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“Staunen ist der erste Schritt zu einer Erkenntnis.”
– Louis Pasteur

“There’s a lot goin’ on.”
– GNR
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Abstract

In this thesis, we study what can be learned about neutrino masses and mix-
ings in future experiments. After a short introduction, the relevant basics
of neutrino physics, namely mass terms and neutrino oscillations, as well as
some methods to measure the neutrino mass are explained. Then we intro-
duce one possibility for a future precision measurement of the solar neutrino
oscillation parameters, θ12 and ∆m2¯. This could be done using a Large Liq-
uid Scintillator Detector in combination with a nuclear reactor. Therefore, a
detailed statistical analysis has been performed, with the inclusion of possible
backgrounds and different systematical errors. With the right setup, even sub–
percent precision can be possible. In the next chapter, present and upcoming
direct measurements of the neutrino mass are presented. These are the kine-
matical mass determination using single β–decay and the interesting process
called neutrinoless double beta decay (0νββ), as well as possible alternatives.
Finally, the neutrino mass matrix is discussed in detail with special focus on a
future improved limit on the yet unknown neutrino mixing angle θ13. Its most
important entry is the effective neutrino mass |mee|, which is the observable
quantity in 0νββ. |mee| shows an interesting behavior, which is analyzed for
normal and inverted mass ordering, and could also help to distinguish between
these two possibilities. Furthermore, for some special cases, there can even be
an interplay with cosmology, which could be nicely used as cross–check. For
the sake of completeness, also the other elements of the neutrino mass matrix
as well as correlations coming from possible texture zeros are investigated.
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Kurzfassung

Diese Arbeit beschäftigt sich mit der Frage, was man von zukünftigen
Experimenten über Neutrinomassen und –mischungen lernen kann. Nach
einer kurzen Einleitung werden sowohl die relevanten Grundlagen der
Neutrinophysik, nämlich Massenterme und Neutrinooszillation, erklärt, als
auch einige Methoden zur Messung der Neutrinomasse. Danach wird
eine mögliche zukünftige Methode zur Präzisionsbestimmung der solaren
Neutrinooszillations–Parameter, θ12 und ∆m2¯, vorgestellt. Dies könnte mit-
tels eines großen Flüssigszintillator–Detektors in Kombination mit einem
Kernreaktor geschehen. Hierzu wurde eine detailgenau statistische Analyse
unter Miteinbeziehung möglicher Hintergrundprozesse und verschiedener sys-
tematischer Fehler durchgeführt. Mit dem richtigen Aufbau wäre damit sogar
eine relative Genauigkeit von unter einem Prozent machbar. Im darauf fol-
genden Kapitel werden jetztige und kommende direkte Messmethoden der
Neutrinomasse aufgezeigt. Hierzu gehören die kinematische Massenbestim-
mung mittels des einfachen β–Zerfalls und der interessante Prozess namens
neutrinoloser Doppel–β–Zerfall (0νββ), sowie mögliche Alternativen hierzu.
Schließlich wird noch die Neutrino–Massenmatrix diskutiert, mit speziellem
Hinblick auf eine zukünftig verbesserte obere Grenze für den noch unbekan-
nten Neutrino–Mischungswinkel θ13. Ihr wichtigster Eintrag ist die effektive
Masse |mee|, welche durch 0νββ gemessen wird. |mee| zeigt ein interessantes
Verhalten, welches für die normale und für die invertierte Massenanordnung
untersucht wird und auch zur Unterscheidung dieser beiden Möglichkeiten
hilfreich sein könnte. Weiterhin kann in bestimmten Spezialfällen auch ein
Zusammenspiel mit der Kosmologie auftreten, welches gut als Gegenprobe
benutzt werde könnte. Der Vollständigkeit halber werden auch die anderen
Elemente der Neutrino–Massenmatrix untersucht und Zusammenhänge, die
sich aus möglichen Null–Einträgen ergeben, werden diskutiert.
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Chapter 1

Introduction

In 1930, Wolfgang Pauli postulated the existence of a neutral particle with a
tiny mass, that nearly does not take part in any interaction [1]. Since Pauli
knew that this particle cannot have an electrical charge, he gave it the name
“neutron”. His assumptions were based on his strong belief in the physical
laws.

At that time, physicists thought that in β−–decay a nucleus B(A,Z) decays
into a daughter nucleus C(A, Z + 1) via emission of only an electron e−.
Since there is a well-defined mass difference between the two nuclei, the
spectrum of the β–particle should be completely mono–energetic. But what
had been observed was approximately the spectrum from Fig. 1.1, where
the energy distribution of the electron is clearly continuous and not discrete
as expected.
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Figure 1.1: The expected 2–body energy spectrum of the electron in β−–
decay compared to the spectrum that has been observed. The missing energy
of the electron is carried away by the electron–antineutrino.

11



CHAPTER 1. INTRODUCTION

Because of this spectrum, Niels Bohr originally wanted to reject even the
conservation of energy [2], but Pauli understood that – if the spectrum was
correct – also the quantum mechanical conservation of angular momentum
and hence the spin statistics would be violated (since the nuclei had both in-
teger spins that cannot couple to a half-integer spin like the electron has). So
he postulated a hypothetical particle with small mass, spin 1

2 , and electrical
charge zero.
Two years later, in 1932, the “real” neutron was discovered by James Chad-
wick and people immediately understood that this cannot be that hypo-
thetical particle because of its too large mass. Taking this into account,
Enrico Fermi started to call Pauli’s particle “neutrino”, which means “small
neutron” in Italian, and this name has been retained until now.
In 1956, two years before his death, Pauli could finally witness the discovery
of “his” particle by Fred Reines (Nobel prize 1995) and Clyde Cowans [1,3],
using inverse β–decay of electron antineutrinos on free protons,

νe + p+ → e+ + n0.

From that, it is clear that the β−–decay, from which Pauli concluded the
existence of the neutrino must in fact look like

n0 → p+ + e− + νe,

which explains the continuous energy spectrum of the electron (since energy
is carried away by the neutrino) as well as saves the correct spin statistics
(since the neutrino is a fermion with spin 1

2).
Neutrinos have fascinating properties and are a beautiful part of nature.
One just has to imagine that the unbelievable number of 1011 neutrinos [4]
coming from the sun penetrate every area of 1cm2 (which is just a thumbnail)
on Earth per second. But neutrinos only take part in the weak interaction,
which means that they basically do nothing. In the whole life of a human
being, only about one (!) of these neutrinos causes a reaction in the body
(such as giving an electron of a particular atom a slight hit). But on the
other hand, if neutrinos just had slightly different properties (such as a larger
mass), our Universe would not look like it does and our whole existence
would perhaps be in question.
Let us discover part of the world of neutrinos in the following pages of this
thesis. The outline is as follows: in Chapter 2, some basics of neutrino
physics will be introduced, such as mass terms, oscillations, and methods
for the mass determination. Then, in Chapter 3, we will present a possible
future precision measurement of the solar oscillation parameter using a reac-
tor in combination with a Large Liquid Scintillator. Afterwards, Chapter 4
will introduce direct methods of a measurement of the neutrino mass and
Chapter 5 will explain what can be learned about the nature of neutrino
masses from such experiments. We finally conclude in Chapter 6.
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Chapter 2

Neutrino properties and
phenomenology

In this chapter, some basics of neutrino physics will be discussed. Since the
nature of neutrino masses is still a big riddle, we start at first by introducing
different mass terms for neutrinos as well as the famous seesaw mechanism.
Afterwards, neutrino oscillations will be explained, whose observation re-
vealed that neutrinos indeed have non–vanishing masses (at least not all
existing neutrinos can be massless). Finally, some current experimental
methods for the mass determination as well as the actual limits on neutrino
masses will be reviewed.
In the common literature, one finds these considerations e. g. in Refs. [1, 5]
or any other textbook (or review) on neutrinos.

2.1 Neutrino mass terms

2.1.1 The Dirac mass term

For fermions (like e. g. quarks), the Lagrangian,

L = Ψ(i 6∂ −m)Ψ, (2.1)

normally contains a so–called mass term, that has its origin in the Dirac
equation, where Ψ denotes the (Dirac-) spinor of the particle and 6∂ is defined
as γµ∂µ with the γ-matrices obeying the Clifford algebra {γµ, γν} = γµγν +
γνγµ = 2gµν1. Ψ is the adjoint spinor with Ψ = Ψ†γ0 and the metric of
the Minkowski spacetime is gµν = (1,−1,−1,−1). For the γ-matrices, there
exist different respresentations.
One now can divide the Dirac spinor Ψ into its chiral components, the right–
and left–handed fields ΨR,L, where

ΨR,L ≡ PR,LΨ =
1± γ5

2
Ψ, (2.2)
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where γ5 ≡ iγ0γ1γ2γ3. From the Clifford algebra, it follows that P2
R,L = 1

and PRPL = PLPR = 0, and hence for the mass term

Lmass = −mΨΨ = −m(ΨLΨR + ΨRΨL). (2.3)

This is the so–called Dirac mass term. One can clearly see that the mass
term connects a left–handed field with its right–handed partner, and vice
versa, so it flips the chirality of a particle.
In the Standard Model (SM) of elementary particle physics, such a term
would be forbidden, since it breaks the gauge invariance1. This is a problem
for all fermion fields, but the gauge invariance can be retained using the
Higgs mechanism, where all SM fermions have a so–called Yukawa coupling
to a bosonic Higgs field Φ. The quantum numbers of this field are chosen in
such a way that the coupling terms,

LYukawa = −Y ΨLΦΨR + h.c., (2.4)

with the Yukawa coupling matrix Y , are singlets. Through the spontaneous
symmetry breaking of the SU(2)L ×U(1)Y symmetry to U(1)em, the Higgs
field gets a non–vanishing vacuum expectation value v/

√
2 which produces

fermion mass terms,

LYukawa = −Y
v√
2
(ΨLΨR + ΨRΨL) + interactions. (2.5)

In the SM, all fermions get their masses from this mechanism. The only
exception is the neutrino, since there exist no right–handed neutrino fields
in the Standard Model of elementary particle physics. Hence, the neutrino
is massless in the minimal model. However, if one introduces right–handed
neutrinos, then there can be a Dirac mass term for neutrinos, too. This
little extension of the SM is the easiest way to generate neutrino masses,
but immediately a new question arises: the masses of neutrinos are much
smaller than the ones of the other elementary particles (e. g. the electron,
which has the lightest mass of all charged fermions, is still at least about
5 orders of magnitude heavier then all the three known neutrinos) and this
large deviation from the masses of all the other Dirac particles seems to
indicate that the nature of neutrino masses could indeed be different.

2.1.2 The Majorana mass term

For neutrinos, another interesting possibility besides the Dirac mass term
arises. At first, let us have a look at the charge conjugation operator C, that

1right–handed fermion fields are SU(2)L singlets, while left–handed ones are doublets,
and hence the mass term, as a doublet, is not invariant under SU(2)L gauge transforma-
tions; see e. g. Ref. [6].
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2.1. NEUTRINO MASS TERMS

translates a particle into its corresponding antiparticle. For a spinor Ψ, the
charge conjugation is defined as

ΨC = C†ΨC = CΨT
, (2.6)

where C = iγ2γ0 and hence

ΨC = iγ2Ψ∗. (2.7)

Now, taking the charge conjugation of a left– or right–handed spinor flips
the chirality of the field because of the anti–commutation {γ2, γ5}=0:

(ΨR,L)C =
(

1± γ5

2
Ψ

)C
= iγ2 1± γ5

2
Ψ∗ =

1∓ γ5

2
· iγ2Ψ∗ = (ΨC)L,R. (2.8)

The structure of a mass term is ΨLΨR (or the Hermitean conjugate) and
with Eq. (2.8) one has an additional left–handed field that can be used in
the mass term.
This can be pointed out more clearly by using the Weyl representation of
the spinors, where the Dirac spinor Ψ is represented by the two-component
Weyl spinors η and ξ. Using the corresponding representation for the Dirac
matrices, one finds for the spinor and its left– and right–handed components:

Ψ =
(

ξ
η

)
, ΨL =

(
0
η

)
, ΨR =

(
ξ
0

)
. (2.9)

For the charge–conjugated fields, this gives:

(ΨL)C =
(

iσ2η
∗

0

)
, (ΨR)C =

(
0

−iσ2ξ
∗

)
. (2.10)

The Majorana condition now postulates, that a particle is identical with its
antiparticle, and hence, for a four-component spinor

χC = ±χ. (2.11)

For neutrinos, this condition can be fulfilled, because they carry no electrical
charge. From the Dirac fields, ΨL and ΨR, one can construct two such fields:

χ ≡ ΨL + ΨC
L and ω ≡ ΨR −ΨC

R. (2.12)

Projecting out the left– and right–handed components of these two new
fields, one gets

χL = 1−γ5

2 χ = ΨL, χR = 1+γ5

2 χ = ΨC
L,

ωL = 1−γ5

2 ω = −ΨC
R, ωR = 1+γ5

2 ω = ΨR.
(2.13)
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Now one can write down the mass term for the Majorana field, which gives

Lmass = −m

2
χχ, (2.14)

where m is assumed to be real. One can in principle generalize the Majorana
construction to χ = eiαΨL+eiβΨC

L which then would lead to a complex mass
M whose phase could be absorbed in the definition of ΨL. The mass term
would then look like

Lmass = −M

2
ΨC

LΨL + h.c., (2.15)

which clearly breaks lepton number (= number of leptons - number of an-
tileptons) as expected, since such a number makes no sence when particles
and antiparticles are equal.

2.1.3 The seesaw mechanism

One can also combine both possible mass terms to a more general one.
Assuming the existence of right-handed neutrinos and including all 3 gener-
ations of elementary particles (which does not change the notation, except
for the mass eigenvalues, which are now matrices, and the mass term hence
a scalar product of two vectors with a matrix), the (type I) seesaw mass
term becomes:

Lmass = −νRmDνL − 1
2
νRmRνCR + h.c.. (2.16)

The Dirac mass matrix mD is a complex 3 × 3 matrix and the Majorana
mass matrix mR is additionally symmetric. One can now make use of the
identity νCLmT

DνCR = νRmDνL (fermion fields anti–commute!) and write the
mass term in a more convenient form:

Lmass = −1
2
(νRmDνL + νCLmT

DνCR︸ ︷︷ ︸
=νRmDνL

)− 1
2
νRmRνCR + h.c. ≡ −1

2
ΨCMΨ + h.c.,

(2.17)
where

Ψ ≡
(

νL

νCR

)
and M ≡

(
0 mT

D

mD mR

)
. (2.18)

Dirac particles in the SM have very roughly similar masses and hence the
entries of mD should be of the same order, while the masses mR can have
any value. Assuming mR À mD, one then gets three neutrinos with very
light masses mDm−1

R mT
D and three heavy (and decoupled) neutrinos with

masses of approximately mR. This is the so–called seesaw mechanism which
leads to a very natural explanation of the still not understood smallness of
the neutrino masses.
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2.2. NEUTRINO OSCILLATIONS

2.2 Neutrino oscillations

From the observation of neutrino oscillations, we know that neutrinos must
indeed have non–vanishing masses. Here, the theory and observations of
neutrino oscillations are shortly reviewed.

2.2.1 The oscillation formula

A short derivation of the famous neutrino oscillation formula will be given in
this subsection. For more information, one can e. g. make use of Refs. [7–9].
Assuming three generations of neutrinos (for other numbers of generations
the formalism is analogous), one can classify neutrinos by their flavours,
i.e. the states which participate in the weak interaction. In the SM, these
flavours are νe, νµ, and ντ . As can be seen from the Standard Model La-
grangian, each of these flavours is associated with a certain charged lepton,
which means that the creation or annihilation of e. g. a νe or its antiparti-
cle via a charged current interaction will always appear together with the
creation or annihilation of an electron or a positron. Equivalently, the neu-
trinos can be classified by their different mass eigenstates (assuming that
their eigenvalues are non–zero) given by ν1, ν2, and ν3. Trying to diago-
nalize the interactions for the SM states, it turns out that, in general, the
neutrino flavours and the mass eigenstates cannot be diagonalized simulta-
neously and are hence related by a rotation matrix, the so–called PMNS
matrix U, which gives

|να〉 =
3∑

i=1

U∗
αi|νi〉. (2.19)

Here, flavours are denoted by Greek and mass eigenstates by Latin indices.
If now all the mass eigenvalues of the neutrinos were zero, every linear
combination of mass eigenstates, in particular the three flavours, would have
zero a mass eigenvalue and the rotation in Eq. (2.19) (and hence neutrino
mixing and oscillations) would not exist.
Now one can try to figure out the amplitude for detecting a neutrino (that
has been produced as flavour α) as a flavour β after some propagation as
mass eigenstate (only mass eigenstates can propagate; their propagator will
be denoted here as π(νi)). At first, the flavour eigenstate να can be decom-
posed into mass eigenstates νi (see Eq. (2.19)), and, vice versa, Uβi is the
probability for νi to be observed as flavour β. In between, the eigenstate
with mass mi has to propagate, which gives for the total amplitude

A(α → β) =
3∑

i=1

Uβiπ(νi)U∗
αi. (2.20)

To evaluate the propagator π(νi), one first goes into the rest frame of the
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CHAPTER 2. NEUTRINO PROPERTIES AND
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neutrino and has a look at Schrödinger’s equation,

i
∂

∂τi
|νi〉 = H|νi〉 = mi|νi〉, (2.21)

where τi is the proper time of the considered neutrino. Since the Hamiltonian
here consists only of the mass mi, it is time–independent, and hence the time
evolution of the neutrino state is

|νi(τi)〉 = e−imiτi |νi(0)〉 ≡ π(νi)|νi(0)〉. (2.22)

Taking into account that the distance as well as the time from the neutrino’s
production to its detection can be set experimentally, one can write (for
simplicity we consider only one spatial dimension) miτi = Eit − piL ≡
(pi)(x), where (a)(b) is the scalar product of two 4–vectors.
Normally, neutrinos are ultra–relativistic after their production, simply be-
cause the Q–values in normal nuclear reactions are much larger than the
neutrino masses. So one can approximate Ei by pi + m2

i
2pi

. Furthermore, the
transition probability for a flavour change from flavour α to β is given by
P (α → β) = |A(α → β)|2, and hence one can always multiply the amplitude
A by a complex number with absolute value 1, eiq with real q, that does not
depend on the index i. From that, one obtains:

e−i(pi)(x) → e−i((pi)−(p1))(x), (2.23)

where

((pi)−(p1))(x) = (Ei−E1)t−(pi−p1)L ≈ (pi−p1)t+
m2

i

2pi
− m2

1

2p1
−(pi−p1)L.

(2.24)
Since the mass eigenvalues are very small compared to all involved momenta,
one can write p ≈ pi ≈ p1 in all denominators, which then, with ∆m2

i1 ≡
m2

i −m2
1, leads to

((pi)− (p1))(x) ≈ (pi − p1)︸ ︷︷ ︸
∼ m2

1

(t− L)︸ ︷︷ ︸
∼ m2

i

+
∆m2

i1

2p
· t ≈ ∆m2

i1

2E
· L, (2.25)

where L denotes the baseline, the distance to the place, where the neutrino
has been produced.
From this, one gets for the oscillation probability

P (α → β, L) = |A(α → β, L)|2 =
∣∣∣

3∑

i=1

UβiU
∗
αie

−i
∆m2

i1
2E

t
∣∣∣
2
. (2.26)

In the standard parametrization for 3 neutrino flavours, the PMNS matrix

U =




Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3


 (2.27)

18



2.2. NEUTRINO OSCILLATIONS

is then given by

U =




c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13


 ·

· diag(1, eiα, eiβ), (2.28)

where sij ≡ sin θij and cij ≡ cos θij . The parameters involved are the
mixing angles θij , the CP -violating phase δ, and the two Majorana phases
α and β, which are zero in the case of Dirac neutrinos. However, note that
in the oscillation probability Eq. (2.26), there is no contribution of any of
the Majorana phases, since there only appear terms proportional to e. g.
eiαe−iα = 1. Hence, by using oscillation experiments, one can never get any
information on whether the neutrinos are Dirac or Majorana particles.
In the 2–flavour case, the mixing matrix is (for Dirac neutrinos) simply given
by the 2–dimensional rotation,

( |νe〉
|νµ〉

)
=

(
cos θ sin θ
− sin θ cos θ

) ( |ν1〉
|ν2〉

)
, (2.29)

which results in the well–known oscillation probability for two neutrino
flavours,

P (νµ → νe, L) = sin2 2θ sin2 ∆m2L

4E
, (2.30)

where ∆m2 = m2
2−m2

1 (see also Fig. 2.1). From this formula, one can easily
see, that this transition probability vanishes in case that all neutrinos are
exactly massless.

2.2.2 The oscillation parameters

As discussed in the previous subsection, the parameters relevant for neutrino
oscillations are the three mixing angles θ12, θ13, and θ23, as well as the two
mass square differences, ∆m2¯ ≡ ∆m2

21 and ∆m2
atm ≡ |∆m2

31|, and the
CP–phase δ.
In general, there are 2 types of neutrino oscillation experiments, the so–called
appearance and disappearance experiments. In the latter, just a decreasing
neutrino flux of one kind of neutrinos is measured. E.g. the Homestake ex-
periment [10] has only been sensitive to νe’s and has measuered a decreased
flux of neutrinos coming from the sun which leads to the famous solar neu-
trino puzzle. The other type of experiment tries to detect neutrinos of the
flavour into which the produced neutrino has oscillated and to measure the
corresponding flux. One example for such kinds of experiments is the future
OPERA experiment [11,12].
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Figure 2.1: The neutrino flavour change as a function of the baseline x
indeed has the form of a squared sine–function. That is why this effect is
called “oscillation”. (Figure taken from [3].)

At the moment, not all parameters are known. Using the oscillation of
solar resp. reactor neutrinos, e. g. the experiments SNO [13–15] and Kam-
LAND [16,17] have measured the “solar parameters” θ12 and ∆m2¯. Due to
the observed MSW effect [18, 19] in matter, also the sign of ∆m2¯ is known
to be positive. The “atmospheric parameters”, θ23 and ∆m2

atm, are known
from measurements of atmospheric (Super–Kamiokande: [20, 21]) and ac-
celerator neutrinos (K2K: [22, 23], MINOS: [24, 25]). However, the sign of
∆m2

atmis currently not known.
Less well known is the third mixing angle θ13, which is at the moment only
constrained from above to be very small (sin2 2θ13 . 0.1) by the CHOOZ
experiment [26]. The CP -violating phase δ which is basically the asymme-
try between matter and antimatter is currently completely unknown. One
reason for that are the CPT constraints on the oscillation probabilities:
P (να → νβ) = P (νβ → να) [7,27], which implies P (να → να) = P (να → να)
and hence P (να disappearance) ≡ P (να disappearance). So, the phase δ
cannot be measured in a disappearance experiment and this kind of experi-
ments is exactly what has mostly been performed until now.
One example set of global fit values for the oscillation parameters is [28]

∆m2
¯ = 7.9+0.3,1.0

−0.3,0.8 · 10−5eV2 ,

sin2 θ12 = 0.31+0.02,0.09
−0.03,0.07 ,

∆m2
atm = 2.2+0.37,1.1

−0.27,0.8 · 10−3eV2 , (2.31)

sin2 θ23 = 0.50+0.06,0.18
−0.05,0.16 ,

sin2 θ13 = 0 resp. < 0.012 (0.046) .
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Here, the best–fit, 1σ, and 3σ values are given. As one can see, one has
two large mixing angles (θ23 even seems to be maximal) and just one small
angle. This is completely different from the mixing in the quark sector.
Since the sign of ∆m2

atm is still unknown, it is at the moment also not
clear, if the neutrino masses have a normal (m1 < m2 < m3) or inverted
(m3 < m1 < m2) mass ordering (see Fig. 2.2). However, the second mass
eigenstate has definitely a larger mass than the first one because of the sign
of ∆m2¯. Other global fit values can be found e. g. in [29–32].
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Figure 2.2: The two possible hierarchies for three neutrinos. Since ∆m2¯ is
known to be positive, the second mass eigenstate has to have a larger mass
than the first one. However, it is not yet clear, if the third mass eigenstate
is the heaviest or the lightest one.

2.3 Measurements of the neutrino mass

Measuring the mass of the neutrino is one of the most important tasks of
future elementary particle physics. The smallness of neutrino masses is still
a mystery and knowing the exact values can maybe help to understand the
origin of particle masses in general. The Higgs mechanism seems to give
an explanation, but in fact it is just a re–arrangement of the same problem
(finding the origin of the particle masses is the same task as finding the one
for the Yukawa couplings).
There exist several approaches for the determination of neutrino masses.
The most common ones are kinematical measurements from tritium beta
decay as well as from neutrinoless double beta decay. The explanation of
these two methods will be postponed to Chapter 4, because it is strongly
related to the work done afterwards. The remaining methods are to limit
the neutrino mass by cosmological considerations as well as time–of–flight
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measurements of supernova neutrinos. These two possibilities will be briefly
reviewed here to give an outlook to other methods. More detailed descrip-
tions can e. g. be found in [33–35].

2.3.1 Cosmological bounds on neutrino masses

The fascinating interplay between particle physics and cosmology can be
demonstrated in a nice way by having a look at Big–Bang Nucleosynthesis
(BBN). The number of effective light degrees of freedom (and hence the
number of light neutrinos) affects the expansion rate of the Universe: the
larger the number of light degrees of freedom the larger that rate. This, in
turn, results in a higher freeze–out temperature of the weak interaction that
converts protons and neutrons, and hence, the neutron to proton ratio as
well as the corresponding primordial helium yield would be higher, which
can be measured. However, at the time when these events have taken place,
the Universe had a temperature of about 1 MeV and this is much higher than
the current bound for light neutrino masses (. 1 eV). As a consequence, no
information on the absolute value of neutrino masses can be gained from
that early epochs of the Universe. But, in spite of that, from BBN one can
deduce a limit on the number of light neutrino species [36]: Nν ≤ 4.
The remaining possibilities to get information on neutrino masses from cos-
mology are the Cosmic Microwave Background (CMB), the Large Scale
Structure Surveys (LSS), and studies of the Lyman α forest (Lyα):
The CMB fills the whole Universe nearly completely isotropically with a
2.725 K temperature electromagnetic radiation [37]. The origin of the CMB
is the decoupling of radiation and matter in the early universe (or, more
precisely, at the time of the “re”–combination of electrons and protons to
hydrogen). At this time, there must already have been certain inhomo-
geneities, caused by quantum fluctuations, which finally resulted in today’s
inhomogeneous structure of the Universe. These fluctations can be seen in
the CMB spectrum as relative temperature differences of about 10−5. The
harmonic structure of the spectrum comes from the fact that, before the
production of the CMB, there has been an equilibrium between radiation
and gravitational pressure in the primordial photon–baryon plasma. If one
calculates the power spectrum of the CMB, as it is possible in linear pertur-
bation theory which is used to describe the fluid, one will get the harmonic
modes of the oscillation. Odd peaks correspond to compression maxima
and even ones to compression minima (= rarefaction maxima). Non–zero
neutrino masses affect the positions of the different peaks as well as their am-
plitudes. This is because their mass affects their freeze–out temperature and
hence the decoupling, which has to effect the peaks in the power spectrum.
However, the effect of non–vanishing neutrino masses on the CMB spec-
trum is much smaller than other influences (e. g. curvature, baryon density,
cosmological constant). In spite of that, the CMB is important for extract-
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ing information on neutrino masses from cosmology: at first, it provides a
very good consistency check for other cosmological measurements and on
the other hand, one can apply the so–called Gerstein–Zeldovich limit. This
limit is based on the fact that the density of neutrinos in the Universe must
be less than the matter density in total, Ων < Ωm, which already gives a
bound of

∑
i mi < 14 eV for the sum of all (light) neutrino masses and hence

mi < 5 eV for each neutrino species [35].
The second piece of information can be gained by structure formation.
Clearly, relativistic particles cannot cluster due to their large kinetic en-
ergies. However, if neutrinos became non–relativistic at a certain point of
the evolution of the Universe, they could in principle build clusters and this
transition point from relativistic to non–relativistic motion is in turn related
to the neutrino mass. One possibility to get a clue of the structure in our
Universe is simply by observing the distribution of galaxies that should trace
the matter density of the Universe. This is done by the so–called Galaxy
Redshift surveys (e. g. 2dF [38]), where the redshift of the light from dis-
tant galaxies caused by the cosmic expansion is measured. The other type
of measurement is the study of the Lyman α forest, where the distribution
of gas clouds in the Universe is measured. Light emitted by quasars gets
redshifted when travelling through space and hence even very energetic ra-
diation can reach a point where it has exactly the wavelength to perform a
1s → 2p transition in hydrogen (which forms most of the gas in the Uni-
verse). Since the re–emission of the radiation is isotropic, a gap in the light
spectrum will remain, which gets further redshifted on the way to the Earth.
Hence – since the wavelength of the Lyman α transition is well known – the
spectrum carries information about at which distance gas clouds are located.
According to [36], current cosmological bounds for the sum Σ ≡ ∑

i mi of
all neutrino masses lie between 0.17 eV [39] and 1.8 eV [40], depending on
the group that has done the analysis. Since there are several sources of
uncertainties involved in such studies, we will take here the conservative
limit of 1.8 eV for our considerations (see Chapter 5).

2.3.2 Supernovae and neutrino masses

A more astrophysical method to get constraints on the neutrino mass is by
performing a time–of–flight measurement of neutrinos coming from super-
nova explosions. The basic idea is quite a few years old [41,42]: if neutrinos
have non–zero masses, they cannot have exactly the velocity of light. Under
normal conditions, this deviation is so small, that it can never be observed,
but since neutrinos coming from a distant supernova travel a long way, even
this small difference can become visible.
From simple kinematic considerations, one can relate the neutrino mass
to measurable quantities: if the neutrino energy E can be measured, the
distance D to the supernova explosion is known, and if the width ∆E of the
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neutrino energy spectrum is taken into account, one can relate the neutrino
mass to the observed duration ∆Tobs of the neutrino burst (which is always
larger than the intrinsic duration) by [35]

mν . E

√
E

∆E

∆Tobs

D
. (2.32)

A supernova is essentially a black–body source of neutrinos, so e. g. having
a look at the spectrum of νe, one should see a thermal spectrum [43]. Now
taking into account neutrino mixing, one realizes that the distance of a
typical supernova to the Earth is much larger than the neutrino oscillation
length (= smallest distance, after which a neutrino produced as a certain
flavour consists again completely of its original flavour), it is clear that the
oscillation cannot be seen anymore, since the coherence is completely lost.
Due to the decoherence, neutrinos produced as νe’s will reach us at most as
mass eigenstates ν1’s, since they have the largest mixing with the flavour
e [44].
Having a look at different analyses of the supernova explosion SN1987A
in the Large Magellanic Cloud (D ≈ 50 kpc), the upper bounds on the
neutrino masses reach from 5.7 eV [45] up to 30 eV [46] with E ' 15 MeV,
∆E ∼ 15 MeV, and ∆Tobs ∼ 10 sec. Hereby, the latter limit is obtained
without making specific model assumptions on the supernova.
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Chapter 3

Future measurement of the
solar oscillation parameters
with reactor neutrinos

Now that we have gone through some basics of neutrino physics, we can
proceed to what can be learned from neutrino oscillations. As can be seen
from Eq. (2.32), the values of the parameters involved in neutrino oscilla-
tions are not yet known very precisely. One method for measuring these
parameters better are long baseline experiments (LBLs), e. g. with a reactor
as neutrino source. In this section, at first reactor neutrino experiments will
be introduced and then details of such a measurement will be discussed.
For the simulation of LBLs, a sophisticated treatment of statistics is neces-
sary as well as the careful implementantion of detector properties and the
inclusion of all important backgrounds. The numerical calculation has been
performed using a modified version of the GLoBES software package [47]
and as example for a Large Liquid Scintillator Detector (LLSD) the pro-
posed LENA detector [48] is taken. The goal of the simulation is to show
how one can improve the knowledge on the so–called “solar parameters” of
neutrino oscillations, namely ∆m2¯ and θ12. The results of this analysis can
also be found in [49].

3.1 The basics of reactor neutrino experiments

Reactor experiments have always played a crucial role in neutrino physics.
The first evidence for the existence of neutrinos has been given by the
Reines–Cowan experiment [50] in 1956 and since then, reactor experiments
have been used to try to detect neutrino oscillations (e. g. Gösgen [51]) as
well as to measure the oscillation parameters (e. g. KamLAND [16, 17]; see
Sec. 2.2.2).
Neutrinos produced in reactors are emitted by β−–decays of neutron–rich
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isotopes and are hence electron–antineutrinos (νe). The typical detection
reaction of such neutrinos is the so–called “inverse beta decay” on protons,

νe + p+ → e+ + n0. (3.1)

This process also traces the energy Eν of the incoming neutrino, since the
positron is a prompt signal with energy Eν − 0.77 MeV and – inside the
right material – the neutron can be captured on e. g. a second free proton
and form a deuteron,

n0 + p+ → d+ + γ. (3.2)

The emitted photon has a well–defined energy of 2.2 MeV and yields a
delayed signal, which completes the experimental signature for the inverse
beta reaction. Since a neutron has a larger mass than a proton and also a
positron has to be produced, the reaction (3.1) has a threshold of 1.8 MeV
neutrino energy. The relevant part of the energy spectrum of reactor neu-
trinos ranges from these 1.8 up to about 10 MeV1 and is lower for higher
energies [16,52]. The cross sections are of order 10−42 cm2 and are larger for
higher energies [53]. As can be seen from Fig. 3.1, these values lead to the
highest event rates for neutrinos with an energy slightly lower than 4 MeV.
To make use of this detection reaction, it is necessary to detect charged
particles (in this case the positron) as well as light, which is best done using
a scintillator. This is why we take an LLSD as example detector in our sim-
ulation, namely the proposed LENA detector [48, 54]. It is an LLSD filled
with PXE (C16H18), it has a fiducial mass of 45 kt, and its possible location
could be the Pyhäsalmi mine in Finland which is taken into account in the
calculation of the backgrounds. However, we want to stress that LENA is
just an example for such a measurement. Other LLSDs could provide sim-
ilar results, depending on their fiducial mass, their energy resolution, and
other experimental properties.
Important to note is also that what is measured is the disappearance of
electron–antineutrinos νe. This means, that – from this kind of experiment
– one cannot conclude into which type of neutrino the original νe’s have
oscillated. It could be νµ, ντ , or also some sterile neutrino. However, if one
is able to measure the L/E-dependence of the signal, it is still possible to
conclude that one has really seen neutrino oscillations and no other sources
for a reduced neutrino flux, such as neutrino decay or decoherence [55].
The full oscillation probability for νe–disappearance can be derived from
Eqs. (2.26) and (2.28), which gives:

P (νe → νe) = 1− sin2 2θ13 sin2 ∆atm − (cos4 θ13 sin2 2θ12 + sin2 θ12 sin2 2θ13) sin2 ∆¯+

+ sin2 θ12 sin2 2θ13(
1
2

sin 2∆¯ sin 2∆atm + 2 sin2 ∆atm sin2 ∆¯), (3.3)

1It should be mentioned that the spectrum is not very well known for larger energies,
but the general belief is that the flux in this region is anyway too low to cause any
differences for reactor neutrino experiments.
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Figure 3.1: Reactor neutrino spectrum [16,52], cross section [53] for inverse
β–decay, and the product of both in arbitrary units as functions of the
neutrino (νe) energy in MeV.

where ∆¯ ≡ ∆m2¯L/(4E) and ∆atm ≡ ∆m2
atmL/(4E). For analytical con-

siderations, the 2–flavour approximation to Eq. (3.3) is used,

Psol(νe → νe) ≈ 1− sin2 2θ12 sin2 ∆¯, (3.4)

which is a sufficiently good approximation for analatical calculations. The
reason for that is, that the superposed smaller 13–oscillation has a much
shorter oscillation length2 than the considered 12–oscillation and because
of the smallness of θ13, the amplitude of the 13–oscillation can simply be
considered as small perturbation.

3.2 The χ2 function

The goal of this analysis is to determine the sensitivity of the experiment to
certain parameters. In our case, these are the solar parameters of neutrino
oscillations, ∆m2¯ and θ12. This is done using a χ2 test. The basics of such
a test can e. g. be found in [56].
The χ2 function contains the differences between the theoretical and the
“observed” event rates as well as so–called pull terms for a proper treatment
of systematical uncertainties, which are the normalization of the reactor and
the detector fluxes, errors in the assumed background rates, and an energy

2This is the distance, after which the oscillation phase has changed from 0 to π.
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calibration error. The events are assumed to follow a Poisson distribution,
for which one can relate the event rate N to the standard deviation σ by N =
σ2. However, for analytical calculations, it is enough to consider a Gaussian
approximation, for which the same relation for the standard deviation holds.
Our complete χ2 expression is then:

χ2 =
n∑

i=1

1
Ni

[
Ti(anorm, adet, areac, aU, aTh, b; ∆m2

¯, θ12)−Ni

]2+

+
a2

norm

σ2
norm

+
a2

det

σ2
det

+
a2

reac

σ2
reac

+
a2

U

σ2
U

+
a2

Th

σ2
Th

+
b2

σ2
b

. (3.5)

There are many different quantities involved, so we should take some time
and discuss all of them: Let us start with the statistical part of the χ2

function, which corresponds to the first line of Eq. (3.5). This part compares
the (hypothetical) observed rates Ni with the theoretically predicted ones
Ti. The energy is binned and hence the index i runs over all bins from 1 to n.
The calculation of the Ni’s is done by using the full oscillation probability for
vacuum, Eq. (3.3). These “true” event rates are calculated using the “true”
values of the oscillation parameters (details on the numerical values can be
found in Sec. 3.4). The Ti’s are the theoretically predicted rates assuming
certain values for the oscillation parameters and for the systematical errors
aj resp. b.
The systematical part corresponding to the second line of Eq. (3.5) contains
the so–called pull terms. Through the standard deviations which are in-
cluded in these terms, prior knowledge on certain systematics parameters is
implemented. The way this works can be understood easily: the larger the
deviation from the assumed value, the further away is aj from zero, which
gives a positive contribution to the χ2 function. Since this function has to
be minimized, the favored solution should pull all a’s (and b) down to zero.
The systematics parameters taken into account in this analysis are normal-
ization errors anorm of the reactor and adet of the detector, the fluxes of the
various backgrounds by surrounding reactors (areac) and by Geo–neutrinos
which are again devided into those originating from uranium (aU) and those
from thorium (aTh), and a bias in the overall energy calibration, b.
With a wrong energy calibration, it can of course also be that part of the
events are binned into the wrong energy bins due to non–zero b. Hence, the
theoretical rates Ti consist of the not correctly binned rates for the signal,
S̃i(b), and for the different backgrounds, B̃reac,i(b), B̃U,i(b), and B̃Th,i(b).
The complete dependence of the Ti’s on these rates and on systematics is

Ti = (1 + anorm + adet)S̃i(b) + (1 + areac + adet)B̃reac,i(b)+

+ (1 + aU + adet)B̃U,i(b) + (1 + aTh + adet)B̃Th,i(b). (3.6)
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What is left now is to explain, how the wrongly binned rates can be obtained
from the correctly binned ones. E.g. for the signal, the formula is

S̃A
i (b) = (1 + b)[(Sbδ(i)c+1 − Sbδ(i)c)(δ(i)− bδ(i)c) + Sbδ(i)c], (3.7)

where
δ(i) = b · (i + t0 +

1
2
) + i (3.8)

and Si are the correctly binned rates. For the different backgrounds, the
calculation is done in the same way (see Ref. [57]). In Eq. (3.8), t0 is the
energy threshold of the detector (expressed in units of the bin width) and
b·c is the Gauß bracket. If the obtained energy is not exactly equal to one
of the discrete bin energies, linear interpolation is used between the events
in bin bδ(i)c + 1 and those in bδ(i)c, which is essentially what is done by
Eq. (3.7). For very small calibration errors b, it is clear from Eq. (3.8)
that bδ(i)c = i, which means that the energy calibration does not change
by more than a bin width. If some events are shifted outside the energy
window of the simulation (e. g. are below threshold), then the signal rates
for these particular events are assumed to be zero. The pre–factor (1 + b)
finally accounts for the change in the bin width, which would also be caused
by a wrong energy calibration.

3.3 Analytical estimates for the best baseline

The purpose of the numerical simulation is to determine the sensitivity of an
LLSD to the solar parameters of neutrino oscillations for different baselines.
Before doing this, it is useful to consider an analytical estimation for the
best baseline to be able to check if the results of the numerics are reliable
and to get a better understanding of the χ2 function.
For θ12, this estimation can be done easily, but first one has to simplify
Eq. (3.5) a bit: to avoid writing a summation in every term, one performs
only a total rate analysis, which is equivalent to having one large energy bin,
n = 1. Additionally, we use the 2–flavour approximation Eq. (3.4) for the
oscillation probability. If we furthermore neglect the backgrounds and the
systematical uncertainties, we will finally arrive at the simple expression,

χ2 =

[
N

(
1− s2 sin2 ∆

)−N
(
1− s2 sin2 ∆

)]2

N
(
1− s2 sin2 ∆

) . (3.9)

Here, the abbreviations s ≡ sin 2θ12, s ≡ sin 2θ12, ∆ ≡ ∆m2¯L/(4E), and
∆ ≡ ∆m2¯L/(4E) have been used. The barred quantities stand for the the-
oretical predictions of the corresponding parameters, while the ones without
bars are the “true” parameter values. Hence, Eq. (3.9) is again the usual
comparison between theoretical and observed event rates.
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The rates N stand for the unoscillated event rates at the position of the
detector, so taking into account that the initial number of particles N0

originating from the reactor scales with the baseline L according to the
geometrical inverse square law, one can write N = N0/L2. One can also
neglect correlations between the solar parameters and hence assume that
the mass square difference is fixed, ∆m2¯ = ∆m2¯. Taking all that into
account, the χ2 function becomes:

χ2 =
N0 sin4 ∆

L2(1− s2 sin2 ∆)
(s2 − s2)2. (3.10)

The quantity that shall be measured, is the oscillation amplitude s2 =
sin2 2θ12. Taking a look at Eq. (3.4), it is clear that, for having the largest
effect, the second sine function should be close to one and hence, ∆ should
be close to π

2
3. Then, by using a Taylor expansion in the small quantity

(∆− π
2 ), one gets

sin∆ = sin
(π

2
+

(
∆− π

2

))
≈ 1− 1

2

(
∆− π

2

)2
,

sin2 ∆ ≈ 1−
(
∆− π

2

)2
, and sin4 ∆ ≈ 1− 2

(
∆− π

2

)2
. (3.11)

Applying these approximations, Eq. (3.10) becomes

χ2 ≈ N0

L2

1− 2
(
∆− π

2

)2

1− s2
(
1− (

∆− π
2

)2
)(s2 − s2)2. (3.12)

Now, the χ2 function has to be minimized for getting the best baseline,
which means taking the derivative of Eq. (3.12) with respect to the baseline
L and setting the result equal to zero, which, by skipping overall factors
which do not depend on L, gives

0 =
∂χ2

∂L
∝ {− 2

L3

1− 2
(
∆− π

2

)2

1− s2
(
1− (

∆− π
2

)2
) +

1
L2

1[
1− s2

(
1− (

∆− π
2

)2
)]2×

×(∆− π

2
)
∆m2¯
4E

[
−4 ·

(
1− s2

(
1−

(
∆− π

2

)2
))

−
(

1− 2
(
∆− π

2

)2
)
· 2s2

]
}.

(3.13)

Now one can multiply Eq. (3.13) with L2
[
1− s2

(
1− (

∆− π
2

)2
)]

to get

− 2
L

(
1− 2

(
∆− π

2

)2
)
−(∆−π

2
)
∆m2¯

E
−(∆−π

2
)
∆m2¯
2E

s2 1− 2
(
∆− π

2

)2

1− s2
(
1− (

∆− π
2

)2
) = 0.

(3.14)
3Only mathematically, it could be any odd–integer multiple of π

2
, but one should keep

in mind that the neutrino flux scales with L−2, so one should better choose the closest
possible baseline, which corresponds to ∆ ≈ π

2
.
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The last denominator can be approximated using 1
1+x ≈ 1−x for a small x:

1

1− s2
(
1− (

∆− π
2

)2
) =

1
1− s2

1
1 + s2

1−s2 (∆− π
2 )2

≈ 1
1− s2

[
1− (∆− π

2 )2s2

1− s2

]
.

(3.15)
Putting this into Eq. (3.14) gives

− 2
L

(
1− 2

(
∆− π

2

)2
)
− (∆− π

2
)
∆m2¯

E
−

− (∆− π

2
)
∆m2¯
2E

s2

1− s2

[
1− 2

(
∆− π

2

)2
] [

1− (∆− π
2 )2s2

1− s2

]
= 0.

The last two terms in the brackets give simply a factor 1, since all other
contributions would lead to terms of the order of O (

(∆− π
2 )3

)
or higher.

Keeping only the lowest order terms in (∆− π
2 ), we arrive at

2
L

+
∆m2¯

E

(
∆m2¯L

4E
− π

2

)(
1 +

1
2
· s2

1− s2

)
= 0. (3.16)

This is now a simple polynomial equation of second order in L, as can be
seen by multiplying Eq. (3.16) by L and using s2/(1 − s2) = s2/c2 = t2,
where c ≡ cos 2θ12 and t ≡ tan 2θ12 are defined similarly to s:

(∆m2¯)2

4E2
· L2 − π

2
∆m2¯

E

(
1 +

t2

2

)
· L + 2 = 0. (3.17)

Eq. (3.17) can by solved easily by using the well–known formula. Taking
into account, that only the plus–solution is self–sonsistent with our initial
assumption ∆ ≈ π

2 , this gives for the best baseline

Lbest ≈ 2E2

(∆m2¯)2
{π

2
∆m2¯

E

(
1 +

t2

2

)
+

√(
π

2
∆m2¯

E

(
1 +

t2

2

))2

− (2∆m2¯)2

E2
} =

=
πE

∆m2¯

(
1 +

√
1− 8

π2(1 + 1
2 t2)

)
. (3.18)

Using ∆m2¯ = 7.9 · 10−5eV2 and sin2 2θ12 = 0.86 as true values – as done
in the simulation (cf. Eq. (3.19)) – one gets for an energy of 4 MeV a best
baseline of approximately 55 km.
Unfortunately, an estimation of the best baseline for a measurement of ∆m2¯
is not so easy. One reason is that, in the χ2 function, the baseline L appears
inside the sin∆ terms as well as outside, and hence (∆m2¯−∆m2¯) cannot be
extracted. However, one can still estimate that the strongest effect of ∆m2¯
should be there for a ∆ equal to an odd–integer multiple of π

4 , since ∆m2¯
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occurs strongly related to the slope of the squared sine function in Eq. (3.4),
which can be seen by taking the derivative of the oscillation probability with
respect to L/E. Again, lower multiples of π

4 are favoured by better statistics,
but since a value of ∆m2¯ different from the true value implies a stretching
of the squared sine function, the effect of such a deviation will be stronger
for larger baselines (simply because then the neutrinos have propagated the
oscillation length more often). This discussion shows, that in this case, one
really needs a numerical calculation to be able to say something about the
sensitivity to ∆m2¯.

3.4 Scenarios and details of the numerical simula-
tion

Now that we roughly know what to expect, it is time to describe the details
of the numerical simulation. The used software is a modified version of the
GLoBES software package [47]. “Modified” means that we have implemented
our own χ2 function and we also use some functions of the GSL library [58].
As already mentioned, the GLoBES software is used to perform a comparison
between event rates calculated using different test values for the oscillation
parameters and the systematical errors and the event rates calculated us-
ing the “true” parameter values. For our simulation, these true values are
according to (2.32)

∆m2
atm = 2.2 · 10−3eV2, sin2 2θ23 = 1,

∆m2¯ = 7.9 · 10−5eV2, sin2 2θ12 = 0.86,
δ = π

2 , sin2 2θ13 = 0.
(3.19)

The variation over the test values for minimizing the χ2 function runs over all
oscillation parameters except the atmospheric mixing angle θ23 and the CP–
violating phase δ, which do not play any role for the considered oscillation
(cf. Eq. (3.3)). Of course, the parameter of the χ2 function, θ12 resp. ∆m2¯,
is also fixed in the particular simulation. The baselines are scanned from
25 to 100 km in steps of 5 km and for each baseline the 90%–range for the
considered parameter is determined. This determination is done by setting
the χ2 function equal to 2.7, which corresponds to a confidence level of 90%.
The χ2 expression is essentially a parabola and it is numerically easier to
determine the zeros of the function 2.7 − χ2, because then one can simply
start one time from the left and one time from the right hand side to find
the respective roots. E.g. for sin2 2θ12, the true value is 0.86, so one can
savely start in one case from sin2 2θ12 = 0.0 and in the other one from 1.0
to be able to determine the roots to a certain accuracy (e. g. 10−4 is the
absolute accuracy in the case of sin2 2θ12). Numerically, this is done using
the “fsolver” algorithm of the GSL library, which seems to work stable and
give accurate results.
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For the systematical errors we used the same values as in Ref. [49], which are
based on [59,60], as summarized in Table 3.1. As example for an LLSD, the

Reactor Neutrino Flux 2.0%
Detector Normalization 2.0%
Detector Energy Calibration 2.0%
Normalization of reactor background 2.0%
Normalization of Geo–ν background from U no BG/10.0%/100.0%
Normalization of Geo–ν background from Th no BG/10.0%/100.0%

Table 3.1: Systematical errors in our simulations (based on [49,59,60]).

proposed LENA detector at the possible site in Pyhäsalmi/Finland has been
taken. This detector is expected to have an energy resolution of δE/E =
0.091(E[MeV])−1/2 [54] and a position resolution of δr = 25 cm(E[MeV])−1/2,
which leads, taking into account the geometry of the detector and the den-
sity of the scintillator PXE, to a fiducial mass of 45 kt [48, 61]. As energy
window, the threshold for inverse beta decay (1.8 MeV) and the approxi-
mate end of the reactor spectrum (10 MeV) have been taken as suitable for
this kind of experiment.
The reactor background has been calculated using the 20 closest reactors
to the Pyhäsalmi mine, which are listed in Table 3.2. This yields about
850 events of a diffuse reactor backgound per year. By taking into account
all nuclear power reactors in the world, this rate would be approximately
doubled [62]. The other background are Geo–neutrinos and they turn out
to be important for the determination of the best baseline. This is why
we treat them in a more sophisticated way. Basics on Geo–neutrinos can
e. g. be found in Ref. [65, 66]. The terrestrial neutrinos above threshold
originate from the three elements uranium, thorium, and potassium and
give about 1450 νe–events per year, which is a good example value for a
detector like LENA as can be seen in Refs. [66–68], but one should keep
in mind that there are still uncertainties in the values of the Geo–neutrino
fluxes, depending on the type of crust and the particular Earth model. For
us, only the Geo–neutrinos from the U– and the Th–chain are relevant,
since the neutrinos stemming from K are below the energy threshold, as
can be seen from the Geo–neutrino spectrum in Fig. 3.2 which used data
from Ref. [67]. The spectrum also shows that the highest energy of Geo–
neutrinos is approximately 3.3 MeV, while the reactor spectrum goes up to
about 10 MeV (cf. Fig. 3.1). Hence, Geo–neutrinos only perturb the low
energy part of the spectrum, because if a neutrino has an energy larger
than 3.3 MeV, one can be sure that it cannot come from the interior of
the Earth. In addition to the uncertainties in the fluxes, the exact ratio
of the uranium and thorium abundances is also not known. To implement
that in the simulation, we let the minimizer also run over the corresponding
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Reactor Baseline [km] Power [GWth] Events per year
TVO 1 475.9 2.6 67.1
TVO 2 475.9 2.5 66.3

TVO 3 (2009) 475.9 5.2 131.1
Loviisa 1 & 2 346.8 2×1.4 137.7

Forsmark 1 & 2 800.0 2×3.0 55.5
Forsmark 3 800.0 3.6 33.0

Leningrad 1-4 521.6 4×2.9 253.7
Kola 1-4 829.0 4×1.3 44.3

Kola 5 & 6 829.0 2×3.0 51.1

Table 3.2: The 20 closest reactors [63, 64] to the Pyhäsalmi site with the
corresponding distances to the experiment (baselines), reactor power, and
expected event rates as calculated with GLoBES including oscillations.

normalization factors and take as central value an abundance of thorium
which is by a factor of 3.9 larger than the one for uranium, according to
Ref. [65].
To take into account the uncertainties in the Geo–neutrino fluxes in our
simulations, we consider three different situations, which somehow cover the
range of various possibilities:

• No Geo–neutrinos: The only background is the one caused by neigh-
bouring reactors. Geo–neutrinos are completely neglected.

• Geo–neutrinos with 10% uncertainty: Geo–neutrinos are present
additionally to the reactor background and the uncertainty in their
fluxes is taken to be 10%.

• Geo–neutrinos with 100% uncertainty: Geo–neutrinos are present
additionally to the reactor background and the uncertainty in their
fluxes is taken to be 100%.

Furthermore, two different scenarios are considered for the measurement:
the first one (“small”) is a small nuclear reactor with a thermal power of
0.5 GWth which runs for 2 years. This could e. g. be a mobile reactor,
such as the SSTAR design [70]. The other scenario (“LARGE”) is a power
reactor with 10 GWth that runs for 5 years. Of course, no one would build a
detector like LENA voluntarily in the direct neighbourhood of such a power
station, since the neutrino flux coming from this reactor would dominate all
other events by other neutrino sources and the detector would be effectivly
blind for types of experiments different from LBLs. However, if the reactor
is scheduled to be shut down after the first years of data taking with the
LLSD or if it is just planned to be built but there is enough time left to take
data for the other measurements with the detector, this will not cause any
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Figure 3.2: The Geo–neutrino spectrum as a function of the neutrino energy
in MeV. (Figure taken from Ref. [69].)

problems. In both cases, the baseline is variable. For a mobile reactor, this
will be oviously the case, but it also makes sense for the LARGE scenario,
since the Pyhäsalmi mine in Finland is not the only possible site for an
LLSD. In fact, currently there exist no old power station close to Pyhäsalmi
that could do this job, but for other locations it may be possible to have an
experimental site like that, so it is worth to consider it in the simulations.

3.5 The numerical results

The result of our numerical calculation can be seen in Fig. 3.3. Let us
start with the discussion of the determination of sin2 2θ12, which is plotted
in the upper panel of the figure, where the inner curves correspond to the
LARGE scenario, while the outer ones are otained using the small scenario.
For the latter, the best baseline turns out to be at about 50 to 70 km
with Geo–neutrinos and 40 to 60 km without. Already from that, one can
see, that our estimation of approximately 55 km obtained by Eq. (3.18)
has not been that bad. The effect of Geo–neutrinos is a broadening of the
confidence region for small baselines and a shift of the optimum baseline
to higher values. This can be easily understood if ones takes into account
that Geo–neutrinos can only perturb the low energy part of the reactor
neutrino spectrum (cf. Figs. 3.2 & 3.1). Since the oscillation probability
has its characteristic L/E–dependence, lower energies correspond to shorter
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baselines, and hence a measurement at such baselines gets worsend, which
is exactly what can be seen in Fig. 3.3.
For ∆m2¯, the results are similar: Geo–neutrinos shift the best baseline and
perturb shorter baselines. Here, the LARGE scenario also leads to a great
precision and the optimum baselines turn out to lie around 50 km without
and between 70 and 90 km with Geo–neutrinos.
For both parameters, the relative accuracies for the small scenario turn
out to be around ±5% and less than 1% for LARGE. The exact values for
the particular best baselines as well as the 90%–ranges and bounds can be
found in Table 3.3. Of course, the numerical values for the bounds and
unrealistically accurate, but having a look at these values, one can see how
much the precision of the experiment changes for different scenarios. The
LARGE scenario also yields extremely precise results for the determination
of ∆m2¯, which clearly comes from the power of the reactor. In this scenario,
the exact baseline is not so important (as long as one is far away enough to
resolve the solar oscillation), since the perturbation due to Geo–neutrinos is
not large due to the high signal rates.
Our results are in agreement with those obtained in Ref. [71] and even –
already for the small scenario – competitive with them, which becomes clear
by taking into account that we present here the 90% and not the 1σ–range.
Definitely, an LLSD like LENA could be a good instrument to achieve a
completely new precision level in the measurements of the solar oscillation
parameters. A good knowlegde of θ12 would be crucial for e. g. the distinc-
tion between the two different mass hierarchies in 0νββ–experiments [72,73]
(cf. Chapter 5.4) and via the day–night effect for solar neutrinos [74], or for
testing new ideas, such as quark–lepton complementarity [75], and could be
achieved with such an experiment as described here.
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sin2 2θ12 small Best BL Lower Upper 90%-range
No Geo-ν’s 44.8 km 0.829 0.895 0.066
10% error 59.6 km 0.814 0.906 0.091
100% error 61.2 km 0.813 0.908 0.095

sin2 2θ12 LARGE Best BL Lower Upper 90%-range
No Geo-ν’s 43.2 km 0.857 0.865 0.008
10% error 55.2 km 0.856 0.865 0.009
100% error 58.0 km 0.855 0.865 0.010

∆m2¯ [eV2] small Best BL Lower Upper 90%-range
No Geo-ν’s 48.7 km 7.62·10−5 8.14·10−5 5.22·10−6

10% error 78.9 km 7.44·10−5 8.33·10−5 8.97·10−6

100% error 82.8 km 7.42·10−5 8.34·10−5 9.17·10−6

∆m2¯ [eV2] LARGE Best BL Lower Upper 90%-range
No Geo-ν’s 55.5 km 7.87·10−5 7.92·10−5 4.89·10−7

10% error 67.8 km 7.87·10−5 7.93·10−5 6.55·10−7

100% error 73.7 km 7.86·10−5 7.94·10−5 7.17·10−7

Table 3.3: Best baselines and 90% confidence regions (widths with lower and
upper bounds) for both parameters and both scenarios. Note that for the
LARGE scenario, the exact baseline is not so important since one always has
extremely high rates. The (hypothetical) true values used in the simulations
are sin2 2θ12 = 0.86 and ∆m2¯ = 7.9 · 10−5 eV2 (cf. Eq. (3.19)). Typical
event rates are some thousands for the small and some ten thousands for
the LARGE scenario.
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Chapter 4

Present and upcoming direct
measurements of the
neutrino mass

The best known approaches to get a clue of the real nature of neutrinos are
neutrino oscillations, kinematical measurements of the neutrino mass, and
neutrinoless double beta decay (0νββ). Oscillations have already been in-
troduced (see Chapters 2, 3). So, in this chapter, we will at first explain the
kinematical measurement of the neutrino mass and show, how results ob-
tained by such an experiment are influenced by the mass square differences
and the mixing angles we get from the oscillation experiments. Afterwards
we will explain, how neutrinoless double beta decay 0νββ works and what
the difficulties are, and discuss possible alternatives to such a type of exper-
iment.

4.1 Kinematical measurement of the neutrino mass

Let us at first discuss the kinematical measurement of the “electron–neutrino
mass”1 by β−–decay, as already shortly introduced in Chapter 1. More
precisely, this is done using the reaction

B(Z, A) → C(Z + 1, A) + e− + νe, (4.1)

where a parent nucleus B(Z,A) decays into a daughter nucleus C(Z + 1, A)
and emits an electron and an electron–antineutrino.
To see how the neutrino mass can be measured from this process, it is useful
at first to make an easy consideration of what happens: to determine the

1In fact, the electron–neutrino is no mass eigenstate at all but a mixture of all of them
and – being exact – there cannot exist a definite mass of this state, since the mixing angles
with the flavours are non–zero.
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neutrino mass mν , one has to determine its momentum ~pν as well as its en-
ergy Eν . Then one can use the simple 4–vector scalar product m2

ν = E2
ν−p2

ν

with pν = |~pν | to determine mν . Taking into account that all nuclei are much
heavier than a neutrino (and of course also much heavier than an electron),
one can, already from that, conclude that for the kinematics only the lep-
tons will play a role. Now, in an experiment, one can measure the energy
Ee as well as the momentum ~pe of the electron. The electron mass is known,
but there are still two variables left, namely the energy and the momen-
tum of the neutrino. Hence one can, in general, not determine the neutrino
mass from such a measurement except in the one case that the neutrino is
completely at rest, because then ~pν = ~0 and mν = Eν . Taking now into ac-
count, that the electron is still much heavier than the neutrino, it is already
intuitively clear, that this configuration will not occur very often, as will
be shown next. Now we can take a closer look at the kinematics. At first,
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Figure 4.1: The energy spectrum of the electrons from β−–decay. The
interesting region for the determination of the neutrino mass is shown in
more detail on the right panel. Since the effect of a non–zero neutrino mass
is very tiny (note that the second plot is shown in the eV–scale), this kind
of experiment is extremely challenging.

since all existing nuclei are much heavier than neutrinos and electrons, it is
clear that they will only carry a completely negligible kinetic energy in this
process. However, they are necessary for the conservation of 3–momentum,
since the daughter nucleus will carry the “rest” of the momentum which is
not carried away by the leptons. Since this is the case, there will be no
correlation between the lepton momenta, which means that, in the calcula-
tion of the phase space, there arise two independent factors, one from the
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electron and one from the (anti–) neutrino. Normalizing the volume to 1,
the infinitesimal number of states can be written as:

d2N =
d3pe

(2π)3
d3pν

(2π)3
. (4.2)

Since the directions of both particles are not correlated (due to the nuclear
recoil), one can write d3pi = p2

i dpidΩ for both factors and integrate over the
solid angle, which leads to

d2N =
1

4π4
p2

edpep
2
νdpν . (4.3)

The rest of the calculation is very easy: one applies the identity pidpi =
EidEi and uses p2

ν = E2
ν −m2

ν . To get the differential rate depending on the
elctron energy, one can intergrate over all possible final neutrino energies
with the condition of energy conservation, E0 = Ee + Eν , where E0 is the
total decay energy, which is done simply by multiplying Eq. (4.3) by the
corresponding δ–function. Having done all that, one finally arrives at:

dN

dEe
∝ peEe ·

√
(E0 − Ee)2 −m2

ν(E0 −Ee). (4.4)

From this, the continuous energy spectrum is obtained as it is shown in
Fig. 1.1. The neutrino mass appears only in the square root, where also the
electron and the total decay energy are present. Since the latter is larger
than the electron mass, the only way to have a small (E0 − Ee)2, which is
necessary to have a stronger effect of a non–zero neutrino mass, is to take
a nucleus with a very small E0. In a real experiment, the best candidate is
the β–decay of tritium,

3H → 3He + e− + νe, (4.5)

for which E0 = me + 18.6 keV. This values is still much larger than the
neutrino mass and the kinetic energy of the electron has a wide range in
“neutrino scales”, so it is clear that a kinematical measurement of the neu-
trino mass is, even for the best possible case, challenging. Eq. (4.4) can
be generalized taking into account the Coulomb interaction of the electron
with the nucleus, which is done using the corresponding Fermi function F .
Taking into account all proportinality factors as well as the nuclear matrix
element M , the electron energy spectrum is [76]

dN

dEe
=

G2
F m5

e cos2 θC

2π3
|M |2F (Z,E)peEe·

√
(E0 −Ee)2 −m2

ν(E0−Ee)Θ(E0−Ee−mν).

(4.6)
Here, the step function Θ(E0 − Ee − mν) simply ensures the conservation
of energy. Taking additionally into account that neutrinos mix, Eq. (4.6)
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Figure 4.2: The electron–neutrino mass m(νe) as measured in β–decay. One
can clearly see the width caused by the lack of knowledge of the oscillation
parameters (best–fit values compared to 3σ–ranges). The expected sensitiv-
ity of KATRIN is also inducated, which shows that even the next generation
experiments will not be able to resolve the hierarchy of the neutrino masses
and can only detect a finite neutrino mass in the case of quasi–degeneracy
(QD).

finally becomes

dN

dEe
∝ F (Z,E)peEe(E0−Ee) ·

3∑

i=1

|Uei|2
√

(E0 − Ee)2 −m2
i Θ(E0−Ee−mi),

(4.7)
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where the constant factors have been skipped (they are the same as in
Eq. (4.6)). The PMNS matrix elements |Uei|2 are given by Eq. (2.27). Hav-
ing a look at the spectra (Fig. 4.1), it is even more obvious that only a very
tiny fraction of all decays (approximately 2 · 10−13) is relevant.
The neutrino mass, as measured with a future kinematical experiment like
for example KATRIN, is [76,77]

m2(νe) =
3∑

i=1

|Uei|2 ·m2
i . (4.8)

Of course, the quality of this measurement depends on two things: the
knowledge of the mixing angles contained in |Uei|2 as well as the mass
square differences and the hierarchy in m2

i . For normal hierarchy (NH),
this νe–mass is quite sensitive to the value of the reactor mixing angle
θ13, while for an inverted hierarchy (IH), this is not the case (mNH(νe) '√

s2
12c

2
13∆m2¯ + s2

13∆m2
atm ¿ mIH(νe) '

√
c2
13∆m2

atm). Plotting this mass
against the smallest neutrino mass (m1 for NH resp. m3 for IH), and in-
cluding the 3σ errors for all parameters, one can clearly see that there will
be a certain width for the determination of the smallest neutrino mass (and
hence also for all the other neutrino masses), even if a measurement of m(νe)
is successful (cf. Fig. 4.2). KATRIN will be the most advanced experiment
for measuring the νe–mass. At the moment, there exist only upper bounds
on m(νe) of e. g. 2.3 eV from the Mainz experiment [78] or 2.5 eV from
the Troitsk experiment [79] (both at 95% C.L.). KATRIN will improve
this limit down to about 0.2 eV, or even measure the neutrino mass, if it
is large enough. But it can be seen from the plots that even this exper-
iment will not be able to resolve the hierarchy of neutrino masses except
for a “large” neutrino mass in the case of quasi–degenerate (QD) neutrinos
(∆m2

atm ¿ m1 ≈ m2 ≈ m3).

4.2 Neutrinoless double beta decay

One of the most exciting tests for the nature of neutrinos is neutrinoless
double beta decay (0νββ), since it can yield information on the possible
Majorana nature of the neutrino, on lepton number violation (and hence
on physics beyond the Standard Model), and on the absolute value of the
neutrino mass simultaneously (for a nice review, see e. g. [81, 82]). This is
the decay of a nucleus (Z, A) to a nucleus (Z + 2, A) with the emission of
only two electrons,

(Z, A) → (Z + 2, A) + 2e−. (4.9)

This process clearly violates lepton number conservation (there is no lepton
on the left hand side of Eq. (4.9) while there are two of them on the right
hand side). So it is clearly forbidden in the Standard Model, since there
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Figure 4.3: The “lobster” diagram for neutrinoless double beta decay
(0νββ). At the left vertex, a right–handed (anti–) neutrino is emitted.
Then its helicity gets flipped (indicated by the cross) and it is then, as left–
handed neutrino, absorbed by a second virtual W− and produces a second
electron. The “black box” of nuclear physics indicates the difficulties in the
calculations of the nuclear matrix elements. (Figure taken from [80].)

exist no lepton number violating terms. However, this conservation is just
an empirical one and currently there is no symmetry known which would
force this number to be conserved. In Section 2.1.2, we have discussed the
possibility for a neutrino to be its own antiparticle, which is possible due
to its neutralness. In fact, the mass term Eq. (2.15) does violate the lepton
number, and if one assumed the neutrino to be a Majorana particle, then
there should be processes which indeed violate the lepton number. One of
them is 0νββ, as shown in Fig. 4.3: at first, a neutron decays as described
in Chapter 1 according to n0 → p+ + e− + νe. But now, the νe is identical
to the νe. Hence, there is a certain probability that this νe is not emitted by
the nucleus but re–absorbed (and hence virtual) by another neutron, which
induces a second β–decay according to νe + n0 → e− + p+. From this, one
can already see that, since the decay energy must be a constant value as long
as the daughter nucleus is not in an excited state, which depends only on
the considered nucleus, the sum of the energies of the two emitted electrons
in 0νββ has to be constant, while for the intrinsic background process,
analogously denoted 2νββ, energy is also carried away by the neutrinos and
hence the sum of energies of the two electrons will have a continous spectrum
in this case.
The problem with 0νββ is, that it is strongly suppressed: at first, it is
a second order weak process and hence the transition matrix element is
proportinal to G2

F (GF is the Fermi constant – a very small number). Ad-
ditionally, there is another suppression: since the weak interaction is chiral,
which means that it can only couple to left–handed particles as well as to
right–handed anti–particles, the helicity of the neutrino has to be flipped in
this process (since, even for particle identical to anti–particle, the helicity
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will distinguish if the neutrino can take part in a weak process, or not).
Every massive particle has a small admixture of “wrong–helicity states”
proportional to (1 − β) with β = v/c. This is also true for the vitual neu-
trino in Fig. 4.3, but since nuclear decay energies are much larger than the
neutrino mass (which is at most about 1 eV), the virtual neutrino will be
ultra–relativistic in most cases and hence β ≈ 1. This fact makes it very
difficult to really observe a 0νββ–process, since the approximate lifetime for
such a decay is of the order 1024–1025 years [83].
In fact, what is measured in 0νββ, is the lifetime of the nucleus, which is
inversely proportional to the decay width [84]:

1

T 0νββ
1/2

= G0ν(E0, Z)|M0ν |2|mee|2. (4.10)

This is in turn proportional to the effective mass of the neutrino that is
measured in this decay process,

|mee| =
∣∣∣

3∑

i=1

U2
eimi

∣∣∣. (4.11)

Hence, the observation of neutrinoless double beta decay gives no direct
information on the absolute value of the neutrino mass, but this information
can be extracted from the measurement using Eq. (4.11) together with the
oscillation parameters. A detailed phenomenological analysis of this effective
mass will be given in Chapter 5.
A further complication arises from the fact that the process in Eq. (4.9) also
involves nuclear physics. While the calculation of the phase space factor
G0ν(E0, Z) is fairly easy, the calculation of nuclear matrix elements M0ν is
a very sophisticated task and in spite of the fact that there has been a lot of
progress in the last years, the uncertainties ζ are still of O(1) [85, 86]. The
currently best limit on the effective mass comes from the Heidelberg–Moscow
experiment [87],

|mee| ≤ 0.35ζ eV. (4.12)

Other ongoing and planned experiments on 0νββ are e. g. IGEX [88], CO-
BRA [89], or GERDA [90].

4.3 Alternative double beta processes

Interestingly, there are possible alternatives to neutrinoless double beta de-
cay. Besides possible tests of the other mass matrix elements, there are
also other ways to measure |mee|. In principle, every way of reversing some
of the legs of the “lobster” in Fig. 4.3 would do this job. Such candidates
are e. g. [91, 92] neutrinoless double β+–decay (emission of two positrons),
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neutrinoless electron capture with simultaneous emission of a positron, or
neutrinoless double electron capture. All these processes can basically occur
for the same nuclei (if the Q–values are positive), good candidates would
e. g. be Ni–58, Zn–64, or Er–162.
Especially the last case,

0ν2EC : B(Z, A) + e−bound + e−bound → C(Z − 2, A) + γ, (4.13)

is interesting, since it is energetically most favored and exhibits an extremely
nice signature: “normal” double electron capture would be accompanied
by two neutrinos, which would escape the detector. Hence, one would at
most see characteristic X–rays of the daughter element. However, in the
neutrinoless case, energy conservation would not be possible without the
emission of an additional particle, which can, for the possible candidate
nuclei, only be a photon. This, of course, can be detected, and would have a
characteristic energy that could be observed together with the transition of
a nucleus B to another nucleus C. Furthermore, in this radiative case, there
could be an additional resonance effect, which would maybe even increase
the decay rate up to about 10−25 per nucleus and year [93].
All these cases are less often discussed in the literature than “normal” neu-
trinoless double beta decay. However, e. g. the COBRA proposal [89] also
discusses such processes from the experimental point of view. They suggest
using CdTe semiconductor detectors, which would allow the simultaneous
measurement of 5 β−β−– and 4 β+β+–emitters (where the latter also in-
cludes double EC and EC/β+ modes).

46



Chapter 5

The neutrino mass matrix in
future experiments

In this chapter, a detailed analysis of the effective neutrino mass |mee| will
be given and its role in future measurements will be pointed out. Special
focus is put on the impact of an improved limit on the still unknown small
neutrino mixing angle θ13. To determine this angle with a good precision,
there are several upcoming neutrino experiments scheduled (e. g. Double
Chooz [94]) and there are intensive studies going on for future experiments
or possible upgrades of present experiments (e. g. Triple Chooz [59]). An-
other interesting connection is that one can, by measuring a certain value
of the effective mass in neutrinoless double beta decay, also constrain the
sum Σ of all neutrino masses and hence get an inference on cosmology, too
(cf. Section 2.3.1). All these aspects will be treated in this chapter and
numerical results will be presented. For the oscillation parameters, we use
the values taken from [28], as well as in the previous chapters. The work
presented here is based on [73] and [95].

5.1 The effective mass

The effective mass that can be measured using neutrinoless double beta
decay is given by

|mee| where mee = |m(1)
ee |+ |m(2)

ee |e2iα + |m(3)
ee |e2iβ. (5.1)

Having a look at Eq. (4.11), one could think that the effective mass should
also depend on the CP–phase δ. However, this is not true, as can be ex-
plained in two ways: at first, one can simply absorb the complex phase
eiδ into the definition of the mass eigenstate m3. But, the more intuitive
explanation can be understood by visualizing the effective mass as done in
Fig. 5.1. The effective mass mee is essentially a sum of three complex num-
bers, which can be represented as vectors. Then the phases are simply the
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rotation angles of the vectors associated with |m(2)
ee | and |m(3)

ee |, and it is
clear that they can only rotate from 0 to 360◦, which is already covered by
varying α and β from 0 to π. Furthermore, only the absolute value of the
effective mass can be measured. Hence, it will also be possible to let the
vector associated with |m(1)

ee | point in the positive real direction. Since 0νββ
is not sensitive to off–diagonal elements of the neutrino mass matrix, this
variation of the Majorana phases is enough (for a process that is sensitive
to off–diagonal elements, it would be necessary to vary α and β between
0 to 2π). Of course, the Dirac phase δ, which is measurable in oscillation
(appearance) experiments, can still be non–zero.

Im

Rem

m
m

ee

ee

ee

(1)

(3)

(2)

| |

| |
| | e

e
.

.

eem

2iβ
2iα

Figure 5.1: The effective mass as sum of three complex numbers. Since the
variations of the Majorana phases already cover the whole physical range,
one cannot gain anything new by including the CP–phase δ in the definition
of the effective mass. (Figure taken from [73].)

The absolute values of the three vectors expressed by the neutrino mass
eigenvalues m1, m2, and m3 as well as by the mixing angles are given by

|m(1)
ee | = m1 |Ue1|2 = m1 c2

12 c2
13 ,

|m(2)
ee | = m2 |Ue2|2 = m2 s2

12 c2
13 , (5.2)

|m(3)
ee | = m3 |Ue3|2 = m3 s2

13 .

We give every result as function of the smallest neutrino mass eigenvalue.
For a normal mass ordering (m1 < m2 < m3), this is m1, while for an
inverted ordering (m3 < m1 < m2) this will be m3. The first mass eigenvalue
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Case Majorana phases |mee|min

−− α = β = π
2

∣∣∣m1c
2
12c

2
13 −

√
m2

1 + ∆m2¯s2
12c

2
13 −

√
m2

1 + ∆m2
atms2

13

∣∣∣

−+ α = π
2 , β = 0

∣∣∣m1c
2
12c

2
13 −

√
m2

1 + ∆m2¯s2
12c

2
13 +

√
m2

1 + ∆m2
atms2

13

∣∣∣

+− α = 0, β = π
2

∣∣∣m1c
2
12c

2
13 +

√
m2

1 + ∆m2¯s2
12c

2
13 −

√
m2

1 + ∆m2
atms2

13

∣∣∣

Table 5.1: Minimal values of |mee| for dominance of one of the |m(i)
ee |.

is known to be smaller than the second one, since from matter effects the
sign of ∆m2¯ = m2

2 −m2
1 is known to be positive (cf. Sec. 2.2.2). However,

from ∆m2
atm = |m2

3−m2
1|, only the absolute value is known and not the sign,

so m3 < m1 is still possible. For these two types of ordering, the masses are
then given by

normal : m1 = lightest; m2 =
√

m2
1 + ∆m2¯; m3 =

√
m2

1 + ∆m2
atm

inverted : m1 =
√

m2
3 + ∆m2

atm; m2 =
√

m2
3 + ∆m2

atm + ∆m2¯; m3 = lightest
(5.3)

Most interesting are the following three different extreme cases:

normal hierarchy (NH) : |m1| ¿
√

∆m2¯ ' |m2| ¿
√

∆m2
atm ' |m3|,

inverted hierarchy (IH) : |m3| ¿
√

∆m2
atm ' |m1| ' |m2|,

quasi− degeneracy (QD) :
√

∆m2
atm ¿ m0 ≡ |m1| ' |m2| ' |m3|.

(5.4)
To determine the whole range of |mee|, one can simply look at the ranges
of the three “sticks” |m(i)

ee | and imagine the geometrical shape: the maximal
|mee| will always be obtained, if all three vectors exactly add up, which
happens for α = β = 0. Note that from considerations like that, it could
also be possible to get an experimental hint on the Majorana phases, at
least for some extreme cases. When trying to find the minimum value of
|mee|, one can realize two different cases: either, one can form a triangle
out of the three parts (then, |mee| ≡ 0), which will be possible for |m(i)

ee | +
|m(j)

ee | ≥ |m(k)
ee | (with unequal i, j, k = 1, 2, 3), or one has to substract the two

smaller pieces from the larger one, which will be the case for |m(i)
ee |+ |m(j)

ee | <
|m(k)

ee | and results in |mee| > 0. In this case we label the dominance of the
first with “−−”, the one of the second term with “−+”, and for the third
term with “+−” (cf. Table 5.1). Simply adding or subtracting the different
contributions is equivalent to having trivial values for the Majorana phases,
i.e. 0 or π/2, which means conservation of CP [96]. This is exactly the case
for the maximum or minimum (non–vanishing) values of |mee|.
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Figure 5.2: The effective mass (in eV) as measured in 0νββ for the normal
and inverted mass ordering as a function of the smallest neutrino mass (in
eV) for different values of sin2 2θ13. The prediction for the best–fit values of
the oscillation parameters (inner bands) and for the 3σ ranges (outer bands)
is given. A typical bound from cosmology and the limit on the effective mass
from Eq. (4.12) are indicated.

We have plotted the effective mass for four different values of sin2 2θ13 in
Fig. 5.2, namely 0, 0.03, 0.1, and 0.2. Some regions, which are disfavored,
are also marked: the upper bound on |mee| coming from Eq. (4.12) for
setting ζ ≡ 1 and the bound on the sum Σ =

∑
i mi of all neutrino masses

of 1.74 eV coming from cosmology derived by the SDSS collaboration [40].
Note that both of these bounds are no strict exclusions, since in the case of
0νββ one still has to take into account the uncertainty in the nuclear matrix
elements and in cosmology one has unknown systematical errors. Having a
look at these plots, one can easily identify certain behaviors:

1. For normal mass ordering, the effective mass is in general smaller and
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can, for certain parameter values, even vanish completely. The corre-
sponding range of m1 for |mee| = 0 increases with sin2 2θ13.

2. For small values of m1, |mee|min becomes smaller with increasing sin2 2θ13

and the gap between the effective mass for normal and for inverted
mass ordering shrinks.

3. For inverted mass ordering, there is nearly no effect visible due to the
much larger values of |mee|.

What will follow, is a detailed analysis of all these features and drawing
conclusions what can be gained by certain limits on θ13. A concise summary
of the presented work is given in Fig. 5.3.
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2
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m0

|m(2)
ee |nor > |m(3)

ee |nor |m(1)
ee |nor > |m(2)

ee |nor

−
√

∆m2
atm + m2

1s
2
12c

2
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m0
1−t212−2s2

13

1+t212

−√
∆m2¯ + m2

1s
2
13±√

∆m2¯s2
13

Figure 5.3: A summary of the main properties of |mee| as function of the
smallest neutrino mass. We have indicated the relevant formulae and the
important regimes: hierarchical, cancellation (only possible for normal mass
ordering), and quasi–degeneracy. The value of sin2 2θ13 = 0.02 has been
chosen, we take t212 ≡ tan2 θ12, and m0 is the common mass scale (measurable
in KATRIN or by cosmology via Σ/3) for quasi-degenerate neutrinos m0 ≡
m1 ' m2 ' m3.
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5.2 The effective mass for normal mass ordering

Let us now start the analysis with the case of normal mass ordering, m1 <
m2 < m3. In this case, the effective neutrino mass as measured in neutrino-
less double beta decay is given by

|mnor
ee | =

∣∣∣m1c
2
12c

2
13 +

√
m2

1 + ∆m2¯s2
12c

2
13e

2iα +
√

m2
1 + ∆m2

atms2
13e

2iβ
∣∣∣.

(5.5)
For the maximum value of this quantity, one simply adds up all three con-
ributions (α = β = 0), which gives:

|mee|nor
max = m1c

2
12c

2
13 +

√
m2

1 + ∆m2¯s2
12c

2
13 +

√
m2

1 + ∆m2
atms2

13. (5.6)

This will be maximal if all parameters involved, namely ∆m2¯, ∆m2
atm, s2

12,
and s2

13, are maximal. Numerically, the best–fit (1σ, and 3σ ranges of the)
oscillation parameters give |mee|nor

max = 0.10 (0.10, 0.10) eV for m1 = 0.1 eV,
0.011 (0.012, 0.014) eV for m1 = 0.01 eV, and 0.0066 (0.0073, 0.0096) eV
for m1 = 0.005 eV.
However, for |mee|nor

min, it is not always that easy to find an analytical expres-
sion except for very large or very small values of the lightest neutrino mass
eigenvalue. Especially for |mee| smaller than about 0.001 eV, at least two
of the |m(i)

ee |’s have nearly the same size which means that small variations
of the oscillation parameters or the smallest mass can exchange the role of
the dominant term. Numerical examples are given in Table 5.2. For an m1

larger than 0.01 eV, the first term always dominates, while for values smaller
than 0.001 this is mostly the second term. This last dominance is true except
for rather extreme cases (if ∆m2¯ and θ12 have their 3σ minima and ∆m2

atm

its 3σ maximum, then this dominance will not be given for sin2 2θ13 > 0.13,
which is still less than the upper 3σ bound of sin2 2θ13 = 0.18).

5.2.1 The strictly hierarchical part: m1 → 0

The first part to be discussed is the region where the smallest mass m1 is very
tiny. In this case, since m1 ¿ ∆m2¯ ¿ ∆m2

atm, one has the extreme case of
a normal hierarchy (NH), which corresponds to the “hierarchical regime” in
Fig. 5.3. As already shown in Table 5.2, for small m1 and sin2 2θ13 . 0.1,
the term m

(2)
ee will dominate the other two ones. If this is the case, |mee|

will be minimal for α = π/2 and β = 0 (−+, cf. Table 5.1):

|mee|nor
min =

√
m2

1 + ∆m2¯s2
12c

2
13 −m1c

2
12c

2
13 −

√
m2

1 + ∆m2
atms2

13. (5.7)

Taking the best–fit and 1σ parameters, one gets |mee|nor
min = 0.0021 (0.0011) eV

for m1 = 0.001 eV and |mee|nor
min = 0.0024 (0.0015) eV for m1 = 0.0005 eV.
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m1 [eV] sin2 2θ13 |m(1)
ee | [eV] |m(2)

ee | [eV] |m(3)
ee | [eV]

0.1 0 0.060–0.076 0.024–0.040 0.0000
0.05 0.059–0.075 0.024–0.040 0.0014–0.0015
0.2 0.057–0.072 0.023–0.038 0.0056–0.0061

0.01 0 0.0060–0.0076 0.0031–0.0055 0.0000
0.05 0.0059–0.0076 0.0031–0.0054 (4.9–7.4)·10−4

0.2 0.0057–0.0072 0.0030–0.0052 0.0020–0.0031

0.001 0 (6.0–7.6)·10−4 0.0020–0.0038 0.0000
0.05 (5.9–7.5)·10−4 0.0020–0.0037 (4.7-7.3)·10−4

0.2 (5.7–7.2)·10−4 0.0019–0.0036 0.0020–0.0030

0.0001 0 (6.0–7.6)·10−5 0.0020–0.0038 0.0000
0.05 (5.9–7.5)·10−5 0.0020–0.0037 (4.7–7.3)·10−5

0.2 (5.7–7.2)·10−5 0.0019–0.0036 0.0020–0.0030

Table 5.2: The ranges of |m(i)
ee | for a 3σ variation of the oscillation para-

meters. Bold faced numbers indicate the dominance of the corresponding
term in the whole parameter range.

Since m2
1 is small, it can be neglected compared to ∆m2

atm and ∆m2¯, which
gives the approximate formula

|mee|nor
min,max '

√
∆m2¯s2

12c
2
13 ∓

√
∆m2

atms2
13, (5.8)

which simply leads to a band for |mee| that should, in lowest order ap-
proximation, not change with a variation of m1. This is indeed the case in
Fig. 5.2. However, with increasing θ13 the width of the band increases, too.
If θ13 vanishes completely, one will simply have |mee|nor

min,max '
√

∆m2¯s2
12,

which means that the band collapses to a line for definite values of ∆m2¯
and sin2 θ12. The precise value using the best–fit parameters is 2.8 meV. All
these properties can be seen in the plots. If θ13 is non–zero, then |mee|nor

min =

|
√

∆m2¯s2
12c

2
13−

√
∆m2

atms2
13| can vanish for s2

13 ' s2
12

√
∆m2¯/∆m2

atm. This

is between 0.034 to 0.090 for the 3σ ranges of ∆m2¯, ∆m2
atm, and sin2 θ12,

and lies partly in the 3σ range of s2
13 (0–0.046). For s2

13 . 0.034, |m(2)
ee | is

dominant, which means that the point
√

∆m2¯s2
12c

2
13, where the NH–band

reaches the |mee|–axis, is nearly constant, since the cosine of θ13 varies only
with the square of its argument. However, the width 2

√
∆m2

atms2
13 of this

band is – in this range – directly proportional to |Ue3|2, since sin θ13 ≈ θ13
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for a small angle. If s2
13 & 0.034, |m(3)

ee | will dominate and then the center

of the band is at
√

∆m2
atms2

13 while the width will be 2
√

∆m2¯s2
12c

2
13.

5.2.2 Nearly vanishing |mee|
This is maybe the most interesting case, since, going to the flavour basis, a
very small resp. vanishing |mee| would correspond to a texture zero in the
neutrino mass matrix. From the model building perspective, this would be
good, since such a texture would be a hint to some underlying symmetry. On
the other hand, experimentally, this case would be quite a bad one, since the
0νββ lifetime is inversly proportional to the effective mass (cf. Eq. (4.10))
which means that, for a vanishing |mee|, neutrinoless double beta decay
would never be observed, and as long as no other tests are available, one
would not be able to decide, if this non–observation is due to a vanishing
effective mass or due to the (still possible) Dirac nature of neutrinos.
But let us now discuss this case: for not too large values of sin2 2θ13 (up
to ≈ 0.1), there exists only a limited certain region for m1, where |mee|
can vanish (the “cancellation regime” in Fig. 5.3), which would also have
phenomenological consequences [72, 80, 97]. Going back to the geometrical
interpretation of |mee|, this means that we have the case, when |m(1)

ee |, |m(2)
ee |,

and |m(3)
ee | just form a triangle. If m1 6= 0 and also θ13 6= 0 (this means

that none of the |m(i)
ee |’s vanishes), one can, for known m1, calculate the

two Majorana phases α and β by simple geometry using the law of cosines
(cf. Fig. 5.1), which gives

cos 2α =
m

(1)
ee |2 + |m(2)

ee |2 − |m(3)
ee |2

2|m(1)
ee ||m(2)

ee |
=

=
m2

1

(
c4
13

(
s4
12 + c4

12

)− s4
13

)
+ ∆m2¯s4

12c
4
13 −∆m2

atms4
13

2m1

√
m2

1 + ∆m2¯s2
12c

2
12c

4
13

(5.9)

and

cos 2β =
|m(3)

ee |2 + |m(2)
ee |2 − |m(1)

ee |2
2|m(2)

ee ||m(3)
ee |

=

=
m2

1

(
c4
13

(
s4
12 − c4

12

)
+ s4

13

)
+ ∆m2¯s4

12c
4
13 + ∆m2

atms4
13

2
√

m2
1 + ∆m2¯

√
m2

1 + ∆m2
atms2

12s
2
13c

2
13

. (5.10)

Now one can consider several special cases for |mee| ≈ 0:

• For θ13 = 0, m
(3)
ee = 0, and |mee| will be zero if the remaining two

terms exactly cancel each other (α = π/2). Then it follows e. g. from
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Eq. (5.7) that

m1 = tan2 θ12

√
∆m2¯

1− tan4 θ12
= sin2 θ12

√
∆m2¯

cos 2θ12
, (5.11)

which is 4.5 meV for the best–fit parameters (1σ: 3.7-5.1 meV, 3σ:
2.8-8.4 meV), as can be seen in Fig. 5.2. As soon as the parameters
have fixed values, the width of this band will be zero, since the point
|mee| = 0 will exactly discriminate between the dominance of |m(1)

ee |
and of |m(2)

ee |.

• The case of m1 = 0 is exactly the same as in Sec. 5.2.1, where |m(1)
ee | =

0, and |m(2)
ee | and |m(3)

ee | have to cancel, which happens for α = 0 and
β = π/2 or vice versa. As already mentioned, θ13 has to be quite large
for |mee| = 0, namely

sin2 2θ13 = 4
sin2 θ12

√
∆m2¯

√
∆m2

atm + sin2 θ12

√
∆m2¯

' 4 sin2 θ12

√
∆m2¯

∆m2
atm

.

(5.12)
For best–fit (1σ, 3σ) parameters, this gives 0.24 (0.19-0.28, 0.14-0.40).

• Dominance of |m(2)
ee | occurs for values of m1 and θ13 which are small

enough to suppress the third term. Since |mee| vanishes, one still can
approximate

√
m2

1 + ∆m2
atm ≈

√
∆m2

atm, which leads to

|mee|nor
min '

√
m2

1 + ∆m2¯s2
12c

2
13 −m1c

2
12c

2
13 −

√
∆m2

atms2
13. (5.13)

Setting this to zero, one gets by linearizing in m1 and using s4
13 ' 0:

m1 '
∆m2¯s4

12

2
√

∆m2
atmc2

12 tan2 θ13

. (5.14)

For sin2 2θ13 = 0.02 this gives 0.023 eV for the best–fit parameters
(1σ: 0.016 eV, 3σ: 0.009 eV), and 0.047 eV for sin2 2θ13 = 0.01 (1σ:
0.032 eV, 3σ: 0.019 eV). Since this case is very specific, here, the lower
1σ and 3σ values have been inserted in order not to lose the dominance
of the second term.

• The last case is the dominance of |m(3)
ee |, which also needs large θ13–

values. One can again apply
√

m2
1 + ∆m2

atm ≈
√

∆m2
atm, which gives

|mee|nor
min '

√
∆m2

atms2
13 −

√
m2

1 + ∆m2¯s2
12c

2
13 −m1c

2
12c

2
13, (5.15)
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and, linearizing in m1, leads to

m1 '
∆m2

atms4
13 −∆m2¯s4

12c
4
13

2
√

∆m2
atms2

13c
2
13s

2
12

=
∆m2

atm tan2 θ13 −∆m2¯s4
12 cot2 θ13

2
√

∆m2
atms2

12

.

(5.16)

In general, the “|mee| = 0”–region, that has its origin in the variation of
the oscillation parameters, gets larger (cf. Fig. 5.2) with increasing θ13 and
the width of the band also grows with |mee|, e. g. the width is 3.6 (5.0, 12) ·
10−3 eV for |mee| = 10−3 eV and sin2 2θ13 = 0 (0.02, 0.2), while it is
0.4 (1.7, 10) · 10−3 eV for |mee| = 10−4 eV and sin2 2θ13 = 0 (0.02, 0.2) (in
both cases, the best–fit values of the oscillation parameters have been used).

5.2.3 Cosmological consequences of very small |mee|
Now it is time to consider an application of this width of the band for
very small values of |mee|. Let us suppose that (sometime in the future)
one has a very stringent limit on the effective neutrino mass and one ad-
ditionally knows that neutrinos indeed are Majorana particles (this knowl-
edge could come from rare decays other than 0νββ, e. g. the Kaon decay
K+ → π−µ+µ+ [98]). Then one would know, that there can be no in-
verted mass ordering, because in that case, one would have already seen
0νββ at some point. Additionally one would have, depending on the value
of sin2 2θ13 (and, of course, on the oscillation parameters), just a certain
allowed range for the smallest neutrino mass m1, and this is exactly where
cosmology comes in: since there, one measures the sum Σ of all neutrino
masses. This can be parametrized under the assumption that we indeed
have only three neutrinos:

Σ = m1 + m2 + m3 = m1 +
√

m2
1 + ∆m2¯ +

√
m2

1 + ∆m2
atm. (5.17)

We have calculated the possible values for Σ by taking the width of the
“tube” (the range of m1 for normal mass ordering and a certain value of
|mee|, cf. Figs. 5.2, 5.3) and the 1σ and 3σ values of ∆m2¯ and ∆m2

atm. The
results for different values of θ13 can be seen in Fig. 5.4 and read off from
Table 5.3. The sum Σ is always of order 0.01 eV and the range increases for
a larger θ13. This is due to the growing width of the tube, which corrsponds
to larger intervals for m1 (cf. Sec 5.2.2), but the major broadening comes
simply from the ranges of the oscillation parameters. However, an important
conclusion is, that reaching a limit of 0.001 eV on |mee| is already enough to
conclude that Σ ≈ 0.01 eV, which would have a large impact on cosmology.
As already shown in Sec. 2.3.1, the current cosmological limit on Σ lies,
depending on the group which has done the analysis and on the data that has
been used, between 0.17 and 1.8 eV. Even the conservative limit is just one
order of magnitude larger than e. g. the 1σ range of Σ (roughly 0.05-0.08 eV)
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|mee| = 0.001 eV
sin2 2θ13 s2

13 Best-fit 1σ ranges 3σ ranges
0 0 (5.9− 6.5) · 10−2 eV (5.5− 6.9) · 10−2 eV (4.7− 8.5) · 10−2 eV

0.03 0.008 (5.8− 6.6) · 10−2 eV (5.4− 7.2) · 10−2 eV (4.7− 8.9) · 10−2 eV
0.05 0.01 (5.8− 6.7) · 10−2 eV (5.4− 7.3) · 10−2 eV (4.6− 9.1) · 10−2 eV
0.2 0.05 (5.6− 7.6) · 10−2 eV (5.3− 8.4) · 10−2 eV (4.5− 11.7) · 10−2 eV

|mee| = 0.0001 eV
sin2 2θ13 s2

13 Best-fit 1σ ranges 3σ ranges
0 0 (6.1− 6.2) · 10−2 eV (5.7− 6.7) · 10−2 eV (4.9− 8.0) · 10−2 eV

0.03 0.008 (6.0− 6.3) · 10−2 eV (5.6− 6.8) · 10−2 eV (4.8− 8.2) · 10−2 eV
0.05 0.01 (6.0− 6.4) · 10−2 eV (5.6− 6.9) · 10−2 eV (4.8− 8.4) · 10−2 eV
0.2 0.05 (5.6− 7.1) · 10−2 eV (5.2− 7.9) · 10−2 eV (4.6− 10.6) · 10−2 eV

Table 5.3: The ranges of Σ for different values of |mee| and θ13.

implied by a very small |mee|. Such an improvement of the cosmological
measurement is discussed in the literature (see e. g. [99]), so one could also
be able to test the 0νββ–prediction for the sum of all neutrino masses.
Hence, even a negative search for |mee| would have testable consequences
for cosmology, which a positive search would have anyway (e. g. [100,101]),
and one is in a win–win situation by performing a 0νββ–experiment.

5.2.4 The transition to the quasi–degenerate region

For large m1 (& 0.03 eV), the neutrino masses are very similar (m1 ≈ m2 ≈
m3), since the scale of the masses is in this case much larger than all mass
square differences (m0 À

√
∆m2

atm), which can consequently be neglected.
This region is called quasi–degenerate (“QD”) regime (cf. Fig. 5.3). The
approximate formula for the effective mass is then

mnor
ee ' m1

(
c2
12c

2
13 + s2

12c
2
13e

2iα + s2
13e

2iβ
)

. (5.18)

|mee| scales with m1, which leads to a linear behavior in this region of the
plots. This is indeed the case (cf. Fig. 5.2). To figure out the maximum
value of |mee|, one just has to take α = β = 0, which just gives m1. For QD,
one knows for sure that |m(3)

ee | ¿ |m(2)
ee | < |m(1)

ee |, since m1 can be factorized
out. Analogously, the minimum value of |mee| will be given by

|mee|nor
min = m1c

2
12c

2
13 −

√
m2

1 + ∆m2¯s2
12c

2
13 −

√
m2

1 + ∆m2
atms2

13 (5.19)

' m1

(|Ue1|2 − |Ue2|2 − |Ue3|2
)

= m1
1− tan2 θ12 − 2 sin2 θ13

1 + tan2 θ12
≡ m1f(θ12, θ13),
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Figure 5.4: The ranges of the sum Σ of all neutrino masses for a certain
very small |mee| (and hence for a normal mass ordering) and different values
of θ13 calculated using Eq. (5.17) and the best–fit, 1σ, and 3σ values of the
oscillation parameters.

which is obtained by α = β = π/2 (−−, cf. Table 5.1). The function
f(θ12, θ13) is discussed in Ref. [72]. Its best–fit value (1σ, 3σ range) is 0.38
(0.32-0.44, 0.15-0.52), and m1(1 − f(θ12, θ13)) is the width of the band in
the QD regime.

5.3 The effective mass for inverted mass ordering

Let us now turn to inverted mass ordering, where the smallest mass eigen-
value is m3. Taking this mass as parameter, one gets

minv
ee =

√
m2

3 + ∆m2
atmc2

12c
2
13+

√
m2

3 + ∆m2¯ + ∆m2
atms2

12c
2
13e

2iα+m3s
2
13e

2iβ.

(5.20)
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This will again be maximal for α = β = 0, namely

|mee|inv
max =

√
m2

3 + ∆m2
atmc2

12c
2
13 +

√
m2

3 + ∆m2¯ + ∆m2
atms2

12c
2
13 + m3s

2
13.

(5.21)
This will be largest for inserting the maximum values of ∆m2

atm, ∆m2¯,
and s2

12, and the minimum value of s2
13. In fact, the dependence of this

expression on s2
12 is only small, since its contribution is proportional to(√

m2
3 + ∆m2

atm + ∆m2¯ −
√

m2
3 + ∆m2

atm

)
, which is always small, inde-

pendent of m3.
In contrast to normal mass ordering, it is here not difficult to calculate an
analytical expression for the minimal |mee|. It holds that ∆m2

atm À ∆m2¯,
which gives, for every m3,

|m(2)
ee |

|m(1)
ee |

' tan2 θ12 and
|m(3)

ee |
|m(2)

ee |
=

m3√
m2

3 + ∆m2
atm

s2
13

s2
12c

2
13

, (5.22)

so |m(2)
ee |/|m(1)

ee | is always smaller than one within the parameter range and
|m(3)

ee |/|m(2)
ee | even much smaller, which gives |m(3)

ee | ¿ |m(2)
ee | ¿ |m(1)

ee |. This
corresponds to the case “−−” in Table 5.1 (α = β = π/2):

|mee|inv
min =

√
m2

3 + ∆m2
atmc2

12c
2
13 −

√
m2

3 + ∆m2¯ + ∆m2
atms2

12c
2
13 −m3s

2
13.

(5.23)
This will be minimal for minimal ∆m2

atm and the largest values of ∆m2¯,
s2
12, and s2

13, and defines, together with Eq. (5.21), the band in Fig. 5.2 for
inverted mass ordering.

5.3.1 The strictly hierarchical part: m3 → 0

For a negligible m3 (hierarchical regime in Fig. 5.3), Eq. (5.20) simplifies to
(see e. g. Ref. [102])

minv
ee '

√
∆m2

atmc2
13

(
c2
12 + s2

12e
2iα

)
. (5.24)

Then, the mass scale of |mee| is always
√

∆m2
atm, and |mee|inv lies be-

tween
√

∆m2
atmc2

13 cos 2θ12 and
√

∆m2
atmc2

13, which leads to a width of
2
√

∆m2
atms2

12. This width is 0.03 eV for the best–fit parameters (1σ: 0.025–
0.034 eV, 3σ: 0.018–0.046 eV). The dependence of this width on s2

13 is very
weak (since it is just proportional to (1− s2

13)), and it never vanishes in the
allowed parameter ranges, which shows that – in this regime – |mee| does
not contain much information about the yet unknown mixing angle θ13.
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5.3.2 The transition to the quasi–degenerate region

This is exactly the same as for normal mass ordering, which has been pre-
sented in Sec. 5.2.4. The only difference is that m1 has to be replaced by
m3 to switch from normal to inverted mass ordering, but in this regime all
mass eigenvalues are equal to m0 anyway.

5.4 The possible distinction between normal and
inverted mass ordering

One of the most exciting possible results of a 0νββ–experiment is the distinc-
tion between normal and inverted mass ordering [72, 102, 103]. Therefore,
one can have a look at the dependence of the gap between the bands for
the two different orderings on θ13. From Fig. 5.2, one can already see that
the width of the gap decreases for increasing sin2 2θ13. Now it is time to
investigate this behaviour in more detail. Obviously, the larger the gap the
better the chance to distingiush between both orderings. Intuitively, one
would expect this distinction to be more difficult for a worse knowlegde of
the oscillation parameters, which turns out to be true by looking at the
figures: using the 3σ range of the neutrino oscillation parameters narrows
the gap compared to the best–fit values. Of course, in case that neutrino
masses are quasi–degenerate in their masses, the possibility of distinction
between the two ordering must also be washed out, which is true since for
QD one just has a band of values which shows no difference between both
possibilities. Hence we assume the hierarchical regime for the rest of this
section.
Another point has not yet been included in our analysis, but mentioned in
Sec. 4.2: the uncertainty ζ in the calculation of the nuclear matrix elements.
This can be implemented here by using the following form for the gap ∆|mee|
between inverted and normal mass ordering:

∆|mee| ≡ |mee|inv
min − ζ|mee|nor

max. (5.25)

Then, this ∆|mee| represents the largest experimental uncertainty in the
determination of |mee| [72]. In case of larger uncertainties, a discrimination
between normal and inverted mass ordering will not be possible. Here,
|mee|nor

max is given by Eq. (5.6) and |mee|inv
min by Eq. (5.23). In general, this

has the explicit form

∆|mee| =
(√

m2
sm + ∆m2

atm − ζmsm

)
c2
12c

2
13−

−
(√

m2
sm + ∆m2¯ + ∆m2

atm + ζ
√

m2
sm + ∆m2¯

)
s2
12c

2
13−

−
(

ζ
√

m2
sm + ∆m2

atm + msm

)
s2
13, (5.26)
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where msm is the smallest neutrino mass eigenvalue. The most important
dependence of ∆|mee| is the one on s2

13. Since the first two lines of in
Eq. (5.26) depend only on c2

13, which only varies slowly in the possible range
for θ13, the shape of this function should be in principle linearly decreasing
in s2

13. A larger ζ then simply increases the negative slope of this line. This
is shown for msm = 0.005 eV and different values of s2

12 and ζ in Fig. 5.5,
which exactly shows the expected behavior.
The value ∆|mee| of the gap is in general of the order O(

√
∆m2

atmc2
13), which

can be shown by expanding it in the small quantities

R ≡ ∆m2¯
∆m2

atm

and η ≡ msm√
∆m2

atm

. (5.27)

Then, Eq. (5.26) reads

∆|mee| =
√

∆m2
atmc2

13

(
c2
12

(√
1− η2 − ηζ

)
−

−s2
12

(√
1− η2 + R + ζ

√
R + η2

)

−
(
η +

√
1− η2ζ

)
tan2 θ13

)
. (5.28)

To zeroth order in all small quantities R, ζ, and θ13, it turns out that
∆|mee| '

√
∆m2

atm cos 2θ12 = |mee|inv
min. In the limit msm → 0, and neglect-

ing ∆m2¯ compared to ∆m2
atm, ∆|mee| simplifies to

∆|mee|(msm → 0) '
√

∆m2
atm

(
c2
13(c

2
12 − s2

12)− ζs2
13

)− ζ
√

∆m2¯s2
12c

2
13.

(5.29)
This is now exactly a linear function in s2

13: for no nuclear uncertainty
(ζ = 1), it decreases, using the best–fit parameters, monotonously from
15.0 meV at s2

13 = 0 to 12.0 meV at s2
13 = 0.05. For a larger value of ζ, the

point where the graph intersects the “θ13 = 0”–axis gets shifted to a lower
value (last term in Eq. (5.29)) and the negative slope increases (part of the
term in parantheses). E.g. for ζ = 2, the width of the gap decreases from
12.3 meV at s2

13 = 0 to 7.0 meV at s2
13 = 0.05. The dependence of ∆|mee|

on θ12 is quite strong [72], which is reflected here by using different values of
this angle. E.g. for s2

12 = 0.24 (lower 3σ bound), the width decreases from
22.3 meV to 18.8 meV, while for the upper bound of 0.40 i t does so from
5.8 meV to 3.2 meV, both for ζ = 1 (cf. Fig. 5.5, where also the dependence
on ζ is illustrated).
The physical message that can be extracted from all these numerics is, that
0νββ and neutrino oscillation experiments play a complementary role for
the determination of the neutrino mass ordering: a small value of θ13 of
course makes it difficult to measure this angle in an oscillation experiment,
since the oscillation amplitude then will also be very small (cf. Eq. (2.30)).
This is the reason that this small angle is still unknown, while θ12 and θ23
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Figure 5.5: The gap ∆|mee| between |mee|inv
min and ζ|mee|nor

max as a function
of sin2 θ13 for an illustrative value of msm = 0.005 eV, different sets of
oscillation parameters, and different nuclear matrix element uncertainties ζ.

are at least measured with a certain accuracy. Since already the detection
of the oscillation is difficult in this case, it is clear that this will also affect
the determination of the mass orderings. On the other hand, from Fig. 5.5,
one can see that the width of the gap between normal and inverted mass
ordering shrinks for a larger θ13, which makes it more difficult to distinguish
normal and inverted ordering by a 0νββ-experiment. In turn, a larger mixing
angle will be better for oscillation experiments. Both methods are affected
by a bad knowledge of the oscillation parameters as well as some model–
dependence (e. g. the assumption that neutrinos are Majorana particles for
0νββ).

5.5 Other elements of the mass matrix

As already mentioned in Secs. 4.3 and 5.2.3, neutrinoless double beta decay
as in Eq. (4.9) is not the only lepton number or flavour violating process

62



5.5. OTHER ELEMENTS OF THE MASS MATRIX

that could occur. Rare processes like muon–electron conversion or some
Kaon decays are possible, but current experiments are not yet sensitive to
them [98, 104, 105]. But in principle, just as in 0νββ, a decay like K+ →
π−µ+µ+ would have a branching ratio proportional to |mµµ|2. Also for
model–builders it can be interesting to have a detailed analysis of other
neutrino mass matrix elements and not just |mee|. The rest of the matrix
elements can be classified in the ones with electron flavour contribution (meµ

and meτ ) and the ones without (mµµ, mττ , and mµτ ). The former ones yield
some correlations for IH or QD while the latter ones are only interesting for
QD–neutrinos. The work in this section is based on [95].

5.5.1 The mass matrix elements meµ and meτ

The general expression for the eµ–element of the neutrino mass matrix is

meµ = c13

((
e2iαm2 −m1

)
s12c12c23 + eiδ

(
e2iβm3 − e2iαm2s

2
12 −m1c

2
12

)
s23s13

)
.

(5.30)
This form is more complicated than the one for mee, which comes from
the chosen parametrisation for the PMNS–matrix. Note that here, we have
an off–diagonal element of the mass matrix. The CP–phase δ cannot be
eliminated and it has (as well as the two Majorana phases α and β) to be
varied from −π to π. This variation is plotted for the best–fit and the 3σ
oscillation parameters in Fig. 5.6.
One can now have a look at some extreme cases, namely θ13 = 0 and θ23 =
π/4:

• θ13 = 0: The eµ–element of the mass matrix looks like

(meµ)θ13=0 =
(
e2iαm2 −m1

)
s12c12c23, (5.31)

which gives as lower limits

|meµ|θ13=0 &





s12c12c23

√
∆m2¯ = 0.003 eV NH,

s12c12c23
∆m2

¯
2
√

∆m2
atm

= 0.0003 eV IH,

s12c12c23
∆m2

¯
2m0

= 2.6 · 10−5 eV QD,

(5.32)

with the best–fit parameters and m0 = 0.5 eV for QD. This means
that, for vanishing θ13, the eµ–element of the mass matrix cannot
vanish exactly, but it can be very close to zero. The corresponding
upper limits are

|meµ|θ13=0 . s12c12c23





√
∆m2¯ = 0.003 eV NH,

√
∆m2

atm = 0.014 eV IH,

m0 = 0.15 eV QD,

(5.33)
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Figure 5.6: The absolute value of the eµ–element of the neutrino mass matrix
for three example values of θ13 (left: normal, right: inverted mass ordering)
and the best–fit and 3σ oscillation parameters. All three phases are varied
from −π to π. Because of µτ–symmetry, a plot of |meτ | looks practically
identical.
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which explains the narrow band for NH as well as the broadening for
IH. Approximate expressions in the different regimes are

|meµ|θ13=0 '





1
2

√
∆m2¯c23 sin 2θ12 NH,

c23 sin 2θ12

√
∆m2

atm sinα IH,

m0c23 sin 2θ12 sinα QD.

(5.34)

This also explains the broader range for |meµ|θ13=0 in the cases of IH
and QD: the Majorana phase term sinα can take any value between
−1 and 1, which is not the case for NH, where the scale is roughly√

∆m2¯/
√

8. This is about 0.002 eV for the best–fit parameters.

• θ23 = π
4 : Here, the mass matrix element is

(meµ)θ23=π/4 =
c13√

2

[ (
e2iαm2 −m1

)
s12c12+

+ eiδ
(
e2iβm3 − e2iαm2s

2
12 −m1c

2
12

)
s13

]
. (5.35)

The absolute values are with best–fit (1σ, 3σ) parameters 2.9 (0–7.1, 0–
12.3) meV for NH, 0–30.7 (0–34.8, 0–40.6) meV for IH, and 0–0.33 (0–
0.38, 0–0.43) eV for QD and m0 = 0.5 eV. Values of sin2 2θ13 around
0.03 allow for complete cancellation even for NH (cf. the first two
best–fit plots on the left panel in Fig. 5.6). This comes because for

these specific values, the two leading terms, namely
√

∆m2¯s12c12 and√
∆m2

atms13, happen to be almost identical. For smaller values of
sin2 2θ13, the first term dominates, and for larger ones, the second
term does so. In IH and QD, the matrix element can always practically
vanish for sinα ' 0, which could also be seen in 0νββ:

|mee|meµ=0
θ13 6=0 '

{ √
∆m2

atmc2
13 IH,

m0c
2
13 QD.

(5.36)

In Fig. 5.7, some observable parameters are plotted in the case that meµ

vanishes. On the left, there is a scatter plot of the smallest neutrino mass
(denoted m here) against the Majorana phase α. As expected for inverted
mass ordering, α is equal to 0 or ±π, which causes sinα to vanish, and
hence the effective mass is essentially given by

√
∆m2

atm for IH and m0 for
QD. This is exactly what causes the band for the effective mass on the right
of Fig. 5.7 to be very narrow, since only those cases with sinα ' 0 lead
to a vanishing eµ–element of the mass matrix. Accordingly, if we knew the
value for |meµ|, a discrimination between normal and inverted mass ordering
would be much easier than just by measuring |mee|.
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Figure 5.7: Possible observables for meµ = 0. The left plot shows the
smallest neutrino mass m against the Majorana phase α, and the right one
shows the smallest against the effective mass. In both cases, the blue (dark)
dots indicate normal, and the yellow (light) ones indicate inverted mass
ordering. The oscillation parameters are varied within their 3σ ranges.

Finally, the eτ–element of the mass matrix is

meτ = c13

((
m1 − e2iαm2

)
s12c12s23 + eiδ

(
e2iβm3 − e2iαm2s

2
12 −m1c

2
12

)
c23s13

)
,

(5.37)
which is nothing than meµ with the replacements s23 → c23 and c23 → −s23.
Due to the µτ–symmetry [106, 107], a plot of this matrix element would be
practically indistinguishable from Fig. 5.6.

5.5.2 The mass matrix elements mµµ, mττ , and mµτ

Let us start with mµµ which reads

mµµ = m1

(
c23 s12 + eiδc12s13s23

)2
+

+ e2iαm2

(
c12c23 − eiδs12s13s23

)2
+ e2i(β+δ)m3c

2
13s

2
23. (5.38)

This is plotted in Fig. 5.8 as function of the smallest neutrino mass for both
mass orderings and for the best–fit parameters as well as their 3σ ranges.
Again, there are two special cases:

• θ13 = 0: Then, the µµ–element is

(mµµ)θ13=0 = c2
23

(
e2iαm2c

2
12 + m1s

2
12

)
+ e2i(β+δ)m3s

2
23. (5.39)
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In the three different regimes, this gives

|mµµ|θ13=0 '





s23

√
∆m2

atms2
23 + 2

√
∆m2¯∆m2

atmc2
12c

2
23 cos 2(α− β − δ) NH,

√
∆m2

atmc2
23

√
1− sin2 2θ12 sin2 α IH,

m0

∣∣c2
23

(
e2iαc2

12 + s2
12

)
+ e2i(β+δ)s2

23

∣∣ QD,
(5.40)

Hence, the scale of mµµ in the hierarchical regime for vanishing θ13

is roughly
√

∆m2
atm/2 ' 0.02 eV (note that for IH, cancellations up

to 50% are possible due to the phase–term, which plays only a minor
role for NH, where the first term under the square root is dominant).
Numerically, the best–fit (1σ, 3σ) oscillation parameters give 20.2–26.3
(15.8–31.1, 6.4–41.3) meV for NH, 8.9–23.5 (6.6–27.9, 2.4–37.9) meV
for IH, and 0.0–0.5 (0.0–0.5, 0.0–0.5) eV for QD and m0 = 0.5 eV.

For θ13 = 0, mµµ cannot vanish for NH and IH (cf. Fig. 5.8). For NH,
the µµ–element is centered around

√
∆m2

atm/2 and for IH, it is equal
to |mee| multiplied with c2

23. In this case, also meµ and meτ would be
known to be quite small. Hence, if one for sure has an inverted hierar-
chy, e. g. by measuring an |mee| around 0.05 eV in a 0νββ–experiment,
one can also determine other elements of the mass matrix without the
need to know the Majorana phase α. This clearly shows, that already
the knowledge of the neutrino mass hierarchy would greatly improve
our knowledge about the nature of neutrinos, since the ordering implies
a definite structure in the neutrino mass matrix.

In the case of QD–neutrinos, Eq. (5.40) implies that |mµµ| will be
zero, if only the term inside the modulus vanishes. However, looking
at Fig. 5.8, one can see that this is not true for normal mass ordering,
at least for using the best–fit oscillation parameters. It looks especially
strange, that the curves for normal and inverted ordering seem to be
so different in that case. However, this can be easily understood by
defining the small quantities 2r¯ ≡ ∆m2¯/m2

0 and 2ratm ≡ ∆m2
atm/m2

0,
which allow to write m1 = m0, m2 ' m0(1 + r¯), and m3 ' m0(1 +
ratm) for NH, and m1 ' m0(1 + ratm), m2 ' m0(1 + r¯ + ratm), and
m3 = m0 for IH (cf. Eq. (5.3)). For mµµ in the QD regime with θ13 = 0
and θ23 = π/4, this gives approximately

mµµ ≈
{

m0
2

(
s2
12 + c2

12e
2iα(1 + r¯) + e2i(β+δ)(1 + ratm)

)
normal,

m0
2

(
s2
12(1 + ratm) + c2

12e
2iα(1 + ratm + r¯) + e2i(β+δ)

)
inverted.

(5.41)
In both cases, the term proportional to e2i(β+δ) dominates, but for
inverted mass ordering, the sum of the two subdominant terms can
exceed the value of the dominating one. For normal mass ordering, this
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Figure 5.8: The absolute value of the µµ–element of the neutrino mass
matrix for two example values of θ13 (left: normal, right: inverted mass
ordering) and the best–fit and 3σ oscillation parameters. All three phases
are varied from −π to π. Because of µτ–symmetry, a plot of |mττ | looks
practically identical.

is not possible due to the different dependence of the particular terms
on the mass square differences. Hence, the µµ–element of the neutrino
mass matrix can only vanish for an inverted mass ordering, as long as
the best–fit values of the oscillation parameters are somehow accurate.
For normal ordering, the minimal value of |mµµ| (and the difference
between normal and inverted mass ordering in the QD regime) is given
by 1

2m0(ratm−c2
12r¯). This is about 0.0018 eV for m0 = 0.3 eV, which

is in agreement with Fig. 5.8. In principle, a difference of this order
also occurs for other matrix elements, like |mee|, where this difference is
approximately m0ratm, but there the absolute values of the particular
element are orders larger than this difference, and hence, it is not
visible in the associated plots (cf. Fig. 5.3).
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Anyway, the approximate expression for |mµµ| can lead to an inter-
esting correlation between θ23 and the Majorana phase α, as will be
shown at the end of this section.

• θ23 = π
4 : In this case,

(mµµ)θ23=π/4 =
1
2

(
m1

(
s12 + eiδc12s13

)2
+

+e2iαm2

(
c12 − eiδs12s13

)2
+ e2i(β+δ)m3c

2
13

)
, (5.42)

which gives numerically, again for the usual different parameter ranges,
0.9–1.2 (0.8–1.4, 0.1–1.8) meV for NH, 8.9–23.5 (2.9–25.9, 0–31.1) meV
for IH, and 0–0.50 (0–0.50, 0–0.51) eV for QD and m0 = 0.5 eV.
The only important thing is, that now mµµ can also vanish for IH in
contrast to the case where θ13 = 0 (cf. last picture for best–fit values
on the right panel of Fig. 5.8).

Going to mττ should again not cause a big difference, due to µτ–symmetry.
This element reads

mττ = m1

(
eiδc12s13c23 − s23s12

)2
+

+ e2iαm2

(
c12s23 + eiδs12s13c23

)2
+ e2i(β+δ)m3c

2
13c

2
23. (5.43)

A plot would look identical to Fig. 5.8.
The remaining element is mµτ . Its absolute value looks most complicated:

|mµτ | = 1
2

cos 2θ23e
iδ

(
m1 − e2iαm2

)
sin 2θ12s13−

− 1
2

sin 2θ23

(
e2iαm2c

2
12 + m1 s2

12−

− e2iδ
(
e2iβm3c

2
13 +

(
m1c

2
12 + e2iαm2s

2
12

)
s2
13

))
. (5.44)

Note that the first term is suppressed due to the smallness of θ13 and due to
the close–to–maximal value of θ23. This element is plotted in Fig. 5.9, which
looks not much different from mµµ and mττ . Important is that, for vanishing
θ13, this element can only be zero for an inverted mass ordering, even if all
oscillation parameters are varied within their full 3σ ranges. The reason for
this is again the interplay of the terms with the mass square differences. In
the strongly hierarchical regime, this element can never be zero, even if θ13

is relatively large.
To finish this section, let us mention one interesting correlation, that can
occur in the QD regime for vanishing (or nearly vanishing) mµµ, mττ , or
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Figure 5.9: The absolute value of the µτ–element of the neutrino mass
matrix for two example values of θ13 (left: normal, right: inverted mass
ordering) and the best–fit and 3σ oscillation parameters. All three phases
are varied from −π to π.

mµτ . The approximate expressions for all three elements in this case with
θ13 = 0 are

|mµµ|QD ' m0

∣∣∣c2
23

(
e2iαc2

12 + s2
12

)
+ e2i(β+δ)s2

23

∣∣∣ ,

|mττ |QD ' m0

∣∣∣s2
23

(
e2iαc2

12 + s2
12

)
+ e2i(β+δ)c2

23

∣∣∣ ,

|mµτ |QD ' m0c23s23

∣∣∣
(
e2iαc2

12 + s2
12

)− e2i(β+δ)
∣∣∣ . (5.45)

Note that the µτ–element cannot vanish for normal mass ordering if θ13 = 0,
but in all other cases, this works, and this is illustrated in Fig. 5.10. A zero
mµµ is not possible for sin2 2θ23 > 1, and accordingly mττ cannot vanish
for sin2 2θ23 < 1. This is reflected in the visible symmetry of the associated
points in the figure. Exactly maximal θ23 will lead to vanishing mµµ and
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mττ if sin α = 0 or sin(β + δ) = 1.
Hence, also for the elements presented here, some correlations are possible
in certain special cases.

Figure 5.10: The correlation between θ23 and α (top) and between θ23 and
β + δ (bottom) for QD neutrinos and θ13 = 0 in case that particular ele-
ments of the neutrino mass matrix vanish. For the µτ–element, there is no
dependence on θ23, as expected from Eq. (5.45), since θ23 does not appear
inside the absolute value. All parameters except θ13 are varied within their
3σ ranges.
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Chapter 6

Conclusions

We have started with an introduction of some pieces of neutrino physics,
which are relevent for this work. Therefore, we have explained mass terms
of Dirac and Majorana type, as well as the seesaw mechanism, which could
be a natural explanation for the astonishing smallness of neutrino masses.
Afterwards, we have turned to neutrino oscillations, which are only possi-
ble for massive neutrinos. Hence, the detection of this phenomenon is an
evidence that not all neutrino masses can be zero. Meanwhile, neutrino os-
cillations are accepted and well understood, but the parameters are not yet
known to a very good precision, which makes it at some points difficult to
discriminate between different theoretical models. As closure of Chapter 2,
the cosmological methods to get bounds on neutrino masses as well as the
time–of–flight measurements of neutrinos coming from supernova explosions
have been discussed.
In Chapter 3, a possible method to perform a precision measurement of the
solar parameters of neutrino oscillation, θ12 and ∆m2¯, has been presented.
One could use a Large Liquid Scintillator Detector (LLSD) like the proposed
45 kt LENA experiment. Since this detector has a large fiducial mass, it
is possible to take a small (in fact mobile) reactor for such a measurement
to get good results. We have performed a detailed statistical analysis of
such a configuration using the χ2 approach. Some estimates can be made
analytically (under certain assumptions), but reliable results are only pos-
sible with a numerical simulation. This has been done using the GLoBES
software package. As backgrounds, some neighbouring nuclear reactors as
well as Geo–neutrinos have been taken into account. Due to its uncertain-
ties, the latter background needs an accurate treatment, which has been
done by having a look at different Geo–neutrino scenarios and by a careful
implementation in the minimization algorithm. As a result, the optimum
baselines turn out to be roughly around 50 km. Geo–neutrinos shift the best
baselines to higher values (70–80 km). For a mobile reactor, the precision
of a measurement of θ12 or ∆m2¯ turns out to be around 5%, while with a
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large reactor even a precision on the sub–percent level would be possible.
Then, in Chapter 4, we have reviewed the known methods for a direct mea-
surement of the neutrino mass, which are possible in a laboratory. First,
the kinematical measurement using the β−–decay of tritium has been intro-
duced. Such experiments have already been performed, but until now, there
exists only an upper bound of the “νe–mass” of e. g. 2.3 eV at 95% C.L.
from the Mainz experiment. The upcoming KATRIN experiment will im-
prove this limit to 0.2 eV. A different way of measuring the neutrino mass
would be by neutrinoless double beta decay (0νββ), which is the simulta-
neous emission of two electrons by one nucleus without the emission of the
associated neutrinos. This process can only happen for Majorana neutri-
nos and would hence also be a test for the fundamental nature of neutrinos
as well as for a possible violation of the lepton number, but has not been
observed yet due to the large lifetime (∼ 1024 years). What would be mea-
sured in this decay, is the so–called effective neutrino mass |mee|, which has
been discussed in the following chapter. At the end, we have also presented
possible alternatives to 0νββ, such as neutrinoless double electron capture
as well as neutrinoless single electron capture together with simultaneous
emission of a positron.
Finally, in Chapter 5, we have dealt with the neutrino mass matrix and have
analyzed its entries. The most important one of these is the effective mass
|mee| as measured in neutrinoless double beta decay. This mass has been
discussed in detail and all possible cases for both hiearchies and with spe-
cial focus on a future improved limit on the not yet measured mixing angle
θ13 are presented. The effective mass shows quite characteristic features,
that could help to distingiush between the two possible mass orderings of
neutrino masses, normal (m1 < m2 < m3) and inverted (m3 < m1 < m2).
Unfortunately, for normal mass ordering, this effective mass could even van-
ish and since it is inversely proportional to the lifetime of 0νββ, this would
make the observation of such a process impossible. In that situation, one
might not be able to decide if this non–observation comes from the fact that
neutrinos are indeed Dirac particles or simply from the effective mass being
zero. However, if one knew from some other measurement that neutrinos are
indeed Majorana particles, one could derive very stringent bound from this
“negative” result on the sum Σ of all neutrino masses, which can be tested
by cosmological observations. For the sake of completeness, also the other
elements of the neutrino mass matrix are discussed and possible implications
of some of them being zero are presented.
Crucial for all possible results is a good knowledge of the neutrino oscillation
parameters. One can hope that we will soon enter an era of precision mea-
surements on neutrino properties to be able to distinguish between different
models and to learn more about the nature of these fascinating objects called
neutrinos Wolgang Pauli has “invented” already more than 70 years ago.
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