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Abstract

The universe consists predominantly of matter. Only a tiny fraction is made up by antimat-
ter. This disproportion can be expressed by a number called the baryon asymmetry. It has
been measured accurately by the WMAP satellite experiment.Conventional theories trying
to explain this observation in a dynamical way are referred to as baryogenesis. A newer class
of mechanisms are the leptogenesis theories. They predict that the asymmetry has first been
created in the lepton sector and has then been converted partly into a baryon asymmetry. The
observation that neutrinos are massive particles makes such mechanisms attractive.
Every theory that hopes to explain the baryon asymmetry needs to satisfy the Sakharov con-
ditions. Among others there must be a deviation from thermalequilibrium. These non-
equilibrium scenarios are usually described by means of kinetic theory. However leptogenesis
takes place at early times and very high temperatures. It is unclear whether this description is
adequate under such extreme conditions.

Zusammenfassung

Das Universum besteht überwiegend aus Materie und nur zu einem sehr kleinen Anteil aus
Antimaterie. Dieses Missverhältnis kann durch eine Zahl zum Ausdruck gebracht werden, die
man Baryonasymmetrie nennt. Diese ist durch das WMAP Satelliten-Experiment genau bes-
timmt worden. Herkömmliche Theorien, die diese Beobachtung auf eine dynamische Weise
zu erklären versuchen werden als Baryogenese bezeichnet. Eine neuere Klasse von Theorien
bilden die so genannten Leptogenese Theorien. Sie gehen davon aus, dass die Asymmetrie
ursprünglich im Lepton-Sektor erzeugt, und schließlich teilweise in eine Baryonasymmetrie
konvertiert wurde. Die Beobachtung, dass Neutrinos eine endliche Masse besitzen macht
solche Mechanismen attraktiv. Jede Theorie, welche die Baryonasymmetrie zu erklären ver-
sucht muss notwendigerweise die Sakharov-Bedingungen erfüllen. Unter anderem verlan-
gen diese, dass es eine Abweichung vom thermodynamischen Gleichgewicht gegeben haben
muss. Diese Nichtgleichgewicht-Szenarien werden üblicherweise mithilfe von kinetischer
Theorie beschrieben. Leptogenese findet jedoch zu sehr frühen Zeiten und bei sehr hohen
Temperaturen statt. Es ist unklar, ob dieser Ansatz unter solch extremen Bedingungen richtig
ist.
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Chapter 1

Introduction

Our world consists predominantly of matter and only a tiny fraction is made up by antimatter. This
is not only an observation which we can make in our every days life.

Planetary probes have visited eight of the nine planets, andthe one to visit the ninth has just been
brought on its way.1 None of these probes has found evidence for antimatter. We can conclude,
that our solar system is made up of matter. We will see that there is compelling evidence, that this
statement also holds for the universe as a whole.

This experimental observation can be expressed by a number called baryon asymmetryη. Namely
the difference between the number density of baryons and that of antibaryons divided by the
number density of photons. Its numerical value has been determined to good accuracy by the
WMAP satellite which explores the anisotropies in the cosmic microwave background radiation.

η =
nB − nB̄

nγ
≃ nB
nγ

= (6, 01 ± 0, 3) · 10−10

This number tells us, that if there were1010 + 1 baryons versus1010 antibaryons at the time
when the temperature of the universe dropped below the rest-mass of the nucleon and therefore
the baryons and antibaryons started to annihilate, they would leave1 baryon and(2)1010 photons
behind giving a baryon to photon ratio of10−10.

On the one hand one can assume, that this asymmetry is an initial condition of the universe. This
approach is somewhat unsatisfactory, because there is no reason why nature should prefer the
dominance of particles over anti-particles or vice versa.

Another possibility would be, that the asymmetry has developed dynamically during the evolution
of the universe. To find such an explanation has indeed been the goal of many scientists in the past
decades.

There is broad agreement, that any theory trying to explain the baryon asymmetry has to satisfy at
least three conditions, originally established by Andrej Sakharov. These conditions are in detail:
baryon number violation, C and CP violation and finally the deviation from thermal equilibrium.

Conventional mechanisms which manage to accomplish this task can be found in the literature
under the name baryogenesis. They can be distinguished by how they realize the Sakharov con-
ditions. Examples are GUT baryogenesis and electroweak baryogenesis. However the theoretical
and experimental advance has made these theories seem increasingly unlikely.

1The NASA mission New Horizons has been launched on January 19, 2006. However at the moment it is unclear
whether Pluto might loose its planetary status, when the probe arrives there by 2015.
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6 CHAPTER 1. INTRODUCTION

The observation that neutrinos perform flavour oscillations and therefore must be massive particles
makes another class of scenarios thinkable. These are the leptogenesis theories. They predict
that the asymmetry was first created in the leptonic sector before it has been converted into the
baryon asymmetry we observe today. So called sphaleron processes are made responsible for
this conversion. They are a non-perturbative aspect of non-abelian gauge theories ascribed to the
nontrivial structure of the electroweak vacuum. They are baryon and lepton number violating
processes.

As we will see these processes are incorporated in the standard model. However leptogenesis also
requires extensions to this very successful compendium of elementary particle physics. In partic-
ular it requires the existence of heavy Majorana neutrinos.By virtue of the seesaw mechanism,
which relates the light neutrino states to the heavy ones, the existence of these speculative particles
would at the same time solve one of the open questions posed bythe standard model: Why are
neutrinos so light?

The major part of this work is related to the third of the Sakharov conditions, the deviation from
thermal equilibrium. In most current theories this criterion is realized by a standard out of equi-
librium scenario within which the deviation from equilibrium is caused by the rapid expansion of
the universe.

The details of this scenario are usually investigated, solving the so called Boltzmann equations.
This central equation of kinetic theory describes the evolution of the single particle distribution
function. While it has been successfully applied to many different physical problems, it is far from
obvious whether this equation is indeed suitable for the description of the primordial plasma of
the early universe.

We will see, that in view of the assumptions made in its derivation this seems to be rather unlikely.
Unfortunately in most treatises of leptogenesis this aspect is not payed much attention to.

This thesis consists essentially of three parts.

In the first chapter we discuss the underlying physics such asthe necessary extensions to the
standard model and we give an overview of baryogenesis scenarios discussed in the literature. As
an example we will describe thermal leptogenesis in slightly more detail.

The second part is entirely devoted to kinetic theory and statistical mechanics in cosmology. We
will introduce the Boltzmann equation and discuss, in some detail, the limits of its applicability.
Then we will successively generalize it in order to obtain the form encountered in cosmology.

In the last chapter we will investigate a simple toy model which has all necessary ingredients
for baryon number generation. We will try to solve it by two means. First, we follow a certain
standard approximation scheme found in the literature to simplify them for approximate analytical
solution. Second, we will employ a more sophisticated numerical method in order to solve the
unaltered equations exactly.

Throughout this work we will use natural units where~ = c = k = 1 which implies that
[energy] = [mass] = [temperature] = [length]−1 = [time]−1.

In this system we have1 GeV≃ (2.0 × 10−14 cm)−1 ≃ (6.6 × 10−25 s)−1 ≃ 1.2 × 1013 K, and
G = m−2

pl , whereG is Newtons constant andmpl ≃ 1.2× 1019 GeV denotes the Planck mass.



Chapter 2

Leptogenesis

In this first chapter we give an overview of the different possibilities to determineη. Then we will
summarize the Sakharov conditions and point out how these are satisfied in different baryogene-
sis scenarios (i.e. GUT baryogenesis, electroweak baryogenesis and Affleck-Dine leptogenesis).
Afterwards we briefly review the prerequisites necessary tounderstand the details of leptogenesis.
Finally we discuss thermal leptogenesis in some detail.1

2.1 Overview

The goal of all baryogenesis and leptogenesis theories is toexplain the value ofη in the universe.

The significance of this number is due to the fact that the ratio nb/nγ stays constant during the ex-
pansion of the universe as long as it is adiabatic.2 This means that once the baryon asymmetry has
come into existence the value ofη is altered only by entropy producing non-equilibrium effects.

At temperaturesT ∼ 1 GeV the rate of the back-reaction of the processp + p̄ ←→ γ + γ drops
rapidly, because theγ’s lack the energy to produce the massive protons, but the reaction proceeds
in the forward direction. We will calculate in chapter 3 thatat this temperature the baryon number
density will have dropped to a value ofnB/nγ ≃ 10−18, if the baryons are still in equilibrium
at this time. Therefore the baryon asymmetry must have been created at temperatures well above
1 GeV.

Consequently baryogenesis takes place in the early universe, independent of how the mechanism
works in detail. Table 2.1 lists a number of important eventsin the history of the early universe as
suggested by the Big Bang model.

1See [1], [2], [3].
2This is due tonb ∼ a−3 andnγ ∼ T 3 ∼ a−3 (nγ ∼ s, sa3 = const,s ∼ a−3) for adiabatic expansion. Cf.

section 3.8.
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8 CHAPTER 2. LEPTOGENESIS

Temperature Event

1019 GeV mpl Big Bang; current theories fail
Inflation; exponential growth; preexisting
baryon asymmetry is essentially whipped out

1016 GeV MGUT GUT phase transition; (timescale of GUT
baryogenesis)

100 GeV MW Electroweak phase transition; (timescale of
electroweak baryogenesis)

1 GeV mN Hadron freeze-out; quarks condense into
hadrons; baryons and antibaryons annihilate

0.1 MeV . ED Primordial Nucleosynethesis; origin of the
light elements

0.1 eV . RY RecombinationandCMB Decoupling

Figure 2.1: Thermal history of the universe in the Big Bang model. Note that all statements
about physics before primordial nucleosynethesis are highly speculative. In general the uncertainty
increases when going back in time. Conversion between energy and temperature:1 GeV = 1.16×
1013 K (deuteron binding energyED ≃ 2.2 MeV, Rydberg energyRY ≃ 13.6 eV). See e.g. [4],
[5].

Evidence for the Baryon Asymmetry

As advertised there is compelling experimental evidence that the universe contains much more
matter than antimatter. We will now see where this evidence comes from in detail.

On earth antimatter can only be found in the storage rings of the big collider experiments in
quantities of fractions of grams.

Cosmic Rays exhibit an admixture of anti-protons of10−4. This number can however be explained
by secondary processes such asp+p→ 3p+p, induced by high-energetic particles colliding with
interstellar matter.

Also we can infer from the absence of annihilation products (i.e. γ-radiation) that our galaxy
contains no antimatter. If there were significant amounts ofantimatter present in the universe it
would be separated from the matter parts on large scales. However theoretical estimates show that
the patches at times when the separation must have been present could not have contained more
particles than about0.1·Msol, which is of course not sufficient to form galaxies.3 By this argument
the existence of such patches can be excluded.

If we setnB̄ = 0 the most obvious way to determineη is to compute the rationB/nγ based on
astronomical data from galaxy surveys. The photon number density at temperatureT = 2.728
(CMBR) is nγ ∼ 4 × 108 m−3.4 A current estimate for the density of baryonic matter from
measurements of visible matter in galaxies isnb ∼ 1/20 m−3. This yields the rationb/nγ ∼
10−10, which has already the correct order of magnitude.

Primordial Nucleosynethesis
3See also [6]
4The bulk of photons today belongs to the CMBR



2.1. OVERVIEW 9

Primordial nucleosynethesis or Big Bang nucleosynethesis(BBN) predicts very successful the
abundance of the light elements D,3He, 4He and7Li. For this reason BBN is the most important
affirmation of the Big Bang model.5 The formation of elements proceeds over a chain of reactions
which starts with the creation of (stable) deuterons via

p+ n→ d+ γ .

The deuterons are then processed into He by the following reactions:

d+ d→3 He+ n, 3He+ d→4 He+ p

Further reactions convert a small fraction of these elements to7Li. The precise relative abundance
of He depends sensitively on the temperature or time when nucleosynethesis starts, because the
weak process

p+ e− ←→ n+ νe , (2.1)

which governs the size ofnn/np produces preferable (stable) neutrons at low energies. Based on
the assumption that essentially all neutrons end up in4He nuclei one finds for the ratio of the He
mass density and the total mass density at the time of nucleosynethesis:

ρHe
ρ

=
2(nn/np)

1 + (nn/np)
(2.2)

Now, the crucial reaction, which determines the beginning of nucleosynethesis is the photo-
disintegration of the deuteron

d+ γ → p+ n .

Therefore, a naive estimate would be to use the deuteron binding energy≃ 2.2 MeV as energy
scale for nucleosynethesis. However this approach fails, because the photons in the high energy
tail of the distribution function prevent the creation of deuterium till temperatures ofT ≃ 0.1 MeV.
A sophisticated analysis also has to take the energy dependence of the weak reaction (2.1) into
account. In order to obtain a reliable result one needs to solve the network of coupled Boltzmann
equations of all involved particle species.6

In figure 2.2 the relative abundance of the light elements is drawn as a function ofη.

5See [7] for an introduction.
6See [8] for a broad analysis of the network of Boltzmann equations.
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Figure 2.2: Abundance of the light elements as predicted by primordial nucleosynethesis as a
function ofη. The vertical line gives the observed values. We see that He makes up the biggest
part of the light elements in the universe.

The comparison of the theoretical prediction with the measured abundances yields the BBN result

ηBBN = (2.6 − 6.2)× 10−10 .

Cosmic Microwave Background

A newer value forη can be found based on the cosmic microwave background radiation (CMB).
The CMB is to a very good approximation Planck distributed:

P (ν, T ) dν = 8πh
(ν

c

)3 dν

ehν/kT − 1
(2.3)

However there exist deviations from perfect isotropy at a level of 10−5. These anisotropies have
been measured with high accuracy by the WMAP satellite experiment [9]. The deviations, which
are attributed to small density fluctuations in the photon baryon plasma at the time of decoupling
are commonly analyzed by decomposition of the spectrum intospherical harmonics:

∆T

T
=
∑

lm

almYlm(θ, φ) (2.4)
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with expansion coefficientsalm defining the so called power spectrum by

l(l + 1)Cl = l(l + 1)
〈

|alm|2
〉

. (2.5)

Later on the fluctuations grew driven by gravitational instability and eventually caused the forma-
tion of structures like stars and galaxies.

Many important cosmological entities can be inferred from the WMAP data. For instance one
expects a peak at multipole momentl = 220 for a flat universe. This peak does indeed exist. See
figure 2.3.7

Figure 2.3: The famous CMB power spectrum, measured by the WMAP satellite. The solid lines
represent the best-fit cosmological model.

Also the baryon asymmetryη has been be determined in this way.

The WMAP result is [9]:
ηCMB = (6.1+0.3

−0.2)× 10−10 (2.6)

7Another important result is the partition of the total density into dark energy, dark matter and baryonic matter
contributions.
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Now that we are convinced that the universe is baryon dominated we can think of mechanisms
which could account for this fact. As outlined above all candidates have to be in agreement with
three necessary conditions.

The Sakharov Conditions

Sakharov realized (1968) that a baryon asymmetry could havebeen dynamically produced in the
early universe if three necessary conditions are satisfied8

In order to see what these conditions are, suppose we know a certain process, which we suspect to
account for the asymmetry. Let us writeM(i→ j) for the amplitude of a transition from the state
i to a statej and let̄i be the CP conjugated state toi.9 CPT invariance then implies that

M(i→ j) =M(j̄ → ī) . (2.7)

Unitarity of the S Matrix implies10

∑

j

|M(i→ j)|2 =
∑

j

|M(j → i)|2 . (2.8)

Combining these two yields

∑

j

|M(i→ j)|2 =
∑

j

|M(j → ī)|2 =
∑

j

|M(j → i)|2 (2.9)

=
∑

j

|M(̄i→ j)|2 , (2.10)

because the sum is over all states and anti-states.

And if we have CP invariance

|M(i→ j)|2 = |M(̄i→ j̄)|2 = |M(j → i)|2 (2.11)

• Baryon number violation∆B 6= 0

This condition is obvious, since otherwise the universe could never develop a net non-zero
baryon number starting fromη = 0.

Baryon number violation is a generic feature of GUT theories(e.g. SU(5), SO(10), E6),
because both quarks and fermions are contained in the same irreducible representation of
the gauge groupG and thus it is possible for scalar particles and gauge bosonsto mediate
interactions between them [12].

Within the standard model baryon number can be violated by non-perturbative effects (in-
stantons).

8See [10]; Independently Wadim Kuzmin (1970).
9For simplicity we assume Maxwell-Boltzmann statistics here, i.e. statistical factors are equal to1; see [11].

10The sum of all transition probabilities from and to a statei are equal, see appendix C.
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• C and CP violation

We can infer from (2.11) that without CP violation equal numbers of a statei and its anti-
statēi give equal numbers of final statesj and its anti-states̄j. Therefore no baryon asym-
metry can develop when CP is conserved.

CP violation in GUT theories arises from loop corrections tothe baryon number violating
bosonic decay processes. CP -violation is also incorporated in super-symmetric models.

In the standard model C is maximally broken because only left-handed quarks and leptons
are gauge coupled. CP violation has first been observed in 1964 in the neutral Kaon sys-
tem.11 CP violation also shows up in the more recentB0 − B̄0 experiments at BaBaR at
SLAC and BELLE at KEK. However the CP -violating complex phase in the CKM-Matrix
seems to be to small in order to account for the observed baryon asymmetry.

• Departure from thermal equilibrium

of the respective (i.e. the baryon number violating) process.

This is a direct consequence of CPT invariance: If we writeθ = CPT andρ for the density
matrixρ(t) = e−β(t)H(t) with HamiltonianH, then

〈B〉T = Tr(e−βHB) = Tr(θ−1θe−βHB)

= Tr(θe−βHBθ−1) = Tr(θe−βHθ−1θBθ−1) = Tr(e−βH(−B)) = −〈B〉T .
(2.12)

Here we exploited the fact thatθ andH commute, when CPT is preserved. We can also infer
this condition from eqn. (2.9), which tells us, that when allstates are equally populated,
transitions from these states must producei and ī in equal numbers. Moreover eqn. (2.10)
tells us that any initial difference in the particles abundance is erased, because the total
amplitudes from all statesj to i andī are equal and the rates will therefore be proportional
to the number densities.

Therefore, whenever a system is in equilibrium no net baryonnumber can be generated.

We conclude that when C and CP violation are present such thateqn. (2.11) does not hold, a
system containing equal numbers of initial statesi and ī could indeed produce unequal numbers
of final statesj andj̄ provided that the transitions occur in a non-equilibrium situation.

Note that the presence ofB-violating interactions (at very high energies) also almost destroys any
initial baryon asymmetry. We can therefore assume, that anypossibly preexisting baryon number
is wiped out and that it is equal to zero when the processes of baryogenesis sets in.

There are several scenarios for baryogenesis. They can be classified based on how the Sakharov
conditions are realized. We will now mention some of them.

GUT Baryogenesis

GUT baryogenesis was the first scenario discussed to accountfor the baryon asymmetry. InSU(5)
GUT12 the fermions belong to the irreducible representations

5f = [dcL, lL] and10f = {dl, ucL, ecL} .
11The semileptonic decays ofK0 andK0 to π−l+νl andπ+l−νl are found to have a slight preference for the former.
12SU(5) GUT is essentially ruled out by the experimental limits on proton lifetime. Nevertheless it is often used for

illustrational purposes.
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The fermions are coupled to the gauge bosons by

g√
2
24V

[

(5f )
†(5f ) + (10f )

†(10f )
]

.

SU(5) GUT contains24 gauge bosons:W±, Z, γ, 8 gluons and 12 lepto-quarksX,X belonging
to 24V .

Baryon number violation is naturally satisfied in GUT theories, because quarks and leptons belong
to the same irreducible representation. The heavyX andX particles undergo lepton and baryon
number violating decays to quark lepton pairs.13

When the reaction rate of these particles drops below the expansion rate of the universe the parti-
cles decay out of equilibrium (see below). If the decays violate C and CP at the same time, then
all the Sakharov conditions are satisfied.

However, until today there are no experimental indicationsfor the supposed particle decays. Fur-
thermore, any baryon asymmetry created before the electroweak phase transition is exposed to the
washout effect by so called sphaleron processes if no nonzero B − L asymmetry exists. we will
discuss these effects in some detail.

Electroweak Baryogenesis

In electroweak baryogenesis the property of sphalerons to violateB is exploited to produce baryon
number. The third Sakharov condition is satisfied by boundary effects between bubbles of coexist-
ing broken and unbroken electroweak phase, which could format the electroweak phase transition.
The prerequisite of this scenario is that the electroweak phase transition must be strictly first order.
This requires the Higgs mass to be significantly smaller than80 GeV. (mH > 115 GeV imposed
by LEP)

This scenario is therefore viable only in certain super symmetric extensions in which the stop14

mass could be smaller than the top-quark mass.

Affleck-Dine Baryogenesis

Affleck-Dine baryogenesis15 is a mechanism suggested for SUSY theories. It is based on the
existence of many flat directions in the potential of the scalar quarks and scalar leptons. After
SUSY breaking the flat directions acquire soft SUSY-breaking masses of order of1 TeV.

The expectation values of the scalar fields could get values of the order of the Planck mass. These
scalar fields then start to oscillate in the flat directions, when their mass is comparable to the
expansion rate of the universe. If there exist any baryon number violating nonrenormalizable
operators, these would induce baryon number violation.

Baryon asymmetry is generated at the end of the inflationary period. This leads to an asymmetry
between quarks and antiquarks after reheating.

This mechanism is still viable if the dilution during expansion is not greater than by a factor of
1010.

13See e.g. [13], [14], [15]
14The stop is the supersymmetric partner of the top particle.
15See [16].
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Leptogenesis

We have seen that the different baryogenesis theories suffer from various problems. It makes
therefore sense to seek for alternative mechanisms.

The basic idea of leptogenesis is, that first a lepton asymmetry is created, which is then converted
(partially) to a baryon asymmetry.

The conversion between baryon number and lepton number is then accomplished by sphaleron
processes.

As for baryogenesis there exist numerous candidates. Examples are thermal leptogenesis, non-
thermal leptogenesis and neutrinogenesis [17]. In this thesis we will mainly address the first one.

Before we begin with the detailed discussion of thermal leptogenesis, we outline the underlying
physics.

2.2 The Standard Model

In this section we will briefly summarize the standard model.16

The standard model is a gauge theory based on theSU(3)C ⊗SU(2)L⊗U(1)Y symmetry group.
The fermionic particle content is made up by fundamental quarks and leptons. They can be ar-
ranged in a scheme of three families, each of which contains acharged lepton and the correspond-
ing neutrino and an up and a down like quark. In the standard model the charged lepton and its
neutral partner as well as the quarks appear in left-handedSU(2)L doublets. Furthermore, there is
a right-handed singlet field for each charged lepton and quark. There are no right-handed neutrino
fields:

lL =

(

νl
e

)

L

, qL =

(

qu
qd

)

L

, eR, quR, qdR . (2.13)

Within this model strong, weak and electromagnetic interactions between the fermions are de-
scribed by the exchange of gauge bosons (8 gluonsGaµν , theW± andZ bosons and the photon)

The full SM-Lagrangian can be written as

L = LF + LH + LY + LG . (2.14)

The fermion LagrangianLF describes the coupling of the gauge fields to the fermions.

LF = iψγµDµψ (2.15)

where we combined all fermion fields to one spinorψ = (νeL, eL, eR, . . . , bR)T . The gauge
fields show up in the covariant derivatives

Dµψ =
(

∂µ + igsG
a
µFa + igW a

µTa + ig′BµY
)

ψ .

Fa applied toψ multiplies all lepton fields with0 and all quark fields withλa/2 (λa are the Gell-
Mann matrices).

16See e.g. [18], [19]
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The gauge part of the Lagrangian reads

LG = −1

4
BµνB

µν − 1

2
TrWµνW

µν − 1

2
TrGµνG

µν (2.16)

with electroweak and gluon field strength tensorsWµν = ∂µWν − ∂νWµ + ig [Wµ,Wν ], Bµν =
∂µBν − ∂νBµ andGµν = ∂µGν − ∂νGµ + igs [Gµ, Gν ] respectively.

Spontaneous Symmetry Breaking

Within the SM the fermion masses are generated by the Higgs mechanism of spontaneous symme-
try breaking.17 The full gauge symmetry of the standard model is not exact below the electroweak
scale (246 GeV). Rather it is broken to the subgroupSU(3)C ⊗ U(1)QED. This is due to the ex-
istence of flat directions connecting the degenerate statesof minimal energy in the Higgs potential
V (φ†φ) = −µ2(φ†φ) + λ(φ†φ)2, which appears in the Higgs part of the Lagrangian.

LH = (Dµφ
†)(Dµφ)− V (φ†φ) (2.17)

Here we introduced the Higgs-doublet

φ =

(

φ†

φ0

)

.

The Yukawa interaction Lagrangian couples the fermion fields to the Higgs-field:

−LY = huij q̄Liφ̃quRj + hdij q̄LiφqdRj + f eij l̄LiφeRj + h.c. . (2.18)

Herehuij , h
d
ij, f

e
ij are constant3 × 3 coupling matrices,̃φ is related to the Higgs doublet by

φ̃ = iτ2φ∗ andi, j are generation indices.

When the electroweak symmetry is broken, the Higgs field acquires a nonzero vacuum expectation
value (VEV):

〈φ〉0 =
1√
2

(

0
v

)

, v =
(√

2GF

)− 1
2 ≃ 246 GeV.

The Yukawa terms in (2.18) then exhibit the structure of massterms with mass matrices

(mu)ij = huijv, (md)ij = hdijv, (me)ij = f eijv . (2.19)

We recall that there exist no right handed neutrino fields in the SM which could be coupled by
Yukawa interactions. Consequently neutrinos are masslesswithin the SM .

The Higgs mechanism also predicts the masses of the heavy gauge bosonsW± andZ by

MZ cos θW = MW =
1

2
vg ,

and a massive scalar gauge boson, the Higgs particle.18 The photon stays massless.

In the next section we will describe a less popular facet of the standard model, the so called
sphaleron processes.

17Fermionic mass terms are not allowed, because they would break the gauge symmetry. See e.g. [20], [21].
18This is the only particle predicted by the standard model which has not been observed yet. However one can be

optimistic that it will be found by upcoming experiments at LHC. The current lower bound for its mass is114 GeV.
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2.3 Sphaleron Processes

Anomalies

Before we start to explain what sphalerons are, we turn our attention to an important aspect
of quantum field theory. Anomalies can occur, whenever a classical field theory is quantized.
When the classical Lagrangian exhibits a certain symmetry this implies the existence of conserved
Noether currents. During the process of quantization this conservation can be lost.

Consider as an example the chiral triangle anomaly.19

We start with the QED Lagrangian

LQED = ψ̄
(

i /D −m
)

ψ − 1

4
FµνF

µν , (2.20)

with Fµν = ∂µAν − ∂νAµ and covariant derivativeDµψ = (∂µ − ieAµ)ψ.

It posesses a globalU(1) symmetry and a local chiral symmetryψ → eiαγ5ψ andψ̄ → ψ̄eiαγ5 ,
i.e. it is invariant with respect to the following infinitesimal symmetry transformations:

U(1)V : δθψ = ieθ(x)ψ

δθAµ = ∂µθ(x)

U(1)A :
1

2
δαψ = iαγ5ψ . (2.21)

The Noether currents corresponding to this symmetries are given by:

jµ = ψ̄γµψ (vector current),

j5µ = ψ̄γµγ5ψ (axial vector current). (2.22)

In the massless case both currents are conserved:

∂µjµ = 0 ,

∂µj5µ = 2imP = 2imψ̄γ5ψ =
m=0

0 .

At quantum level these conservation laws are replaced by so called Ward-Identities. These can be
expressed in terms of three point functions:

T µνλc (x, y, z) = i 〈0| T
(

jµ(x)jν(y)jλ5 (z)
)

|0〉 ,
Pµνc (x, y, z) = i 〈0| T

(

jµ(x)jν(y)P (z)
)

|0〉 .

HereT denotes time ordering.

According to a theorem by Adler and Bardeen the chiral anomaly in QED is given entirely by
the triangle diagrams shown in figure 2.4. Higher order corrections are irrelevant, hence the name
triangle anomaly.

19The chiral anomaly makes an important contribution to the decay of the neutral pionπ0 → γγ. The triangle
anomaly is also called abelian anomaly. See [22].
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T µνλc (k1, k2; a) =
p

p-q

q

γν

γλ γ5-i

γµ

p-k 1

k1

k2

+

γµ

γλ γ5-i
k1

k2

p-k 2q

p-q

p

γν

Figure 2.4: Triangle diagrams of the chiral anomaly.a denotes the ambiguity in the regularization
by shifting the loop momentum by an amount ofa. The diagrams are drawn fora = 0. In order to
obtain conservation of the vector current∂µj

µ = 0 we must make the choicea = −1.

Fermion triangle diagrams are divergent. Therefore one needs a regulator in order to compute
them. The trouble is that there exists no regulator which conserves both vector current and axial
vector current. Choosing the regulator such that the vectorWard identity is non-anomalous one
finds in coordinate space for the Ward identities (vector Ward identity and axial vector Ward
identity)

i∂xµT
µνλ
c (x, y, z) = 0 ,

−i∂xλT µνλc (x, y, z) = 2mPµνc (x, y, z) +
1

2π2
ǫµναβ∂xα∂

y
β

(

δ(4)(x− z)δ(4)(y − z)
)

. (2.23)

Calculating

〈0|T (∂µj
µ
5 ) |0〉 =

i

2
e2
∫

Aµ(y)Aν(z)∂
x
λT

µνλ
c (y, z, x) +O(e2) , (2.24)

one can employ the Ward identity to find the (non-) conservation laws forjµ andjµ5 :

∂µj
µ = 0 ,

∂µj
µ
5 = 2imP +

e2

16π2
ǫµναβFµνFαβ . (2.25)

The quantized axial current is not conserved, even in the limit m = 0.

Sphalerons

The most general renormalizable Lagrangian invariant under the SM gauge group (and only con-
taining color singlet fields) is automatically invariant under global abelian symmetries (accidental
symmetries) which may be identified with baryonic and leptonic symmetries. Therefore it is not
possible to violateB andL at any order of perturbation theory.

However there are (’t Hooft 1976) nonperturbative processes that may give rise to processes which
violateB + L but conserveB − L.20 The presence of the triangle anomaly implies the presence
of infinitely many vacuua. These vacuua are connected through instantons. At quantum level, the
baryon and the lepton symmetries are anomalous so that theirrespective Noether currentsjµB and
jµL are no longer conserved, but satisfy (cf. (2.25)):

∂µj
µ
B = ∂µj

µ
L = nf

(

g2

32π2
W a
µνW̃

aµν − g′2

32π2
Fµν F̃

µν

)

,

20See [23], [24], [25].



2.3. SPHALERON PROCESSES 19

where

W̃ µν =
1

2
ǫµναβWαβ

is the dual of theSU(2)L field strength tensor and̃Fµν accordingly.nf is the number of families.
We see immediately, that

∂µ
(

jµB − j
µ
L

)

= ∂µj
µ
B−L = 0 ,

∂µ
(

jµB + jµL
)

= ∂µj
µ
B+L 6= 0

which means, thatB − L is conserved whereasB + L is violated. The change in baryon number
can then be written

∆B = ∆NCS = nf [NCS(tf )−NCS(0)]

where the (integer) Chern-Simons number is defined to be

NCS(t) =
g2

32π2

∫

d3xǫijkTr

(

Ai∂jAk +
2

3
igAiAjAk

)

.

Here we used Gauss’s theorem

∆B =

∫ ∞

−∞
dt∂0

∫

d3xj0B(x) =

∫ ∞

−∞
dt

∫

d3x∂µj
0
B(x) = B(+∞)−B(−∞) .

Thus changes in the Chern-Simons Number result in changes ofthe baryon number which are
integral multiples of the number of familiesnf . If the system performs a transition from one
vacuum to the closest one, the Chern-Simons number is changed by unity and∆B = ∆L = nf .

So each transition creates9 left-handed quarks (3 color states for each generation) and3 left-
handed leptons (one per generation).21

However adjacent vacuua of the electroweak theory are separated by a ridge of configurations with
larger energies.

The probability for this transition to occur is highly suppressed by a Boltzmann factor:

Γsphaleron(T ) ∝ T−3 exp

(

−Esphaleron(T )

T

)

. (2.26)

One distinguishes two kinds of transitions between distinct vacuua of a field configuration.

Transitions at zero temperature are calledinstantons. In QCD instantons are soliton solutions of
the Yang-Mills equations in euclidean space which are localised in space and time. The instanton
solutions describe the quantum mechanical transition between the different classes of Yang-Mills
vacuua.

Transitions at finite temperatures are calledsphaleron processes. The factor in (2.26) prevents
the process from occurring under today’s conditions but it is expected that the rate becomes
sufficiently large at temperatures above the electroweak phase transition> 100 GeV (Kuzmin,
Rubakov and Shaposhnikov (KRS)).

21Note that theW -field couples only to left-handed fermions.



20 CHAPTER 2. LEPTOGENESIS

Figure 2.5: Schematic picture of the electroweak vacuum structure. In order for a sphaleron
transition to occur the system has to overcome the barrier between two adjacent vacuua. This
process can take place at a high rate, only if the energy is high enough. An instanton would be a
transition by tunneling between two vacuua atT = 0. The ridge with the lowest energy is a saddle
point and is referred to as thesphaleron. This picture was taken from [26].

Although sphalerons are nonperturbative phenomena this effective12-fermion interaction can be
described by the following Lagrange term [23]:

OB+L =
∏

i=1..3

(qLiqLiqLilLi) (2.27)

One of the possible processes is depicted in figure 2.6.

Sphaleron bL

bL

tL

sL
sL

cL

dL

dL

uL
νe

νµ

ντ

Figure 2.6: One of the possible sphaleron processes. Involved are12 left-handed fermions (3
leptons and9 quarks). This picture was taken from [27].

In the high temperature plasma of the early universe the Boltzmann factor (2.26) becomes small
and theB+L violating butB−L conserving processes might be efficient enough to produce the



2.4. BEYOND THE STANDARD MODEL 21

observed baryon asymmetry. However sphalerons are more efficient in washing out any existing
baryon asymmetry.

Whereas the instantaneous effects described in this section are entirely part of the standard model,
the theory of leptogenesis is based on physics beyond the standard model. Namely right-handed
neutrinos. We are going to introduce them in the next section.

2.4 Beyond the Standard Model

Neutrino Oscillations and Neutrino Masses

In recent years neutrino experiments like SuperKamiokande, the Sudbury Neutrino Observatory
(SNO) and KamLAND showed that neutrinos do flavour oscillate. This observation requires non-
zero neutrino masses. It can be seen as the first experimentalevidence for physics beyond the
standard model. Current best fit values for the mass-squareddifferences are22 (at3σ level):

∣

∣∆m2
23

∣

∣ = (1.2 − 4.8) × 10−3 eV2 (athmosphericν ’s)
∣

∣∆m2
12

∣

∣ = (5.4 − 9.5) × 10−5 eV2 (solarν ’s) (2.28)

In particular these values place lower bounds on the neutrino masses of
√

∆m2
atm ≃ 0.05 eV and

√

∆m2
sol≃ 8× 10−3 eV.

Neutrino oscillation experiments are only sensitive to mass-squared differences. Direct mass
constraints come e.g. from the measurement of the endpoint spectrum of tritium beta decay
3H→ 3He+ νe + e− for the electron neutrino and the pion decayπ+ → µ+ + νµ for νµ.

mνe < 2.5 eV

mνµ < 170 keV

mντ < 18 MeV

Despite of the efforts in this field, the most stringent bounds still come from cosmology:23

∑

i

mi < 30h2 eV . (2.29)

Chiral Decomposition

In order to understand neutrino masses we need some technical knowledge of chiral fields. The
left- and right-handed chirality projection operators aredefined as:

PL =
1− γ5

2
, PR =

1 + γ5

2
. (2.30)

22Neutrino oscillation experiments also measure the mixing anglessin2 2θ23 andsin2 2θ12. For these values see e.g.
[28].

23The Big Bang model predicts that there is a fixed ratio betweenthe number of neutrinos (ni ≃ 110 cm−3) and the
number of photons in the cosmic microwave background. If thetotal mass of all three types of neutrinos would be to
large, there would be so much mass in the universe that it would collapse. (see below)
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With help of these operators we can decompose any Dirac field in its chiral components:

ψ = PLψ + PRψ = ψL + ψR . (2.31)

We denote charge conjugation by

ψ → (ψ)c = Cψ
T

= iγ2γ0ψ
T
. (2.32)

When applied to a chiral field, the charge operator flips its chirality:

(ψL)c = (ψc)R, (ψR)c = (ψc)L . (2.33)

It follows, that we may write

ψR = (ψcL)TC, ψL = (ψcR)TC . (2.34)

Right Handed Neutrinos and the Seesaw Mechanism

In principle one could account for neutrino masses by simplyadding a Dirac mass term for the
neutrinos (i.e. adding adequate right-handed neutrino fields) to the standard model Lagrangian
[29], [30]. However this would leave the puzzle of the existence of different mass hierarchies
within the standard model unresolved. All charged fermion masses are within a range of two
orders of magnitude, but the masses of the neutrinos are smaller by several orders of magnitude.

As we have seen, within the standard model the masses of the charged quarks and leptons arise
from Yukawa couplings of the form

LY = −fφlLlR + h.c. (2.35)

The coupling constant for such a Yukawa term would bef ≃ mf
〈φ〉0

∽ 10−14 for a neutrino of mass

mν ≃ 0.01 eV, whereas the Yukawa coupling for the electron isfe ∽ 10−6. One could of course
assume, that this hierarchy is accidental.

The option favored by most theorists to circumvent this unattractive scenario is the so called see-
saw mechanism. It explains the smallness of light neutrino masses by the largeness of heavy
Majorana neutrino masses.

In contradiction to Dirac mass terms a Majorana mass term canbe constructed out of the left-
handed fields alone (and for the right-handed fields accordingly):

LmL = −mL

2
(νL)cνL + h.c. (2.36)

We can see that the Majorana mass terms are not invariant under U(1) transformations

ψ → eiαψ, ψ → ψe−iα , (2.37)

like the Dirac mass terms. This means that the Majorana mass term will break the associated
charges (electric charge, lepton number). Therefore charged particles cannot have a Majorana like
mass term.
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Figure 2.7: A Dirac mass term converts a neutrino into a neutrino (above), i.e it absorbs a neu-
trino and emits a neutrino, or an anti-neutrino into an anti-neutrino. On the other hand Majorana
mass terms convert neutrinos into anti-neutrinos (below),or vice versa. The cross denotes mass
insertion.

In the seesaw picture neutrinos are assigned both, a Dirac mass and a right-handed Majorana mass
(we switch to three leptonic generations now):

Lmν = −1

2

[

(νL)c, (νL)c
]

M
[

νL
(νR)c

]

+ h.c. (2.38)

with 6× 6 mass matrixM. νL andνR are vectors in flavour space:

νL =





νLe
νLµ
νLτ



 , νR =





νRe
νRµ
νRτ



 .

Because of(νRα)(νRβ)
c = (νRβ)(νRα)

c,M can be taken to be symmetric:

M =

[

0 mT
D

mD mR

]

. (2.39)

mD andmR are3× 3 matrices.

ThereforeM can be brought into block diagonal form with the help of an orthogonal transforma-
tion

MD = UTMU =

[

m′
n 0

0 mN

]

. (2.40)

Since we wantmD to be of the same order as the other leptonic masses and sincemR must be
large enough not to induce any processes, which would have been observed in the laboratories, we
havemD ≪ mR.24 This allows us to set

U =

[

1 ρ
−ρ† 1

]

. (2.41)

This means, that
U †U = 1 +O(ρ2) , (2.42)

to first order in the small parameterρ.

In order to expressLmν in terms of mass-eigenstates, we write

χL =

[

χ1

χ2

]

= U−1

[

νL
(νR)c

]

. (2.43)

24Since the right handed neutrino is an electroweak singlet, its mass is not protected by the electroweak symmetry.
One can assume that its mass is of order of the GUT scale, or some intermediate scale∼ 1010 − 1015.
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Now we have to diagonalizem′
n (mN is already diagonal). We do so by performing another

orthogonal transformation with3 × 3 matrixV . The physical neutrino states of definite mass are
then defined by

n = V †χ1 + V Tχc1 ,

N = χ2 + χc2 . (2.44)

And the diagonal mass matrices are

mn = V TmDM
−1mT

DV ,

mN = mR . (2.45)

In terms of these expressions (2.38) can be written as

−Lmν =
1

2
nmnn+

1

2
NmNN . (2.46)

Furthermore, we can see that these states are transformed into themselves under charge conjuga-
tion nc = n andN c = N . Neutrinos which are their own antiparticles are known asMajorana
neutrinos.

Carrying out the block diagonalization (2.39) we find

ρ ≃ mDm
−1
R . (2.47)

We see thatρ is indeed a small parameter, just as we have assumed.

We conclude that the general form of the Lagrangian (2.38) yields three light and three heavy
Majorana neutrino states. According to (2.45) the large masses of the heavy states suppress the
masses of the light states, hence the name seesaw.

Despite of the beauty of the seesaw mechanism it is still unclear whether neutrinos are Majorana
particles or not. A direct prove for the Majorana character would be neutrinoless double beta
decay Nuc→ Nuc′ + 2e−. Current experimental results on this field, however give noconvincing
evidence for this process.

2.5 Thermal Leptogenesis

As we have seen above, sphaleron processes could convert any(in the high temperature phase)
existingB − L asymetry to a non zero value ofB + L. In thermal leptogenesis the initialB − L
asymmetry is generated by the out of equilibrium decay of thelightest (heavy) Majorana neutrino
N1 into lepton-Higgs pairs.25 One can satisfy Sakharov’s conditions for lepton number in the same
way as for baryon number in the GUT scenario.

We begin with the SM extended by 3 right-handed neutrino fields. The Yukawa part of the La-
grangian, inducing the CP violating decays is

LY = −lLiφheijeRj + lLiφ̃h
∗
νijνRj −

1

2
(νR)cMνR + h.c. (2.48)

25See [31], [1], [32], [33].



2.5. THERMAL LEPTOGENESIS 25

Spontaneous symmetry breaking generates the Dirac mass matrices

(mD)ij = hijv , (2.49)

where the physical Majorana neutrino states with definite massMi are given by

Ni = νRi + νR
c
i . (2.50)

For simplicity one assumes hierarchical Majorana neutrinomassesM1 ≪M2, M3.

The lepton asymmetry is then generated by the CP -violating decays

N1 → lφ ,

N1 → lφ∗ . (2.51)

These decays obviously violate lepton number. The relevanttemperature scale will beT ∼ M1.
That means that any lepton asymmetry possibly produced byN2 andN3 decays would be depleted
by processes involvingN1, and that the observed asymmetry eventually is created by the out of
equilibrium decay ofN1.

CP Asymmetry

The CP asymmetryǫ1 in the Majorana neutrino decays is caused by interference between the tree
level and the one-loop diagrams in figure 2.8.26

Nj

l

φ

+ Nj

φ

l

N

φ

l

+

l

φ

N
Nj

l

φ

Figure 2.8: Tree level and one-loop contributions to the heavy Majorana neutrino decayNj → lφ.

ǫ1 =
Γ(N1 → liφ)− Γ(N1 → l̄iφ̄)

Γ(N1 → liφ) + Γ(N1 → l̄iφ̄)

=
1

8π

1

|h1i|2
∑

l=2,3

Im [h1ih1kh
∗
lih

∗
lk]

[

f

(

M2
l

M2
1

)

+ g

(

M2
l

M2
1

)]

, (2.52)

where

f(x) =
√
x

[

1− (1 + x) ln

(

1 + x

x

)]

−→
x−1→0

− 1

2
√
x

g(x) =

√
x

1− x −→x−1→0
− 1√

x
. (2.53)

26This is similar to GUT baryogenesis; See for instance [34], [1].
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Therefore, we have, usingM1 ≪M2, M3:

ǫ1 = − 3

16π

1

|h1i|2
[

Im [h1ih1kh
∗
2ih

∗
2k]

M1

M2
+ Im [h1ih1kh

∗
3ih

∗
3k]

M1

M3

]

. (2.54)

Using

(mD)ij = hijv ,

(mDm
†
D)11 = (mD)1i(m

†
D)i1 = (h1ih

∗
1i)v

2 ,

(mDm
†
D)12 = (mD)1i(m

†
D)i2 = (h1ih

∗
2i)v

2 , (2.55)

one finds:

1

|h1i|2
Im [h1ih1kh

∗
2ih

∗
2k] =

=
1

(mDm
†
D)11v2

[

Im

[

(

(mDm
†
D)12

)2
]

M1

M2
+ Im

[

(

(mDm
†
D)13

)2
]

M1

M3

]

(2.56)

A rough estimate forǫ1 is given by

ǫ1 ∼ 0.1
M1

M3
∼ 10−6 . (2.57)

This means that the order of magnitude of CP asymmetry is given by the mass hierarchy of the
heavy Majorana Neutrinos i.e.M1

M3
∼ 10−5

Evolution Equations

Buchmï¿12 ller et al. derive the following equations for the evolutionof the heavy neutrino abun-
danceNN1 = nN1/s (cf. section 3.8) and theB − L asymmetryNB−L = nB−L/s [28], [35]:27

dNN1

dx
= −(ΓD + ΓS)(NN1 −NEQ

N1
) , (2.58)

dNB−L
dx

= −ǫ1ΓD(NN1 −NEQ
N1

)− ΓWNB−L , (2.59)

wherex = M1
T . In chapter 4 we will derive very similar equations in the framework of a simple

toy model. Here we can only try to understand them intuitively.

NN1 andNB−L are calculated for a co-moving volume element (see section 3.8).

The first equation describes the evolution of the heavy Majorana neutrino abundance. It can be
solved independent of the second one.

ΓD accounts for decays and inverse decays:

ΓD =
1

8π
(h†h)11M1

K1(z)

K2(z)
,

27In literature these equations are usually refered to as the Boltzmann equations. We find that this is not a good
terminology, as we will explain below.
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whereK1 andK2 are modified Bessel functions, see appendix B. The rate of inverse decays is

given byΓID =
nEQ
N1
nl

ΓD. ΓS describest- ands-channel scattering processes ofN1 with the Higgs
field.

ΓS = 2ΓN1
φ,t + 4ΓN1

φ,s

Finally there is the washout rate which reduces an existingB − L asymmetry by∆L = 1 and
∆L = 2 scattering processes

ΓW =

(

1

2
ΓID + 2Γlφ,t + Γlφ,s

NN1

NEQ
N1

)

+ 2ΓlN + 2ΓlN,t

From (2.58), we can see that both,ΓD and ΓS try to change theNN1 abundance towards its
equilibrium valueNEQ

N1
. The decay processes also act as a source term for theB − L abundance,

however only, ifNN1 −NEQ
N1
6= 0 i.e. if there is a deviation from equilibrium.ΓW competes with

the source term in a way that it tries to decrease any existingB − L asymmetry.

Equations (2.58) and (2.59) can approximately be solved analytical in some limiting cases. In
general this has to be done numerically. The result for typical parameters is depicted in figure 2.9.

z = M1/T

log10(N)

|NB−L|

NN1

N eq
N1

Figure 2.9: Starting from zero initial abundance,NN1 = 0 approaches its equilibrium valueNEQ
N1

.
At the same time a nonvanishingB − L asymmetry evolves, because this initial condition is an
extreme non-equilibrium situation. WhenNN1 reaches its equilibrium value the asymmetry is
erased by washout processes. Finally, due to the rapid expansion the Majorana neutrinos decay
out of equilibrium and the final asymmetry comes into existence. The parameters are:M1 =
1010 GeV, ǫ1 = 10−6, m̃1 = 10−3 eV andm̄ = 0.05 eV (m̃1: effective neutrino mass;̄m2 =
m2

1 +m2
2 +m2

3: absolute neutrino mass scale). This picture has been takenfrom [28].

When only decays and inverse decays are taken into account, one can replaceΓD+ΓS → ΓD and
ΓW → ΓID in equations (2.58) and (2.59). The second equation can thenformally be integrated
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to give

NB−L = N i
B−Le

−
R z
zi
dz′ΓID(z′) − 3

4
ǫ1κ(z; m̃1) , (2.60)

with efficiency factorκ:

κ(z) =
4

3

∫ z

zi

dz′ΓD
(

NN1 −NEQ
N1

)

e−
R z
z′
dz′′ΓID(z′′) . (2.61)

N i
B−L is a possible initial asymmetry. The integrals in (2.61) canbe evaluated approximately in

the regime of strong washout (where the decay rate is much larger than the expansion rate of the
universeΓD ≫ H) and in the regime of weak washout (whereH ≫ ΓD). Sinceκ does not
depend on the CP asymmetryǫ1 we find, setting any initial asymmetry to zero, that the generated
NB−L is proportional toǫ1.

Relation BetweenB, L and B− L

In order to find out, how large the finalB asymmetry produced by sphaleron processes out of
the nonzeroL asymmetry will be, one assumes that the involved leptons, quarks and Higgs parti-
cles are interacting rapidly enough via Yukawa, gauge and sphaleron processes to stay in thermal
equilibrium. This induces relations between the chemical potentials of the various particle species.

Using the relation (3.72) one finds, that (close to chemical equilibrium) lepton number density
nL ∼ LT 2

3 and baryon number densitynB ∼ BT 2

6 can be expressed in terms of the chemical
potentials (see section 3.8). This gives on the other hand with the SM baryon and lepton numbers:

B = 3× 1

3

∑

i

(2µqi + 2µui + 2µdi) ,

L =
∑

i

(2µli + 2µei) . (2.62)

The effective sphaleron Lagrangian in (2.27) yields
∑

i

(3µqi + µli) = 0 . (2.63)

The condition that the total hypercharge must vanish results in the relation28

∑

i

(

3
1

3
2µqi + 3

4

3
µui + 3(−2

3
)µdi + 2(−1)µli + (−2)µei +

1

N
(1)µφ

)

=
∑

i

(

µqi + 2µui − µdi − µli − µei +
2

N
µφ
)

= 0 , (2.64)

with N =
Ng
nH

= 3.

The Yukawa interactions, when in equilibrium establish

µli = µl, µqi = µq , (2.65)

28Here we useYq = 1
3
, Yu = 4

3
, Yd = − 2

3
, Yl = −1, Ye− = −2, Yφ = 1.
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and so on (for the different generations).

Employing all the above relations one can expressµq, µu, µd, µe, µφ in terms ofµl:

µq = −1

3
µl ,

µu =
2N − 1

6N + 3
µl ,

µd = −6N + 1

6N + 3
µl ,

µe =
2N + 3

6N + 3
µl ,

µφ =
4N

6N + 3
µl . (2.66)

Inserting these results into (2.62) this gives after some calculation

B = −4N

3
µl ,

L =
14N2 + 9N

6N + 3
µl ,

B − L = −22N2 + 13N

6N + 3
µl , (2.67)

and finally

cs ≡
B

B − L =
8N + 4

22N + 13
=

28

79
. (2.68)

Note that this relation holds forT ≫ v only.

Thus we found by the analysis of the chemical potentials of all particle species in the high-
temperature phase, thatNB andNL are related by

NB = csNB−L =
cs

cs − 1
NL , (2.69)

with cs = 28/79.

In this sense lepton number violation is necessary in order to explain the cosmological baryon
asymmetry.

Putting the results of the previous paragraphs together we can formally write for the generated
baryon asymmetry

η =
nB − nB̄

nγ
= dǫ1κf ∼ 10−9 (2.70)

(ǫ1: CP asymmetry;ǫ1 ∼ 10−6; d ∼ 0.01: dilution factor that accounts for increase of the number
of photons in a co-moving volume element between baryogenesis and today;κf ∼ 0.1: efficiency
factor, determination requires solution of Boltzmann equation).

The baryon asymmetry is generated at a temperatureTB ∼ M1 ∼ 1010 GeV corresponding to a
time tB ∼ 10−26 s.
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Constraints on Neutrino Masses

By virtue of the seesaw mechanism, leptogenesis yields bounds for the light neutrino masses.

An upper bound for the CP asymmetryǫ1 ≤ ǫmax1 (m̃1,M1, m̄) from theory implies a maximal
baryon asymmetry:

η ≤ ηmax ≃ d ǫmax1 (m̃1,M1, m̄)κ(m̃1,M1, m̄
2) . (2.71)

Since both, CP asymmetry andκ can be expressed in terms of neutrino masses, requiring

ηmax≥ ηCMB ,

yields constraints for the neutrino masses. Buchmï¿1
2 ller et al. find as upper (lower) bound for the

light (heavy) neutrino mass [36]:

mi < 0.12 eV ,

M2,M3 ≫M1 > 4× 108 GeV. (2.72)

We see that the light neutrino mass bounds are competitive tothe mass bounds presented in section
2.4. However we should keep in mind that there exist numeroustheories trying to explain the
observed baryon asymmetry. Probably the mass bounds shouldrather be understand as a test
condition for thermal leptogenesis.

Look-Out

Equations (2.58) and (2.59) are derived from a set of (full) Boltzmann equations by means of a cer-
tain approximation technique. This kind of approximation has first been applied to baryogenesis
theories, where very similar Boltzmann equations are encountered [11].

During this derivation various assumptions are made concerning the momentum distributions of
the interacting particles. Unfortunately, due to the complexity of the Boltzmann equations it is
hardly possible to estimate the error imposed by these simplifications. Therefore it is desirable to
solve the Boltzmann equations independently in order to findout how large the error bars are.

Another more fundamental problem is that the Boltzmann equations are in principle intended
for the description of systems of dilute classical gasses. The early universe at the timescales of
leptogenesis however consists of a dense strongly interacting plasma. In such extreme situations
effects will occur which are not described by kinetic equations.

In order to find out how important these processes are a completely quantum field theoretic de-
scription of non-equilibrium process such as leptogenesisis needed. This task lies way beyond
the scope of this thesis, but we will try to specify why the Boltzmann equations are imperfect with
respect to the primordial plasma.



Chapter 3

Kinetic Theory

Conventional equilibrium thermodynamics deals with macroscopic quantities such as particle
number, energy or pressure which are obtained as average values of a large ensemble of identical
systems. In order to understand non-equilibrium phenomenahowever it is necessary to follow the
evolution of a specific system in detail. Therefore one needsa microscopic description of many
particle systems. Such a description is given by kinetic theory.

The basic object of this theory is thesingle particle distribution functionf(x, k). It is defined
such thatf(x, k)∆3x∆3k = ∆N is the average number of particles with momenta in the range
(k, k + ∆k) located in the volume(x, x + ∆x) at a timet.1

Once this distribution function is known all macroscopic quantities can in principle be calculated
from it.

In the context of relativistic kinetic theory it is important to note thatf is a Lorenz scalar. This
can be seen as follows. Consider a fixed number of (massive) particles ∆N . Say, viewed by an
observer in a co-moving coordinate system, the size of a virtual box enclosing all∆N particles is
∆x′ = ∆x′∆y′∆z′. A different observer will see this volume element Lorenz contracted (assum-
ing parallel orientation of his coordinate system) with size ∆x = ∆x∆y∆z = ∆x′∆y′γ−1∆z′.
Since the energy of the particles seen by this observer isE = γm it is clear thatE∆x is a Lorenz
scalar. By similar argument one finds that∆k/E is also invariant. Therefore we can conclude that
f(x, k) = ∆N/(∆x∆k) is indeed a Lorenz invariant quantity. This reasoning can begeneralized
to massless particles.

3.1 The Boltzmann Equation

The central equation of kinetic theory was derived by LudwigBoltzmann over hundred years ago
as a description of dilute mono-atomic gasses. It is an integro-differential equation which governs
the time evolution of the particle distribution functionf .

Although originally derived by Boltzmann for the classicalsystems of mono-atomic gasses the
Boltzmann equation has been applied to a broad range of physical problems. Among them are the
diffusion of neutrons in nuclear reactors, the behaviour ofelectrons and quasi-particles in solids
as well as various astrophysical problems.

1We use relativistic coordinatesx = xµ = (t,x). Note thatk0 is not an independent variable as the particle’s
4-momentum is confined to a hyperboloid in momentum spacek0 =

√
k2 + m2 = Ek. (i.e. f depends on seven

independent variables only.)

31
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In this chapter we will briefly introduce the Boltzmann equation in its relativistic and non-quantum
mechanical form. Then we will successively generalize it tofit our needs of a general relativistic
description of the primordial plasma. Some attention will be payed to the discussion of its limita-
tions. Finally, we will rewrite the equations in a form suitable for an efficient numeric solution.

In its most abstract form the Boltzmann equation can be written as

L[f ] = C[f ] . (3.1)

On the left hand side of the equation we have the Liouville operator

L[f ](x, k) = kµ∂µf(x, k) = k0 (∂t + u · ∇) f(x, k) , (3.2)

describing the time evolution of a phase space volume element. u is the three-velocityu = k/k0.

The collision term or collision integralC[f ] on the right hand side describes the change of the
distribution function due to binary interactions between the particles:2

C[f ](x, k) =

∫

[

f(x, q)f(x, r)W (q, r|k, p)− f(x, k)f(x, p)W (k, p|q, r)
]

d3p d3q d3r .

(3.3)

The integrand is composed of two terms, of which the first one (calledgain term) accounts for an
increase of particle number in the phase-space element∆4x∆3k aroundx in Minkowski-space
and around momentumk due to collisions of two particles with momentaq andr outside of this
volume, which result in a final state inside this region.

The second one (calledloss term) accounts for the loss of particles due to collisions insidethis
phase-space element, which result in states outside accordingly. Each of this terms is propor-
tional to the product of the densities of the two incident particles. This prescription is known as
Stosszahlansatz.

The proportionality factorW (k, p|q, r) is the transition rate (i.e. the probability per unit time and
volume that two particles with momentak andp are scattered into the final statesq andr). In a
quantum field theory it can be expressed in terms of the invariant matrix elements as

W (k, p|q, r) =
1

(2π)32p0(2π)32q0(2π)32r0
(2π)4δ(4)(k + p− q − r)|M(k, p→ q, r)|2 , (3.4)

where the delta-function ensures energy and momentum conservation. |M|2 is the invariant matrix

element squared. When the particles have spin|M|2 is replaced by|M|2, the amplitude averaged
over initial and final spin states.

Because of the scalar character of the distribution function and the invariance of the matrix ampli-
tude as well as the phase space elements

d3v

(2π)32v0
(3.5)

it is evident, that the collision integral (3.3) is Lorentz covariant.

2We suppress here and in the following any statistical factors for identical particles in the in and out-states and
introduce them later when needed.
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If the amplitude is invariant under interchange of initial and final momenta we can write3

W (k, p|q, r) = W (q, r|k, p) . (3.6)

This is the so calleddetailed balanceproperty. Then we can write eqn. (3.3) as

C[f ](x, k) =

∫

W (q, r|k, p)
[

f(x, q)f(x, r)− f(x, k)f(x, p)
]

d3p d3q d3r (3.7)

For simplicity we will use this form frequently in the subsequent sections although the property of
detailed balance is lost in case of CP violating processes such as in baryogenesis.

3.2 Macroscopic Variables

Now we list some macroscopic quantities that can be defined interms of the distribution function
f .

The first one is the particle four-flowNµ(x) defined as

Nµ(x) =

∫

f(x, p)
pµ

p0

d3p

(2π)3
. (3.8)

In isotropic systems the only nonzero component is the number density4

n = N0 =
g

2π2

∫

p2f(p) dp . (3.9)

The spatial part gives the particle flowj(x, t) which is not important in the isotropic case.

Then there is the energy-momentum tensorT µν , defined to be

T µν(x) =

∫

f(x, p)
pµpν

p0

d3p

(2π)3
. (3.10)

Its 00-component gives the energy density

ρ =
g

2π2

∫

p2p0f(p) dp . (3.11)

The spatial components give the pressure tensor, which gives in the isotropic case

gijP = T ij = gij
g

2π2

∫

p4

3p0
f(p) dp . (3.12)

This equation defines the pressureP .5 The energy-momentum tensor takes only the rest energy
and the kinetic energy of the particles into account. The interaction of the particles does not

3This is a consequence of combined symmetry under time reversal W (k, p|q, r) = W (−q,−r|−k,−p) and spatial
inversion i.e.W (k, p|q, r) = W (−k,−p| − q,−r).

4We introduced here the number of internal degrees of freedomg which will be important in the chapter about
cosmology. It is equal to one for scalar particles.

5The componentsT 0i andT j0 are called energy flow and momentum density respectively. They play no important
role in this work.
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contribute. In dilute systems the interaction energy can usually be neglected compared to the
kinetic energy.

Finally we define the entropy four-flow as

Sµ = −
∫

d3p

p0
pµf(x, p) log (f(x, p)) . (3.13)

In the next section we will formulate the H-Theorem on the basis of this quantity. This relation
expresses the fact that the Boltzmann equation exhibits irreversible behaviour. The second law
of thermodynamics tells us that entropy is always increasing. We will see that the Boltzmann
equation constitutes a microscopic basis for this statement.

3.3 Boltzmann H-Theorem and Collisional Invariants

In order to see whatcollisional invariants(also summational invariants) are, we define the follow-
ing functional operator:6

I[ψ] =

∫

d3k

k0
ψ(x, k)C(x, k) . (3.14)

Inserting the explicit expression (3.7) and performing thetransformations

(k, p)→ (q, r) ,

(k, q)→ (p, r)

on the integration variables, we can infer the following property ofI:

I[ψk] =
1

4
I[ψk + ψp − ψq − ψr] , (3.15)

where we used the index to label the particles (i.e.ψi is a function belonging to particlei). A
functionψ is called collisional invariant if the microscopic conservation law

ψk + ψp = ψq + ψr (3.16)

is satisfied, i.e. ifψ is a property conserved in every single collision. Since this is necessarily the
case for the all components of the four-momentumk and because of the linearity of the functional
I, collisional invariants will in general be a linear combination of these:

ψk(x, k) = ak(x) + bµ(x)k
µ , (3.17)

whereak(x) andbµ(x) are arbitrary functions except for the fact thatak(x) must be additively
conserved in a binary collision.

When we know such an invariant we can use equations (3.1), (3.2) in order to write

∂µ

∫

d3k

k0
kµψk(x, k)f(x, k) =

∫

d3k

k0
ψk(x, k)C(x, k) = I[ψk] = 0 . (3.18)

6The concept of collisional invariants can be generalized tosystems consisting of several particle species [37].
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Armed with the concept of collisional invariants it is easy to derive conservation equations for the
macroscopic quantities defined in the previous section. Forexample if we have particle conserva-
tion in the microscopic interaction we can chooseψ = 1. Then eqn. (3.18) immediately gives the
conservation law for particle four-flow:7

∂µN
µ(x) = 0 . (3.19)

In the same way the conservation law for the energy-momentumtensor can be derived:

∂νT
µν(x) = 0 . (3.20)

Using eqn. (3.13) we can define the local entropy production as

σ(x) = ∂µS
µ . (3.21)

This can be calculated to be

∂µS
µ = −

∫

d3k

k0
kµ
[

∂µf(x, k) log (f(x, k)) + ∂µf(x, k)
]

. (3.22)

The last term vanishes according to eqn. (3.19). We can therefore write, using (3.7):8

∂µS
µ =−

∫

d3k

k0
kµ∂µfk log (fk)

=− I[log (fk)] = −1

4
I[log

fkfp
fqfr

]

=− 1

4

∫

d3k

k0
d3p d3q d3rkµW (k, p|q, r) log

(fkfp
fqfr

)[

fqfr − fkfp
]

. (3.23)

Since(x − y) ln x
y > 0 for all x, y > 0 and equal to zero for (and only for)x = y it follows that

the entropy is always increasing. This property is known as theH-theorem. It is in agreement
with the second law of thermodynamics.9

According to the above derivationln (fk) is a summational invariant. This means we can write

ln f(x, k) = a(x) + bµ(x)k
µ . (3.24)

This in turn means, thatf , which we identify as equilibrium distribution function can be written

feq(x, k) = exp (a(x) + bµ(x)k
µ) . (3.25)

Forfeq being a true equilibrium distribution it is necessary that the left hand side of the Boltzmann
equation vanishes too:

L[feq] = 0 .

7In case of homogeneous systems this gives the conservation of the total particle number∂tN = 0
8Note, that we employ the detailed balance property here. However this is not necessary. According to [37] it is

sufficient to use the weaker condition of so-called bilateral normalization.
9One could ask, how this definite arrow of time occured in an equation derived from microscopic laws which are

invariant under time reversal. The answer is that the assumption of molecular chaos makes all the difference. Under
this assumption a collision has a definite direction in time,because two colliding particles must be uncorrelated before
they collide. After the collision however they are correlated.
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It can be shown, that this yields the following general form for the distribution function:

feq(k) = exp

(

µ− kµUµ
T

)

, (3.26)

where U is a constant four-vector obeyingUµUµ = 1.

In the classical limit this gives the distribution functionknown as Maxwell-Boltzmann distribution
(or Maxwellian), well known from statistical mechanics:

f(p) = e−(Ep−µ)/T . (3.27)

ForEk being the relativistic energy this is also the correct solution for relativistic systems in the
global rest frame, whereU = (1, 0, 0, 0).

We conclude that any initial distribution function inserted in the Boltzmann equation is evolved,
with steadily increasing entropy until it reaches the equilibrium distribution given by (3.27).

This process of thermalization is shown in figure 3.1 for a gasof massless bosons. Figure 3.2
shows the time dependence of the number density, energy density and entropy density. The plots
in this section show numerical results of the computer simulations performed within this work.
See section 4.5 for details.

f
(|k
|)

|k|
Figure 3.1: Thermalization of a homogeneous system of massless bosons. Successive time slices
of the distribution functionf(ti, |k|). At start timet0 the system is in an extreme non-equilibrium
situation (tsunami distribution). In agreement with theH-theorem it is evolved into a Bose-
Einstein distribution function (see below).
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n
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n/n0
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s/s0

Figure 3.2: Time dependence of the macroscopic quantities number density, energy density and
entropy density normalized to their initial value. As advertised, particle number and energy are
conserved. The entropy density converges against its maximum value. This indicates that the
system approaches thermal equilibrium.

We finish this general part on the Boltzmann equation with theremark that the major results
of the preceding sections can be generalized to the modifications below, namely the quantum
modifications and the generalization to mixtures.10

3.4 Limitations

Despite of its wide range of application the Boltzmann equation is suitable for the description of
a specific problem only if certain conditions are satisfied. These are in particular the assumptions
made during its derivation. Since there exist various derivations this conditions vary slightly in
literature.11 We discuss this subject at great length because it is usuallyneglected in treatments of
kinetic theory in early universe cosmology.

The key assumptions brought into play in the derivation of the Boltzmann equation are as follows:

• A basic assumption of kinetic theory which justifies the definition of the distribution func-
tion is thatf must be homogeneous and slowly varying in the range of the interaction.12

This means that there may be no rapid density fluctuations. This can safely be assumed for
most of the history of the early universe as we will see later.

10Another necessary, but far from obvious feature of the Boltzmann equation is the conservation of positivity of the
distribution function. Iff(x, k) ≥ 0 at the initial time then this must be true at later times too, sincef is a probability
distribution. A simple argument for this property can be found in [38].

11See [39] for the derivation of the classical Boltzmann equation. A review on the derivation of the quantum Boltz-
mann equation has been given in [40]. A field-theoretic derivation can be found in [37]. Finally the Boltzmann equa-
tions can be derived from the Kadanoff-Baym equations, making several approximations. Amongst others a first-order
gradient expansion and a quasi-particle approximation.

12Also the density distribution is assumed to vary slowly on the time scale where collisions happen.
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• The mean free path is assumed to be much grater than the range of interactionl≫ r0. This
can equivalently be stated asτ ≫ τ0, i.e. the mean time between two distinct collision
must be much greater than the time which a single interactiontakes. In field theory the
interactions will be of short range if the particles mediating the reaction are heavy enough
(l ∼ 1/M ). If the above assumption is violated then the mediating particle could undergo
several interactions while it propagates.

• Particle trajectories are rectilinear before and after collisions and the interactions are distinct
and instantaneous. This assumption justifies the Stosszahlansatz. Between two interactions
the involved particles are assumed to travel freely (on massshell). In quantum field theory
at finite temperatures, however off-shell processes can play an important role.

• Furthermore, there is the assumption of so calledmolecular chaos. This means that two
particles about to collide must be uncorrelated i.e. they may not have interacted before. In
systems of dilute gasses this is ensured by the fact that two particles, before they collide will
undergo many interactions with different particles and therefore loose any correlation they
may have had before.13 In dense system this condition might be violated since successive
collisions between two particles can occur frequently.

This short list makes clear that the Boltzmann equation is not intended for the application to very
dense systems at high energies.

Another effect that could be important under such conditions are particle creation processes which
are predicted by quantum field theories. These kind of processes are also not described by Boltz-
mann equations.

How could the Boltzmann equation be generalized, such as to account for dense systems like the
early universe plasma?

In order to account for reactions involving more than two particles one could introduce higher
order terms that represent interactions between three or more particles14. This could formally be
written

L[f ](k1) =

∫

dk2 · · · dkn dp1 · · · dpm

×
[

W (p1 · · · pm|k1 · · · kn)(1− ξ1f(k1)) · · · (1− ξnf(kn))f(p1) · · · f(pm)−
−W (k1 · · · kn|p1 · · · pm)f(k1) · · · f(kn)(1− ξ1f(p1)) · · · (1− ξmf(pm))

]

,
(3.28)

whereW are rate factors (equal to the transition rate defined above in the case ofn = m = 2).

However this will rapidly become impractical and the mathematical behaviour of such Boltzmann
equations is quite unknown. Consequently the higher order terms are used by current authors for
illustrational purposes only.

13This assumption must be made when deriving the Boltzmann equation from the Liouville equation. In this deriva-
tion one gets equations of motions for the multi-particle distribution functions, the celebrated BBGKY-hierarchy (Bo-
goliubov, Born, Green, Kirkwood, Yvon). In truncating these equations, keeping only the terms with single particle
distribution functions, one necessarily makes the assumption of molecular chaos.

14Some authors do so, e.g. [15], [41]
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Another correction would be to implement off-shell effectswhere the exchanged particle interacts
with particles of the background plasma in an effective way by introducing modified propagators
for the mediating particles with an effective mass of order the inverse mean free path [13].

Finally in order to account for spontaneous particle creation processes in the framework of a
transport equation source terms can be introduced. An approach to this subject can be found in
[42]. The author asserts the possibility of temporary violations of the H-theorem.

Although, today several different possible derivations ofthe Boltzmann equation are known, its
success must in the end be attributed to the ingenuity of Ludwig Boltzmann, who constructed it
by simple heuristic arguments. Later it has proved to be the correct approach in many physical
situations. The decision whether the Boltzmann equation can be an appropriate description of the
early universe plasma is therefore also ultimately left to experiment.

Currently, the only physical system believed to exhibit similar extreme conditions as the early
universe, and that can be probed by experiments is thequark gluon plasma(QGP). The issue
whether it can be described by ordinary hydrodynamics is closely related to the question if the
early universe can be described by kinetic equations.

Recent experiments at the Relativistic Heavy Ion Collider (RHIC) suggest that the hydrodynamical
description is valid for certain regions of momentum space and a small time interval (about4 −
7 fm/c according to hydrodynamics) between thermalization and hadronization [43], [44]. In this
experiments high energetic Au ions collide and form a fireball consisting of nuclear matter at
temperatures between350 MeV and1000 MeV. However it is not yet clear, whether the QCD
phase transition, predicted by lattice calculations did infact take place. Further experiments are
necessary in order to clarify this issue.

A full quantum mechanical approach to out-off equilibrium phenomena in the early universe as
well as the quark gluon plasma is non-equilibrium quantum field theory.15 A comparison of the
thermal equilibration described by Kadanoff-Baym equations, arising in thermal field theory and
the Boltzmann equation in the framework of a scalarΦ4 theory can be found in [47].

In this thesis we employ the Boltzmann equation for the calculation of the baryon production in
the early universe. When we do so we should always keep in mindthat it is presumably only a
first order approximation.

3.5 Modifications and Generalizations

In this section we discuss some modifications, that we have tomake in order to customize the
Boltzmann equation for our specific problem, the calculation of the baryon asymmetry evolution
in the early universe.

Spatial Homogeneous and Isotropic Case

In the following, we restrict ourselves to systems, spatially homogeneous and isotropic in momen-
tum space. This simplification will be in agreement with the cosmological principle, when we turn
to the discussion of the general relativistic equations. Inparticular it will simplify the numerical
evaluation tremendously.

15An introduction to the subject of non-equilibrium quantum field theory can be found in [45]. For equilibrium
thermal quantum field theory see [46].
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Apart from the modifications, which we already discussed above, a major change in such systems
is that we can drop the gradient terms in the Liouville Operator (3.2) and write simply

L[f ](k) = ∂tf(t, k) . (3.29)

Here we have simultaneously rewritten the distribution function in terms of the remaining inde-
pendent variables. We will often write

f(t, k) = fk . (3.30)

Quantum Modifications

In order to incorporate quantum statistics into the Boltzmann equation (3.3) so calledblocking
(for fermions) orstimulated emissionfactors(1− ξf) (for bosons) are introduced in the collision
integral.16

For fermions these terms ensure that the Pauli exclusion principle is respected by the outgoing
particles, because the blocking terms tend to zero when the distribution function becomes1.

The collision integral modified in this way reads

C[f ](k) =

∫

W (k, p|q, r)
[

(1− ξfk)(1− ξfp)fqfr − fkfp(1− ξfq)(1 − ξfr)
]

d3p d3q d3r .

(3.31)

The general statements made above can easily be adapted to this form of the Boltzmann equation.

The entropy functional is defined by17

H [f ] = −
∫

(

ξ−1(1− ξf) ln(1− ξf) + f ln f
)

d3p . (3.32)

The condition for statistical balance is then given by

(

fk
1− ξfk

)(

fp
1− ξfp

)

=

(

fq
1− ξfq

)(

fr
1− ξfr

)

. (3.33)

This relation yields the correct quantum mechanical equilibrium distribution functions (Bose-
Einstein and Fermi-Dirac distribution respectively):

f(p) =
1

e(E(p)−µ)/T + ξ
. (3.34)

16Throughout we will useξ = +1 for fermions,ξ = −1 for bosons andξ = 0 for the classical case respectively.
17This is the time component of the entropy four flow only. The classical case is included in this formula as limit

ξ → 0.
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The Boltzmann Equation in Curved Spacetime

In order to generalize the equations to general relativistic systems we have to impose the corre-
sponding Liouville operator.18 If we assume that the particle paths are geodesics (i.e. the particles
are acted upon only by gravitation between their collisions) then the general relativistic form of
the Liouville operator is19

L[f ] = kα
∂f

∂xα
− Γαβγk

βkγ
∂f

∂kα
. (3.35)

With help of the Christoffel symbols given in A Robertson-Walker metric this becomes (see [51])

L[f ] =
∂f

∂t
− ∂R

∂t

1

R
k
∂f

∂k
. (3.36)

Because of the additional second term which represents the change of the distribution function
due to the expansion of the universe, compared to (3.29) it isobvious, that (3.27) and (3.34) in the
classical and quantum case respectively cannot be equilibrium distributions in Robertson-Walker
space-time.20

The relativistic Liouville operator (3.36) can be written in a different form applying the following
transformations to the variablest andk:

x = MR(t) ,

k̃ = kR(t) . (3.37)

The Liouville operator in this new coordinates then reads

L[f ] = Hx
∂f(x, k̃)

∂x
. (3.38)

Mixtures

In physical systems consisting ofN different components one obtains a network of coupled
Boltzmann equations. Each equation describes the temporalevolution of the distribution func-
tion fnk = fn(k, t) corresponding to speciesn (n = 1 . . . N ) which incorporates the interactions
with all other particle species. This system of equations can straight forward be written as

L [fn] (k) =

N
∑

l=1

Cnl(k) , (3.39)

whereCnl is the collision integral for interactions between speciesn andl:

18The collision term depends only on the phase space densityf at particular space-time coordinates and is therefore
independent of the large-scale properties of space-time. Thus the form of the collision integral remains unchanged.

19See [48], [49] and [50].
20In fact as pointed out above we have to make sure thatL[f ] = 0. Using the general solution (3.25), we can infer

the equationȧ
ḃ

= E(k) − Ṙ
R
b

ḃ

k2

E(k)
. It has no general solution. However for massless particlessuch as photons one

finds a solution witha = 0 andb = 1/T ∝ R. This is why the CMB stays in perfect Planckian (i.e. equilibrium) shape
although it has decoupled a long time ago.
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Cnl = Skl

∫

[

(1− ξnfnk )(1− ξlf lp)fnq f lrWnl(q, r|k, p)−

− fnk f lq(1− ξnfnq )(1− ξlf lr)Wnl(k, p|q, r)
]

d3p d3q d3r (3.40)

HereWnl(q, r|k, p) is the transition rate for the processn+ l→ n+ l. The symmetrization factor
Skl is 1

2 in the case of identical particles and1 for different particle species.

Inelastic Collisions and Particle Number Violating Processes

The transport equations encountered above include elasticcollisions only. In relativistic theory,
however also inelastic and even particle number violating collisions occur. The generalization
follows immediately from (3.40), if we allow for general transitions likeA → B and use the
corresponding transition ratesWA→B.

3.6 Reduction of the Collision Integral

In general no exact, closed form solutions to the nonlinear Boltzmann equation are known.21 In
most cases it has to be solved numerically.

In this section we show how the nine dimensional collision integral can be reduced to a two
dimensional one. This simplification will speedup the numerical calculations significantly. We
begin with the collision integral in the form (we use (3.4) for the transition rate)

C[f ] =
1

2Ek

∫

(2π)4δ(Ek + Ep − Eq − Er)δ3(k + p− q− r) |M|2 F (f)
∏

v=p,q,r

d3v

(2π)32Ev
,

(3.41)
where we have written symbolically

F (f) = (1− ξfk)(1 − ξfp)fqfr − fkfp(1− ξfq)(1− ξfr) .

We can write the 3-dimensional delta-function as the Fourier transform of unity and switch to
spherical coordinates:

δ3(k + p− q− r) =

∫

eiλ(k+p−q−r) d3λ

(2π)3
,

d3p = p2 dp dΩp .

The collision term then becomes

C[f ] =
1

64π3Ek

∫

δ(Ek + Ep −Eq − Er)F (f)D(k, p, q, r)
p dp

Ep

q dq

Eq

r dr

Er
. (3.42)

21Except for a certain class of exact (similarity) solution for so called Maxwell molecules (BKW-modes) in the case
of the classical, non-relativistic and homogeneous Boltzmann equation and the trivial equilibrium distribution functions
of course.
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Here we have definedD as

D(k, p, q, r) =
pqr

64π5

∫

λ2 dλ

∫

eiλk dΩλ

∫

eiλp dΩp

∫

e−iλq dΩq

∫

e−iλr dΩr |M|2 .

(3.43)

For certain matrix elements|M|2 the integrals inD can be evaluated analytically22. As an example
we perform this calculation for the most simple case of|M|2 = const. The calculation for more
complicated amplitudes can be found in appendix E.

We can in general evaluate all the solid angle integrals, which |M|2 does not depend on in (3.43)
as

∫

e±iλp dΩp =
4π

λp
sin(λp) . (3.44)

Thus for|M|2 = 1 the functionD simplifies to

D1(k, p, q, r) =
4

kπ

∫ ∞

0
sin(λk) sin(λp) sin(λq) sin(λr)

dλ

λ2
. (3.45)

The integration gives

D1 =
1

4k
((−1− s1 + s2 + s3 + s4 + s5 − s6 − s7)k

+(−1− s1 − s2 + s3 + s4 − s5 + s6 + s7)p

+(−1 + s1 + s2 + s3 − s4 − s5 − s6 + s7)q

+(−1 + s1 + s2 − s3 + s4 − s5 − s7 + s6)r) , (3.46)

with

s1 = sgn(k + p− q − r)
s2 = sgn(k − p+ q + r)

s3 = sgn(k + p+ q − r)
s4 = sgn(k + p− q + r)

s5 = sgn(k − p− q − r)
s6 = sgn(k − p+ q − r)
s7 = sgn(k − p− q + r) . (3.47)

In case of massless particles this can be simplified further (using the Energy conservation) to

1

2k
(q + r − |q − k| − |r − k|) .

Because of the term in front of the integral of (3.45) it lookslike the formula does not hold for
k = 0. However it turns out that we can treat this case as limitk → 0. D1 then becomes
(sin(λk)/k → λ)

D′
1(p, q, r) =

4

π

∫ ∞

0
sin(λp) sin(λq) sin(λr)

dλ

λ
, (3.48)

22For example for products of two four momenta such askµp
µ for which the calculation is straight forward (see

[52]). A different approach has been developed in [53].
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which can again be written in terms of signum functions:

D′
1 =

1

2
(sgn(p− q + r)− sgn(p− q − r) + sgn(p+ q − r)− 1)

After calculatingD we can proceed with the integration of the remaining energy delta-function in
eqn. (3.42). This is easily done, usingp dpEp = dEp and changing the lower limit tomp accordingly.
Integrating overdEp then fixesp.

The Boltzmann equation with the reduced two-dimensional integral finally reads

L [f ] =
1

64π3Ek

∫ ∫

Θ(Ep −mp)F (f)
∑

i

Di(k, p, q, r)
q dq

Eq

r dr

Er
, (3.49)

wherep =
√

E2
p −m2

p andEp = Eq + Er − Ek. The Heaviside-function prevents us from

integrating over combinations ofq andr which are not allowed kinematically.

In appendix E we generalize these steps to collision integrals for decays and inverse decays of the
form

C1↔2(k) =
1

2Ek

∫

(2π)4δ(4)(k + q − r) |M|2 [(1− ξfk)fqfr − fk(1− ξfq)(1 − ξfr)]

× d3q

(2π)32Eq

d3r

(2π)32Er
. (3.50)

Furthermore we perform the integration for the various amplitudes|M|2 encountered in the sub-
sequent.

3.7 The Discrete Boltzmann Equation

Since the solution of integro-differential equations is not a standard task of numerical analysis we
will briefly discuss how this can be carried out in the case of the Boltzmann equation.23

We will perform this calculation for the most simple form of the Liouville operatorL[f ] = ∂f/∂t.
It is straight forward to generalize the results to the form (3.38), which we actually employ later
on.

In order to solve the Boltzmann equation on a computer we needto establish a discrete velocity
model for it.24 For this purpose we choose a grid of discrete momentaki, and divide the physical
relevant momentum space (i.e. we consider only momenta up toa maximum ofkmax) V ⊂ R

3 in
a set ofM disjoint but arbitrary domains∆Vi with ki ∈ Vi.
Then we make the approximation

∫

∆Vi

f(|k| , t) d3k ≃ f(|ki| , t)∆ki ≡ fi∆ki ,

23For numerical standard tasks we refer to [54]
24Due to the numerical complexity of the Boltzmann equation numerous different numerical techniques have been

developed to solve it. One of these methods are discrete velocity models. In kinetic theory the velocity is commonly
used instead of the momentum as the independent variable.
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where the size of the domain is given by∆ki =
∫

∆Vi
d3k. Because of the isotropy in momentum

space we can choose the domains as concentric spheric shellsabout the origin with volume∆ki =
4πk2

iDk with some constant small numberDk and an arbitrary vectorki contained in this volume,
because our distribution functions depend only on the magnitude of this vectors. By integrating
eqn. (3.49) over the domain∆Vl we obtain for the left hand side

∫

∆Vl

d3k
∂f

∂t
≃ ∂fl

∂t
∆kl , (3.51)

with fl = f(kl), and for the right hand side

1

64π3Ekl
∆kl

M
∑

i,j
Ep≥mp,p≤MDk

F (fl, fp, fi, fj)D(kl, p, ki, kj)
kiDk

Eki

kjDk

Ekj
, (3.52)

wherep =
√

(Eki + Ekj − Ekl)2 −m2
p.

With the help of the discrete velocity model we turned our continuous Boltzmann equation into a
set ofM partial differential equations for the discrete functionsfl:

∂fl
∂t

=
D2
k

64π3Ekl

M
∑

i,j
Ep≥mp,p≤MDk

F (fl, fp, fi, fj)D(kl, p, ki, kj)
ki
Eki

kj
Ekj

, (l = 1 . . .M) . (3.53)

3.8 Statistical Mechanics and Standard Cosmology

The basis of cosmology is formed by thecosmological principle.25 It summarizes the observations
that the universe is homogeneous and isotropic on large scales.26.

A direct kinematic consequence of this requirements together with the theory of general relativity
is, that spacetime is, on large scales, described by the Robertson-Walker metric The line element
of Robertson-Walker metric is given by

ds2 = dt2 −R2(t)

(

dr2

1− kr2 + r2 dθ2 + r2 sin2 θ dφ2

)

, (3.54)

whereR(t) is the cosmic scale factor andθ, φ andr are polar coordinates. The spatial separation
between co-moving points increases withR(t). k is the curvature constant which determines
whether the spatial section of space time is positively curved (k = +1), flat (k = 0) or negatively
curved (k = −1). Current astronomical data (in particular the WMAP data) suggests that the
universe is flat. We will therefore assumek = 0 in the following.

The dynamical evolution of the universe is governed by the Einstein Equation (without cosmolog-
ical constant):

Rµν −
1

2
Rgµν = 8πGTµν , (3.55)

25See e.g. [4], [5], [55], [56].
26The experimental evidence supporting the cosmological principle comes mainly from galaxy surveys and the mea-

surement of the cosmic microwave background. The latter exhibits that the universe has been homogeneous except for
variations with magnitude10−4 at the time when the radiation decoupled (at a temperature of3000 K, which we see
red shifted today to a temperature of2.725 K)
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with the energy-momentum-tensorT as source term determining the curvature expressed by the
Ricci-TensorRµν . G denotes Newton’s constant. In our units:

GmPl
2 = 1 , (3.56)

mPl = 1.2 · 1019 GeV = 1.39 · 1032 K . (3.57)

This equation, combined with the cosmological principle (i.e. the corresponding form of the
energy momentum tensor) yields the Friedmann Equation

H2 ≡
(

Ṙ

R

)2

=
8πG

3

∑

i

ρi −
k

R2
, (3.58)

where we defined the Hubble parameterH. ρi are the different energy density components. The
Friedmann equation relates the rate of increase of the scalefactor to the total energy density of all
matter in the universe. We define the critical energy densityas

ρc =
3H2

8πG
, (3.59)

for which the universe would be precisely flat. With this notation at hand we can write the energy
densities in terms of density parameters

Ωi =
ρi
ρc
. (3.60)

Current observational data suggests, thatΩtotal ≃ 1. This means that the universe is flat.27.

The Hubble parameter relates the speedv of a receding galaxy to its distanced via Hubble’s law:

v ≃ Hd . (3.61)

The present value of the Hubble parameterH0 is often parametrized

H0 = 100h
km

s Mpc
,

with reduced Hubble parameter
h ≃ 0.71 . (3.62)

A second equation obtained in this way is the acceleration equation:

R̈

R
= −4πG

3

∑

i

(ρi + 3pi) . (3.63)

Fork = 0 the Friedmann equation yields for the scale factor

R(t) = R0

(

t

t0

)
2

3(1+w)

, (3.64)

27According to WMAP the total density parameter is partitioned in ΩDark Energy = 0.73, ΩMatter = 0.27 andΩB =
0.044. Wee see that the universe today is dominated by dark energy.Dark energy has a negative pressure. It drives the
accelerated expansion of the universe observed today (equation of state parameterw = −1)
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where the equation of state parameterw has been defined by

p = wρ . (3.65)

With w = 0 for the matter dominated universe (Einstein-de Sitter universe) andw = 1/3 for the
radiation dominated universe (Tolman universe) respectively.

So that we have in particular for the radiation dominated universe

R ∝
√
t , (3.66)

or

H =
1

2t
. (3.67)

In cosmology the expansion of the universe is assumed to be adiabatic and quasi-static. This means
that it passes smoothly from one equilibrium state to another and that the entropy is conserved.

In order to calculate quantities such as the number density and the energy density of a particular
particle speciesi, we can therefore presume that its equilibrium distribution function is

fi(p) =
1

e(Ei(p)−µi)/T + ξ
, (3.68)

where isEi(p) =
√

p2
i +m2

i for massive particles andE(p) = p for massless particles respec-
tively andµi is the chemical potential of speciesi.

According to (3.9), (3.11) and (3.12) number density, energy density and pressure are given by

ni =
gi

2π2

∫

p2fi(p) dp , (3.69)

ρi =
gi

2π2

∫

p2E(p)fi(p) dp , (3.70)

pi =
gi

2π2

∫

p4

3E(p)
fi(p) dp . (3.71)

These integrals can be performed explicitly in the ultrarelativistic (T ≫ m) and non-relativistic
(T ≪ m) limits. The results for zero chemical potential can be found in the following table (ζ
denotes the Riemann zeta function).

rel. bosons rel. fermions non-rel. (both)

ni
ζ(3)
π2 giT

3 3ζ(3)
4π2 giT

3 gi

(

miT
2π

)
3
2
e−

mi
T

ρi
π2

30 giT
4 7

8
π2

30 giT
4 min

non-rel.
i

pi
ρi
3

ρi
3 niT

Figure 3.3: Macroscopic quantities number density, energydensity and pressure in thermal equi-
librium. In the non-relativistic case the given formulas can be applied to bosons and fermions.
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For particles close to chemical equilibrium with their antiparticles i.e. µT ≪ 1 andµi = µ̄i one
finds using (3.68):

ni − nī ≃
giT

3

3

(µi
T

)

(bosons),

ni − nī ≃
giT

3

6

(µi
T

)

(fermions) (3.72)

We met these relations before, in section 2.5.

A further useful result is the equilibrium number density ofa species obeying Maxwell-Boltzmann
statistics. It can be expressed in terms of modified Bessel functions (see appendix B):

nMB =
T 3

2π2

m

T
K2(

m

T
) . (3.73)

With help of these relations and the first law of thermodynamics we can derive the entropy of the
photon gas:

dS =
1

T

(

d(ργR
3) +

1

3
ργ d(R

3)
)

=
1

T

(4

3
ργ d(R

3) +R3 dργ
)

=
4π2

45

(

T 3 d(R3) + 3T 2R3 dT
)

=
4π2

45
d(T 3R3) .

It follows that the co-moving entropy is given by

s =
S

R3
=

4π2

45
T 3 . (3.74)

One can employ this result and the formulas for the energy density of relativistic particles to define
an effective number of relativistic degrees of freedom for the energy density:

g∗ =
∑

bosons

gi

(

Ti
T

)4

+
7

8

∑

fermions

gi

(

Ti
T

)4

, (3.75)

and for the entropy density

g∗S =
∑

bosons

gi

(

Ti
T

)3

+
7

8

∑

fermions

gi

(

Ti
T

)3

. (3.76)

The numeric values forg∗ andg∗S lie typically very close to each other, however both depend on
the epoch the universe is in. For the standard model the approximate results are28

g∗ ≃ g∗S ≃











100 if T > 300 MeV, above the QCD phase transition

10 if 300 MeV > T > 1 MeV

3 if T < 1 MeV, belowe+e−-annihilation

(3.77)

A more accurate value forg∗ atT > 300 MeV is g∗ = 106.75.

28Strictly speakingg∗ changes wheneverT ≈ mass of a species. As long asg∗ is constantT decreases asR−1
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With help of these expressions we can write the total energy and entropy density as

ρ =
π2

30
g∗T

4 , (3.78)

and

s =
2π2

45
g∗ST

3 . (3.79)

By plugging (3.78) into the Friedmann equation we obtain a direct relation betweenH and the
temperature for the radiation dominated universe:

H = 1.66
√

g∗
T 2

mPl
. (3.80)

3.9 Non-Equilibrium Phenomena

As we have seen standard cosmology is based upon the assumption of a quasi-stationary expan-
sion where most of the particle content stays in thermal equilibrium. However many important
processes in the thermal history of the universe are non-equilibrium processes. Examples are in-
flation, Big Bang nucleosynethesis, decoupling of neutrinos, decoupling of the CMB radiation,
and of course baryogenesis or leptogenesis.

Despite of the fundamental problems outlined above, Boltzmann equations arethe tool for the
investigation of non-equilibrium phenomena in early universe cosmology.

In order to derive the form of the Boltzmann equation commonly used in cosmology we integrate
(3.36) over the remaining three-momentum:29

g

(2π)3

∫

L[f ] d3k = ∂t

∫

g

(2π)3
fk d

3k − Ṙ

R

∫

g

(2π)3
k
∂

∂k
fk d

3k .

The first integral in this expression is simply the particle number density and the second one can
be evaluated via integration by parts:

∫

g

(2π)3
k
∂

∂k
fk d

3k =
g

2π2

∫ ∞

0
k3∂kfk dk = −3

g

2π2

∫ ∞

0
k2fk dk = −3nk .

We get
g

(2π)3

∫

L[f ] = ∂tnk + 3Hnk . (3.81)

This result tells us that every kind of particles even without interaction is diluted by the expansion,
at a rate

∂tnk = −3Hnk .

A popular transformation which exploits the conservation of entropy in the universed(sR3) = 0
is to introduce30

Y =
n

s
. (3.82)

29This equation is commonly refered to as Boltzmann equation in literature about cosmology. However, due to the
integration of the left hand side the microscopic information contained in the distribution function is lost. The resulting
equations cannot be solved without further approximations, whereas the Boltzmann equation in principle can be.

30Since the photon number density is proportional to the entropy densitynγ ∼ s it is equivalent to defineY = n
nγ
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This gives us
sẎ = ṅ+ 3Hn . (3.83)

Usually after some successive simplifications the collision integral becomes a function of temper-
ature rather than time. Therefore it makes sense to transform to the new dimensionless variable

x =
m

T
, (3.84)

wherem is an arbitrary mass scale e.g. the mass of the particle species under investigation. In
order to see how this transformation acts on (3.83) we combine (3.80) and (3.67) to

t = 0.301
1√
g∗

mPl

m2
x2 ,

which leads to

s
dY

dt
=
H(m)

x

dY

dx
, (3.85)

with H(m) = 1.66
√
g∗

m2

mPl
.

On the other hand, we have to evaluate the collision integral(right hand side of (3.41); we write
gi

dk3

(2π)32Ei
k

= dΠi
k where we omit the indexi when only one particle species is involved)

g

(2π)3

∫

C[f ] d3k =

∫

(2π)4δ(4)(k + p− q − r) |M|2

×
[

(1− ξfk)(1− ξfp)fqfr − fkfp(1− ξfq)(1 − ξfr)
]

dΠk dΠp dΠq dΠr .

(3.86)

Performing all these transformations, we can write the integrated Boltzmann equation as

Y ′ =
x

H(m)s

∫

(2π)4δ(4)(k + p− q − r) |M|2

×
[

(1− ξfk)(1− ξfp)fqfr − fkfp(1− ξfq)(1− ξfr)
]

dΠk dΠp dΠq dΠr ,

(3.87)

whereY ′ denotes the derivative ofY with respect tox.

Strictly speaking the equilibrium distribution functionsof statistical mechanics cannot be solutions
of the transport equation in Robertson-Walker space-time.However it turns out that these distri-
butions are approximate solutions as long as the total rate of all interactions of a particle species
is much larger than the expansion of the universe [51]Γ≫ H.

In cosmology one distinguishes two cases

• Γ & H: The particles interact rapidly. They are approximately inequilibrium and the
number density obeys the relations stated above.

• Γ . H: The interaction rate fails to keep up with the expansion. The species is said to be
frozen out. The number density is governed by the expansion.

The interesting physics however happens forΓ ∼ H.
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Freeze-Out

The abundance of a particle species staying in thermal equilibrium decreases exponentially (see
table 3.3). Today its abundance would hardly be measurable.When a particle species is to survive
till today it must decouple before its equilibrium abundance has become to small.31

The freeze-out of a particle species is usually analyzed by means of a simple model. Let us assume
that the reaction rate of a (stable) particle species is dominated by the annihilation reaction

ψψ̄ ←→ XX̄ . (3.88)

When theX ′s are subject to some different particle number conserving reactions (typically that
will be electromagnetic interactions with the background plasma), which occur rapidly enough to
keep the species in equilibrium the resulting Boltzmann equation can be solved approximately by
analytic methods.

For simplicity one assumes that the particles obey Maxwell-Boltzmann statistics. Then one writes
fX,X̄ = exp (−EX,X̄/T ) i.e. the chemical potentials are set to zero. Furthermore the quantum
terms in the Boltzmann equations are neglected.

Exploiting the energy conservation enforced by the delta function, tells us that

fXq f
X̄
r = exp (−(EXq + EX̄r )/T ) = exp (−(Eψk + Eψp )/T ) = fψk

EQ
fψp

EQ
.

We usef ik
EQ

= exp (−Ei/T ) to distinguish it from any other non-equilibrium distribution only
when this is not obvious. Then we can write eqn. (3.87)

Y ′ =
x

H(m)s

∫

(2π)4δ(4)(k + p− q − r) |M|2
[

fψq
EQ
f ψ̄r

EQ − fψk f ψ̄p
]

dΠk dΠp dΠq dΠr .

(3.89)

Defining the thermally-averaged cross section times relative velocity by32

〈

σψψ→XX̄ |v|
〉

=
1

(nEQψ )2

∫

(2π)4δ(4)(k + p− q − r) |M|2 fψq
EQ
f ψ̄r

EQ
dΠk dΠp dΠq dΠr ,

(3.90)

we may write

Y ′ =
x
〈

σψψ→XX̄ |v|
〉

s

H(m)

[

Y 2
EQ − Y 2

]

. (3.91)

SinceH(m) = x2H(T ) we can interpret
〈σψψ→XX̄ |v|〉s

H(m) ∼ 〈σψψ→XX̄ |v|〉nγ
H ∼ Γ

H as efficiency
factor for the annihilation processes. That means, that ifΓ/H . 1 the annihilation rate will
decrease and theψ′s will freeze out. The time (or temperature) of decoupling cantherefore be
infered from the details of the interactions of a given particle species. Equation (3.91) must in
general be solved numerically.

31In this description we follow Kolb and Turner [15].
32The interaction rate for a particle with crosssectionσ is typically of the formΓ = n 〈σv〉.
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After freeze outYEQ(xfreeze-out) =
nψ
s

∣

∣

xfreeze-out
stays constant. (Just insert the appropriate expres-

sions from table 3.3.) This observation implies bounds for the masses of relic particles (such as
neutrinos), because the following relation for the densityparameter must hold:

Ωψh
2 =

ρψ
ρc
h2 < Ωtotalh

2 . 1 (3.92)

A discussion of the non-equilibrium effects for the phenomenon of particle freeze-out can be found
in [57]. The authors of this paper find that these effects are small for particles decoupling when
strongly non-relativistic. The quantum terms are neglected in these considerations.

Out-of-Equilibrium Scenario

The standard scenario commonly employed to satisfy the third Sakharov condition in baryogenesis
theories is the out of equilibrium decay scenario.33 It is based on the observation that a heavy
and relatively long-lived particle-species can deviate significantly from its equilibrium distribution
before the particles begin to decay. By this means the back reaction, which would erase any baryon
asymmetry in thermal equilibrium, is suppressed.

If the particle decays are governed by a small coupling constantα, then the decays (rateΓD ∝
αM ; M is the particle mass) are the dominant processes governing the particle number density,
since the annihilation rate will be of orderα2. As long asT & M the decays will be fast enough
to maintain thermal equilibrium. When the universe has become as old as the particles lifetime
(and the temperature has become low enough so that back reactions are suppressed, because their
typical energy∼ T . M ) they begin to decay freely.

Taking only decays and inverse decays into account the decoupling of a massive particle species
can be modeled by the following Boltzmann equation:

L[fX ](k) =
1

2EXk

∫

(2π)4δ(4)(k − q − r) |M|2

×
[

(1 + fXk )fEQq fEQr − fXk (1 + fEQq )(1 + fEQr )
] d3q

(2π)32Eq

d3r

(2π)32Er
, (3.93)

where we assumed that the particles, whichX decays into stay in perfect equilibrium and obey
Bose-Einstein statistics (say these are photons of the background plasma). The numerical solution
of this equation is shown in figure 3.4.

33The former popular scenario of electroweak baryogenesis, in which the non equilibrium condition was created by
supposed first-order phase-transition is essentially ruled-out.
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Figure 3.4: Out-of-equilibrium decay of a massive particlespecies (bosons) interacting with the
background plasma, plotted for different coupling strengths. The particles first become non-
relativistic and afterwards decouple whenΓ ∼ H. For smaller couplings (upper lines) the particles
depart significantly from thermal equilibrium (solid line). As soon as the energy of the colliding
particles becomes lower than the mass of the decaying ones, the number density drops rapidly.

Figures 3.5 and 3.6 show the rates of decay and inverse decay compared to the Hubble rate. We
see that the decoupling does indeed take place, whenΓ ∼ H.
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Figure 3.5: Rates of decay and inverse decay compared to the Hubble rate for a massive particle
species close to equilibrium.
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Figure 3.6: Rates of decay and inverse decay compared to the Hubble rate for a massive particle
species far from equilibrium.

Equilibrium Abundance of Baryons

As advertised in the introduction, we will now calculate theequilibrium abundance of baryons
(protons and neutrons).

ForT ≤ 1 GeV≃ mN the equilibrium abundance of protons and neutrons (nB = nB̄) is accord-
ing to table 3.3 given by (gi = 8 for nucleons)

η =
nB
nγ

=
nB̄
nγ

=

√
2πgi

8ζ(3)

(mN

T

)
3
2
e−

mN
T . (3.94)

The freeze-out temperature is given by

nB 〈σ |v|〉 ≃ H = 1.66
√

g∗
T 2
f

mPl
. (3.95)

In order to get an order of magnitude approximation we may take 〈σ |v|〉 ∼ c
m2
π

= 1
m2
π

(mπ ≃
135 GeV is the pion mass) and obtain

gi
m2
π

(

mNTf
2π

)
3
2

e
−mN

Tf = H . (3.96)

Rearranging this and plugging in the numbers yields

(

mN

Tf

)−1/2

e
mN
Tf ≃ 5× 1019 . (3.97)
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The solution isTf ≃ 20 MeV, which in turn results in

η =
nB
nγ

=
nB̄
nγ
≃ 2× 10−18 . (3.98)

We see thatη would indeed be way to small if the nucleons would stay in thermal and chemical
equilibrium until they freeze out.

In the next section we are going to discuss a simple model, in which the baryon asymmetry is
generated by the out of equilibrium decay of a heavy particlespecies.
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Chapter 4

Baryogenesis in a Toy Model

We will now discuss a simple scalar toy model which possessesall the features needed for the
dynamical production of a net baryon asymmetry. This means in particular, that it satisfies all the
Sakharov conditions. We will provide the set of Boltzmann equations governing the time evolution
of all the different particle species contained in this model. Then we will solve them by two distinct
methods. First we follow the classic simplification scheme developed in [11]. Secondly we will
solve it exact in the numerical sense applying the methods presented in the preceding chapters.1

4.1 The Model

In order to introduce the model we postulate the following free LagrangianL0 and interaction
Lagrangian:LI .2

L0 =
1

2
∂µX∂

µX − 1

2
M2X2 + ∂µb̄∂

µb , (4.1)

LI =
λ

4!
b4 +

λ

4!
b̄4 +

λ

2!2!
(b̄b)2 +

g

2!
Xbb+

g∗

2!
Xb̄b̄ , (4.2)

L = L0 −LI . (4.3)

The model contains a real scalar fieldX (i.eX = X̄) and a complex and massless scalar fieldb
coupled toX by a scalar Yukawa interaction.

We restricted ourselves to a specific choice of the coupling constants. We takeλ to be real but
Im(g) 6= 0. The imaginary part ofg accounts for the CP asymmetry as we will see. Forλ > 0 the
Lagrangian (4.3) with its Yukawa coupling terms is stable.3 Furthermore we demandλ to be of
the same order asg2 (O(λ) = O(g2)). We note thatλ is dimensionless andg has mass dimension
1.

Since we like to explain the baryon number generation on the basis of this model, we have to
assign charges to the particles (which we will call baryon orlepton number). Since the interaction
Lagrangian cannot be charge neutral whatever charges we choose, we have to define this quantum
number by means of the free LagrangianL0 and treat the terms inLI as perturbation.

1Parts of this chapter can also be found in [11], [15], [14] and[58]
2For consistency we denote the complex conjugate of the fieldsby an overbar.
3This is not obvious, but can easily be shown, insertingg = g1 + ig2 andb = b1 + ib2.

57
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The free part of the actionS0 =
∫

d4xL0 is obviously invariant underU(1) symmetry transfor-
mations of theb-fields. By Norther’s theorem this yields a conserved current

jB
µ = i

(

b̄∂µb− b∂µb̄
)

, (4.4)

and the conserved charge

B =

∫

d3xj0B . (4.5)

We assign the chargesB = 1/2 and−1/2 to b andb̄ respectively. SinceX is its own antiparticle
it carries zero baryon number. With this assignment it is obvious thatLI violates baryon number
conservation. In particular theX decays associated with the Yukawa terms in the Lagrangian will
be baryon number violating.

Since scalar fields are invariant under parity transformations (P)

P : φ→ φ ,

parity is a symmetry of the free as well as the interaction Lagrangian.

Charge conjugation transforms a scalar field in its complex conjugate:4

C : φ→ φ̄ ,

i.e. b→ b̄, b̄→ b, whereasX is a real field and transforms into itself:X → X.

L0 is left invariant by this transformation, but due tog 6= g∗ the interaction Lagrangian is not.

BecauseLI is invariant underP , but not underC, the combined CP symmetry is also violated.

We summarize that our model satisfies the first two Sakharov conditions (B, C and CP violation).
In order to investigate the third one in the framework of kinetic theory we need to know the
transition amplitudes. We are going to calculate them in thenext section.

4.2 Transition Amplitudes

Figure (4.2) depicts the Feynman rules arising from (4.1) and (4.2). We are interested inb violating
reactions mainly, because they affect the evolution of the baryon asymmetry directly in contrast to
theb conserving ones which are important for the thermalizationprocess only.

4We suppress arbitrary phase factors here, because they vanish anyway when physical quantities are calculated.
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Figure 4.1: Feynman rules of the toy model

Apart from the tree level graphs it is necessary to take loop corrections into account, because the
amplitudesM2

X, bb andM2
X, b̄b̄

are just equal at tree level.5

We demandλ to be of the same order asg2 and consider only terms up toO(g5) in perturbation
theory. Furthermore the propagator for theX-field must be renormalized.6 We postpone this
calculations to appendix C.

The amplitudes forX decay can be parametrised as (tree level and one loop):7

M2
X, bb =

1

2
(1 + ǫ) |MX |2 , (4.6)

M2
X, b̄b̄ =

1

2
(1− ǫ) |MX |2 , (4.7)

where (µ is an arbitrary energy scale)

|MX |2 =M2
X, bb +M2

X, b̄b̄ = 2 |g|2
(

1− |g|2
96m2

X

+
λ

8π2 |g|2
(log

m2
X

µ2
− 2)Re(g2)

)

. (4.8)

5This is similar to GUT baryogenesis and leptogenesis where the CP -violating terms also stem from the interference
of the tree level and one-loop diagrams.

6In case of theb-particles we assume that the renormalized mass is negligible. Then the renormalized propagator
equals the free one.

7We useM2
a, b as abbreviation for|M(a → b)|2.
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This means that if we consider a number ofX-particles in a box decaying freely, the resulting
mean net baryon number would beǫ. This is in agreement with the definition of the CP asymetry:

ǫ =
Γ(X → bb)− Γ(X → b̄b̄)

Γ(X → bb) + Γ(X → b̄b̄)
=

λ

8π |g|2
Im(g2) =

λ

4π |g|2
Re(g)Im(g) . (4.9)

Since the amplitudes (4.6) and (4.7) are constants, the decay rates for these processes are given
simply by (appendix E):

Γ(X → bb) =
M2

X, bb

16πmX
, (4.10)

Γ(X → b̄b̄) =
M2

X, b̄b̄

16πmX
. (4.11)

The amplitudes for the inverse decays can immediately be deduced from CPT invariance:

M2
bb,X =

1

2
(1− ǫ) |MX |2 , (4.12)

M2
b̄b̄, X =

1

2
(1 + ǫ) |MX |2 . (4.13)

Note that because of preferred decay ofX → bb according to (4.6) and the suppressed inverse
decay ofbb → X according to (4.12), taking only decays and inverse decays into account would
inevitably generate baryon number, even in thermal equilibrium.8 In order to construct an instruc-
tive model we need to include further processes which tend todiminish baryon number in thermal
equilibrium.

Up toO(g5) only the vertices in figure 4.2 and thes, t andu-channel diagrams depicted in figure
4.2 contribute to the 2-2 scattering amplitude:9

M2
bb, b̄b̄ =

∣

∣

∣

∣

λ+ (g∗)2
(

1

s−m2
X + imXΓX

+
1

t−m2
X

+
1

u−m2
X

)
∣

∣

∣

∣

2

=

λ2 + |g|4
(

1

(s−m2
X)2 + (mXΓ)2

+

(

1

t−m2
X

+
1

u−m2
X

)2

+
2(s −m2

X)

(s−m2
X)2 +m2

XΓ2
X

(

1

t−m2
X

+
1

u−m2
X

)

)

+ 2λRe(g2)

(

1

t−m2
X

+
1

u−m2
X

+
s−m2

X

(s−m2
X)2 + (mXΓ)2

)

− 2λIm(g2)
mXΓX

(s−m2
X)2 + (mXΓX)2

.

(4.14)

8This is not to be considered as a violation of Sakharov’s third condition. In this case our model would just be
incomplete.

9Here we keep the fullX-propagator in thes-channel. TODO: why exactly do I have to do this?
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Figure 4.2: s-,t- and u-channel.

SinceΓX = 1
16πmX

|MX |2 = O(g2) andO(λ) = O(g2) the last term containing the imaginary

part will be of orderO(g6) and we drop it:

M2
bb, b̄b̄ =λ2 + |g|4

(

1

(s −m2
X)2 + (mXΓ)2

+

(

1

t−m2
X

+
1

u−m2
X

)2

+
2(s−m2

X)

(s −m2
X)2 +m2

XΓ2
X

(

1

t−m2
X

+
1

u−m2
X

)

)

+ 2λRe(g2)

(

1

t−m2
X

+
1

u−m2
X

+
s−m2

X

(s−m2
X)2 + (mXΓ)2

)

.

The amplitude forM2
bb, b̄b̄

emerges by substitutionsb↔ b̄ andg ↔ g∗. Thus we have to this order

of perturbation theory:10

M2
bb, b̄b̄ =M2

b̄b̄, bb . (4.15)

For the Boltzmann equation we need the amplitudes with the real intermediate states-channel
contributions subtracted out, because these are already included in the Boltzmann equation as
successive inverse decay and decaybb → X → b̄b̄ [14]. The t andu-channel diagrams do not
receive contributions from physical intermediate states at lowest order:

MRIS2
b̄b̄, bb =

M4
X, bb

(s−m2
X)2 + (mXΓX)2

, (4.16)

MRIS2
bb, b̄b̄

=
M4

X, b̄b̄

(s−m2
X)2 + (mXΓX)2

. (4.17)

In the narrow width approximation

limh→0
h

x2 + h2
= πδ(x) ,

this can be written as:
10If we would consider only the two amplitudesM2

bb, b̄b̄
andM2

bb,X and the corresponding results forb̄b̄ this would
clearly violate (2.10), obtained from CPT -invariance and unitarity.
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MRIS2
b̄b̄, bb =M4

X, bb

π

mXΓX
δ(s −m2

X) , (4.18)

MRIS2
bb, b̄b̄ =M4

X, b̄b̄

π

mXΓX
δ(s −m2

X) . (4.19)

The amplitudes for 2-2 scattering are then, without the RIS contribution:

M′2
bb, b̄b̄ =M2

bb, b̄b̄ −M
RIS2
bb, b̄b̄

, (4.20)

M′2
b̄b̄, bb =M2

b̄b̄, bb −M
RIS2
b̄b̄, bb . (4.21)

We note that these contributions do violate CP whereas the full amplitudes for2− 2 scattering do
not (4.15).

4.3 Boltzmann Equations

Now, that we have calculated all the necessary transition amplitudes, we can easily set up the
system of Boltzmann equations which describes the time evolution of theX, b and b̄ density
distributions, according to the guidelines elaborated in chapter 3.

For theX-particle evolution (X decays and inverse decays) we get:

CXk =
1

2EXk

∫

(2π)4δ(4)(k − q − r)[(1 + fXk )f bqf
b
rM2

bb,X − fXk (1 + f bq )(1 + f br )M2
X, bb

+(1 + fXk )f b̄qf
b̄
rM2

b̄b̄, X − f
X
k (1 + f b̄q )(1 + f b̄r )M2

X, b̄b̄] dΠ
b
q dΠ

b
r .

(4.22)

Theb-particle evolution (X decays and inverse decays and 2-2 scattering) is described by

Cbk =
1

Ebk

∫

(2π)4δ(4)(k + q − r)[(1 + f bk)(1 + f bq )f
X
r M2

X, bb − f bkf bq (1 + fXr )M2
bb,X ] dΠb

q dΠ
X
r

+
1

2Ebk

∫

(2π)4δ(4)(k + p− q − r)[(1 + f bk)(1 + f bp)f
b̄
qf

b̄
rM′2

b̄b̄, bb − f
b
kf

b
p(1 + f b̄q )(1 + f b̄r )M′2

bb, b̄b̄]×

× dΠb
p dΠ

b
q dΠ

b
r .

(4.23)

The Boltzmann equation for thēb-particle evolution can be obtained from the above one, inter-
changingb andb̄ (X decays and inverse decays and 2-2 scattering):

C b̄k =
1

E b̄k

∫

(2π)4δ(4)(k + q − r)[(1 + f b̄k)(1 + f b̄q )f
X
r M2

X, b̄b̄ − f
b̄
kf

b̄
q (1 + fXr )M2

b̄b̄, X ] dΠb̄
q dΠ

X
r

+
1

2E b̄k

∫

(2π)4δ(4)(k + p− q − r)[(1 + f b̄k)(1 + f b̄p)f
b
qf

b
rM′2

bb, b̄b̄ − f
b̄
kf

b̄
p(1 + f bq )(1 + f br )M′2

b̄b̄, bb]×

× dΠb̄
p dΠ

b̄
q dΠ

b̄
r .

(4.24)
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Note, that we added an extra factor2 in front of the integrals for decays and inverse decays in (4.23)
and (4.24) relative to (4.22). This factor accounts for the particle-number violating character of
these integrals. A single collision in (4.22) leads to an increase (or decrease) of the totalX-particle
number by1, whereas a single collision in (4.23) increases or decreases the totalb number density
by 2.11 And we exploited the fact thatdΠb̄ = dΠb.

4.4 Simplified Boltzmann Equations

Solving the Boltzmann equations [4.22],[4.23] and [4.24] directly is numerically expensive (but
possible when making the appropriate analytic simplifications). Usually some standard approx-
imations are made which turn the above equations into a system of ordinary, linear differential
equations.

• Our first approximation is to assume that the density distributions are very close to thermal
equilibrium. This is usually a good one, if the reaction rateis greater than the expansion rate
Γ ≫ H. In the early universe the particles will undergo other thermalizing reactions such
asγ + b→ γ + b and so on (typically at higher rates) which maintain thermalequilibrium.
These processes are of course not included in our toy model.

• Furthermore we assume that the chemical potentials are small (i.e. that the system is close
to chemical equilibrium). The chemical potentials ofb andb̄ are equal but opposite in sign.
This follows from the existence of reactions likeb+ b̄←→ γ+γ which gives in equilibrium
µb + µb̄ = 2µγ = 0.

• The third approximation will be to use Maxwell-Boltzmann distribution functions instead of
Bose-Einstein or Fermi-Dirac distributions respectively. This also means that we will com-
pletely neglect the quantum mechanical blocking and stimulated emission terms introduced
in chapter 3. Thus the particles are treated fully as classical particles. 12The Maxwell-
Boltzmann distributions can then be expanded inµ

T :

f(p) = e−(E−µ)/T ≃ e−E
T (1 +

µ

T
) = fk

EQ(1 +
µ

T
) . (4.25)

• Finally we will assume that the entropy is conserved (i.e.sR3 = const). This common
cosmological approximation is believed to be satisfied for the bulk of the thermal history
of the universe. However it is in general violated when non-equilibrium processes (such as
baryogenesis and leptogenesis itself) occur. Such processes produce additional entropy.13

Unfortunately because of the complexity of the Boltzmann equation it is hard to estimate the error
introduced by these approximations. And it will remain unclear until we solve the equations in a
completely different way in order to compare the results of both approaches.

11This seems to be neglected elsewhere.
12In literature this approximation is sometimes justified by the argument that the particle densities at high tempera-

tures are very similar for bosons and fermions respectively. This is indeed true for particle number densities (cf. table
3.3). However the distribution functions can have a quite different shape. (e.g. by looking at equation (3.68) it becomes
clear that the distribution function for fermions can neverexceed1 whereas the that for bosons can get very large for
µ = 0 and small momenta and even infinite form = 0).

13We will not consider these effects in our ab initio numericalsolution within this work. However they can be
incorporated in principle. One then has to solve coupled system of Boltzmann and Einstein equations.
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Let us perform the approximations step by step. First of all we integrate the equations over the
remaining phase space element

dk

(2π)3Ek
.

The Liouville operator will then be given by (3.81).

The collision integral for decays and inverse decays will look like (only the first part of (4.22),
neglecting the quantum terms)

∫

(2π)4δ(4)(k − q − r)[f bqf brM2
bb,X − fXk M2

X, bb] dΠ
X
k dΠ

b
q dΠ

b
r

. (4.26)

Performing the above approximations for the distribution functions gives
∫

(2π)4δ(4)(k − q − r)[fXk
EQ

(1 +
2µb
T

)M2
bb,X − fXk M2

X, bb] dΠ
X
k dΠ

b
q dΠ

b
r . (4.27)

Where we exploited the fact that due to energy conservation

fXk
EQ

= f bq
EQ
f br
EQ
e+2µ/T ≃ f bq

EQ
f br
EQ

(1 + 2µb/T ) .

The second part of (4.22) follows, substitutingb→ b̄ (this impliesµb → µb̄ = −µb). Combining
the two parts and plugging in the Amplitudes (4.6), (4.12) yields

Ẋ ≃
∫

(2π)4δ(4)(k − q − r)[fXk
EQ

(1− ǫ2µb
T

)− fXk ] |MX |2 dΠX
k dΠ

b
q dΠ

b
r . (4.28)

Sinceµb andǫ are small we can neglect theǫ2µb
T term.

The phase space integral overfX(k) |MX |2 gives the thermally averagedX-decay width times
the number density ofX, so that we can write it

1

2
〈ΓX〉

[

nEQX − nX
]

. (4.29)

We will determine the temperature dependence of〈ΓX〉 later.

The integrated collision integral (4.23) can be simplified in the same way to

2

∫

(2π)4δ(4)(k + q − r)
[

fXr
1

2
(1 + ǫ) |MX |2 − fXr

EQ
(1− 2µ

T
)
1

2
(1− ǫ) |MX |2

]

dΠb
q dΠ

b
r dΠ

X
r

+

∫

(2π)4δ(4)(k + p− q − r)f bk
EQ
f bp
EQ
[

(1− 2µ

T
)M′2

b̄b̄, bb − (1 +
2µ

T
)M′2

bb, b̄b̄

]

dΠb
k dΠ

b
p dΠ

b
q dΠ

b
r .

(4.30)

The corresponding integral (4.24) can again be obtained from this result by simple substitutions.
In order to get rid of the full amplitudesM2

bb, b̄b̄
andM2

b̄b̄, bb
, we can subtract these equations and

get a single one governing the evolution of the net baryon numbernB = 1
2(nb − nb̄)

Performing the integrals over the real intermediate state delta function at the same time (see ap-
pendix C), and using

M′2
b̄b̄, bb −M

′2
bb, b̄b̄ = −16π2ǫ |MX |2 δ(s −m2

X) ,
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we find (neglecting higher order terms):

1

2
〈ΓX〉

[

nEQX − nX
]

ǫ− 12ζ(3)

π2
nB

(

〈ΓX〉
nEQX
nγ

+ nγ
〈

σ′ |v|
〉

)

, (4.31)

where we defined the averaged cross section times velocity (with real intermediate state subtracted
out) analogous to (3.90) by

〈

σ′ |v|
〉

=
1

n2
γ

∫

(2π)4δ(4)(k + p− q − r)e−(Ek+Ep)/T

×
[

2M2
bb, b̄b̄ −

π

2mXΓX
|M|4 δ(s −m2

X)

]

dΠk dΠp dΠq dΠr . (4.32)

This expression has again a temperature dependence to be determined later.

Now, writing all equations in terms of the variablesX = nX
s andB = nB

s introduced in section
3.9, we get the advertised system of ordinary differential equations describing the evolution of the
X-number density and the baryon asymmetry:

X̃ ′ = −xKγX(X̃ − X̃EQ) ,

B̃′ = xKγX(X̃ − X̃EQ)− xKγBB̃ , (4.33)

where we made the definitions

X̃ = g∗X , (4.34)

B̃ = g∗ǫ
−1B . (4.35)

Note the similarity to the Boltzmann equations encounteredin section 2.5 in the framework of
thermal leptogenesis.

γX andγB are dimensionless (These quantities are called reaction densities.) and forT ∼M they
equal the rates ofB violating reactions (i.e. decays and2− 2 scattering processes):

γX =
〈ΓX〉
〈ΓX〉x=1

=
K2(1)

K1(1)

K1(x)

K2(x)
, (4.36)

γB =
24ζ(3)

π2

(

1.80γXX̃EQ + nγ
〈σ′ |v|〉
〈ΓX〉x=1

)

, (4.37)

with efficiency parameterK:

K =
〈ΓX〉x=1

H(mX)
.

For the temperature dependence of〈σ′ |v|〉, 〈ΓX〉 andX̃EQ one finds (see appendix D):

〈

σ′ |v|
〉

≃ λ2

T 2

4Cm2
X + T 2

T 2(m2
X + T 2

C )
,

〈ΓX〉 =
K1(

mX
T )

K2(
mX
T )

ΓX ,
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with

C =
1

512πζ(3)2

and

X̃EQ(T ) =
1

4 1.80ζ(3)

m2
X

T 2
K2(

mX

T
) .

Equations (4.33) can be motivated as follows. The departurefrom equilibrium with respect to
theX number densityX̃ − X̃EQ drives the generation of the baryon asymmetry.γB, which
describes the inverse decays and2 − 2 scattering governs the decrease of baryon number.K =
〈ΓX〉x=1 /H(mX) i.e. the reaction rate divided by the Hubble rate can be interpreted as a measure
for the effectiveness of the decays.

These equations can in general not be solved analytically. Therefore we do some numerical cal-
culations in the next section.

4.5 Numerical Results

For the calculations we choosemX = 1010 GeV (the mass scale of the lightest heavy Majorana
neutrino) andλ = g2

m2
X

.

Solution of the Simplified Equations

We solve the system of the simplified equations (4.33) first. Figures 4.3, 4.4 and 4.5 show the
results for several values of the efficiency parameterK. All graphs are plotted over the dimen-
sionless parameterx = mX/T .
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Figure 4.3: Evolution of the relativeX abundance.
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Figure 4.4: The baryon asymmetrỹB = g∗ǫ−1B, generated by the toy model for variousK.
For decreasingK the final asymmetry approaches a maximum value which belongsto the com-
pletely free decay of theX particles without any back-reactions. For large values ofK the baryon
number generation is highly suppressed, because the systemcannot deviate sufficiently far from
equilibrium.
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Figure 4.5: Deviation from equilibrium of the relative abundancesX̃ − X̃EQ. For smaller values
of K the deviation from thermal equilibrium increases. SinceX̃ − X̃EQ acts as a source term
driving the baryon number generatioñB also increases with decreasingK.
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Full Numerical Solution

In this section the results obtained for the full numerical solution of the unaltered Boltzmann
equation are presented.14

The coupled set of Boltzmann equations (4.22), (4.23) and (4.24) for the toy model has been solved
using the analytical reduction formalism outlined in section 3.6. For this purpose theD integrals
have been calculated in appendix E. The reduced equations are still integro-differential equations
with two or one integrals in case of2− 2 scattering and decays respectively. These equations are
discretized using the discrete velocity model described insection 3.7.

A fourth-order Runge-Kutta Integrator with adaptive step size control was used in order to solve
the discrete system of differential equations.

There are various subtleties with respect to the discretization grid.15 For the calculations presented
in this thesis a non-equidistant grid has been chosen in order to account for the different behavior
of the equilibrium distributions for small or large momenta(i.e. large variations for small momenta
and the long smooth Boltzmann tail for large momenta).

Furthermore there is the fundamental problem that the momentum grid is effectively shrinking
due to the expansion (i.e. the momenta are red shifted). Thisimplies that theb and b̄ particles
produced in the decay of theX will eventually fall of the upper bound of the grid, when the upper
bound becomes equal to half of theX mass. This means that the upper bound has to be chosen
high enough, so that during the relevant time interval for which the equations are to be solved this
problem cannot occur. This means however that the density ofthe grid points is lessened when
the number of points, i.e. the available computing power stays constant. The non-equidistant grid
fits these needs by far better than an equidistant one. The infinity of the Bose-Einstein equilibrium
distribution function atk = 0 for zero particle masses also requires a lower threshold greater than
zero.

Good values for the upper bound and lower bounds can be found by demanding the numerical
value for the number density integrated on the respective grid to be close to the exact value.

In principle it is necessary to show, that successive refinement of the grid (this implies decreasing
the grid intervals as well as increasing the upper bound). The quality of the calculated momentum
and time distribution can roughly be estimated, testing theconservation laws encountered in the
model. In our case this means that the relation2nX + nb + nb̄ = const must hold.

For a first approximation it is sufficient to consider only decays and inverse decays as well as the
real intermediate state contribution to2−2 scattering.16 These are the only CP violating processes,
because as we have seen thatMbb, b̄b̄ =Mb̄b̄, bb. in this case the only free parameters are|MX |2
andǫ. The later does not enter the simplified Boltzmann equations, becauseB depends only linear
on ǫ. With the relation

K =
mPl |MX |2

4.5 16π
√
g∗m3

X

, (4.38)

one can directly compare the results of both approaches.

14Note, that the numerical calculation with respect to the unaltered Boltzmann equations turned out to be problematic.
The algorithm has not always been stable. There has not been enough time for extensive testing, so that the results
presented in this must be considered preliminary.

15Due to the homogeneity and isotropy of the equations we are ofcourse referring to an one-dimensional grid here.
16The real intermediate state2− 2 scattering allays needs to be taken into account in order to preserve the combined

CPT -unitarity condition in (2.10).
Considering only decays and inverse decays would always generate a baryon asymmetry in thermal equilibrium.
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We used the parameter set

mX = 1010 GeV, ǫ = 1× 10−3 andK = 5.22 × 10−4 . (4.39)

Note the small value ofK compared to the values in figures 4.3, 4.4 and 4.5. These special values
were enforced partly by the necessity of numerical stability of the software routines. The one to
one comparison between the full and the simplified equationsfor these parameters is shown in
figure 4.6. We learn that the errors induced by the simplification of the Boltzmann equations are
small in the regimeK ≪ 1. This is not surprising because the full Boltzmann equations as well as
the simplified ones are then governed by the expansion rate, rather than by the interactions of the
particles. In order to clarify how important the corrections to the linearized Boltzmann equations
are it will be necessary also to examine the regime of strong couplingK ≫ 1.
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Figure 4.6: The solutions of the simplified equations compared to the full numeric approach for
K = 5.22 × 10−4. Note that this value corresponds to a far from equilibrium situation with
maximum baryon production (cf. figure 4.4). One can expect a larger difference for bigger values
of K, because the interaction will than become more important. The upper case letters belong to
the simplified equations.
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Figure 4.7: Total particle number (2nX + nb + nb̄) and total entropy normalized by their ini-
tial value. We see that there is significant entropy production. This observation contradicts the
assumption of conserved entropy made in the derivation of the simplified Boltzmann equations.



Chapter 5

Conclusions and Outlook

We have seen that, in the framework of the seesaw mechanism, leptogenesis can in a natural way
explain the observed baryon asymmetry through the decay of heavy, speculative Majorana neu-
trino states. The importance of these theories increases with decreasing likeliness of baryogenesis
theories such as electroweak baryogenesis.

If leptogenesis is indeed the cause for the baryon asymmetryin our universe, this would have the
delightful aspect, that the lightest and most unimpressiveknown particles, the neutrinos would in
the end be responsible for our own existence.

Although, in view of the numerous different baryogenesis and leptogenesis scenarios the uncer-
tainties in the underlying physics will dominate the error in the state-of-the-art calculations, it is
desirable to achieve a reliable numerical simulation of theBoltzmann network for a given baryo-
genesis or leptogenesis theory.

We have seen that the entropy production, caused by the CP violating out of equilibrium decay of
the heavy particle species causing baryon or lepton number generation, might produce entropy to
a great extent. The assumption of conserved total entropy might therefore be inappropriate, and
the relation between Hubble rate and temperature might be altered. This well known phenomenon
of entropy production already led to corrections to the expected neutrino spectrum. Which effect
these and other corrections such as the employment of the correct quantum statistics (Fermi or
Bose-Einstein statistics) have must be examined on the basis of a particular and realistic baryoge-
nesis model.

Because of the observed similarity of the Boltzmann equations for the toy model on the one hand
and thermal leptogenesis on the other, the latter would be suited well for such investigations.

Furthermore, the numerical algorithms developed in line with this work can in principle be ad-
justed to all kinds of non-equilibrium phenomena in the expanding universe, limited mainly by
computer power and the theoretical uncertainties in the underlying physics. It has been shown
that the numerical solution of the full Boltzmann equationsfor such leptogenesis models is feasi-
ble. The incorporation of entropy generating effects (i.e.the solution of the coupled Boltzmann-
Einstein system) implies only minor changes in the softwareroutines, so that this issue can be
investigated easily.

However the most urgent issue associated with the current treatment of leptogenesis with respect
to the out of equilibrium decay, is still whether the kineticapproach itself is an appropriate descrip-
tion of the early universe plasma and the respective non-equilibrium phenomena. We outlined the
problems encountered in connection with this approach. TheBoltzmann equation has been de-
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veloped for systems of classical dilute gases. Many effectsexpected to be important in a dense
quantum plasma are not incorporated within this description. Sporadic attempts to supplement the
equations accordingly will in general be arbitrary, if not motivated by superior techniques.

In order to clarify this question a full quantum field theoretic treatment needs to be carried out. In
order to reject or to ratify the validity of the Boltzmann equations it will be necessary to compare
the numerical solutions of the unaltered Boltzmann equations to the results of a full quantum field
theoretic calculation.

The toy model described in the second part of this thesis might proof useful in this context. Ac-
cording to [59] the assembly and numerical solution of the Kadanoff-Baym equations for this toy
model is feasible. Thus a direct comparison of these two different approaches is within reach.



Appendix A

Robertson Walker Metric

In polar coordinates the line element of Robertson-Walker metric is given by

ds2 = dt2 −R2(t)

(

dr2

1− kr2 + r2 dθ2 + r2 sin2 θ dφ2

)

. (A.1)

The only non-vanishing Christoffel symbols are the following:

Γ0
11 =

RṘ

1− kr2
Γ0

22 = r2RṘ

Γ0
33 = r2 sin2 θRṘ

Γ1
11 =

kr

1− kr2
Γ1

22 = −r(1− kr2)
Γ0

33 = −r(1− kr2) sin2 θ

Γ2
12 = Γ3

13 =
1

r

Γ2
33 = sin θ cos θ

Γ3
23 = cot θ

Γ1
01 = Γ2

02 = Γ3
03 =

Ṙ

R
(A.2)

In the spatially flat case (k = 0) and when we write the line elements in terms of cartesian coordi-
nates:

ds2 = dt2 −R2(t)
(

dx1
2 + x2

2 + x3
2
)

. (A.3)

we get for the remaining Christoffel symbols

Γ0
ij = RṘδij ,

Γi0j =
Ṙ

R
δij ,

Γijk = 0 . (A.4)
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Appendix B

Modified Bessel Functions

The modified Bessel functions of the second kind are defined as

Kν(z) =

√
π
(

z
2

)ν

Γ(ν + 1
2 )

∫ ∞

1
e−zt(t2 − 1)ν−

1
2 dt , (B.1)

whereΓ is the Gamma function

Γ(n+
1

2
) =
n=0,1,2,...

(2n)!
√
π

n!22n
. (B.2)

Thus the first and second Bessel function are

K1(z) = z

∫ ∞

1
e−zt

√

t2 − 1 dt =

∫ ∞

z
e−t
√

t2 − z2 dt (B.3)

and

K2(z) =
z2

3

∫ ∞

1
e−zt(t2 − 1)

3
2 dt =

1

z2

∫ ∞

z
te−t

√

t2 − z2 dt . (B.4)

The second integral can be found via integration by parts from the first one in either case. This
relations can be used to express the equilibrium number density in case of Maxwell Boltzmann
statistics by

nMB =
1

2π2

∫

e−
√
p2+m2

T dp =
T 3

2π2

∫ ∞

m
T

te−t
√

t2 −
(m

T

)2
=

T 3

2π2

(m

T

)2
K2(

m

T
) . (B.5)
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Appendix C

Matrix Elements

Unitarity condition

Unitarity of theS-matrix requires

∑

j

|M(i→ j)|2 =
∑

j

|M(j → i)|2 . (C.1)

This can be seen as follows. From the unitarity of theS-matrixS†S = SS† = 1 and the definition
of theT -matrixS = 1+iT we getTT † = −i(T−T †) = T †T and thus〈i| TT † |i〉 = 〈i|T †T |i〉.1
We insert

∑

j |j〉 〈j| = 1 and get

∑

j

〈i|T |j〉 〈j| T † |i〉 =
∑

j

〈i|T † |j〉 〈j|T |i〉 ,

or using〈a|U † |b〉 = 〈b|U |a〉∗

∑

j

|〈i|T |j〉|2 =
∑

j

|〈j|T |i〉|2 .

Recalling the definition of the invariant matrix elementM

〈i|T |j〉 = (2π)4δ(4)(pi − pj)M(i → j) ,

we can immediately deduce equation (2.8).

Renormalization of the toy model amplitudes

Figure C.1 shows one loop contributions to the self energyM(p2) for theX and b fields. As
pointed out in chapter 4 we renormalize only theX-field propagator and assume that theb propa-
gator is equal to the free one (due to the much smaller mass of theb particles).

This is the sum of all one-particle-irreducible insertions(1PI)

M(p2) =
|g|2
8π2

(

ln

∣

∣p2
∣

∣

µ2
− 2− iπθ(p2)

)

− C1p
2 + C2m

2
X , (C.2)

1We use the abbreviation|i〉 = |p1p2 · · ·〉 as an abbreviation for a complete state of incoming or outgoing particles.
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whereµ is an arbitrary mass scale. The full two point function is then given by

i

p2 −m2
X −M2(p2)

. (C.3)

The physicalX mass is defined by

Re(i(GX )
−1

(M̃2)) = 0 , (C.4)

which gives us

M̃2 = m2
XZm , (C.5)

with

Zm = 1 + C1 + C2 +
|g|2

8π2m2
X

(

ln
m2
X

µ2
− 2

)

. (C.6)

And the decay widthΓX is

Im(i(GX )
−1

(M̃2)) = −M̃Γ . (C.7)

This gives

ΓX =
|g|2

8πmX
. (C.8)

The residue is defined by

d

dp2
i(GX (p2))−1

∣

∣

p2=m2
X

= 1− |g|2
8π2m2

X

+ C1 = Z−1 . (C.9)

ForZ = Zm = 1 we have to choose

C1 =
|g|2

8π2m2
X

,

C2 =
|g|2

8π2m2
X

(

ln
m2
X

µ2
− 3
)

. (C.10)

Furthermore, we need to compute one loop corrections for thevertices. The corresponding dia-
grams forXbb can be found in figure C. The corrections toXb̄b̄ can be obtained by substituting
g ↔ g∗.
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−iM b(p2) = 2� +�
−iMX(p2) =� +�

Figure C.1: X and b self energy

� = ig∗ |g|2
16π2m2

X

(

1
12π

2 + iπ ln 2
)

� = −ig λ
16π2

(

ln
m2
X

µ2 − 2− iπ
)

� = −ig∗ λ
16π2

(

ln
m2
X

µ2 − 2− iπ
)

Figure C.2: One loop contributions to the verticesXbb in MS-prescription calculated by means of
the Feynman rules in chapter 4. The vertices forXb̄b̄ are analogous (substituteg ↔ g∗).

The amplitudeM2
X, bb is found by summing up the vertex in figure 4.2 and all the loop corrections,

to be (up toO(g5))

M2
X, bb = |g|2 − |g|4

96m2
X

+
λ

8π2

(

(ln (
m2
X

µ2
)− 2)(Re(g2) + |g|2) + πIm(g2)

)

. (C.11)
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Of course the amplitudeM2
X, b̄b̄

can again be found interchangingg andg∗ (Im(g2) = −Im(g∗2)):

M2
X, b̄b̄ = |g|2 − |g|4

96m2
X

+
λ

8π2

(

(ln (
m2
X

µ2
)− 2)(Re(g2) + |g|2)− πIm(g2)

)

. (C.12)

We define

|MX |2 =M2
X, bb +M2

X, b̄b̄ = 2 |g|2
(

1− |g|2
96m2

X

+
λ

8π2 |g|2
(ln

m2
X

µ2
− 2)Re(g2)

)

(C.13)

and

ǫ =
λ

8π |g|2
Im(g2) . (C.14)

Then the amplitudes forX decay can be parametrised as

M2
X, bb =

1

2
(1 + ǫ) |MX |2 , M2

X, b̄b̄ =
1

2
(1− ǫ) |MX |2 . (C.15)

This is the form we used in chapter 4. Up toO(g5) loop corrections do not contribute to the
amplitudesM2

bb, b̄b̄
andM2

b̄b̄, bb
.



Appendix D

Temperature Dependence of the
Scattering Parameters

In section 4.4 we encounter the quantitiesX̃EQ and〈σ |v|〉, of which we need to know the tem-
perature dependence in order to solve the simplified Boltzmann equations.

Let us first solve the following integral encountered in the derivation of the simplified Boltzmann
equations:

I =

∫

dΠk

∫

dΠpe
−Ek
T e

−Ep
T δ(s −m2

X) , (D.1)

wheres = (k + p)2 is a Mandelstamm variable. Performing the angle integrals leaves

I =
π2

(2π)6

∫

dEk

∫

dEpe
−Ek
T e

−Ep

T θ(4EkEp −m2
X)

=
π2

(2π)6
TmXK1

(mX

T

)

=
〈ΓX〉
ΓX

2π4nEQX
(2π)6mX

. (D.2)

Now let us turn to the temperature dependence ofX̃EQ and〈σ |v|〉. With the results of appendix
C we find

X̃EQ(T ) =
1

4 1.80ζ(3)

M2

T 2
K2(

M

T
) .

In order to evaluate

〈

σ′ |v|
〉

=
1

n2
γ

∫

(2π)4δ(4)(k + p− q − r)e−(Ek+Ep)/T

×
[

2M2
bb, b̄b̄ −

π

2mXΓX
|M|4 δ(s −m2

X)

]

dΠk dΠp dΠq dΠr , (D.3)
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with

M2
bb, b̄b̄ =λ2 + |g|4

(

1

(s−m2
X)2 + (mXΓ)2

+

(

1

t−m2
X

+
1

u−m2
X

)2

+
2(s −m2

X)

(s−m2
X)2 +m2

XΓ2
X

(

1

t−m2
X

+
1

u−m2
X

)

)

+ 2λRe(g2)

(

1

t−m2
X

+
1

u−m2
X

+
s−m2

X

(s−m2
X)2 + (mXΓ)2

)

.

We consider two limiting cases:T ≫ mX andT ≪ mX . Since the average momenta are of
the same order as the temperature we can in the first case make the zeroth order approximation
Mbb, b̄b̄ ≃ λ2. Ignoring the real intermediate state subtraction we find

〈σ |v|〉 ≃ λ2

T 2
C , (D.4)

whereC is a constant factor given by (performing the transformation k′ = k
T , dΠ

′

k =
dΠ

k

T 2 )

C =
π4

4ζ(3)2

∫

(2π)4δ(4)(k′ + p′ − q′ − r′)e−(E′
k
+E′

p)/T dΠ
′

k dΠ
′

p dΠ
′

q dΠ
′

r . (D.5)

C can be evaluated analytically to give

C =
1

512πζ(3)2
. (D.6)

In the low energy limitT ≪ M , the momenta can be put to zero for a first approximation, which
yields

〈σ |v|〉 ≃ 1

T 2
C

(

λ2 + 9
|g|2
m4
X

− 6
λRe(g2)

m2
X

)

. (D.7)

For the real intermediate contribution

〈σ |v|〉 −
〈

σ′ |v|
〉

=
1

n2
γ

∫

(2π)4δ(4)(k + p− q − r)e−(Ek+Ep)/T

×
[

π

2mXΓX
|M|4 δ(s −m2

X)

]

dΠk dΠp dΠq dΠr , (D.8)

we find with the help of (D.2)

〈σ |v|〉 −
〈

σ′ |v|
〉

=
π2

8ζ(3)
m2
XT

−5K1

(mX

T

)

. (D.9)

This part is essentially zero in the regimeT ≪ mX and negligible in the caseT ≫ mX compared
to the contribution by (D.4).

The total2− 2 velocity averaged cross section is

〈

σ′ |v|
〉

≃
{

C λ2

T 2 (T ≫ mX)

C λ2

T 2 (T ≪ mX)
(D.10)
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These results can be plugged together to give the smooth interpolating function

〈

σ′ |v|
〉

≃ λ2

T 2

4Cm2
X + T 2

T 2(m2
X + T 2

C )
, (D.11)

which is used for the numerical evaluation.
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Appendix E

Reduction of the Collision Integrals

Reduction ofC1↔2 like Collision Integrals

In the upcoming calculations we will assume (k, p, q, r > 0) for simplicity. The other cases must
be treated separately.

The generalization of the collision integrals for decays and inverse decays is

C1↔2 [f ] =
1

2Ek

∫

(2π)4δ(4)(k − q − r) |M|2 [(1− ξfk)fqfr − fk(1 − ξfq)(1− ξfr)]

× d3q

(2π)32Eq

d3r

(2π)32Er
. (E.1)

Performing the same steps as those, which led us from eqn. (3.41) to eqn. (3.42), we derive

C1↔2 [f ] =
1

32πEk

∫

Θ(Eq −mq)F (f)
∑

i

Di(k, q, r)
r dr

Er
, (E.2)

whereEq = Ek − Er, q =
√

E2
q −m2

q and we have defined the functionD as

D(k, q, r) =
qr

8π4

∫

λ2 dλ

∫

eiλk dΩλ

∫

e−iλq dΩq

∫

e−iλr dΩr |M|2 .

The simplification of the collision integral described above relies on the analytic computation of
the integralsD for our particular matrix elements. In this section we will calculate these integrals
for the matrix amplitudes encountered above.

Mandelstamm variables

The three Mandelstamm variables are defined as

s = (k + p)2 = (q + r)2 ,

t = (q − k)2 = (r − p)2 ,
u = (r − k)2 = (q − p)2 .

(E.3)
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In the limit of massless particles we get

s = 2kp = 2 |k| |p| (1− cos θkp) ,

t = −2kq = −2 |k| |q| (1− cos θkq) ,

u = −2kr = −2 |k| |r| (1− cos θkr) .

(E.4)

The Mandelstamm variables are not independent. Rather thanthat they satisfy the relation

s+ t+ u =

4
∑

i=1

m2
i . (E.5)

Calculation of D for some matrix elements

In the main part we have seen, that reducing the collision integral means that we have to calculate

D(k, p, q, r) =
pqr

64π5

∫

λ2 dλ

∫

eiλk dΩλ

∫

eiλp dΩp

∫

e−iλq dΩq

∫

e−iλr dΩr |M|2

(denoting the surface element withdΩ and the inner product byλk = (λ, k) and the absolute
value of a vector byk = |k|)
for the respective matrix element|M|2. M will in general exhibit a dependence on the angles
between the various (momentum) vectorsk, p, q, r of the formkp, kq andkr.

Cases where the dependencies onkp, kq andkr separate and thus each of the integrations over
dΩq, dΩr anddΩp can be done on its own, and whereM is a homogeneous polynomial (inR3),
can be treated by the following formula found in [60]:

∫

eiλη̂P l(η̂) dΩη = 4π

(

i

2

)l [l/2]
∑

k=0

(−)k

k!

(

2

λ

)l−k
jl−k(λ)(∆kP l)(λ) .

HereP l is a homogeneous polynomial of degreel, ∆ is the Laplace operatorjν denotes the
spherical Bessel functions of the first kind,Γ(z) is the Gamma function and̂η is a unit vector.
Because of the relation

jn(z) = (−1)nzn
(

d

z dz

)n sin z

z

these can always be expressed in terms of trigonometric functions and powers. For the simple case
ofM = 1 (l = 0) the formula gives the correct results immediately (cf. eqn. (3.45)):

D1(k, p, q, r) =
4

kπ

∫ ∞

0
sin(λk) sin(λp) sin(λq) sin(λr)

dλ

λ2
.

This can then be written in terms of signum functions as seen above.

In particular we encountered the matrix element

M2
bb, b̄b̄ =λ2 + |g|4

(

1

(s−m2
X)2 + (mXΓ)2

+

(

1

t−m2
X

+
1

u−m2
X

)2

+
2(s −m2

X)

(s−m2
X)2 +m2

XΓ2
X

(

1

t−m2
X

+
1

u−m2
X

)

)

+ 2λRe(g2)

(

1

t−m2
X

+
1

u−m2
X

+
s−m2

X

(s−m2
X)2 + (mXΓ)2

)

.
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We can treat the different terms separately.

First, we calculateD for matrix elements of the form

|M|2 =
1

t−m2
X

,

t = −2kq(1 − cos θkq) .

All the angle integrals which|M|2 does not depend on can be integrated out using relation (3.44).
Thus we have to compute the integral

D = − 1

4π3k

∫

sin (λp) sin (λr)I dλ , (E.6)

where we have defined

I =

∫

eiλk
∫

e−iλq
1

1 +
m2
X

2kq − cos θkq
dΩq dΩλ .

For the integration we can choose to orientate thez-axis of the coordinate system in the direction
of k and thex-axis in the direction of the projection ofq on thexy-plane. ThenI becomes

(a = 1 +
m2
X

2kq )

I =

∫

eiλk
∫

e−iλq(cos θλ cos θq+sin θλ sin θq cosφλ) 1

a− cos θq
dΩq dΩλ .

The integration overφq andφλ gives
∫ ∫

e±iλq sin θλ sin θq cosφλ dφq dφλ = (2π)2J0(λq sin θλ sin θq) ,

whereJ0 is a Bessel function of the first kind. ThusI is

I =(2π)2
∫ ∫

eiλke−iλq cos θλ cos θq J0(λq sin θλ sin θq)

a− cos θq
dcos θλ dcos θq

=(2π)2
∫

dcos θq
a− cos θq

∫

eiλ(k−q cos θq) cos θλJ0(λq sin θλ sin θq) dcos θλ

=(2π)2
∫

dcos θq
a− cos θq

∫ π

0
sin θλ cos (λ(k − q cos θq) cos θλ)J0(λq sin θq sin θλ) dθλ . (E.7)

The integral

∫ π
2

0
sinx cos (β cos x)J0(α sinx) dx =

√

π

2
(α2 + β2)−

1
4J 1

2
(
√

α2 + β2)

=
1

√

α2 + β2
sin
(

√

α2 + β2
)

(E.8)

can be found in the literature [61]. Withα = λq sin θq andβ = λ(k − q cos θq) this yields

I = 8π2

∫ 1

−1

sin (λ
√

q2 + k2 − 2kqx)

λ
√

q2 + k2 − 2kqx(a− x)
dx .
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Substituting
√

q2 + k2 − 2kqx = y we find (f(y) = 1
2akq−q2−k2+y2

)

I = 16π2

∫ q+k

|q−k|
f(y)

sin (λy)

λ
dy .

Interchanging the integration overdy and dλ the total expression forD becomes

D = − 4

πk

∫ q+k

|q−k|
f(y)

∫

dλ

λ
sin (λp) sin (λr) sin (λy) dy ,

where the inner integral is known from (3.48):

D′
1 =

4

π

∫

dλ

λ
sin (λp) sin (λr) sin (λy) dλ

=
1

2
(sgn(y − (r − p)) + sgn(y − (p − r))− sgn(y − (p+ r))− 1) .

Now we can evaluate the outer integral, using the relation

∫ b

a
f(y)sgn(y − h) dy = sgn(b− h) (F (b)− F (h)) + sgn(h− a) (F (a) − F (h)) ,

whereF is the anti-derivative off . The result is

D = − 1

2k

∫ q+k

|q−k|
f(y) (sgn(y − (r − p)) + sgn(y − (p− r))− sgn(y − (p+ r))− 1) .

This can also be written as

D = − 1

2k

{

sgn
(

q + k − (r − p)
)(

F (q + k)− F (r − p)
)

+sgn
(

r − p− |q − k|
)(

F (|q − k|)− F (r − p)
)

+sgn
(

q + k − (p − r)
)(

F (q + k)− F (p− r)
)

+sgn
(

p− r − |q − k|
)(

F (|q − k|)− F (p − r)
)

−sgn
(

q + k − (p + r)
)(

F (q + k)− F (p+ r)
)

−sgn
(

p+ r − |q − k|
)(

F (|q − k|)− F (p + r)
)

−
(

F (q + k)− F (|q − k|)
)

}

.

In order to calculate

F (y) =

∫

f(y) dy =

∫

1

2akq − q2 − k2 + y2
dy

we have to distinguish two cases:2akq− q2− k2 = m2
X − (q− k)2 < 0 and> 0. In the first case

we have

F (y) =

∫

1

y2 − c2 dy =
1

2c
ln

(

y − c
y + c

)

,

with c2 = −(m2
X − (q − k)2) and in the second case

F (y) =

∫

1

y2 + c2
dy =

1

c
arctan

(y

c

)

,
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with c2 = m2
X − (q − k)2.

The integrals involving

|M|2 =
1

u−m2
X

,

|M|2 =
1

(t−m2
X)2

,

and

|M|2 =
1

(u−m2
X)2

can be evaluated in the same way.

Now we calculateD for

|M|2 = δ(s −m2
X) ,

s = 2kp(1− cos θkp) .

We can start from (cf. (E.6))

D =
p

4π3

∫

sin (λq) sin (λr)I dλ , (E.9)

where this time

I =

∫

eiλk dΩλ

∫

eiλpδ(2kp(1 − cos θkp)−m2
X) dΩp .

Repeating the steps above we can write the second integral as

2π

∫

d cos θpe
iλp cos θλ cos θpJ0(λp sin θλ sin θp)δ(2kp(1 − cos θp)−m2

X) .

The delta function can be rewritten as

δ(2kp(1 − cos θp)−m2
X) =

1

2kp
δ(cos θp − (1− m2

X

2kp
)) .

Then the integration can easily be performed to give

π

kp
eiλp cos θλ cos θpJ0(λp sin θλ sin θp)θ(4kp−m2

X) ,

where the theta function makes sure that the peak of the deltafunction is located within the region

of integration andθp now is fixed such thatcos θp = 1− m2
X

2kp .

Plugging this intoD yields

D =
1

4kπ2

∫

dλ sin (λq) sin (λr)

∫

dΩλe
iλ(k+p cos θp) cos θλJ0(λp sin θλ sin θp)θ(4kp−m2

X) .

Now we can again apply (E.7):
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D =
1

2kπ2
θ(4kp−m2

X)

∫

dλ

λ
sin (λq) sin (λr)

sin (λ
√

k2 + p2 − 2kp cos θp)

λ
√

k2 + p2 − 2kp cos θp
.

The last integral can now be evaluated just like the above oneto

D =
1

16ckπ
θ(4kp−m2

X) (sgn(c− (r − q)) + sgn(c− (q − r))− sgn(c− (q + r))− 1) ,

where we defined
c =

√

k2 + p2 − 2kp cos θp =
√

(k + p)2 −m2
X .

Because of(k + p)2 − m2
X = (k − p)2 + 4kp − m2

X ≥ 4kp − m2
X the radical ofc is always

positive, when the argument of the Heaviside function is, such thatD is well defined.

For the term
(

1

t−m2
X

+
1

u−m2
X

)2

=
1

m4
X

((a− 1) (b− y) + (b− 1) (a− x))2

(a− x)2 (b− y)2
= f(x, y) ,

with x = cos θq, y = cos θr and

a = 1 +
m2
X

2kq
,

b = 1 +
m2
X

2kr
,

we try to find an approximating functiong(x, y) because the corresponding integrals are hard to
solve. We can make the ansatz

g(x, y) =
1

m4
X

α (a− 1)2 (b− y)2 + β (b− 1)2 (a− x)2 +
(

γ (x− y)2 + δ
)

(a− x)2 (b− y)2

(a− x)2 (b− y)2

=
1

m4
X

(

α
(a− 1)2

(b− y)2
+ β

(b− 1)2

(a− x)2
+ γ (x− y)2 + δ

)

. (E.10)

The integration over the different terms can then be performed according to the results above.
Demanding thatg(x, y) = f(x, y) in the points(x, y) ∈ {(0, 0), (1, 0), (0, 1) (1, 1)}, we find for
the parametersα, β, γ andδ

{

α =
4ab− a− b
b (2 a− 1)

, β =
4ab− a− b
a (2 b− 1)

, γ = − 1

ab
, δ = − (a− b)2

(4 ab− 2 a− 2 b+ 1) ab

}

It is important to notice, thatg(x, y) is still symmetric under exchange ofq andr. The quality of
this approximation depends on the parametersq andr, but fory = x it is always exact.
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Integrals

In this chapter we compute some integrals encountered in themain text.

Two particle decay rate

The differential2-particle decay ratedΓ(A → BC) in the rest frame of the decaying particle is
given by [20]

dΓ =
1

2mA

d3pB
(2π)32EB

d3pC
(2π)32EC

(2π)4δ(4)(pA − pB − pC) |M(A→ BC)|2 . (F.1)

For a two particle decay process we have|M(A→ BC)|2 = const.1 In this case both integrations
can be carried out and one [62]

dΓ(A→ BC) =
|M(A→ BC)|2

8πm2
A

|pB| , (F.2)

with

|pB| = |pC | =

√

(m2
A − (mB +mC)2)(m2

A − (mB −mC)2)

2mA
. (F.3)

For radiative decaysmB = mC = 0 one finds

Γ(A→ BC) =
|M(A→ BC)|2

16πmA
. (F.4)

1One can infer this general property by expressing all possible Lorentz invariant combinations of momenta in terms
of the masses. Since the amplitude is invariant it can only bemade up by these combinations and thus it must be
constant.
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