

The VEVs are:

〈
ψ1

1

〉
= 129.0887 e−i 0.13549 GeV ,

〈
ψ1

2

〉
= 119.3079 ei 0.10239 GeV ,

〈
ψ2

1

〉
= 124.0342 ei 0.06774 GeV ,

〈
ψ2

2

〉
= 124.3133 e−i 0.10779 GeV .

(6.62)
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The up-type quark Yukawa couplings are:

κu1 = 0.6816 + i 0.00006140 ,
κu2 = −0.6884 − i 0.001245 ,
κu3 = 0.00006971 − i 0.0003234 ,
κu4 = 0.0001795 + i 1.2705 · 10−21 .

(6.63)

The down-type quark Yukawa couplings are:

ξd1 = 0.01221 + i 0.0003440 ,
ξd2 = −0.01275 − i 0.0000128 ,
ξd3 = 0.00009521 + i 0.00001006 ,
ξd4 = 0.0001147 + i 0.00004308 .

(6.64)

The parameters of the right-handed neutrino mass matrix are:

A = −92.3382 · 1.55 · 1011 GeV ,
B = −105.6449 · 1.55 · 1011 GeV .

(6.65)

The Dirac neutrino Yukawa couplings are:

κν1 = 0.01507 + i 0.1697 ,
κν2 = 0.1272 + i 0.004653 ,
κν3 = −0.08700 + i 0.01851 ,
κν4 = −0.1386 + i 0.1299 .

(6.66)

The charged lepton Yukawa couplings are:

ξe1 = 0.006774 + i 0.001060 ,
ξe2 = −0.007463 − i 0.0005375 ,
ξe3 = −0.00004332 + i 0.00007990 ,
ξe4 = 0.00001989 .

(6.67)

Quarks

The resulting masses, mixings and the Jarlskog invariant are:

mu = 0.002200 GeV , md = 0.004400 GeV ,
mc = 0.8100 GeV , ms = 0.08001 GeV ,
mt = 170.2021 GeV , mb = 3.1009 GeV .

(6.68)

s12 = 0.2245 ,
s23 = 0.04136 ,
s13 = 0.003693 ,

JCP = 2.93 · 10−5 .

(6.69)

Leptons

The data for the charged leptons are:

me = 0.0005111 GeV ,
mµ = 0.1060 GeV ,
mτ = 1.7800 GeV .

(6.70)
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And the one for neutrinos includes the masses of the right-handed neutrinos Ni and the
Majorana phases α and β as shown in parametrization A.2:

∆m2
21 = 2.23 · 10−3 eV2 ,

∑
i
mi = 0.109 eV ,

∆m2
32 = 7.93 · 10−5 eV2 , R =

∆m2
21

∆m2
32

= 29.04 .
(6.71)

s212 = 0.3000 ,
s223 = 0.4997 ,
s213 = 0.03994 ,

JCP = −0.03528 .

(6.72)

mN1 = 1.4312 · 1013 GeV ,
mN2 = mN3 = 1.6375 · 1013 GeV .

(6.73)

α = −0.3724
β = −2.9196

(6.74)

So, with the values of section 6.5.2 and 6.5.3 we are able to reproduce the known masses and
mixings for Dirac neutrinos as well as for a type-I seesaw scenario. However, since we have
fitted the parameters of our mass matrices to obtain these quantities, the possibility to make
a prediction is rather low.
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Chapter 7

Conclusions and Outlook

The SM does not explain the three particle generations as well as their strong mass hierarchy.
Also the difference between the mixings in the quark and the lepton sector is still a mystery.
Here we have tried to motivate an explanation by using in addition to the SM group a discrete
symmetry acting on the flavor space. In our case we have introduced the dihedral group D5

since it has the advantage of discrete non-Abelian groups and an auspicious product struc-
ture.

With this symmetry we have calculated the possible structures of the mass matrices and
of the Higgs sector. But as we have had to find out, for the assumption of one or two Higgs
bosons we are not able to explain the mass hierarchy at tree-level, where our model should
be valid as demanded. If we add a third Higgs boson this will be possible but we obtain an
accidental symmetry which will be broken by all meaningful VEV configurations we have got
from the minimization conditions and this consequently leads to further GBs which are not
observed.

To solve this we have suggested to include soft-breaking terms to the three Higgs potential
or to add a fourth Higgs boson. We have decided to take a fourth Higgs, where one has the
possibility to take two singlets and one doublet or two doublets. However, it has turned out
that the potential with the two singlets and the one doublet still has an accidental symmetry
and that all possible configurations of four non-vanishing VEVs break it. Consequently, we
expect a further GB which has not been seen in experiments.

Therefore, the only solution is to take four Higgs bosons transforming under D5 as two
doublets. For the resulting Higgs potential we then have to introduce a further discrete sym-
metry in order to restrict the parameter space since the great number of parameters does not
show promise to find a viable model and a general discussion is anyway not possible anymore.

The resulting parameter space however still does not allow an analytical solution and we
have added further assumptions like if they are real or complex or if we have a certain VEV
configuration. This has allowed us to calculate special cases but all of them lead to a 2-3
symmetry in the mass matrices and thus to θ13 = 0 in the CKM and PMNS matrix what is
not found by experiments for the CKM matrix and to one and two too small Higgs masses
respectively.

Then we have changed our strategy and turned away from the search for a meaningful
VEV configuration to the fitting of the mass matrices.

After we have seen that we can generate the masses as well as the mixings within experi-
mental bounds the next step would be a closer look at the Higgs sector, i.e. the stability, the
Higgs masses as well as FCNCs and LFV.
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Another aspect which we have not mentioned until now is the embedding of D5 in a
continuous symmetry, i.e. SO(3) or SU(3), since our purpose has been a phenomenologically
viable model which is as simple as possible. However, if we want to embed it we can see
that this is not possible for our Higgs sector since the three dimensional representation of
SO(3) has resolve into 12 + 21 and the five dimensional one into 11 + 21 + 22. The reason
is that a model with three Higgs is phenomenologically not possible and for the next larger
representation we would have to add a singlet which is of course possible and, on the aspect of
embedding, suggestive. Another alternative is to embed D5 in A5. Since this is just possible
with small variations in our mass matrices, we prefer that way.

As last point we want to mention that the particle assignment of our model does not allow
an embedding in a GUT like SO(10), however for LR or Pati-Salam models this would be
possible.



Appendix A

Status Quo

A.1 Experimental Data

Now that we have a theoretical understanding about the SM and know that this theory
does not give us all parameters, we want to present the “missing” ones which are measured
in various experiments and can be found in [118] (or in [119], which is not up-to-date but
instead with more details and good explanations).

A description of the status and the phenomenology of the SM is shown in [120].

A.2 Lepton Sector

Let us first begin with the lepton-sector and distinguish between charged leptons and the
neutral ones, the neutrinos. Both exist in three flavors: electron-, muon- and tau-flavor.

A.2.1 Charged Leptons

The masses of the electron, muon and tau are shown in table A.1: For charged leptons in

me = 0.51099892 ± 0.00000004 MeV
mµ = 105.658369 ± 0.000009 MeV

mτ = 1776.99+0.29
−0.26 MeV

Table A.1: Charged Lepton Masses

contrast to quarks and neutrinos up to now no mixing is observed. But this possibility will
still be considered in different models.

A.2.2 Neutral Leptons (Neutrinos)

The reason why we have separated neutrinos is their different behavior and properties com-
pared to quarks and charged leptons. E.g. their mixing is, as we will see in table A.3, not
small. Their masses, or more precise, their mass limits are summarized in table A.2.
But measured are actually the mass-squared differences, namely

∆m2
sol = (8.1 ± 1.0) · 10−5 eV2 ,

∣∣∆m2
atm

∣∣ = (2.2 ± 1.1) · 10−3 eV2 . (A.1)

Compatible with these data are two scenarios: The so-called normal ordering (NO), the
inverted ordering (IO). Neutrinos are quasi-degenerate when their mass is larger than the
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〈mνe〉 < 2.3 eV〈
mνµ

〉
< 170 keV

〈mντ 〉 < 15.5 MeV (CL = 95%)

Table A.2: Neutrino Mass Limits

∆m2. We also have the possibility that the lightest neutrino is massless. In this limit, i.e.
m1 = 0 for NO and m3 = 0 for IO these two scenarios will be called normal (NH) and inverted
hierarchy (IH). This is illustrated in figure A.1 (without LSND data [121]).
The mixing of neutrino mass and flavor eigenstates is described by the Pontecorvo-Maki-

"Normal" "Inverted"

m2

3 ∆m2

12

m2

2

m2

1

∆m2

23
< 0

νe νµ ντ

∆m2

23

m2

2

m2

1

m2

3

∆m2

23
> 0

∆m2

23

∆m2

12

Figure A.1: Possible Neutrino Mass Orderings.

Nakagawa-Sakata (PMNS) matrix

UPMNS =




1 0 0
0 c23 s23
0 −s23 c23





︸ ︷︷ ︸
atmospheric angle




c13 0 s13 e

−iδ

0 1 0
−s13 eiδ 0 c13





︸ ︷︷ ︸
reactor angle and Dirac CP phase




c12 s12 0
−s12 c12 0

0 0 1





︸ ︷︷ ︸
solar angle

diag(eiα, eiβ, 1)︸ ︷︷ ︸
Majorana phases

=





c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13



 diag(eiα, eiβ, 1) ,

(A.2)
where we have used the usual notations cij = cos θij , sij = sin θij , δ is the Dirac CP violation
phase, α and β are two possible Majorana CP violation phases. The values of the currently
known mixing parameters are at 3σ:

sin2 θ12 = 0.24 . . . 0.41 ,
|Ue3|2 = |s13e−iδ|2 ≤ 0.044 ,

sin2 θ23 = 0.34 . . . 0.68 .

Table A.3: Neutrino Mixing Angles
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A.3 Quark Sector

The quark-sector consists of 6 different quarks separated by their flavors:
up-, down-, charm-, strange-, top- and bottom-quark.

Their masses are given in table A.4 at the scale of the Z-boson mass mZ . In addition we

mu = 1.7 ± 0.4 MeV mc = 0.62 ± 0.03 GeV mt = 171 ± 3 GeV
md = 3.0 ± 0.6 MeV ms = 54 ± 11 MeV mb = 2.87 ± 0.03 GeV

Table A.4: Quark Masses

have mixing in the quark-sector between the mass and flavor eigenstates, described by the
Cabibbo-Kobayashi-Maskawa (CKM) matrix, where we use the same parametrization as for
the PMNS matrix, i.e.

VCKM =





c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13



 . (A.3)

The experimentally determined limits are

(|VCKM |) =




0.9739 . . . 0.9751 0.221 . . . 0.227 0.0029 . . . 0.0045
0.221 . . . 0.227 0.9730 . . . 0.9744 0.039 . . . 0.044
0.0048 . . . 0.014 0.037 . . . 0.043 0.9990 . . . 0.9992



 . (A.4)

This corresponds to the three angles and CP phase given in table A.5, by taking parametriza-
tion (A.3), where θ12 is the so-called Cabibbo angle.

s12 = 0.2243 ± 0.0016
s23 = 0.0413 ± 0.0015
s13 = 0.0037 ± 0.0005

δ = 60 ◦ ± 14 ◦

Table A.5: Quark Mixing Angles

A.4 Gauge and Higgs Bosons

In the SM we have four gauge bosons with masses shown in table A.6. And last but not

mγ < 6 · 10−17 eV
mg = 0 1

mW± = 80.425 ± 0.038 GeV
mZ0 = 91.1876 ± 0.0021 GeV

Table A.6: Gauge Boson Masses

least the Higgs boson mass or more precise its mass limit is

114.4 GeV < mH < 246 GeV (CL = 95%) , (A.5)

1This is a theoretical value and not a measured one.
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where the lower limit comes from the until now reached energies at CERN and the upper
bound from electroweak data like the W and top quark masses.



Appendix B

Group Theory

B.1 Elements of Group Theory

General Definitions

In this section we want to provide a basis of group theory. More about group theory can be
found e.g. in [122–124] or especially for Lie groups and grand unified theories in [4, 36,125].

A finite (or infinite) group G is a finite (or infinite) set of elements together with a
multiplication law that satisfies the four lower fundamental properties of closure, associativity,
the identity property, and the inverse property. Elements A, B, C,... with binary operation
between A and B denoted AB form a group if they fulfill

1. Closure:
If A and B are two elements in G, then the product AB is also in G.

2. Associativity :
The defined multiplication is associative, i.e., for all A, B, C in G, (AB)C = A(BC).

3. Identity :
There is an identity element E such that EA = AE = A for every element A in G.

4. Inverse:
There must be an inverse or reciprocal of each element. Therefore, the set must contain
an element B = A−1 such that AA−1 = A−1A = E for each element of G.

A group must contain at least one element, with the unique (up to isomorphism) single-
element group known as the trivial group.

Hence we will restrict us to finite groups with more than one element except it is explicitly
stated.

If two elements commute with each other they fulfill the relation

AB = BA . (B.1)

The identity of the group commutes with all their elements. If all elements commute with
each other the group is called Abelian.

Now we denote AA = A2 and similar for An as well as A−n = (A−1)n = (An)−1. An
element is called to be of order n if there exists a smallest positive integer n for what the
relation
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An = E (B.2)

holds. For an element A which is of order n, all elements

A,A2, ..., An−1, An = E (B.3)

are distinct. A group formed by such elements is called cyclic group and the element is the
generator of the group.

Two groups are isomorphic (G ≈ G’) if there exists a one-to-one correspondence preserved
under combinations.

To write all this in a convenient way, a multiplication table which gives all properties of
a finite group is used. In this quadratic array the rows and columns are labeled according to
elements of the group.

E A B . . .

E E2 = E EA = A EB = B . . .
A AE = A A2 AB . . .
B BE = B BA B2 . . .
...

...
...

...
. . .

Table B.1: Multiplication Table for a Cyclic Group

Like one can verify, every element of the group appears only once per row and column. This
theorem is called rearrangement theorem. And if the multiplication table is symmetric with
respect to their main diagonal it is an Abelian group.

The order of a group is the number of element in this group and denoted as h.

Subgroups and Cayley’s Theorem

If we select a subset H of elements of a group G and this set of elements forms a group
under the same law of transformations as G, we call H a subgroup of G. Every group has
two trivial subgroups: the group itself and the group consisting only of the neutral element
E. These groups are called improper . Every other subgroup except the two mentioned before
are called proper.

Therefore, if G ⊃ H1 ⊃ H2 then H2 is also a subgroup of G.
If additional for any element A of the subgroup H holds that

AH A−1 = H (B.4)

the subgroup is called to be a normal subgroup or equivalent an invariant subgroup or self-
conjugate subgroup.

It should be annotated that all subgroups of Abelian groups are normal. In addition, the
symmetric groups Sn (finite) are of particular importance because they exhaust the possible
structure of finite groups. This is shown by

• Cayley’s theorem:
Every group of order n is isomorphic with a subgroup of Sn.
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Conjugate Classes

If two elements A and B of G are conjugate then it’s possible to find an element X in G such
that

X AX−1 = B (B.5)

is fulfilled. If X = E we see that A is conjugate by itself. This leads to some equivalence
relations (≡):

• A ≡ A

• If A ≡ B then B ≡ A

• If A ≡ B and B ≡ C then A ≡ C

To separate a set into classes Ci such an equivalence relation is used. The number of distinct
elements of a class is called order of the class hCi

and if h > 1 then hCi
≥ 2. The identity E

always forms a class by itself. And in the special case of Abelian groups, each element forms
a class by itself because for any A,B of G ABA−1 = B is true.

Moreover, all elements of a class have the same order and all classes of G are disjoint⋂
i

Ci = ∅. This leads to

∑

Ci

hCi
= h (B.6)

Invariant Subgroups, Factor Groups, Homomorphism

For any element A and subgroup H of G it is possible to generate a set AH A−1 which is
again a subgroup of G and is called to be a conjugate subgroup of H in G. If especially
AH A−1 = H holds, H is said to be an invariant subgroup in G. A group which has no
invariant subgroup is called simple. If non of its invariant subgroups are Abelian its said to
be semisimple. All subgroups of Abelian groups are obviously invariant. Also, we note that
the product of two cosets of an invariant subgroup is again a coset.

When we treat the cosets of H as elements and define a product for their multiplication
the cosets of the invariant subgroups form a group, the factor group (=quotient group) G/H .

A group homomorphism is a map between two groups G→ H such that

1. the identity of G is mapped to the one of H and

2. the group operation is preserved.

The kernel of G is the set of distinct elements mapped on the identity of H. For each element
of H the number of elements in G mapping on it is constant. Therefore hG

hH
= m is called

multiplicity .
It should be annotated that a homomorphism must also preserve the inverse map.
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Direct Product

A group G is a direct product if its subgroups H1,H2, ...,Hn fulfill the following conditions:

1. The elements of different subgroups commute.

2. Every element g of G can only be written as g = h1...hn,

where hi is an element of Hi. A direct product is also called Kronecker product or tensor
product. This direct product can be written as

G = H1 × H2 × ...× Hn , (B.7)

whereas H1,H2, ... is labeled as direct factors of G.
The Kronecker products for the group D5 we will use are shown in table C.3.

Representations, Character Table

Group Representations

A set of a homomorphical map of a group onto a group of operators is denoted as µ =
{D(G)} and called representation of a group G. Most of the groups have many different
representations, possibly on different vector spaces. If their representations are similar they
are considered to be equivalent .

Any representation of G can be restricted to a representation of any subgroup H of G.
Furthermore, any representation on H can be extended to a representation of G on a larger
vector space called induced representation.

Character Table

A possible description of a finite group is its character table which contains the characters
of all irreducible representations (for definition see next section) for all conjugate classes. As
mentioned before the character of a representation is

χ(µ)(R) = tr
[
D(µ)(R)

]
. (B.8)

The advantage of using traces is that they are invariant under transformation. That leads to
the fact that all elements of one class have the same character just like equivalent represen-
tations.

The trivial representation which is a one-dimensional representation and whose characters
are all one exist in all groups and is denoted as 11.

The character table of D5 is given as table C.2.

Irreducible Representation

An irreducible representation is a group representation that has no nontrivial invariant sub-
spaces, e.g. O(n) has an irreducible representation on R

n. Except finite or semisimple Lie
groups it is not in general possible to break up their representation into a direct sum of irre-
ducible representations.

Irreducible representations have some properties which can be derived by Schur’s lemma.
One version of Schur’s lemma is that if D and D′ are irreducible representations and A is a
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linear map such that AD(R) = D′(R)A then A = 0 or A is invertible.
A number of these implications for irreducible representations are formalized below.

1. The group orthogonality theorem

∑

R

D(µ)(R)mnD
(ν)(R−1)m′n′ =

h

nµ
δµνδmn′δnm′ , (B.9)

in which nµ denotes the dimension of the µth representation.

2. The completeness relation for the columns of the character table:

h

hCi

δji′ =
∑

µ

χ
(µ)
Ci
χ

(µ)
Cj

, (B.10)

where i′ is the index of the class containing the inverse elements of Ci.

3. Character orthogonality relation for the rows of the character table:

∑

R

χµ(R)χν(R−1) = h δµν (B.11)

4. For unitary representations:
h

hCi

=
∑

µ

|χ(µ)
Ci

|2 (B.12)

From now on we consider irreducible representation unless otherwise mentioned.
If there exist a similarity transformation between two representations µ = {D(µ)(R)} and

ν = {D(ν)(R)} like D(ν)(R) = XD(µ)(R)X−1 for all elements R of G then they are called
equivalent. Every representation µ of each group has its complex conjugate representation
µ̄ and for their matrix representations D(µ̄)(R) = D(µ)(R)∗ respectively for all elements R
of G. Similar an adjoint representation µad is defined and for the matrix representation

D(µad)(R) =
[
D(µ)(R)T

]−1
, ∀R ∈ G. It is important to mention that for finite groups the

complex conjugate and the adjoint representation are corresponding since all representations
are unitary and that all have the same dimension as µ.

For the case that the number of all distinct representation matrices is equal to the group
order the representation is called faithful .

B.2 Clebsch-Gordan Coefficients

The Clebsch-Gordan Coefficients (CG) denoted1 by

(
µ ν τ α
i j k

)
. That is the coefficient

in front of the kth component of a vector transforming under D(τ)(R) which is the product of
the ith component of a vector transforming under D(µ)(R) and the jth component of a vector
transforming under D(ν)(R), where α is the so-called multiplicity running from 1 to (µντ).
The inverse of the CG is defined as

1The notation and definition we are using is different compared to the most textbooks of mathematic.
There is often the notation (µi, νj|ταk) used and the inverse of the CG we are using is called a Clebsch-
Gordan coefficient.
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(
µ ν τ α
i j k

)−1

:=

(
τ α µ ν
k i j

)
2

=

(
µ ν τ α
i j k

)
. (B.13)

From the general equation

∑

i,j,k,l

(
µ ν τ ′ α′

i k s′

)
D(µ)(R)ijD

(ν)(R)kl︸ ︷︷ ︸
D(µ×ν)(R)ik,jl

(
τ α µ ν
s j l

)
= D(τ)(R)ss′δττ ′δαα′ (B.14)

we can see that the CG are the transformation matrices block-diagonalizing the representa-
tion matrices of the product µ× ν.

Two important relations for CG are given through the orthonormalization and complete-
ness relation:

Nµ∑

j=1

Nν∑

l=1

(
µ ν τ α
j l k

)(
µ ν τ ′ α′

j l k′

)
= δαα′δkk′δττ ′ (B.15)

∑

τ,α,k

(
µ ν τ α
i l k

)(
µ ν τ α
j′ l′ k

)
= δjj′δll′ (B.16)

For the practical calculation of the CG the following formula is used

(
µ ν τ α
a b i

)
=

√
Nτ

h

∑
R∈G

D(µ)(R)aj D(ν)(R)bkD
(τ)(R)il

√ ∑
R∈G

D(µ)(R)jj D(ν)(R)kkD(τ)(R)ll

, (B.17)

where j, k and l are chosen in a way that the denominator is real and > 0.
The CG for our group D5 are shown in section C.3.

2Valid for finite groups (all representations are unitary).
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Flavor Symmetry D5

C.1 Properties of D5

C.1.1 Complex Generators of D5

The generator relations for the group D5 are A5 = 1, B2 = 1 and ABA = B or in other
words, a representation is given for n = 5 by

< A,B|An = 1, B2 = 1, (AB)n = AB > . (C.1)

21: A =

(
ei

2π
5 0

0 e−i
2π
5

)
B =

(
0 1
1 0

)

22: A =

(
ei

4π
5 0

0 e−i
4π
5

)
B =

(
0 1
1 0

)

Table C.1: Complex Generators of D5

C.1.2 Character Table of D5

classes C1 C2 C3 C4

G 1 B A A2

hCi
1 5 2 2

nCi
1 2 5 5

11 1 1 1 1
12 1 -1 1 1

21 2 0 1
2(−1 +

√
5) 1

2(−1 −
√

5)

22 2 0 1
2(−1 −

√
5) 1

2(−1 +
√

5)

Table C.2: Character Table

At which for every representation µ the character χ
(µ)
Ci

is given for each class Ci,
hCi

is the number of distinct elements,

73



74 Appendix C Flavor Symmetry D5

nCi
the order of the element and

G the representative of the class in terms of the generators A and B.

C.1.3 Kronecker Products of D5

11 × 11 = 11

12 × 11 = 12

21 × 11 = 21

22 × 11 = 22

12 × 12 = 11

21 × 12 = 21

22 × 12 = 22

21 × 21 = 11 + 12 + 22

22 × 21 = 21 + 22

22 × 22 = 11 + 12 + 21

Table C.3: Kronecker Products of D5

C.2 Similarity Transformation between Representations and
their Complex Conjugates

The similarity transformation
R = U RUT (C.2)

between representation matrix R and its conjugate R is done by the transformation matrix

U =

(
0 1
1 0

)
(C.3)

and is for the representation 21 and 22 the same.



C.3 Clebsch-Gordan Coefficients For Complex Generators 75

C.3 Clebsch-Gordan Coefficients For Complex Generators

In the following are the CG for complex generators given, where we use the notation RxOS
(x stands for † or T ) for Rx × S, while O is the CG which “replaces” the × by performing
the calculation.

R†OS

product Coefficient

11 × 21 21

( (
1 0

)
(

0 1
)
)

12 × 21 21

( (
1 0

)
(

0 −1
)
)

21 × 21 11

(
1√
2

0

0 1√
2

)

21 × 21 12

(
1√
2

0

0 − 1√
2

)

21 × 21 22





(
0 0
1 0

)

(
0 1
0 0

)





22 × 21 21





(
0 0
0 1

)

(
1 0
0 0

)





22 × 21 22





(
0 1
0 0

)

(
0 0
1 0

)





product Coefficient

11 × 22 22

( (
1 0

)
(

0 1
)
)

12 × 22 22

( (
1 0

)
(

0 −1
)
)

21 × 22 21





(
1 0
0 0

)

(
0 0
0 1

)





21 × 22 22





(
0 1
0 0

)

(
0 0
1 0

)





22 × 22 11

(
1√
2

0

0 1√
2

)

22 × 22 12

(
1√
2

0

0 − 1√
2

)

22 × 22 21





(
0 1
0 0

)

(
0 0
1 0

)





product Coefficient

11 × 11 11 (1)

12 × 11 12 (1)

21 × 11 21





(
0
1

)

(
1
0

)





22 × 11 22





(
0
1

)

(
1
0

)





11 × 12 12 (1)

12 × 12 11 (1)

21 × 12 21





(
0
1

)

(
−1
0

)





22 × 12 22





(
0
1

)

(
−1
0

)





Table C.4: CG for Complex Generators - R†OS
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RT OS

product Coefficient

11 × 21 21

( (
1 0

)
(

0 1
)
)

12 × 21 21

( (
1 0

)
(

0 −1
)
)

21 × 21 11

(
0 1√

2
1√
2

0

)

21 × 21 12

(
0 − 1√

2
1√
2

0

)

21 × 21 22





(
1 0
0 0

)

(
0 0
0 1

)





22 × 21 21





(
0 1
0 0

)

(
0 0
1 0

)





22 × 21 22





(
0 0
0 1

)

(
1 0
0 0

)





product Coefficient

11 × 22 22

( (
1 0

)
(

0 1
)
)

12 × 22 22

( (
1 0

)
(

0 −1
)
)

21 × 22 21





(
0 0
1 0

)

(
0 1
0 0

)





21 × 22 22





(
0 0
0 1

)

(
1 0
0 0

)





22 × 22 11

(
0 1√

2
1√
2

0

)

22 × 22 12

(
0 − 1√

2
1√
2

0

)

22 × 22 21





(
0 0
0 1

)

(
1 0
0 0

)





product Coefficient

11 × 11 11 (1)

12 × 11 12 (1)

21 × 11 21





(
1
0

)

(
0
1

)





22 × 11 22





(
1
0

)

(
0
1

)





11 × 12 12 (1)

12 × 12 11 (1)

21 × 12 21





(
1
0

)

(
0
−1

)





22 × 12 22





(
1
0

)

(
0
−1

)





Table C.5: CG for Complex Generators - RT OS
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C.4 Mass Matrices

This are the mass matrices for down-type quarks and charged leptons obtained like described
in section 3.4.1. There one can also find the proceeding to get the corresponding mass matrices
for the up-type quarks and neutrinos.

L LC Mass Matrix Denomination

(12, 11, 11) (21, 11[2])




κ1ψ

1
2 −κ1ψ

1
1 κ4φ

2[1]

κ2ψ
1
2 κ2ψ

1
1 κ5φ

1[2]

κ3ψ
1
2 κ3ψ

1
1 κ6φ

1[2]



 M1[2]

(12, 11, 11) (22, 11[2])




κ1ψ

2
2 −κ1ψ

2
1 κ4φ

2[1]

κ2ψ
2
2 κ2ψ

2
1 κ5φ

1[2]

κ3ψ
2
2 κ3ψ

2
1 κ6φ

1[2]



 M3[4]

(12, 12, 11) (21, 11[2])




κ1ψ

1
2 −κ1ψ

1
1 κ4φ

2[1]

κ2ψ
1
2 −κ2ψ

1
1 κ5φ

2[1]

κ3ψ
1
2 κ3ψ

1
1 κ6φ

1[2]



 M5[6]

(12, 12, 11) (22, 11[2])




κ1ψ

2
2 −κ1ψ

2
1 κ4φ

2[1]

κ2ψ
2
2 −κ2ψ

2
1 κ5φ

2[1]

κ3ψ
2
2 κ3ψ

2
1 κ6φ

1[2]



 M7[8]

(21, 11) (21, 11)




κ1ψ

2
2 κ2φ

1 − κ3φ
2 κ5ψ

1
2

κ2φ
1 + κ3φ

2 κ1ψ
2
1 κ5ψ

1
1

κ4ψ
1
2 κ4ψ

1
1 κ6φ

1



 M9

(21, 12) (21, 11)




κ1ψ

2
2 κ2φ

1 − κ3φ
2 κ5ψ

1
2

κ2φ
1 + κ3φ

2 κ1ψ
2
1 κ5ψ

1
1

κ4ψ
1
2 −κ4ψ

1
1 κ6φ

2



 M10

(21, 12) (21, 12)




κ1ψ

2
2 κ2φ

1 − κ3φ
2 κ5ψ

1
2

κ2φ
1 + κ3φ

2 κ1ψ
2
1 −κ5ψ

1
1

κ4ψ
1
2 −κ4ψ

1
1 κ6φ

1



 M11



78 Appendix C Flavor Symmetry D5

L LC Mass Matrix Denomination

(22, 11) (22, 11)




κ1ψ

1
1 κ2φ

1 − κ3φ
2 κ5ψ

2
2

κ2φ
1 + κ3φ

2 κ1ψ
1
2 κ5ψ

2
1

κ4ψ
2
2 κ4ψ

2
1 κ6φ

1



 M12

(22, 12) (22, 11)




κ1ψ

1
1 κ2φ

1 − κ3φ
2 κ5ψ

2
2

κ2φ
1 + κ3φ

2 κ1ψ
1
2 κ5ψ

2
1

κ4ψ
2
2 −κ4ψ

2
1 κ6φ

2



 M13

(22, 12) (22, 12)




κ1ψ

1
1 κ2φ

1 − κ3φ
2 κ5ψ

2
2

κ2φ
1 + κ3φ

2 κ1ψ
1
2 −κ5ψ

2
1

κ4ψ
2
2 −κ4ψ

2
1 κ6φ

1



 M14

(22, 11) (21, 11)




κ1ψ

2
1 κ2ψ

1
2 κ4ψ

2
2

κ2ψ
1
1 κ1ψ

2
2 κ4ψ

2
1

κ3ψ
1
2 κ3ψ

1
1 κ5φ

1



 M15

(22, 12) (21, 11)




κ1ψ

2
1 κ2ψ

1
2 κ4ψ

2
2

κ2ψ
1
1 κ1ψ

2
2 κ4ψ

2
1

κ3ψ
1
2 −κ3ψ

1
1 κ5φ

2



 M16

(22, 11) (21, 12)




κ1ψ

2
1 κ2ψ

1
2 κ4ψ

2
2

κ2ψ
1
1 κ1ψ

2
2 −κ4ψ

2
1

κ3ψ
1
2 κ3ψ

1
1 κ5φ

2



 M17

(22, 12) (21, 12)




κ1ψ

2
1 κ2ψ

1
2 κ4ψ

2
2

κ2ψ
1
1 κ1ψ

2
2 −κ4ψ

2
1

κ3ψ
1
2 −κ3ψ

1
1 κ5φ

1



 M18

Table C.6: Mass Matrices of D5 (CG for complex generators
used)
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Three Higgs Model - Higgs Masses

In the following the characteristic polynomials, the eigenvalues and the eigenvectors for the
different cases of the 3 Higgs potential are given. Thereby the eigenvectors are not normalized
and constant factors in the characteristic polynomials are omitted (because they have to be
zero and therefore they would not change anything).

Aside from this, solutions which would be complex are solved for special cases and/or
written in a more convenient way.

Furthermore it should be noticed that the mass squared eigenvalues have to be positive
which gives us more restrictions on our parameters which we will show for cases the reader
can benefit of it.

One V EV 6= 0

For w 6= 0

The characteristic polynomial with x as variable is for Mrr:

(
x− 2µ2

2

) [
x+ µ2

1 − 1
2 (σ1 − σ2 + σ3) w

2
] [
x+ µ2

1 − 1
2 (σ1 + σ2 + σ3) w

2
]

and for Mii:

x
[
x+ µ2

1 − 1
2 (σ1 − σ2 + σ3) w

2
] [
x+ µ1

2 − 1
2 (σ1 + σ2 + σ3) w

2
]

79
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Eigenvalues of M2
ri Eigenvectors

(1 − 3 : Mrr, 4 − 6 : Mii)

2µ2
2 (1, 0, 0)T

−µ2
1 + 1

2(σ1 + σ2 + σ3)w
2 (0, 1, 1)T

−µ2
1 + 1

2(σ1 − σ2 + σ3)w
2 (0,−1, 1)T

0 (1, 0, 0)T

−µ2
1 + 1

2(σ1 − σ2 + σ3)w
2] (0, 1, 1)T

−µ2
1 + 1

2(σ1 + σ2 + σ3)w
2 (0,−1, 1)T

The characteristic polynomial with x as variable is for Mpm:

x
(
x+ µ2

1 − σ1
2 w2

)2

Eigenvalues of M2
pm Eigenvectors

0 (1, 0, 0)T

−µ2
1 + σ1

2 w
2 (0, 1, 0)T 1

−µ2
1 + σ1

2 w
2 (0, 0, 1)T 1

Parameter restrictions through the requirement of positive eigenvalues:

1An important circumstance is that if some eigenvalues are degenerate every linear combination of their
eigenvectors will be a solution.



81

λ4 > 0 ,

σ1 > 2
µ2

1
w2 ,

σ3 > σ2 ,

σ2 > 0 .

For v± 6= 0

The characteristic polynomial with x as variable is for Mrr:

[
x− 1

2(σ1 + σ3) v
2
± + µ2

2

] [
1
2x− (λ1 + λ2) v

2
±
] [

2x+ (4λ2 − λ3) v±2
]

and for Mii:

x
[
x− 1

2(σ1 + σ3) v
2
± + µ2

2

] [
2x+ (4λ2 − λ3) v±2

]

Eigenvalues of M2
ri Eigenvectors Eigenvectors

(1 − 3 : Mrr, 4 − 6 : Mii) for v+ 6= 0 for v− 6= 0

−µ2
2 + 1

2(σ1 + σ3)v
2
± (1, 0, 0)T (1, 0, 0)T

2(λ1 + λ2)v
2
± (0, 1, 0)T (0, 0, 1)T

−1
2(4λ2 − λ3)v

2
± (0, 0, 1)T (0, 1, 0)T

−µ2
2 + 1

2(σ1 + σ3)v
2
± (1, 0, 0)T (1, 0, 0)T

0 (0, 1, 0)T (0, 0, 1)T

−1
2(4λ2 − λ3)v

2
± (0, 0, 1)T (0, 1, 0)T

The characteristic polynomial with x as variable is for Mpm:

(
x+ µ2

2 − σ1
2 v±2

)
x
(
x+ 2λ2 v±2

)
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Eigenvalues of M2
pm Eigenvectors Eigenvectors

for v+ 6= 0 for v− 6= 0

−µ2
2 + σ1

2 v
2
± (1, 0, 0)T (1, 0, 0)T

0 (0, 1, 0)T (0, 0, 1)T

−2λ2v
2
± (0, 0, 1)T (0, 1, 0)T

Parameter restrictions through the requirement of positive eigenvalues:

λ2 < 0 ,

σ1 > 2
µ2

2

v2
±

,

λ1 + λ2 > 0 ,

4λ2 − λ3 < 0 ,

σ3 ≥ 0 .

Two V EV 6= 0

For w = α = 0

and 4λ2 = λ3

The characteristic polynomial with x as variable is for Mri:

x3
[
x− 2(λ1 + λ2)[v

2
+ + v2

−]
]
·

·
[
x+ µ2

2 − 1
2(σ1 + σ3)[v

2
+ + v2

−] − σ2v+v−
] [
x+ µ2

2 − 1
2(σ1 + σ3)[v

2
+ + v2

−] + σ2v+v−
]
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Eigenvalues of M2
ri Eigenvectors

−µ2
2 + 1

2(σ1 + σ3)[v
2
+ + v2

−] + σ2v+v− (sinβ, 0, 0, 1 − cosβ, 0, 0)T

0 (0, cosβv−,−v+, 0, 0, 0)T

0 (0, v− sinβ, 0, 0, 0,−v+)T

2(λ1 + λ2)[v
2
+ + v2

−] (0, v+, cosβv−, 0, 0, sinβv−)T

−µ2
2 + 1

2(σ1 + σ3)[v
2
+ + v2

−] − σ2v+v− (− sinβ, 0, 0, 1 + cosβ, 0, 0)T

0 (0, 0, 0, 0, 1, 0)T

The characteristic polynomial with x as variable is for Mpm:

x
[
x+ µ2

2 − σ1
2 [v2

+ + v2
−]
] [
x+ 2λ2[v

2
+ + v2

−]
]

Eigenvalues of M2
pm Eigenvectors

−µ2
2 + σ1

2 [v2
+ + v2

−] (1, 0, 0)T

0 (0, v+e
iβ , v−)T

−2λ2[v
2
+ + v2

−]




0

v−eiβ

−v+





Parameter restrictions through the requirement of positive eigenvalues:
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σ3 ≥ 0 ,

σ1 > 2
µ2

2

v2++v2
−

,

λ1 + λ2 > 0 ,

λ2 < 0 .

For w = α = 0 and v2
+ = v2

−

The characteristic polynomial with x as variable is for Mri:

x2
[
x− (4λ1 + λ3)v

2
−
] [
x− (4λ2 − λ3)v

2
−
]
·

·
[
x+ µ2

2 − (σ1 + σ2 + σ3)v
2
−
] [
x+ µ2

2 − (σ1 − σ2 + σ3)v
2
−
]

Eigenvalues of M2
ri Eigenvectors

(4λ1 + λ3)v
2
− (0, 1, cosβ, 0, 0, sinβ)T

(4λ2 − λ3)v
2
− (0,−1, cosβ, 0, 0, sinβ)T

0 (0, 0, sinβ, 0, 0,− cosβ)T

0 (0, 0, 0, 0, 1, 0)T

−µ2
2 + (σ1 + σ2 + σ3)v

2
− (1 + cosβ, 0, 0, sinβ, 0, 0)T

−µ2
2 + (σ1 − σ2 + σ3)v

2
− (−1 + cosβ, 0, 0, sinβ, 0, 0)T

The characteristic polynomial with x as variable is for Mpm:

x
[
x+ µ2

2 − σ1v
2
−
] [
x+ λ3 v

2
−
]
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Eigenvalues of M2
pm Eigenvectors

−µ2
2 + σ1v

2
− (1, 0, 0)T

−λ3 v
2
− (0, eiβ ,−1)T

0 (0, 1, e−iβ)T

Parameter restrictions through the requirement of positive eigenvalues:

λ3 − 4λ1 > 0 ,

λ3 + 4λ2 < 0 ,

σ1 >
µ2

2

v2
−

,

σ3 + σ2 ≥ 0 ,

σ3 − σ2 ≥ 0 ,

λ3 < 0 .

For v± = 0 and σ2 = 0

The characteristic polynomial with x as variable is for Mri:

x2
[
(λ3 − 4λ2)v±2 − 2x

]2 ·
·
[
−x2 + 2(λ1 + λ2)v

2
±x− 2λ4w

2x+
[
(σ1 + σ3)

2 − 4λ4(λ1 + λ2)
]
w2v2

±
]

Eigenvalues of M2
ri Eigenvectors Eigenvectors

for v− 6= 0 for v+ 6= 0

−1
2(4λ2 − λ3)v

2
± (0, 1, 0, 0, 0, 0)T (0, 0, 1, 0, 0, 0)T

0 (0, 0, 0, 1, 0, 0)T (0, 1, 0, 0, 0, 0)T

−1
2(4λ2 − λ3)v

2
± (0, 0, 0, 0, 1, 0)T (0, 0, 0, 0, 0, 1)T
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The rest of the eigenvalues and eigenvectors we get for v+ 6= 0 from the following matrix
which have its seeds in Mri by deleting the 1st, 2nd, 4th and 5th row as well as column.
For v− 6= 0 we just have to replace v+ with v− and α with β. But this time are the 1st, 3rd,
4th and 6th row and column from Mri deleted.





2λ4w
2 w v+ cos (α) (σ1 + σ3) w v+ sin (α) (σ1 + σ3)

w v+ cos (α) (σ1 + σ3) (2λ1 + 2λ2) v+
2 (cos (α))2 (2λ1 + 2λ2) v+

2 sin (α) cos (α)

w v+ sin (α) (σ1 + σ3) (2λ1 + 2λ2) v+
2 sin (α) cos (α) (2λ1 + 2λ2) v+

2 (sin (α))2





where the eigenvalue with its eigenvector

0 (0, 0, sinβ, 0, 0,− cosβ)T (0, sinα, 0, 0,− cosα, 0)T

is contained.

The characteristic polynomial with x as variable is for Mpm:

x
[
2x+ σ3 (w2 + v±2)

] (
2x+ σ3w

2 + 4λ2 v±2
)

Eigenvalues of M2
pm Eigenvectors Eigenvectors

for v− 6= 0 for v+ 6= 0

−σ3
2 w

2 − 2λ2v
2
± (0, 1, 0)T (0, 0, 1)T

0 (w, 0, v−e−iβ)T (w,−v+e−iα, 0)T

−σ3
2 (v2

± + w2) (−v−eiβ , 0, w)T (−v+eiα, w, 0)T

Parameter restrictions through the requirement of positive eigenvalues:

λ3 − 4λ2 > 0 ,

−4λ2
σ3
< w2

v2
±

,

σ3 < 0 ,

λ4w
2 + (λ1 + λ2)v

2
± >

√
λ2

4w
4 + (λ1 + λ2)2v4

± − [2λ4(λ1 + λ2) − (σ1 + σ3)2](wv±)2 ,

where the radiant has to be positive.
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All Three V EV 6= 0

For σ2 = 0

and 4λ2 = λ3

The characteristic polynomial with x as variable is for Mri:

x4
(
x− λ4w

2 − (λ1 + λ2)(v
2
+ + v2

−) −X
) (
x− λ4w

2 − (λ1 + λ2)(v
2
+ + v2

−) +X
)

X =
√
λ2

4w
4 + (λ1 + λ2)2(v2

+ + v2
−)2 + [(σ1 + σ3)2 − 2λ4(λ1 + λ2)] (v2

+ + v2
−)w2

Y = (4λ1 + λ3)

The eigenvalues and eigenvectors we get from Mri =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

2 λ4 w2 w v+ cos (α) (σ1 + σ3) w v
−

cos (β) (σ1 + σ3) 0 w v+ sin (α) (σ1 + σ3) w v
−

sin (β) (σ1 + σ3)

w v+ cos (α) (σ1 + σ3) 1
2

v+
2 (cos (α))2 Y 1

2
v
−

cos (β) v+ cos (α) Y 0 1
2

v+
2 cos (α) sin (α) Y 1

2
v+ v

−
cos (α) sin (β) Y

w v
−

cos (β) (σ1 + σ3) 1
2

v
−

cos (β) v+ cos (α) Y 1
2

v
−

2 (cos (β))2 Y 0 1
2

v+ v
−

sin (α) cos (β) Y 1
2

v
−

2 cos (β) sin (β) Y

0 0 0 0 0 0

w v+ sin (α) (σ1 + σ3) 1
2

v+
2 cos (α) sin (α) Y 1

2
v+ v

−
sin (α) cos (β) Y 0 1

2
(sin (α))2 v+

2Y 1
2

v+ sin (α) v
−

sin (β) Y

w v
−

sin (β) (σ1 + σ3) 1
2

v+ v
−

cos (α) sin (β) Y 1
2

v
−

2 cos (β) sin (β) Y 0 1
2

v+ sin (α) v
−

sin (β) Y 1
2

(sin (β))2 v
−

2Y

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

,

where the following eigenvalues and eigenvectors are included.

Eigenvalues of M2
ri Eigenvectors

0 (0, 0, 0, 1, 0, 0)T

0 (0, 0, sinβ, 0, 0,− cosβ)T

0 (0, 0, v+ sinα, 0,−v− cosβ, 0)T

0 (0,−v− cosβ, v+ cosα, 0, 0, 0)T

The characteristic polynomial with x as variable is for Mpm:

x
[
x+ σ3

2 (w2 + v2
+ + v2

−)
] [
x+ σ3

2 w
2 + 2λ2(v

2
+ + v2

−)
]
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Eigenvalues of M2
pm Eigenvectors

0
(
weiα, v+, v−ei(α−β)

)T

−σ3
2 (w2 + v2

+ + v2
−)

(
−eiα(v2

+ + v2
−), v+w, v−wei(α−β)

)T

−σ3
2 w

2 − 2λ2(v
2
+ + v2

−)
(
0, v−eiβ ,−v+eiα

)T

Parameter restrictions through the requirement of positive eigenvalues:

−4λ2
σ3
< w2

v2++v2
−

,

σ3 < 0 ,

λ4w
2 + (λ1 + λ2)(v

2
+ + v2

−) > X ,

where the radiant of X has to be positive.

For σ2 = 0 and v2
+ = v2

−

The characteristic polynomial with x as variable is for Mri:

x3
[
(λ3 − 4λ2) v−2 + x

] [
x2 +

(
−2λ4w

2 − (λ3 + 4λ1) v−2
)
x− 2

[
(σ1 + σ3)

2 − λ4(4λ1 + λ3)
]
v−2w2

]

X = [8(4λ1 + λ3)λ4 − 16(σ1 + σ3)
2]v2

−
Y = (2λ1 − 2λ2 + λ3)

The eigenvalues and eigenvectors we get from Mri =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

2 λ4 w2 w v+ cos (α) (σ1 + σ3) cos (β) w v+ (σ1 + σ3) 0 w v+ sin (α) (σ1 + σ3) sin (β) w v+ (σ1 + σ3)

w v+ cos (α) (σ1 + σ3) 2 v+
2 (cos (α))2 (λ1 + λ2) v+

2 cos (α) cos (β) Y 0 2 v+
2 cos (α) sin (α) (λ1 + λ2) v+

2 cos (α) sin (β) Y

cos (β) w v+ (σ1 + σ3) v+
2 cos (α) cos (β) Y 2 (cos (β))2 v+

2 (λ1 + λ2) 0 v+
2 sin (α) cos (β) Y 2 cos (β) sin (β) v+

2 (λ1 + λ2)

0 0 0 0 0 0

w v+ sin (α) (σ1 + σ3) 2 v+
2 cos (α) sin (α) (λ1 + λ2) v+

2 sin (α) cos (β) Y 0 2 (sin (α))2 v+
2 (λ1 + λ2) v+

2 sin (α) sin (β) Y

sin (β) w v+ (σ1 + σ3) v+
2 cos (α) sin (β) Y 2 cos (β) sin (β) v+

2 (λ1 + λ2) 0 v+
2 sin (α) sin (β) Y 2 (sin (β))2 v+

2 (λ1 + λ2)

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

,

where the following eigenvalues and eigenvectors are included.
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Eigenvalues of M2
ri Eigenvectors

0 (0,− tanα, 0, 0, 1, 0)T

0 (0, 0,− tanβ, 0, 0, 1)T

0 (0, 0, 0, 1, 0, 0)T

(4λ2 − λ3)v
2
− (0, cosα,− cosβ, 0, sinα,− sinβ)T

The characteristic polynomial with x as variable is for Mpm:

x
(
x+ σ3

2 w
2 + λ3v

2
−
) [
x+ σ3(

w2

2 + v2
−)
]

Eigenvalues of M2
pm Eigenvectors

−σ3
2 w

2 − λ3v
2
− (0,−1, ei(α−β))T

0




w eiα

v−
v−ei(α−β)





−σ3[
w2

2 + v2
−]




−2v−eiα

w

w ei(α−β)





Parameter restrictions through the requirement of positive eigenvalues:

−2λ3
σ3
< w2

v2
−

,

σ3 < 0 ,

4λ2 − λ3 > 0 ,

λ4w
2 + 1

2(4λ1 + λ3)v
2
− +

√
(4λ1 + λ3)2v4

− − (X2 + 4λ2
4w

2)w2 > 0 .

where the radiant also have to be positive.
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For α = −β

and v2
+ 6= v2

−

This case is not analytically solvable and we forbear from showing a particular ”solution”
because as we have already seen in 4.5 this case is phenomenologically not possible.

For α = −β and v2
+ = v2

−

The characteristic polynomial with x as variable is for Mri:

x2
(
x+ σ2w

2 − [4λ2 − λ3] v−2
) (
x+ σ2[w

2 + 2v−2]
)
·

·
([
x− λ4w

2 − 1
2(4λ1 + λ3)v

2
−
]2 − λ2

4w
4+

[
λ4 (4λ1 + λ3) − 2 (σ1 + σ2 + σ3)

2
]
v2
−w

2 − 1
4(4λ1 + λ3)

2v4
−
)

Y = (2λ1 − 2λ2 + λ3)
Z = (σ1 + σ2 + σ3)wv−
B± = (1 ± cos (2β))
K = (4λ2 − λ3 + Y )

The eigenvalues and eigenvectors we get from Mri =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

2λ4w2 cos βZ cos βZ 0 − sin βZ sin βZ

cos βZ 1
2
[KB+]v

−

2
−

σ2
2

w2 1
2

B+Y v
−

2 +
σ2
2

w2 wσ2v
−

sin β −
1
2

v
−

2 sin 2β (4λ2 − λ3 + Y ) 1
2

v
−

2Y sin 2β

cos βZ 1
2

Y B+v
−

2 +
σ2
2

w2 1
2
[KB+]v

−

2
−

σ2
2

w2
−wσ2v

−
sin β −

1
2

v
−

2Y sin 2β 1
2

v
−

2 sin 2β (4λ2 − λ3 + Y )

0 wσ2v
−

sin β −wσ2v
−

sin β −2σ2v
−

2 σ2wv
−

cos β σ2wv
−

cos β

− sin βZ −
1
2

v
−

2 sin 2β (4λ2 − λ3 + Y ) −
1
2

v
−

2Y sin 2β σ2wv
−

cos β 1
2
[KB+]v

−

2
−

σ2
2

w2
−

1
2

B
−

Y v
−

2
−

σ2
2

w2

sin βZ 1
2

v
−

2Y sin 2β 1
2

v
−

2 sin 2β (4λ2 − λ3 + Y ) σ2wv
−

cos β −
1
2

B
−

Y v
−

2
−

σ2
2

w2 1
2

KB
−

v
−

2
−

σ2
2

w2

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

,

where the following eigenvalues and eigenvectors are included.

Eigenvalues of M2
ri Eigenvectors

−σ2w
2 + (4λ2 − λ3)v

2
− (0,− cosβ, cosβ, 0, sinβ, sinβ)T

0 (0, 0, 2 sinβ v−,−w, 0,−2 cosβ v−)T

0 (0, 2 sinβ v−, 0, w, 2 cosβ v−, 0)T

−σ2(w
2 + 2v2

−) (0, sinβ w,− sinβ w,−2v−, w cosβ,w cosβ)T
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The characteristic polynomial with x as variable is for Mpm:

x
(
2x+ [σ2 + σ3][2v−2 + w2]

) (
2x+ [σ2 + σ3]w

2 + 2λ3 v−2
)

Eigenvalues of M2
pm Eigenvectors

−σ2+σ3
2 w2 − λ3v

2
− (0, 1,−e−2 i β)T

0 (w, v−eiβ, v−e−iβ)T

−(σ2 + σ3)(
1
2w

2 + v2
−) (−2v−, w eiβ , w e−iβ)T

Parameter restrictions through the requirement of positive eigenvalues:

σ2 < 0 ,

σ2 + σ3 < 0 ,

2 λ3
σ2+σ3

> w2

v2
−

,

λ4w
2 + 1

2(4λ1 + λ3)v
2
− > Y .

where the radiant of Y has to be positive.

For α = π − β

This case is similar to the cases before, where α = −β. We just have to replace σ2 by −σ2

and to calculate the different eigenvectors.

and v2
+ 6= v2

−

This case is not analytically solvable and we forbear from showing a particular ”solution”
because as we saw in 4.5 this case is phenomenologically not possible.

For α = π − β and v2
+ = v2

−

The characteristic polynomial with x as variable is for Mri:

x2
(
x− σ2w

2 − [4λ2 − λ3] v−2
) (
x− σ2[w

2 + 2v−2]
)
·

·
([
x− λ4w

2 − 1
2(4λ1 + λ3)v

2
−
]2 − λ2

4w
4+

[
λ4 (4λ1 + λ3) − 2 (σ1 − σ2 + σ3)

2
]
v2
−w

2 − 1
4(4λ1 + λ3)

2v4
−
)
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Y = (2λ1 − 2λ2 + λ3)
Z = (σ1 + σ2 + σ3)wv−
B± = (1 ± cos (2β))
C = (4λ2 − λ3 + Y )

The eigenvalues and eigenvectors we get from Mri =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

2 λ4 w2 (2 σ2 w v
−

− Z) cos (β) (−2 σ2 w v
−

+ Z) cos (β) 0 (−2 w σ2 v
−

+ Z) sin (β) (−2 w σ2 v
−

+ Z) sin (β)

(2 σ2 w v
−

− Z) cos (β) 1
2

CB+v
−

2 + 1
2

σ2 w2
−

1
2

B+Y v
−

2 + 1
2

σ2 w2 w σ2 v
−

sin (β) −
1
2

v
−

2 sin (2 β) C −
1
2

v
−

2Y sin (2 β)

(−2 σ2 w v
−

+ Z) cos (β) −
1
2

B+Y v
−

2 + 1
2

σ2 w2 1
2

CB+v
−

2 + 1
2

σ2 w2 w σ2 v
−

sin (β) 1
2

v
−

2Y sin (2 β) 1
2

v
−

2 sin (2 β) C

0 w σ2 v
−

sin (β) w σ2 v
−

sin (β) 2 σ2 v
−

2 σ2 w v
−

cos (β) −σ2 w v
−

cos (β)

(−2 w σ2 v
−

+ Z) sin (β) −
1
2

v
−

2 sin (2 β) C 1
2

v
−

2Y sin (2 β) σ2 w v
−

cos (β) 1
2

CB
−

v
−

2 + 1
2

σ2 w2 1
2

B
−

Y v
−

2
−

1
2

σ2 w2

(−2 w σ2 v
−

+ Z) sin (β) −
1
2

v
−

2Y sin (2 β) 1
2

v
−

2 sin (2 β) C −σ2 w v
−

cos (β) 1
2

B
−

Y v
−

2
−

1
2

σ2 w2 1
2

CB
−

v
−

2 + 1
2

σ2 w2

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

,

where the following eigenvalues and eigenvectors are included.

Eigenvalues of M2
ri Eigenvectors

σ2w
2 + (4λ2 − λ3)v

2
− (0, cosβ, cosβ, 0,− sinβ, sinβ)T

0 (0, 0, 2 sinβ v−,−w, 0,−2 cosβ v−)T

0 (0, 2 sinβ v−, 0,−w, 2 cosβ v−, 0)T

σ2(w
2 + 2v2

−) (0, sinβ w, sinβ w, 2v−, w cosβ,−w cosβ)T

The characteristic polynomial with x as variable is for Mpm:

x
(
2x+ [σ3 − σ2][2v−2 + w2]

) (
2x+ [σ3 − σ2]w

2 + 2λ3 v−2
)

Eigenvalues of M2
pm Eigenvectors

−σ3−σ2
2 w2 − λ3v

2
− (0, 1, e−2 i β)T

0 (w,−v−eiβ , v−e−iβ)T

−(σ3 − σ2)(
1
2w

2 + v2
−) (2v−, w eiβ,−w e−iβ)T
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Parameter restrictions through the requirement of positive eigenvalues:

σ2 > 0 ,

σ3 − σ2 < 0 ,

2 λ3
σ3−σ2

> w2

v2
−

,

λ4w
2 + 1

2(4λ1 + λ3)v
2
− > Y .

where the radiant of Y has to be positive.
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Appendix E

Four Higgs Model - Higgs Masses

In the following are the eigenvalues and eigenvectors for VEV configuration of the four Higgs
potential (6.5) given.

v1
1 = v1

2 = v2
1 = v2

2 ≡ v

If we assume the VEVs to be real and allow the other parameters in the Higgs potential to
be complex, we obtain (6.34) and (6.35) as solutions of the minimization conditions. For
these VEV configurations we show the explicit solutions as well as the Higgs masses with the
corresponding eigenvectors.

v1
1 = v1

2 = v2
1 = v2

2 ≡ v ,

µ2
1 =

(
1
2 λ3 + 2λr11 + λ7 + 2λ1 + λ13 + λr9

)
(v1

1)
2
.

Then we get the following masses with its corresponding eigenvector for the charged Higgs:

Eigenvalues Eigenvectors

0 (1, 1, 1, 1)T

(−2λr11 − 2λ13 − 2λr9) v
2 (−1,−1, 1, 1)T

(
λi9 + 2λ7 − λi11 + λr11 + λ13 + λr9 + 4λ1

)
v2 − 2µ1

2 (−1, 1,−i, i)T

(
−λi9 + 2λ7 + λi11 + λr11 + λ13 + λr9 + 4λ1

)
v2 − 2µ1

2 (−i, i,−1, 1)T

95
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And for the uncharged Higgs we obtain:

Eigenvalues Eigenvectors

0 (0, 0, 0, 0, 1, 1, 1, 1)T

2µ2
1 (1, 1, 1, 1, 0, 0, 0, 0)T

− (4λr
11 + 4λr

9 + 2λ7 + 2λ13) v
2 +A+ µ1

2

2

6

6

6

6

6

6

6

6

6

6

4

−2(λr
11 + 2λr

9)v
2 − EV

−2(λr
11 + 2λr

9)v
2 − EV

2(λr
11 + 2λr

9)v
2 + EV

2(λr
11 + 2λr

9)v
2 + EV

2 v2λi
11

2 v2λi
11

−2 v2λi
11

−2 v2λi
11

3

7

7

7

7

7

7

7

7

7

7

5

− (4λr
11 + 4λr

9 + 2λ7 + 2λ13) v
2 −A+ µ1

2

2

6

6

6

6

6

6

6

6

6

6

4

−2(λr
11 + 2λr

9)v
2 − EV
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and EV is the corresponding eigenvalue.
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v1
1 = v1

2 = −v2
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2 ≡ v

The other mentioned solution is

v1
1 = v1

2 = −v2
1 = −v2

2 ≡ v ,

µ2
1 =

(
1
2 λ3 − 2λr11 + λ7 + 2λ1 + λ13 + λr9

)
(v1

1)
2
,
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and EV is the corresponding eigenvalue.

The masses for the charged Higgs are shown below.

Eigenvalues Eigenvectors
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An dieser Stelle möchte ich den Personen danken, die mich auf dem Weg und während der

Diplomarbeit unterstützt haben, meine Familie und Freunde.
Allen voran meine Eltern und meine Schwester Sabine, die mich wirklich auf jede erdenk-

bare Weise unterstützt haben.
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SM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Standard Model
SSB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Spontaneous Symmetry Breaking
SUSY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Supersymmetry
THDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Two Higgs Doublet Model
VEV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Vacuum Expectation Value
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An, see alternating group
Cn, see cyclic group
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2 Higgs potential, 28
3 Higgs

accidental symmetries, 33, 34
Higgs parametrization, 29
Higgs potential, 29
minimization conditions, 30
suitable VEV structures, 31
VEVs, 30
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3 Higgs with soft-breaking, 38
Higgs potential, 38
possible mass matrices, 38
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Higgs potential, 41
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forbidden VEV structures, 48
Higgs potential, 43
minimization conditions, 45
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ters, 54

Higgs potential, 49
minimization conditions, 50
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restrictions, 49

Higgs potential, 27
invariant masses, 24
mass matrices, 26
viable model
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particle assignment, 55
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triplet, 15
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Cayley’s theorem, 68
character orthogonality relation, 71
character table, 70
chirality, 7
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factor group, 69
family symmetries, 20
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finite group, 67
flavor symmetries, 20
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particle assignment, 21
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limits, 65
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Kronecker product, 70
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leptons, 63
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Majorana mass terms, 15
mass

charged leptons, 63
gauge bosons, 65
Higgs (SM), 10
Higgs boson, 65
mass matrices

invariants, 13
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W bosons, 10
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parity violation, 7
Pauli matrices, 8
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photon mass, 11
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mixing angles, 64
standard parametrization, 64

point groups, 17
proper groups, see improper groups
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quantum numbers, 8

gauge bosons, 9
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rearrangement theorem, 68
representation of a group, 70

adjoint, 71
complex conjugate, 71
equivalent, 70
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irreducible, 70
trivial, 70

Schönflies symbols, 17
Schur’s lemma, 70
seesaw

matrix, 15
type-I, 15
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self-conjugate, see normal subgroup
simple group, 69
SM

experimental data, 63
Higgs potential, 9

soft-breaking, 23
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Standard Model, 7
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symmetry group of the SM, 7, 8

tetrahedral group, 19
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tri-bimaximal mixing, 13
trivial group, 67
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viable model, 55
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Yukawa couplings, 11
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