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Abstract

The universe consists predominantly of matter. Only a thagtion is made up by antimat-
ter. This disproportion can be expressed by a number cadlledbaryon asymmetry. It has
been measured accurately by the WMAP satellite experintéotventional theories trying
to explain this observation in a dynamical way are refercegistbaryogenesis. A newer class
of mechanisms are the leptogenesis theories. They prédictite asymmetry has first been
created in the lepton sector and has then been convertdyliptota baryon asymmetry. The
observation that neutrinos are massive particles makésmmachanisms attractive.

Every theory that hopes to explain the baryon asymmetrysieedatisfy the Sakharov con-
ditions. Among others there must be a deviation from thereplilibrium. These non-
equilibrium scenarios are usually described by means @ftiitheory. However leptogenesis
takes place at early times and very high temperatures. itdkear whether this description is
adequate under such extreme conditions.

Zusammenfassung

Das Universum besteht tiberwiegend aus Materie und nur zuregehr kleinen Anteil aus

Antimaterie. Dieses Missverhéltnis kann durch eine Zam 2wsdruck gebracht werden, die
man Baryonasymmetrie nennt. Diese ist durch das WMAP 8atelExperiment genau bes-
timmt worden. Herkdmmliche Theorien, die diese Beobadtauf eine dynamische Weise
zu erklaren versuchen werden als Baryogenese bezeichinetn&uere Klasse von Theorien
bilden die so genannten Leptogenese Theorien. Sie gehen das, dass die Asymmetrie
urspringlich im Lepton-Sektor erzeugt, und schliellidlwigse in eine Baryonasymmetrie
konvertiert wurde. Die Beobachtung, dass Neutrinos eirtichre Masse besitzen macht
solche Mechanismen attraktiv. Jede Theorie, welche digdasymmetrie zu erklaren ver-
sucht muss notwendigerweise die Sakharov-Bedingungéiiesrf Unter anderem verlan-
gen diese, dass es eine Abweichung vom thermodynamiscleechGéwicht gegeben haben
muss. Diese Nichtgleichgewicht-Szenarien werden Ubtigaise mithilfe von kinetischer

Theorie beschrieben. Leptogenese findet jedoch zu seherfrdhiten und bei sehr hohen
Temperaturen statt. Es ist unklar, ob dieser Ansatz untelh sxtremen Bedingungen richtig
ist.
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Chapter 1

Introduction

Our world consists predominantly of matter and only a tircfion is made up by antimatter. This
is not only an observation which we can make in our every dégs |

Planetary probes have visited eight of the nine planetstt@dne to visit the ninth has just been
brought on its way. None of these probes has found evidence for antimatter. Weaaclude,
that our solar system is made up of matter. We will see thaétisscompelling evidence, that this
statement also holds for the universe as a whole.

This experimental observation can be expressed by a nuratbed daryon asymmetny. Namely
the difference between the number density of baryons andothantibaryons divided by the
number density of photons. Its numerical value has beerrrdigted to good accuracy by the
WMAP satellite which explores the anisotropies in the casmicrowave background radiation.

p="B_""B 5 _ (501+0,3) 101

TL»\/ Tlpy

This number tells us, that if there wet®'° + 1 baryons versug0'° antibaryons at the time
when the temperature of the universe dropped below thewass of the nucleon and therefore
the baryons and antibaryons started to annihilate, theyddeavel baryon and2)10'° photons
behind giving a baryon to photon ratio of—1°.
On the one hand one can assume, that this asymmetry is ah qaitidition of the universe. This
approach is somewhat unsatisfactory, because there isasorravhy nature should prefer the
dominance of particles over anti-particles or vice versa.

Another possibility would be, that the asymmetry has dgsediodynamically during the evolution
of the universe. To find such an explanation has indeed begyotl of many scientists in the past
decades.

There is broad agreement, that any theory trying to expkarbaryon asymmetry has to satisfy at
least three conditions, originally established by Andrakl®rov. These conditions are in detail:
baryon number violation, C and CP violation and finally theidton from thermal equilibrium.

Conventional mechanisms which manage to accomplish thisdan be found in the literature
under the name baryogenesis. They can be distinguishedvibyhiey realize the Sakharov con-
ditions. Examples are GUT baryogenesis and electrowealofanesis. However the theoretical
and experimental advance has made these theories seeasingig unlikely.

1The NASA mission New Horizons has been launched on JanuargQD®. However at the moment it is unclear
whether Pluto might loose its planetary status, when thbepearives there by 2015.

5



6 CHAPTER 1. INTRODUCTION

The observation that neutrinos perform flavour oscillatiand therefore must be massive particles
makes another class of scenarios thinkable. These areptwyémesis theories. They predict
that the asymmetry was first created in the leptonic sectfurddt has been converted into the
baryon asymmetry we observe today. So called sphaleroregges are made responsible for
this conversion. They are a non-perturbative aspect ofatmmtian gauge theories ascribed to the
nontrivial structure of the electroweak vacuum. They amydma and lepton number violating
processes.

As we will see these processes are incorporated in the sthndadel. However leptogenesis also
requires extensions to this very successful compendiurteafentary particle physics. In partic-
ular it requires the existence of heavy Majorana neutri®gvirtue of the seesaw mechanism,
which relates the light neutrino states to the heavy onestistence of these speculative particles
would at the same time solve one of the open questions pos#telstandard model: Why are
neutrinos so light?

The major part of this work is related to the third of the Sakkiaconditions, the deviation from
thermal equilibrium. In most current theories this criberis realized by a standard out of equi-
librium scenario within which the deviation from equilibrn is caused by the rapid expansion of
the universe.

The details of this scenario are usually investigated,isglthe so called Boltzmann equations.
This central equation of kinetic theory describes the eiatuof the single particle distribution

function. While it has been successfully applied to manfedint physical problems, it is far from

obvious whether this equation is indeed suitable for therjgtgon of the primordial plasma of

the early universe.

We will see, that in view of the assumptions made in its déidvethis seems to be rather unlikely.
Unfortunately in most treatises of leptogenesis this aspewt payed much attention to.

This thesis consists essentially of three parts.

In the first chapter we discuss the underlying physics sucthesecessary extensions to the
standard model and we give an overview of baryogenesis sosrtliscussed in the literature. As
an example we will describe thermal leptogenesis in skgmibre detail.

The second part is entirely devoted to kinetic theory antistizal mechanics in cosmology. We
will introduce the Boltzmann equation and discuss, in soetait] the limits of its applicability.
Then we will successively generalize it in order to obtaiafibrm encountered in cosmology.

In the last chapter we will investigate a simple toy modelahhhas all necessary ingredients
for baryon number generation. We will try to solve it by twoans. First, we follow a certain

standard approximation scheme found in the literaturenbpksily them for approximate analytical

solution. Second, we will employ a more sophisticated nicakmethod in order to solve the

unaltered equations exactly.

Throughout this work we will use natural units wheie= ¢ = k£ = 1 which implies that
[energy = [mas$ = [temperaturp= [length—! = [time] .
In this system we haveGeV ~ (2.0 x 10~ cm)~! ~ (6.6 x 10725s)~! ~ 1.2 x 103K, and

G = m;lz, whereG is Newtons constant and,, ~ 1.2 x 10! GeV denotes the Planck mass.



Chapter 2

Leptogenesis

In this first chapter we give an overview of the different poiities to determine). Then we will
summarize the Sakharov conditions and point out how theseadisfied in different baryogene-
sis scenarios (i.e. GUT baryogenesis, electroweak bangsje and Affleck-Dine leptogenesis).
Afterwards we briefly review the prerequisites necessapntterstand the details of leptogenesis.
Finally we discuss thermal leptogenesis in some détail.

2.1 Overview

The goal of all baryogenesis and leptogenesis theoriesggdiain the value ofj in the universe.

The significance of this number is due to the fact that the rafin, stays constant during the ex-
pansion of the universe as long as it is adiabaflhis means that once the baryon asymmetry has
come into existence the value gfs altered only by entropy producing non-equilibrium efsec

At temperatured” ~ 1GeV the rate of the back-reaction of the procgss p «—— ~ + ~ drops
rapidly, because the's lack the energy to produce the massive protons, but thatioegproceeds
in the forward direction. We will calculate in chapter 3 thathis temperature the baryon number
density will have dropped to a value ofz/n, ~ 108, if the baryons are still in equilibrium
at this time. Therefore the baryon asymmetry must have besster] at temperatures well above
1GeV.

Consequently baryogenesis takes place in the early urivieidependent of how the mechanism
works in detail. Table 2.1 lists a number of important evémthie history of the early universe as
suggested by the Big Bang model.

‘See [1], [2], [3].
2This is due tony, ~ a=2 andn, ~ T2 ~ a=3 (n, ~ s, sa® = const,s ~ a~>) for adiabatic expansion. Cf.
section 3.8.
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Temperature Event

10 GeVv Moy Big Bang current theories fail
Inflation; exponential growth; preexisting
baryon asymmetry is essentially whipped out

10'6 GeVv Mcaur GUT phase transition (timescale of GUT
baryogenesis)

100 GeV My Electroweak phase transitipntimescale of
electroweak baryogenesis)

1GeV my Hadron freeze-out quarks condense into
hadrons; baryons and antibaryons annihilate

0.1 MeV < Ep Primordial Nucleosynethesisorigin of the
light elements

0.1eV < Ry RecombinatiomndCMB Decoupling

Figure 2.1. Thermal history of the universe in the Big Bangdelo Note that all statements
about physics before primordial nucleosynethesis areyhggieculative. In general the uncertainty
increases when going back in time. Conversion between gaedjtemperaturet GeV = 1.16 x
10'3 K (deuteron binding energip ~ 2.2 MeV, Rydberg energy?y ~ 13.6eV). See e.g. [4],
[5].

Evidence for the Baryon Asymmetry

As advertised there is compelling experimental evideneg ttiie universe contains much more
matter than antimatter. We will now see where this evidemereas from in detail.

On earth antimatter can only be found in the storage ring$efhig collider experiments in
quantities of fractions of grams.

Cosmic Rays exhibit an admixture of anti-protongd @f 4. This number can however be explained
by secondary processes suctpasp — 3p-+p, induced by high-energetic particles colliding with
interstellar matter.

Also we can infer from the absence of annihilation produces (y-radiation) that our galaxy
contains no antimatter. If there were significant amountarimatter present in the universe it
would be separated from the matter parts on large scalesevtmtheoretical estimates show that
the patches at times when the separation must have beemtpces#d not have contained more
particles than abowit 1- M, which is of course not sufficient to form galaxe8y this argument
the existence of such patches can be excluded.

If we setnz = 0 the most obvious way to determimgis to compute the ratiaz/n-, based on
astronomical data from galaxy surveys. The photon numbesityeat temperaturd = 2.728
(CMBR) isn, ~ 4 x 108m=3.4 A current estimate for the density of baryonic matter from
measurements of visible matter in galaxiesuis~ 1/20m=3. This yields the ratio,/n, ~
10~1°, which has already the correct order of magnitude.

Primordial Nucleosynethesis

3See also [6]
“The bulk of photons today belongs to the CMBR
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Primordial nucleosynethesis or Big Bang nucleosyneth@N) predicts very successful the
abundance of the light elements e, “He andLi. For this reason BBN is the most important
affirmation of the Big Bang modél.The formation of elements proceeds over a chain of reactions
which starts with the creation of (stable) deuterons via

p+n—d+y.

The deuterons are then processed into He by the followingioses:

d+d—>He+n, *He+d—*He+p

Further reactions convert a small fraction of these elest@rfiLi. The precise relative abundance
of He depends sensitively on the temperature or time wheleosynethesis starts, because the
weak process

pt+e «—n+7r, (2.1)

which governs the size of,, /n, produces preferable (stable) neutrons at low energieseBars
the assumption that essentially all neutrons end ujHie nuclei one finds for the ratio of the He
mass density and the total mass density at the time of nyeletigesis:

e 2(na/ny)
p T (nafny) (22)

Now, the crucial reaction, which determines the beginnifiqiacleosynethesis is the photo-
disintegration of the deuteron

d+~v—p+n.

Therefore, a naive estimate would be to use the deuterorninbirhergy~ 2.2 MeV as energy
scale for nucleosynethesis. However this approach fadisalise the photons in the high energy
tail of the distribution function prevent the creation otitkerium till temperatures af ~ 0.1 MeV.

A sophisticated analysis also has to take the energy depeads the weak reaction (2.1) into
account. In order to obtain a reliable result one needs tedbe network of coupled Boltzmann
equations of all involved particle speci@s.

In figure 2.2 the relative abundance of the light elementsasd as a function of.

5See [7] for an introduction.
6See [8] for a broad analysis of the network of Boltzmann dquat
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10" - P Helium 4 (*He) ]

Deuterium (2H)

Helium (°He)
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(Relative to Hydrogen)
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Lithium (7Li)
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- e

B 107

Density of Ordinary Matter
(Relative to Photons)

Figure 2.2: Abundance of the light elements as predicted rbyqudial nucleosynethesis as a
function of . The vertical line gives the observed values. We see that &lemup the biggest
part of the light elements in the universe.

The comparison of the theoretical prediction with the mead@abundances yields the BBN result
nPBN = (2.6 — 6.2) x 1071

Cosmic Microwave Background

A newer value fom can be found based on the cosmic microwave background icadi@MB).
The CMB is to a very good approximation Planck distributed:

v\3 dv

However there exist deviations from perfect isotropy atvallef 10-°. These anisotropies have
been measured with high accuracy by the WMAP satellite éxet [9]. The deviations, which
are attributed to small density fluctuations in the photorytma plasma at the time of decoupling
are commonly analyzed by decomposition of the spectrumsphberical harmonics:

A

S =Y Yin(0,0) @4)
im
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with expansion coefficients;,,, defining the so called power spectrum by
W+ 1C =1+ 1) (Japm ) - (2.5)

Later on the fluctuations grew driven by gravitational ibgtey and eventually caused the forma-
tion of structures like stars and galaxies.

Many important cosmological entities can be inferred frdta WMAP data. For instance one
expects a peak at multipole moment 220 for a flat universe. This peak does indeed exist. See
figure 2.3/

Angular Scale

90° 2° 0.5° 0.2°

6000 T T \5 T B
g TT Cross Power E
5000 | Spectrum 3
E — A-CDMAIl Data 3
E WMAP E
4000 cel 3
< g ACBAR E
3 £ ]
B E |
S 3000 £ =
Q F E
x g ]
= 2000 £ E
1000 | 3
0 E |
E TE Cross Power ]
3 Reionization Spectrum -
€ 2F .
3 r ]
B r ]
q E ]
5} r 1
% F E
of
-1 F 1 1 1 1 1 1 1 1 1 3

0 10 40 100 200 400 800 1400

Multipole moment (J)

Figure 2.3: The famous CMB power spectrum, measured by theA¥®/Bhtellite. The solid lines
represent the best-fit cosmological model.

Also the baryon asymmetny has been be determined in this way.

The WMAP result is [9]:
noMEB = (6.1133) x 10710 (2.6)

"Another important result is the partition of the total déyishto dark energy, dark matter and baryonic matter
contributions.
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Now that we are convinced that the universe is baryon domihate can think of mechanisms
which could account for this fact. As outlined above all ddatks have to be in agreement with
three necessary conditions.

The Sakharov Conditions

Sakharov realized (1968) that a baryon asymmetry could baga dynamically produced in the
early universe if three necessary conditions are satfsfied

In order to see what these conditions are, suppose we knowedncgrocess, which we suspect to
account for the asymmetry. Let us writd (i — j) for the amplitude of a transition from the state
i to a statej and leti be the CP conjugated stateitd CPT invariance then implies that

M(i—j5)=M(j —1). (2.7)

Unitarity of the S Matrix implie&®
DM = I =D MG =) (2.8)

J J
Combining these two yields
DoIMG = PP =D MG =D =D MG — i) (2.9)
j j j
= IM@GE—H), (2.10)
J

because the sum is over all states and anti-states.
And if we have CP invariance

M@ — §)> = MG — H = MG — i) (2.12)

e Baryon number violatiod\ B # 0

This condition is obvious, since otherwise the universddoever develop a net non-zero
baryon number starting from = 0.

Baryon number violation is a generic feature of GUT theofeeg. SU(5), SO(10), E6),
because both quarks and fermions are contained in the sesdedible representation of
the gauge grougr and thus it is possible for scalar particles and gauge basomsediate
interactions between them [12].

Within the standard model baryon number can be violated nypesturbative effects (in-
stantons).

8See [10]; Independently Wadim Kuzmin (1970).
°For simplicity we assume Maxwell-Boltzmann statisticsehée. statistical factors are equalisee [11].
1%The sum of all transition probabilities from and to a stasee equal, see appendix C.
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e C and CP violation

We can infer from (2.11) that without CP violation equal nuargoof a staté and its anti-
states give equal numbers of final statg¢snd its anti-stateg. Therefore no baryon asym-
metry can develop when CP is conserved.

CP violation in GUT theories arises from loop correctionshi® baryon number violating
bosonic decay processes. CP -violation is also incorpbiateuper-symmetric models.

In the standard model C is maximally broken because oniyhigfided quarks and leptons
are gauge coupled. CP violation has first been observed i itOthe neutral Kaon sys-
tem! CP violation also shows up in the more recétt — B experiments at BaBaR at
SLAC and BELLE at KEK. However the CP -violating complex paas the CKM-Matrix
seems to be to small in order to account for the observed barggmmetry.

e Departure from thermal equilibrium
of the respective (i.e. the baryon number violating) preces

This is a direct consequence of CPT invariance: If we white C PT andp for the density
matrix p(t) = e POH®) with HamiltonianH, then

(B)y = Tr(e P B) = Tr(0~ 10" B)

= Tr(0e PEBO~Y) = Tr(he P~ 19BO~ 1) = Tr(e PH(~B)) = — (B); .
(2.12)

Here we exploited the fact thaiand H commute, when CPT is preserved. We can also infer
this condition from eqgn. (2.9), which tells us, that whenstlites are equally populated,
transitions from these states must prodie@d: in equal numbers. Moreover eqgn. (2.10)
tells us that any initial difference in the particles abumtiais erased, because the total
amplitudes from all stategto i andi: are equal and the rates will therefore be proportional
to the number densities.

Therefore, whenever a system is in equilibrium no net baryamber can be generated.

We conclude that when C and CP violation are present suchetirat (2.11) does not hold, a
system containing equal numbers of initial statesd: could indeed produce unequal numbers
of final statesi and; provided that the transitions occur in a non-equilibriutuation.

Note that the presence &f-violating interactions (at very high energies) also altuestroys any
initial baryon asymmetry. We can therefore assume, thapasgibly preexisting baryon number
is wiped out and that it is equal to zero when the processeargbgenesis sets in.

There are several scenarios for baryogenesis. They cambsfidd based on how the Sakharov
conditions are realized. We will now mention some of them.

GUT Baryogenesis

GUT baryogenesis was the first scenario discussed to acfayihe baryon asymmetry. 16U (5)
GUT? the fermions belong to the irreducible representations

5p = [d$, 1) and10; = {dy, u§, €5} .

1The semileptonic decays &f° and K ° to I, andr 1~ 77 are found to have a slight preference for the former.
125U (5) GUT is essentially ruled out by the experimental limits oatpn lifetime. Nevertheless it is often used for
illustrational purposes.
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The fermions are coupled to the gauge bosons by

524 |69/ Gy) + (109! (107)]

SU(5) GUT contain24 gauge bosond¥’*, Z, , 8 gluons and 12 lepto-quarks, X belonging
to 24y,.

Baryon number violation is naturally satisfied in GUT thesribecause quarks and leptons belong
to the same irreducible representation. The hedvgnd X particles undergo lepton and baryon
number violating decays to quark lepton pdits.

When the reaction rate of these particles drops below tharesipn rate of the universe the parti-
cles decay out of equilibrium (see below). If the decaysat®IC and CP at the same time, then
all the Sakharov conditions are satisfied.

However, until today there are no experimental indicatifamghe supposed particle decays. Fur-
thermore, any baryon asymmetry created before the elegtiowhase transition is exposed to the
washout effect by so called sphaleron processes if no norzer L asymmetry exists. we will
discuss these effects in some detail.

Electroweak Baryogenesis

In electroweak baryogenesis the property of sphaleronelate B is exploited to produce baryon
number. The third Sakharov condition is satisfied by bound#ects between bubbles of coexist-
ing broken and unbroken electroweak phase, which could &bitime electroweak phase transition.
The prerequisite of this scenario is that the electroweasglransition must be strictly first order.
This requires the Higgs mass to be significantly smaller 8te@eV. (ny > 115 GeV imposed
by LEP)

This scenario is therefore viable only in certain super sytnim extensions in which the sttp
mass could be smaller than the top-quark mass.

Affleck-Dine Baryogenesis

Affleck-Dine baryogenest$ is a mechanism suggested for SUSY theories. It is based on the
existence of many flat directions in the potential of the @cgluarks and scalar leptons. After
SUSY breaking the flat directions acquire soft SUSY-bregikirasses of order dfTeV.

The expectation values of the scalar fields could get valtideemrder of the Planck mass. These
scalar fields then start to oscillate in the flat directionbew their mass is comparable to the
expansion rate of the universe. If there exist any baryonbmumviolating nonrenormalizable
operators, these would induce baryon number violation.

Baryon asymmetry is generated at the end of the inflationaryp@. This leads to an asymmetry
between quarks and antiquarks after reheating.

This mechanism is still viable if the dilution during expamsis not greater than by a factor of
1010,

Bsee e.g. [13], [14], [15]
The stop is the supersymmetric partner of the top particle.
53ee [16].
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Leptogenesis

We have seen that the different baryogenesis theoriesr duffm various problems. It makes
therefore sense to seek for alternative mechanisms.

The basic idea of leptogenesis is, that first a lepton asymrigetreated, which is then converted
(partially) to a baryon asymmetry.

The conversion between baryon number and lepton numbeetisabcomplished by sphaleron
processes.

As for baryogenesis there exist numerous candidates. Hgarape thermal leptogenesis, non-
thermal leptogenesis and neutrinogenesis [17]. In thisishee will mainly address the first one.

Before we begin with the detailed discussion of thermaldgehesis, we outline the underlying
physics.

2.2 The Standard Model

In this section we will briefly summarize the standard md§el.

The standard model is a gauge theory based o8th@)c ® SU(2), ® U(1)y symmetry group.
The fermionic particle content is made up by fundamentatiguand leptons. They can be ar-
ranged in a scheme of three families, each of which contagfeseed lepton and the correspond-
ing neutrino and an up and a down like quark. In the standardeirtbe charged lepton and its
neutral partner as well as the quarks appear in left-haSd&@) ;, doublets. Furthermore, there is
a right-handed singlet field for each charged lepton andkgUdrere are no right-handed neutrino
fields:

14 i
lL = < ! > , qL = ( ¢ > y Ry qQuR, 4dR - (213)
€ JL 9d /) p,

Within this model strong, weak and electromagnetic intidoas between the fermions are de-
scribed by the exchange of gauge bos@hglgonsG¢,,, the W+ andZ bosons and the photon)

The full SM-Lagrangian can be written as .
L=Lr+ I+ + 2. (2.14)
The fermion LagrangiaZr describes the coupling of the gauge fields to the fermions.
Ly = iy Dy (2.15)

where we combined all fermion fields to one spinor= (v., er, €gr, - - -, bR)T. The gauge
fields show up in the covariant derivatives

Dyt = (0 +1igs Gy Fu + igWiT, +ig B,Y) 1)

F, applied toy) multiplies all lepton fields witt) and all quark fields with\, /2 (A, are the Gell-
Mann matrices).

3ee e.g. [18], [19]
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The gauge part of the Lagrangian reads

1 1 1
Lg == Bu B — STWu WH — TG, G (2.16)

with electroweak and gluon field strength tensdrg, = 0,W, — 0, W, +ig [W,, W, ], B, =
0,B, — 0,B, andG, = 0,G, — 0,G,, +ig, |G, G, ] respectively.

Spontaneous Symmetry Breaking

Within the SM the fermion masses are generated by the Higghamésm of spontaneous symme-
try breaking!’ The full gauge symmetry of the standard model is not exactvbéie electroweak
scale g46 GeV). Rather it is broken to the subgrodp/ (3)c ® U(1)grp. This is due to the ex-
istence of flat directions connecting the degenerate sthtaimimal energy in the Higgs potential
V(pte) = —p?(o'0) + Mo ¢)?, which appears in the Higgs part of the Lagrangian.

Ly = (Duo")(D"¢) — V(7 9) (2.17)

Here we introduced the Higgs-doublet

()

The Yukawa interaction Lagrangian couples the fermion $ietdthe Higgs-field:
— Ly = hi5qLi0qur; + hidLibaar; + [{lLider; + hic.. (2.18)

I:|ere i hglj, +; are constanB x 3 coupling matricesg is related to the Higgs doublet by
¢ = iT?¢* andi, j are generation indices.
When the electroweak symmetry is broken, the Higgs field iaegj@ nonzero vacuum expectation

value (VEV):

1 1
(0o =% ( S > , U= (\/§GF> * ~ 246 GeV.
The Yukawa terms in (2.18) then exhibit the structure of ntassas with mass matrices

(mu)ij = hifv, (ma)ij = hiv, (me)ij = fv. (2.19)

We recall that there exist no right handed neutrino field$han $M which could be coupled by
Yukawa interactions. Consequently neutrinos are masslitisg the SM .

The Higgs mechanism also predicts the masses of the heagg gasonsV’* and Z by
1
Mz cos Oy = My = ivg,

and a massive scalar gauge boson, the Higgs patfidée photon stays massless.

In the next section we will describe a less popular facet ef standard model, the so called
sphaleron processes.

Fermionic mass terms are not allowed, because they woudtk bihe gauge symmetry. See e.g. [20], [21].
8This is the only particle predicted by the standard modekivtiias not been observed yet. However one can be
optimistic that it will be found by upcoming experiments &C. The current lower bound for its masslisi GeV.
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2.3 Sphaleron Processes

Anomalies

Before we start to explain what sphalerons are, we turn dent@n to an important aspect
of quantum field theory. Anomalies can occur, whenever asdakfield theory is quantized.

When the classical Lagrangian exhibits a certain symmbisyimplies the existence of conserved
Noether currents. During the process of quantization thiservation can be lost.

Consider as an example the chiral triangle anorialy.
We start with the QED Lagrangian

Loep = (i) —m)p — iFH,,FW , (2.20)

with F,, = 0,4, — 0, A,, and covariant derivativ® ;1) = (0, — ieA, ).
It posesses a global (1) symmetry and a local chiral symmetygy — €51 andy) — e,
i.e. it is invariant with respect to the following infinitesal symmetry transformations:
Ul)y :  Ogyp =ieb(x)yp
99 A, = 0,0(x)

UDa:= o =iayst. (2.21)

The Noether currents corresponding to this symmetriesiaes dpy:

ju =y, (vector current)
jo =vys¢  (axial vector current) (2.22)

In the massless case both currents are conserved:

8:“']'“ = 07
jn = 2mP = 2imiyse = 0.
m=0

At quantum level these conservation laws are replaced bgl&ddNard-Identities. These can be
expressed in terms of three point functions:

TP MNa,y,z) = i(0]T(*(x)5" (¥)3(2)) 0)
P (x,y,2) = (0| T(j*(x)i"(y)P(2))|0) .

HereT denotes time ordering.

According to a theorem by Adler and Bardeen the chiral angrimalQED is given entirely by
the triangle diagrams shown in figure 2.4. Higher order abiwas are irrelevant, hence the name
triangle anomaly.

1%The chiral anomaly makes an important contribution to theagleof the neutral pion® — ~+. The triangle
anomaly is also called abelian anomaly. See [22].
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' !
iV R R iy ek
UV 5
T (ky, koya) = q—r p-kq + q— Pk,
Ny, I
W ko M ko

Figure 2.4: Triangle diagrams of the chiral anomalglenotes the ambiguity in the regularization
by shifting the loop momentum by an amountofThe diagrams are drawn far= 0. In order to
obtain conservation of the vector curréhtj* = 0 we must make the choice= —1.

Fermion triangle diagrams are divergent. Therefore onélsi@eregulator in order to compute
them. The trouble is that there exists no regulator whiclseores both vector current and axial
vector current. Choosing the regulator such that the vatkand identity is non-anomalous one
finds in coordinate space for the Ward identities (vector dNidentity and axial vector Ward
identity)

iaﬁTcW)‘ (z,y,2) =0,

—i0STH (2,1, 2) = 2mPH (2, y, z) + 2—;6“”0‘5836% (6W(z —2)0W(y—2)). (2.23)
Calculating
O 7@ 10) = 56 [ Auw) A (AT, 2.2) + O), (2.24)
one can employ the Ward identity to find the (non-) consewvalws for;j* and;t":

Ougt =
o2

= —— e PF, Fop. (2.25)

O, Jt = 2imP +

The guantized axial current is not conserved, even in thig tim= 0.

Sphalerons

The most general renormalizable Lagrangian invariant utideSM gauge group (and only con-
taining color singlet fields) is automatically invariantdem global abelian symmetries (accidental
symmetries) which may be identified with baryonic and left@ymmetries. Therefore it is not

possible to violateB and L at any order of perturbation theory.

However there are ('t Hooft 1976) nonperturbative proces$isat may give rise to processes which
violate B + L but conserveB — L.2° The presence of the triangle anomaly implies the presence
of infinitely many vacuua. These vacuua are connected thrmgjantons. At quantum level, the
baryon and the lepton symmetries are anomalous so thatréspiective Noether currenf§ and

j4 are no longer conserved, but satisfy (cf. (2.25)):

2 /2
a yrrapy

. . g g [V
Oui = Ouly, = ny (WWMVW T 3942 Fl F* ) )

Dsee [23], [24], [25].
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where
- 1
W =~ P Wag

is the dual of theSTU (2), field strength tensor angi*” accordingly.n s is the number of families.
We see immediately, that

Ou(J — J1) = Ouip_1, =0,
au (]% + Jg) = 8Mj§+L # 0

which means, thaB — L is conserved whereds + L is violated. The change in baryon number
can then be written

AB = ANc¢g = nyf[Nes(ty) — Nes(0)]
where the (integer) Chern-Simons number is defined to be

2

= 3202

Ncg(t) /dgzﬂeijkTr (AzﬁjAk + gnglA]Ak> .

Here we used Gauss's theorem

AB:/Z dtao/ d3z5% () :/Z dt/ d*20,3%(r) = B(+00) — B(—o0).

Thus changes in the Chern-Simons Number result in chang#gediaryon number which are
integral multiples of the number of families;. If the system performs a transition from one
vacuum to the closest one, the Chern-Simons number is ctidoygenity andAB = AL = ny.

So each transition creat@sleft-handed quarks3(color states for each generation) ahdeft-
handed leptons (one per generatiéh).

However adjacent vacuua of the electroweak theory are sy a ridge of configurations with
larger energies.

The probability for this transition to occur is highly suppsed by a Boltzmann factor:

E T
Fsphaleror(T) x T3 exp <_%ror{)> . (2.26)

One distinguishes two kinds of transitions between distracuua of a field configuration.

Transitions at zero temperature are caliestantons In QCD instantons are soliton solutions of
the Yang-Mills equations in euclidean space which are isedlin space and time. The instanton
solutions describe the quantum mechanical transition éatvihe different classes of Yang-Mills
vacuua.

Transitions at finite temperatures are caligghaleron processesThe factor in (2.26) prevents
the process from occurring under today’s conditions bus iexpected that the rate becomes
sufficiently large at temperatures above the electroweaseltransitiort> 100 GeV (Kuzmin,
Rubakov and Shaposhnikov (KRS)).

ZINote that theéV/ -field couples only to left-handed fermions.
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pi

“sphaleron

-l 0~ ] fields W* . &

Figure 2.5: Schematic picture of the electroweak vacuumctire. In order for a sphaleron
transition to occur the system has to overcome the barrigvdss two adjacent vacuua. This
process can take place at a high rate, only if the energy sdnigugh. An instanton would be a
transition by tunneling between two vacuudat 0. The ridge with the lowest energy is a saddle
point and is referred to as tlsphaleron This picture was taken from [26].

Although sphalerons are nonperturbative phenomena tigistise 12-fermion interaction can be
described by the following Lagrange term [23]:

Opyr = H (qrs9r:9r:lLi) (2.27)
i=1..3

One of the possible processes is depicted in figure 2.6.

SL
SL tr,

cL by,

Py //
-
N
4 A\,

\

1
d;, ——— Sphaleron———— b,
\ ]

/\\ /\
dr, Vr
ur, Vp
Figure 2.6: One of the possible sphaleron processes. kddwvel2 left-handed fermions3(

leptons and quarks). This picture was taken from [27].

In the high temperature plasma of the early universe thezBwalhn factor (2.26) becomes small
and theB + L violating butB — L conserving processes might be efficient enough to prodce th
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observed baryon asymmetry. However sphalerons are moceenffin washing out any existing
baryon asymmetry.

Whereas the instantaneous effects described in this searioentirely part of the standard model,
the theory of leptogenesis is based on physics beyond thdathmodel. Namely right-handed
neutrinos. We are going to introduce them in the next section

2.4 Beyond the Standard Model

Neutrino Oscillations and Neutrino Masses

In recent years neutrino experiments like SuperKamiokatioe Sudbury Neutrino Observatory
(SNO) and KamLAND showed that neutrinos do flavour oscilldtieis observation requires non-
Zero neutrino masses. It can be seen as the first experimexdaince for physics beyond the
standard model. Current best fit values for the mass-squfiifecences ar€ (at 3o level):

|Am3s| = (1.2 — 4.8) x 107 eV? (athmospherie’s)
|Ami,y| = (5.4 — 9.5) x 107" eV (solarv's) (2.28)

In particular these values place lower bounds on the neutmasses of/ Am2;,, ~ 0.05eV and

\/AmZ ~8x 1073 eV.

Neutrino oscillation experiments are only sensitive to srsguared differences. Direct mass
constraints come e.g. from the measurement of the endppéttrsim of tritium beta decay
3H — 3He+ 7. + e~ for the electron neutrino and the pion deeay — u* + v, for v,.

m,, < 2.5eV
my, < 170keV
m,, < 18MeV

Despite of the efforts in this field, the most stringent bastll come from cosmology?

> m; < 30h%eV. (2.29)

(2

Chiral Decomposition

In order to understand neutrino masses we need some telcknisaledge of chiral fields. The
left- and right-handed chirality projection operators defined as:

1 1
_ 1T p 1 (2.30)

P
L 2 2

22Neutrino oscillation experiments also measure the miximgjessin? 20,3 andsin? 201». For these values see e.g.
[28].

ZThe Big Bang model predicts that there is a fixed ratio betwbemumber of neutrinos:{ ~ 110 cm~3) and the
number of photons in the cosmic microwave background. Ifdt& mass of all three types of neutrinos would be to
large, there would be so much mass in the universe that itdvanllapse. (see below)
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With help of these operators we can decompose any Dirac figtd chiral components:

Y = Pry+ Prp =9 + R (2.31)

We denote charge conjugation by
b= () =CP' =il - (2.32)
When applied to a chiral field, the charge operator flips itsatity:
(V)= ()R, (Yr)* = W)L. (2.33)
It follows, that we may write

vr=Wi)TC, ¥ =g TC. (2.34)

Right Handed Neutrinos and the Seesaw Mechanism

In principle one could account for neutrino masses by sinaglging a Dirac mass term for the
neutrinos (i.e. adding adequate right-handed neutrinddjeb the standard model Lagrangian
[29], [30]. However this would leave the puzzle of the existe of different mass hierarchies
within the standard model unresolved. All charged fermiosmsses are within a range of two
orders of magnitude, but the masses of the neutrinos ardesrhglseveral orders of magnitude.

As we have seen, within the standard model the masses of #nigethquarks and leptons arise
from Yukawa couplings of the form

L = —fnglR + h.c. (2.35)

The coupling constant for such a Yukawa term wouldfbe ZZ—{ « 10~ for a neutrino of mass
0

m, ~ 0.01 eV, whereas the Yukawa coupling for the electrorfis~ 10~5. One could of course
assume, that this hierarchy is accidental.

The option favored by most theorists to circumvent this wiaetive scenario is the so called see-
saw mechanism. It explains the smallness of light neutrisses by the largeness of heavy
Majorana neutrino masses.

In contradiction to Dirac mass terms a Majorana mass termbeaconstructed out of the left-
handed fields alone (and for the right-handed fields accghgin

L, = —%(VL)CVL + hee. (2.36)

We can see that the Majorana mass terms are not invariant Uridetransformations
) — Y, ) — e (2.37)

like the Dirac mass terms. This means that the Majorana neasss will break the associated
charges (electric charge, lepton number). Therefore eldgrgrticles cannot have a Majorana like
mass term.
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v \%

X

v v
— X
Figure 2.7: A Dirac mass term converts a neutrino into a meutfabove), i.e it absorbs a neu-
trino and emits a neutrino, or an anti-neutrino into an aetitrino. On the other hand Majorana
mass terms convert neutrinos into anti-neutrinos (belowyjce versa. The cross denotes mass
insertion.

In the seesaw picture neutrinos are assigned both, a Dirss amal a right-handed Majorana mass
(we switch to three leptonic generations now):

L ::--[(VL)c,(yL)c}/v1[ (;;50 } +he (2.38)

with 6 x 6 mass matrixM. vy, andvg are vectors in flavour space:

Ve VRe
vy = VLp, , VR = VR’LL
Vi + VRt

Because ofvr,)(Vrg)® = (Vrg)(VRa)¢, M can be taken to be symmetric:

T
M = [ O mp } . (2.39)
mp MmMmp

mp andmpg are3 x 3 matrices.
ThereforeM can be brought into block diagonal form with the help of amogonal transforma-
tion
!/
Mp = UT MU = { My 0 ] . (2.40)

0 my
Since we wantnp to be of the same order as the other leptonic masses andssipagaust be
large enough not to induce any processes, which would haredigserved in the laboratories, we
havemp < mpg.?* This allows us to set

1
U= [ _ f ] . (2.41)
This means, that
UTU =14 0(p?), (2.42)

to first order in the small parameter
In order to expresss,,,, in terms of mass-eigenstates, we write

XL:[Xl}ZUl[(VL ] (2.43)

X2 VR)C

24since the right handed neutrino is an electroweak singkemass is not protected by the electroweak symmetry.
One can assume that its mass is of order of the GUT scale, @ swemmediate scale 10'° — 10'°.
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Now we have to diagonalize:], (my is already diagonal). We do so by performing another
orthogonal transformation with x 3 matrix V. The physical neutrino states of definite mass are
then defined by

n=Vixi+VIx¢,
N = x2+ x5 - (2.44)

And the diagonal mass matrices are

My = VimpM*mEv,
my =mpgp. (2.45)

In terms of these expressions (2.38) can be written as

1 1—
— L, = §ﬁmnn + §NmNN. (2.46)
Furthermore, we can see that these states are transfortoetiémselves under charge conjuga-
tion n¢ = n and N¢ = N. Neutrinos which are their own antiparticles are knowrMagorana
neutrinos

Carrying out the block diagonalization (2.39) we find
p 7"111)7711,}1 . (2.47)

We see thap is indeed a small parameter, just as we have assumed.

We conclude that the general form of the Lagrangian (2.38[dgithree light and three heavy
Majorana neutrino states. According to (2.45) the largeses®f the heavy states suppress the
masses of the light states, hence the name seesaw.

Despite of the beauty of the seesaw mechanism it is stilleamavhether neutrinos are Majorana
particles or not. A direct prove for the Majorana charactewld be neutrinoless double beta
decay Nuc— Nuc + 2e~. Current experimental results on this field, however giveomavincing
evidence for this process.

2.5 Thermal Leptogenesis

As we have seen above, sphaleron processes could convefinahg high temperature phase)
existing B — L asymetry to a non zero value 8f+ L. In thermal leptogenesis the initidd — L
asymmetry is generated by the out of equilibrium decay ofitfieest (heavy) Majorana neutrino
N, into lepton-Higgs pairé® One can satisfy Sakharov’s conditions for lepton numbérérsme
way as for baryon number in the GUT scenario.

We begin with the SM extended by 3 right-handed neutrino dielthe Yukawa part of the La-
grangian, inducing the CP violating decays is

_ . 1—
gy = _lLinheijeRj + lLinhiijVRj — §(VR)CMVR + h.c. (248)

Bsee [31], [1], [32], [33].
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Spontaneous symmetry breaking generates the Dirac massenat

(mp)ij = hijv, (2.49)
where the physical Majorana neutrino states with definitesng are given by

N; = vg; + VR§ . (2.50)

For simplicity one assumes hierarchical Majorana neutmiasses\l; < My, Ms.
The lepton asymmetry is then generated by the CP -violatiogyk

Nl - l¢7
Ny — Io*. (2.51)

These decays obviously violate lepton number. The releamperature scale will b ~ M;.
That means that any lepton asymmetry possibly produced,tand N3 decays would be depleted
by processes involvingv;, and that the observed asymmetry eventually is createdeépuh of
equilibrium decay ofV;.

CP Asymmetry

The CP asymmetry; in the Majorana neutrino decays is caused by interferentecas the tree
level and the one-loop diagrams in figure 2°8.

Figure 2.8: Tree level and one-loop contributions to the/pédajorana neutrino decay; — l¢.

D(Ny — l;¢) — T(N1 — 1;p)
(N1 — Li¢) + T(Ny — 1i9)

€1 =

1 1 M? M?
= Im [hyshig by b, —L)+ (—lﬂ , 2.52
8 il S5 Praihaghishi [f (M%) I\ (2:52
where
1+=x 1
G 1
g(x) = 2o 00 V3 (2.53)

%Thijs is similar to GUT baryogenesis; See for instance [34], [
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Therefore, we have, usinty; < My, Msj:

3 1 M, M,y
= lIm[hyhahi ] = 4 Im [hyhaghl bl ] 2.54
€1 167T\h11~]2 [h1ihikhs; oy My +Im [hyihaehs; ha M ( )
Using
(mp)ij = hijv,
(mpmb)11 = (mp)ri(m)in = (hashi,)v?,
(mDmE)H = (mD)li(mE)w = (hyih;)v*, (2.55)
one finds:
1 * *
—2|m [hlihlkhQith] -
|h1i
1 21 My 2| My
=———  |Im f — +1Im f — 2.56
i B ] ] s
A rough estimate fog, is given by
~01—~1 . 2.57
€1 0 M3 0 ( )

This means that the order of magnitude of CP asymmetry imdiyethe mass hierarchy of the
heavy Majorana Neutrinos i.% ~107°
Evolution Equations

Buchm'fg%ller et al. derive the following equations for the evolutiohthe heavy neutrino abun-
danceNy, = ny, /s (cf. section 3.8) and th& — L asymmetryNg_; = np_r/s [28], [35]:%'

ANy,

= —(Tp +Ts)(Nx, — Nyf). (2.58)
dNp_
di L= —eI'p(Wy, — Ny®) —TwNp_p, (2.59)

wherex = % In chapter 4 we will derive very similar equations in thenfiwork of a simple

toy model. Here we can only try to understand them intuijivel
Ny, andNp_p, are calculated for a co-moving volume element (see secti®n 3

The first equation describes the evolution of the heavy Majameutrino abundance. It can be
solved independent of the second one.

I'p accounts for decays and inverse decays:

1 Kl(z)
Tp = —(hth)y My =2
p =g (Ah)n 'K (2)

ZIn literature these equations are usually refered to as timann equations. We find that this is not a good
terminology, as we will explain below.
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where K7 and K, are modified Bessel functions, see appendix B. The rate efsevdecays is
EQ

n

given byl';p =
field.

Nll I'p. I's describes- ands-channel scattering processesN\gf with the Higgs

n

Dg =20} +4I)1
Finally there is the washout rate which reduces an exising L asymmetry byAL = 1 and
AL = 2 scattering processes

1 N
Ty = <§F1D +2rh 4+ 1! N—%) + 2T + 2T,

N1
From (2.58), we can see that bothp andI's try to change theVy, abundance towards its
equilibrium valueNﬁlQ. The decay processes also act as a source term fd# thd. abundance,

however only, ifNy, — Nﬁ? # 0 i.e. if there is a deviation from equilibriunt’y competes with
the source term in a way that it tries to decrease any exi®ingL asymmetry.

Equations (2.58) and (2.59) can approximately be solvediticel in some limiting cases. In
general this has to be done numerically. The result for sigiarameters is depicted in figure 2.9.

\‘ T T T TTIT T T TTIT
0 |
-2 ]
logio(N) —4 _
-6 ]
-8 — /_Y \ m
\‘ 1 1 1 11| \\‘ 1 1 11| \\‘ 1 1
0.1 1 10

z=M/T

Figure 2.9: Starting from zero initial abundanééy;, = 0 approaches its equilibrium vaIlMﬁlQ.

At the same time a nonvanishinlg — L asymmetry evolves, because this initial condition is an
extreme non-equilibrium situation. Whe¥y, reaches its equilibrium value the asymmetry is
erased by washout processes. Finally, due to the rapid siathe Majorana neutrinos decay
out of equilibrium and the final asymmetry comes into exiseenThe parameters aréd/; =
10°°GeV,e; = 1075, m; = 1072eV andm = 0.05eV (m,: effective neutrino massn? =

m? + m2 + m2: absolute neutrino mass scale). This picture has been fek@r{28].

When only decays and inverse decays are taken into accavntam replac€p +I's — I'p and
I'yy — I'rp in equations (2.58) and (2.59). The second equation canftierally be integrated
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to give
Np_j = N]ig_Le* J5 4 Tin () _ Zeln(z;rﬁl), (2.60)
with efficiency factorx:
4 z z " "
m@):E;LVdXFD(NNf—Aﬁ?>eL’“]VD@). (2.61)

N&_, is a possible initial asymmetry. The integrals in (2.61) barevaluated approximately in
the regime of strong washout (where the decay rate is mughrléinan the expansion rate of the
universel'p > H) and in the regime of weak washout (whdie > I'p). Sincex does not
depend on the CP asymmetrywe find, setting any initial asymmetry to zero, that the getest
Np_y is proportional ta;.

Relation BetweenB, L and B — L

In order to find out, how large the find® asymmetry produced by sphaleron processes out of
the nonzeral asymmetry will be, one assumes that the involved leptoreskguand Higgs parti-
cles are interacting rapidly enough via Yukawa, gauge ahdlspon processes to stay in thermal
equilibrium. This induces relations between the chemiotdptials of the various particle species.
Using the relation (3.72) one finds, that (close to chemigaiildrium) lepton number density
ny ~ LTT2 and baryon number densityg ~ BTT2 can be expressed in terms of the chemical
potentials (see section 3.8). This gives on the other hatidthé SM baryon and lepton numbers:

1
B =3x 3 2(2;@- + 2ptyi + 24045) 5

7

L= (2ui + 2ptes) - (2.62)

2

The effective sphaleron Lagrangian in (2.27) yields

> (Bpgi + i) =0. (2.63)

(2

The condition that the total hypercharge must vanish resulthe relatio®®

1 4 2 1
> (3§2qu‘ + 33 bui + 3(—§)Mdi + 2(= D + (—2) ptei + N(l)ﬂqb)

7

2
= Z(Mqi+2ﬂui_ﬂdi — Ui _Mei—i_NMd))

)

=0, (2.64)

wMN:%:&
The Yukawa interactions, when in equilibrium establish

M = [, fgi = g (2.65)

®Hereweusd, =1,Y, =2, Vy=-2Vi=-1,Y,. = -2, Vs =1.
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and so on (for the different generations).
Employing all the above relations one can expy&ssit,, fd, je, fe IN terms ofyy:

_ 1
Hq = 3:U'l>

N -1
Mu_6N+3Ml7

6N +1
Ha = 6N+3,U'l>

CON+3
M€_6N+3Mlv

4N

= . 2.66

Ho = N+ 3M (2.66)

Inserting these results into (2.62) this gives after sonhautztion

B=-—"—
TRAR
; _ N?+9N
- 6N+3 Mlv
22N2 + 13N
B-L=-"__""_ 2.67
cN 13 M (2.67)
and finally
B 8N +4 28

Cs

_ _ _ 2.68
B—L 22N+13 19 (2.68)

Note that this relation holds faf > v only.
Thus we found by the analysis of the chemical potentials bpaiticle species in the high-
temperature phase, thadtz and N, are related by

Cs

Np =csNp_ =
cs — 1

Ny, (2.69)

with ¢, = 28/79.

In this sense lepton number violation is necessary in omlexplain the cosmological baryon
asymmetry.

Putting the results of the previous paragraphs togetheramefarmally write for the generated
baryon asymmetry
n="B_"B _ ey~ 1070 (2.70)
Ny
(e1: CP asymmetrye; ~ 107%; d ~ 0.01: dilution factor that accounts for increase of the number
of photons in a co-moving volume element between baryogeaes todayy; ~ 0.1: efficiency
factor, determination requires solution of Boltzmann eiqumg.

The baryon asymmetry is generated at a temperdfgre- M; ~ 10'° GeV corresponding to a
timetg ~ 10720 s,
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Constraints on Neutrino Masses

By virtue of the seesaw mechanism, leptogenesis yieldsdsofan the light neutrino masses.

An upper bound for the CP asymmetry < €]"*(my, My, m) from theory implies a maximal
baryon asymmetry:

n < nmaa} ~ de’ln‘w(ml, M, m) Ii(ﬁ’Ll, M, m2) . (271)

Since both, CP asymmetry arccan be expressed in terms of neutrino masses, requiring

nmax > UCMB ,
yields constraints for the neutrino masses. Buc%ﬂiﬁaet al. find as upper (lower) bound for the
light (heavy) neutrino mass [36]:

m; < 0.12eV,
My, M3 > M; > 4 x 10° GeV. (2.72)

We see that the light neutrino mass bounds are competitiveetmass bounds presented in section
2.4. However we should keep in mind that there exist numetioegries trying to explain the
observed baryon asymmetry. Probably the mass bounds shethier be understand as a test
condition for thermal leptogenesis.

Look-Out

Equations (2.58) and (2.59) are derived from a set of (futllf8nann equations by means of a cer-
tain approximation technique. This kind of approximatiasliirst been applied to baryogenesis
theories, where very similar Boltzmann equations are emeoed [11].

During this derivation various assumptions are made coimgrthe momentum distributions of
the interacting particles. Unfortunately, due to the carpy of the Boltzmann equations it is
hardly possible to estimate the error imposed by these Biogtions. Therefore it is desirable to
solve the Boltzmann equations independently in order todirtchow large the error bars are.

Another more fundamental problem is that the Boltzmann tops are in principle intended
for the description of systems of dilute classical gassdwe darly universe at the timescales of
leptogenesis however consists of a dense strongly integaptasma. In such extreme situations
effects will occur which are not described by kinetic eqomadi

In order to find out how important these processes are a coehplguantum field theoretic de-

scription of non-equilibrium process such as leptogenissieeeded. This task lies way beyond
the scope of this thesis, but we will try to specify why thetBolann equations are imperfect with
respect to the primordial plasma.



Chapter 3

Kinetic Theory

Conventional equilibrium thermodynamics deals with macopic quantities such as particle
number, energy or pressure which are obtained as averagesvall a large ensemble of identical
systems. In order to understand non-equilibrium phenorhengever it is necessary to follow the
evolution of a specific system in detail. Therefore one needscroscopic description of many
particle systems. Such a description is given by kinetioihe

The basic object of this theory is ttegngle particle distribution functiory(x, k). It is defined
such thatf (z, k) A3xA%k = AN is the average number of particles with momenta in the range
(k, k + Ak) located in the voluméx, x + Ax) at a timet.!

Once this distribution function is known all macroscopi@qgtities can in principle be calculated
from it.

In the context of relativistic kinetic theory it is importiato note thatf is a Lorenz scalar. This
can be seen as follows. Consider a fixed number of (massiveglpa AN. Say, viewed by an
observer in a co-moving coordinate system, the size of aalitiox enclosing alA NV particles is
Ax' = Ar' Ay’ AZ'. A different observer will see this volume element Lorenatcacted (assum-
ing parallel orientation of his coordinate system) withestex = AzAyAz = Az’ Ay'y 1AZ.
Since the energy of the particles seen by this obsengrdsym it is clear thatEAx is a Lorenz
scalar. By similar argument one finds thsk / F is also invariant. Therefore we can conclude that
f(z, k) = AN/(AxAk) is indeed a Lorenz invariant quantity. This reasoning cagdreralized
to massless particles.

3.1 The Boltzmann Equation

The central equation of kinetic theory was derived by LudRaitzmann over hundred years ago
as a description of dilute mono-atomic gasses. It is anintdgferential equation which governs
the time evolution of the particle distribution functign

Although originally derived by Boltzmann for the classicgistems of mono-atomic gasses the
Boltzmann equation has been applied to a broad range ofgattysioblems. Among them are the

diffusion of neutrons in nuclear reactors, the behaviouele€trons and quasi-particles in solids
as well as various astrophysical problems.

We use relativistic coordinates = z* = (¢,x). Note thatk® is not an independent variable as the particle’s
4-momentum is confined to a hyperboloid in momentum spdce= k2 + m2 = Ej. (i.e. f depends on seven
independent variables only.)

31
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In this chapter we will briefly introduce the Boltzmann edoatin its relativistic and non-quantum
mechanical form. Then we will successively generalize fittour needs of a general relativistic
description of the primordial plasma. Some attention wélldayed to the discussion of its limita-
tions. Finally, we will rewrite the equations in a form stika for an efficient numeric solution.

In its most abstract form the Boltzmann equation can be avri#ts
L[f] = C[f]. 3.1

On the left hand side of the equation we have the Liouvilleratoe
Lif|(z,k) = k"0, f (2, k) = k° (O +u- V) f(x, k), (3.2

describing the time evolution of a phase space volume elemss the three-velocityn = k/k°.

The collision term or collision integral’[ f] on the right hand side describes the change of the
distribution function due to binary interactions betwekea particles:

C[f](zv,k‘)Z/[f(:v,Q)f(w,T)W(q,rlk,p)—f(fﬂ,k)f(w,p)W(k,plq,r)} dPpdiqdr.
(3.3)

The integrand is composed of two terms, of which the first aaigdgain term) accounts for an
increase of particle number in the phase-space eledéni\3k aroundz in Minkowski-space
and around momentutk due to collisions of two particles with momenjaandr outside of this
volume, which result in a final state inside this region.

The second one (callddss term accounts for the loss of particles due to collisions inghde
phase-space element, which result in states outside aieglyd Each of this terms is propor-
tional to the product of the densities of the two incidenttiphas. This prescription is known as
Stosszahlansatz

The proportionality factoiV (k, p|q, ) is the transition rate (i.e. the probability per unit timelan
volume that two particles with momenkaandp are scattered into the final statggandr). In a
guantum field theory it can be expressed in terms of the iamaratrix elements as

1

W (k =
(k. pla, ) (2m)32p0(27)32¢0 (27)32r0

@2m)* W (k+p—q—r)Mkp— g1, (3.4

where the delta-function ensures energy and momentummatisn. | M |? is the invariant matrix

element squared. When the particles have ispm\? is replaced by/\/l|2, the amplitude averaged
over initial and final spin states.

Because of the scalar character of the distribution fundaiad the invariance of the matrix ampli-
tude as well as the phase space elements

d3v

(27)3209 (3:5)

it is evident, that the collision integral (3.3) is Lorentavariant.

2\We suppress here and in the following any statistical facfor identical particles in the in and out-states and
introduce them later when needed.
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If the amplitude is invariant under interchange of initiabdinal momenta we can write

W (k,plg,r) = W(g,r|k,p). (3.6)

This is the so calledetailed balanceroperty. Then we can write egn. (3.3) as

Clf)(x, k) = /W(q,rlk,p) [f(z, @) f(z,r) = f(z, k) f(x,p)] d*pd’qd’r 3.7)

For simplicity we will use this form frequently in the subseqt sections although the property of
detailed balance is lost in case of CP violating processes &siin baryogenesis.

3.2 Macroscopic Variables
Now we list some macroscopic quantities that can be definestins of the distribution function

f.

The first one is the particle four-flow* (z) defined as

/f ,ppu d3 : (3.8)

In isotropic systems the only nonzero component is the nummsity‘

n=N= % [ i) dp. (3.9)

The spatial part gives the particle flgé«, ¢) which is not important in the isotropic case.
Then there is the energy-momentum teris8, defined to be

3
e / f(z,p) p“p (;lw)?’ (3.10)

Its 00-component gives the energy density

p=52 | PP I () dp. (3.11)

The spatial components give the pressure tensor, whicls givle isotropic case
gip =T — gm 9 / fp (3.12)
3p

This equation defines the pressu?€ The energy-momentum tensor takes only the rest energy
and the kinetic energy of the particles into account. Theragdtion of the particles does not

3This is a consequence of combined symmetry under time @vétgk, p|q, r) = W (—gq, —r|—k, —p) and spatial
inversion i.e.W (k, plq,r) = W (—k,—p| — q, —7).

“We introduced here the number of internal degrees of freeglavhich will be important in the chapter about
cosmology. Itis equal to one for scalar particles.

5The componentg™® and7”° are called energy flow and momentum density respectivelgy Pray no important
role in this work.
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contribute. In dilute systems the interaction energy camllg be neglected compared to the
kinetic energy.

Finally we define the entropy four-flow as
d3p
st == [ S s(wp)os (Fa.p)). (3.13)

In the next section we will formulate the H-Theorem on theiba$ this quantity. This relation
expresses the fact that the Boltzmann equation exhibigdrsible behaviour. The second law
of thermodynamics tells us that entropy is always increpsiwe will see that the Boltzmann
eguation constitutes a microscopic basis for this statémen

3.3 Boltzmann H-Theorem and Collisional Invariants

In order to see whatollisional invariants(also summational invariants) are, we define the follow-
ing functional operato?:

3k
1) = [ G5t kb, (3.14)
Inserting the explicit expression (3.7) and performingttaasformations
(k,p) — (g;7),
(k,q) — (p.7)

on the integration variables, we can infer the followingpady of I:

) = 1o+~ — W] (315)

where we used the index to label the particles (i/g.is a function belonging to particl®. A
function is called collisional invariant if the microscopic consation law

T;Z)k + ¢p = ¢q + ¢r (316)

is satisfied, i.e. i) is a property conserved in every single collision. Sincs thinecessarily the
case for the all components of the four-momentuand because of the linearity of the functional
I, collisional invariants will in general be a linear cométion of these:

Ui (z, k) = ag(x) + by (x)k" (3.17)

whereay(z) andb,(x) are arbitrary functions except for the fact thatx) must be additively
conserved in a binary collision.

When we know such an invariant we can use equations (3.2),i(Border to write

3 3
9, /d DR i (s 1) f () :/dkokwk(m RO k) = I[be] =0.  (3.18)

5The concept of collisional invariants can be generalizesiysiems consisting of several particle species [37].
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Armed with the concept of collisional invariants it is easyderive conservation equations for the
macroscopic quantities defined in the previous sectionekample if we have particle conserva-
tion in the microscopic interaction we can chogse- 1. Then eqgn. (3.18) immediately gives the
conservation law for particle four-flow:

duN*(z) =0. (3.19)
In the same way the conservation law for the energy-mometgmsor can be derived:

9, T" () =0. (3.20)
Using egn. (3.13) we can define the local entropy producton a

o(x) = 0,5". (3.21)

This can be calculated to be

3
0uSH = — / %kz“ [0, f (@, k) log (f(z, k) + Ouf (k)] . (3.22)

The last term vanishes according to egn. (3.19). We canftierarite, using (3.7%:

3
OuSH = — / %kuaufk log (f#)
_ _ 1 Jif
= — Iflog (fr)] = =7 I[log quf]
1 [ d% Jrf,
== / 70 dp d3q PrkPW (k, plg, ) log (fsz) [fofr = frfp] - (3.23)

Since(z —y)InZ > 0 for all z, y > 0 and equal to zero for (and only far)= y it follows that
the entropy is a?ways increasing. This property is knownhasH-theorem It is in agreement
with the second law of thermodynamits.

According to the above derivatidn ( f) is a summational invariant. This means we can write
In f(z, k) = a(x) + by (z)E" . (3.24)
This in turn means, that, which we identify as equilibrium distribution functionrcée written
[z, k) = exp (a(z) + by (x)kH). (3.25)

For f€9being a true equilibrium distribution it is necessary that feft hand side of the Boltzmann
eguation vanishes too:

LI = 0.

"In case of homogeneous systems this gives the conservdtiba ttal particle numbed; N = 0

8Note, that we employ the detailed balance property here. edemthis is not necessary. According to [37] it is
sufficient to use the weaker condition of so-called bildteaamalization.

90ne could ask, how this definite arrow of time occured in araéiqn derived from microscopic laws which are
invariant under time reversal. The answer is that the assampf molecular chaos makes all the difference. Under
this assumption a collision has a definite direction in tiregause two colliding particles must be uncorrelated befor
they collide. After the collision however they are corretht
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It can be shown, that this yields the following general foonthe distribution function:

FU(k) = exp (“‘TMU“> , (3.26)

where U is a constant four-vector obeyilU,, = 1.

In the classical limit this gives the distribution functiknown as Maxwell-Boltzmann distribution
(or Maxwellian), well known from statistical mechanics:

f(p) = e~ Ermml/T (3.27)

For E}, being the relativistic energy this is also the correct sofufor relativistic systems in the
global rest frame, wher& = (1, 0, 0, 0).

We conclude that any initial distribution function insette the Boltzmann equation is evolved,
with steadily increasing entropy until it reaches the abriilm distribution given by (3.27).

This process of thermalization is shown in figure 3.1 for a gfasmassless bosons. Figure 3.2
shows the time dependence of the number density, energitydand entropy density. The plots
in this section show numerical results of the computer saitmhs performed within this work.
See section 4.5 for details.

()

K|

Figure 3.1: Thermalization of a homogeneous system of mss$flosons. Successive time slices
of the distribution functionf (¢;, |k|). At start timet, the system is in an extreme non-equilibrium
situation (tsunami distribution). In agreement with tHetheorem it is evolved into a Bose-
Einstein distribution function (see below).



3.4. LIMITATIONS 37

t

Figure 3.2: Time dependence of the macroscopic quantitiesber density, energy density and
entropy density normalized to their initial value. As adigmd, particle number and energy are
conserved. The entropy density converges against its mewivalue. This indicates that the
system approaches thermal equilibrium.

We finish this general part on the Boltzmann equation withréreark that the major results
of the preceding sections can be generalized to the modifisabelow, namely the quantum
modifications and the generalization to mixtut@s.

3.4 Limitations

Despite of its wide range of application the Boltzmann eiguais suitable for the description of
a specific problem only if certain conditions are satisfiele§e are in particular the assumptions
made during its derivation. Since there exist various @#iowns this conditions vary slightly in
literaturel! We discuss this subject at great length because it is ussedjiected in treatments of
kinetic theory in early universe cosmology.

The key assumptions brought into play in the derivation efloltzmann equation are as follows:

¢ A basic assumption of kinetic theory which justifies the dé&éin of the distribution func-
tion is that f must be homogeneous and slowly varying in the range of treaation'?
This means that there may be no rapid density fluctuations. ¢em safely be assumed for
most of the history of the early universe as we will see later.

Another necessary, but far from obvious feature of the Beétan equation is the conservation of positivity of the
distribution function. Iff(x, k) > 0 at the initial time then this must be true at later times téngesf is a probability
distribution. A simple argument for this property can berfdun [38].

115ee [39] for the derivation of the classical Boltzmann eiquatA review on the derivation of the quantum Boltz-
mann equation has been given in [40]. A field-theoretic @iavn can be found in [37]. Finally the Boltzmann equa-
tions can be derived from the Kadanoff-Baym equations, ntakeveral approximations. Amongst others a first-order
gradient expansion and a quasi-particle approximation.

12Als0 the density distribution is assumed to vary slowly oatime scale where collisions happen.
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e The mean free path is assumed to be much grater than the rhimgjeraction/ >> ry. This
can equivalently be stated as>> 7, i.e. the mean time between two distinct collision
must be much greater than the time which a single intera¢ti&as. In field theory the
interactions will be of short range if the particles medigtthe reaction are heavy enough
(I ~ 1/M). If the above assumption is violated then the mediatingiggarcould undergo
several interactions while it propagates.

e Particle trajectories are rectilinear before and aftelisiohs and the interactions are distinct
and instantaneous. This assumption justifies the Stossrmailz. Between two interactions
the involved particles are assumed to travel freely (on rehel). In quantum field theory
at finite temperatures, however off-shell processes cgngslamportant role.

e Furthermore, there is the assumption of so cattemlecular chaos This means that two
particles about to collide must be uncorrelated i.e. they nw have interacted before. In
systems of dilute gasses this is ensured by the fact thatawizles, before they collide will
undergo many interactions with different particles anddfare loose any correlation they
may have had befor€. In dense system this condition might be violated since ssice
collisions between two particles can occur frequently.

This short list makes clear that the Boltzmann equation ismended for the application to very
dense systems at high energies.

Another effect that could be important under such condstiare particle creation processes which
are predicted by quantum field theories. These kind of pemseare also not described by Boltz-
mann equations.

How could the Boltzmann equation be generalized, such ascouat for dense systems like the
early universe plasma?

In order to account for reactions involving more than twotipbes one could introduce higher
order terms that represent interactions between three oe paoticle$*. This could formally be
written

LIf) (k) =/ dhy - b dpy - dpp

X [W(pr-pmlkr - kn)(X =& f (k1)) -+ (1= & f (kn)) f(p1) -+ f(pm)—

—W(ky-kplpr- - pm) f (k1) - f(kn) (X = & f(p1)) -+ (1 = &S (Pm))] 5
(3.28)

whereW are rate factors (equal to the transition rate defined abotleeicase ofi = m = 2).

However this will rapidly become impractical and the matlatioal behaviour of such Boltzmann
eqguations is quite unknown. Consequently the higher ortens are used by current authors for
illustrational purposes only.

3This assumption must be made when deriving the Boltzmanatiaqufrom the Liouville equation. In this deriva-
tion one gets equations of motions for the multi-particlgritbution functions, the celebrated BBGKY-hierarchy {Bo
goliubov, Born, Green, Kirkwood, Yvon). In truncating tleesquations, keeping only the terms with single particle
distribution functions, one necessarily makes the assompt molecular chaos.

1s0me authors do so, e.g. [15], [41]
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Another correction would be to implement off-shell effestisere the exchanged particle interacts
with particles of the background plasma in an effective waynitroducing modified propagators
for the mediating particles with an effective mass of ortherinverse mean free path [13].

Finally in order to account for spontaneous particle comaprocesses in the framework of a
transport equation source terms can be introduced. An apprt this subject can be found in
[42]. The author asserts the possibility of temporary \ioless of the H-theorem.

Although, today several different possible derivationghaf Boltzmann equation are known, its
success must in the end be attributed to the ingenuity of igi@eltzmann, who constructed it

by simple heuristic arguments. Later it has proved to be treect approach in many physical
situations. The decision whether the Boltzmann equatiorbesan appropriate description of the
early universe plasma is therefore also ultimately leftdpegiment.

Currently, the only physical system believed to exhibitiilmextreme conditions as the early
universe, and that can be probed by experiments igtlak gluon plasmdQGP). The issue
whether it can be described by ordinary hydrodynamics isetjorelated to the question if the
early universe can be described by kinetic equations.

Recent experiments at the Relativistic Heavy lon CollidRH(C) suggest that the hydrodynamical
description is valid for certain regions of momentum spaue @ small time interval (about —
7fm/c according to hydrodynamics) between thermalizatiod laadronization [43], [44]. In this
experiments high energetic Au ions collide and form a firebahsisting of nuclear matter at
temperatures betweedb0 MeV and 1000 MeV. However it is not yet clear, whether the QCD
phase transition, predicted by lattice calculations difhitt take place. Further experiments are
necessary in order to clarify this issue.

A full quantum mechanical approach to out-off equilibriutmepomena in the early universe as
well as the quark gluon plasma is non-equilibrium quantund fileeory!® A comparison of the
thermal equilibration described by Kadanoff-Baym equaijaarising in thermal field theory and
the Boltzmann equation in the framework of a scartheory can be found in [47].

In this thesis we employ the Boltzmann equation for the datmn of the baryon production in
the early universe. When we do so we should always keep in thetdt is presumably only a
first order approximation.

3.5 Modifications and Generalizations

In this section we discuss some modifications, that we hawaake in order to customize the
Boltzmann equation for our specific problem, the calcutatibthe baryon asymmetry evolution
in the early universe.

Spatial Homogeneous and Isotropic Case

In the following, we restrict ourselves to systems, spigtidmogeneous and isotropic in momen-
tum space. This simplification will be in agreement with themological principle, when we turn
to the discussion of the general relativistic equationgpdrticular it will simplify the numerical
evaluation tremendously.

15An introduction to the subject of non-equilibrium quantureldi theory can be found in [45]. For equilibrium
thermal quantum field theory see [46].
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Apart from the modifications, which we already discussedrapa major change in such systems
is that we can drop the gradient terms in the Liouville Opmréd.2) and write simply

L{fI(k) = Ouf(t, k) . (3.29)

Here we have simultaneously rewritten the distributioncfion in terms of the remaining inde-
pendent variables. We will often write

ft k) = fi- (3.30)

Quantum Modifications

In order to incorporate quantum statistics into the Bolmmaquation (3.3) so calleblocking
(for fermions) orstimulated emissiofactors(1 — £ f) (for bosons) are introduced in the collision
integral®

For fermions these terms ensure that the Pauli exclusiowiple is respected by the outgoing
particles, because the blocking terms tend to zero whenistrébdtion function becomes.

The collision integral modified in this way reads

Clf)(k) = /W(kap!qﬂ“) (L= &f) A= Efp) fafr — Fefp(L = Ef) (A = )] dPpdqdir.
(3.31)

The general statements made above can easily be adaptésiftyith of the Boltzmann equation.
The entropy functional is defined by

Hifl == [ (€ a-enm@-¢f)+ f) d. (3.3
The condition for statistical balance is then given by

fk fp > — ( fq > ( fr >
<1—§fk> (1—§fp l_é“fq 1—§fr . (333)

This relation yields the correct quantum mechanical dopiuim distribution functions (Bose-
Einstein and Fermi-Dirac distribution respectively):

1
= 3.34
f(p) e(E@)-n)/T 4 ¢ ( )
®Throughout we will use¢ = +1 for fermions,¢ = —1 for bosons ang = 0 for the classical case respectively.

This is the time component of the entropy four flow only. Thassical case is included in this formula as limit
£—0.
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The Boltzmann Equation in Curved Spacetime

In order to generalize the equations to general relativisgstems we have to impose the corre-
sponding Liouville operatof If we assume that the particle paths are geodesics (i.e attielps
are acted upon only by gravitation between their collisiaghen the general relativistic form of
the Liouville operator i&

L[f] = gxfa g kOK ;k]; . (3.35)

With help of the Christoffel symbols given in A Robertson{¢a metric this becomes (see [51])

_0f OR1 0f
L= %~ 5 5% 5 (3.36)

Because of the additional second term which representshituege of the distribution function

due to the expansion of the universe, compared to (3.29pkn®us, that (3.27) and (3.34) in the
classical and quantum case respectively cannot be eduililbatistributions in Robertson-Walker
space-time?

The relativistic Liouville operator (3.36) can be writtana different form applying the following

transformations to the variabléegandk:

x = MR(t),
k = kR(t). (3.37)

The Liouville operator in this new coordinates then reads

Lf] = Hx%i’k) . (3.38)

Mixtures

In physical systems consisting é¥ different components one obtains a network of coupled
Boltzmann equations. Each equation describes the tempeodition of the distribution func-
tion f' = f™(k,t) corresponding to species(n = 1...N) which incorporates the interactions
with all other particle species. This system of equatiomssteaight forward be written as

N
= Culk), (3.39)

=1

where(C,, is the collision integral for interactions between speciend!:

8The collision term depends only on the phase space defisitparticular space-time coordinates and is therefore
independent of the large-scale properties of space-tirhas The form of the collision integral remains unchanged.

19See [48], [49] and [50].

2n fact as pointed out above we have to make sure Mgt = 0. Using the general solution (3.25), we can infer

the equation‘% = E(k) — %%Ti) It has no general solution. However for massless partles as photons one
finds a solution withw = 0 andb = 1/T « R. This is why the CMB stays in perfect Planckian (i.e. equilim) shape

although it has decoupled a long time ago.
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Cni = Skl/[(l — &) = &) W (a,r |k, p)—
— R = & = &YWk, plg, )] d*p dPqdr (3.40)

HereW,,(q, |k, p) is the transition rate for the processt | — n + [. The symmetrization factor
Sy is % in the case of identical particles amdor different particle species.

Inelastic Collisions and Particle Number Violating Proceses

The transport equations encountered above include elzdtisions only. In relativistic theory,
however also inelastic and even particle number violatiodjsions occur. The generalization
follows immediately from (3.40), if we allow for general tsitions like A — B and use the
corresponding transition ratég4 . g.

3.6 Reduction of the Collision Integral

In general no exact, closed form solutions to the nonlinealtzBhann equation are knowéh. In
most cases it has to be solved numerically.

In this section we show how the nine dimensional collisiotegnal can be reduced to a two
dimensional one. This simplification will speedup the nugarcalculations significantly. We
begin with the collision integral in the form (we use (3.4) fioe transition rate)

) d3v
Clf] = » /(27()45(Ek +E,—E,—E)8®k+p—a—r1) | MPF(f) VZI;[qr (@r)P2E,
(3.41)

where we have written symbolically

F(f) = (1 - ffk)(l - gfp)for - fkfp(l - §fq)(1 - §fr)

We can write the 3-dimensional delta-function as the Fouransform of unity and switch to
spherical coordinates:

(2m)3”

d*p = p*dpdS,.
The collision term then becomes

1

_ pdp qdqrdr
6473 E

'E, E, E,

(3.42)

clf] / 5(Ei + Ey — By — EJF(/)D(k,p,0,1)

2lExcept for a certain class of exact (similarity) solution $o called Maxwell molecules (BKW-modes) in the case
of the classical, non-relativistic and homogeneous Bdtamequation and the trivial equilibrium distribution ftioois
of course.
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Here we have defined as

D(k’p’q’ 64 = /}\2 d)\/ Ak dQ)\/ IAp dQ / —iAq qu/e—iAr er ’M’Q

(3.43)

For certain matrix element$/l|2 the integrals inD can be evaluated analyticalfy As an example
we perform this calculation for the most simple casé/ef|> = const. The calculation for more
complicated amplitudes can be found in appendix E.

We can in general evaluate all the solid angle integralsciw|h‘i/l|2 does not depend on in (3.43)
as

. 4
/eﬂ)‘p Q, = )\—7; sin(Ap) . (3.44)
Thus for| M|? = 1 the functionD simplifies to
4 [ . . . A
Dy(k,p,q,r) = = sin(\k) sin(Ap) sin(A\q) sm()\r)ﬁ ) (3.45)
T Jo

The integration gives

(

1—51+82+ 83+ 584+ 55— S¢— s7)k

W
w

(— )
(=1 —s1 —s2+ 83+ 84 — S5+ Sg + S7)p
+(—14 51+ 852+ 53 — 54 — 55 — S6 + 7)q

(=141 +52— 83+ 84— 85— s7+ 86)r), (3.46)

with

s1 = sgnk+p—q—r)
s2 = sgnk —p+q+r)
s3 = sgnk+p+q—r)
sg = sgnk+p—q+r)
s5 = sgnk—p—q—r)
s¢ = sgnk—p+q—r)

)

s = sgnk—p—q+7). (3.47)

In case of massless particles this can be simplified furtgng the Energy conservation) to

1
2“q+r—m—k\!T—M%

Because of the term in front of the integral of (3.45) it lodks the formula does not hold for
k = 0. However it turns out that we can treat this case as limit~= 0. D; then becomes
(sin(Ak)/k — )

4 [ d\
Di(p,q,r) = ;/0 sin(Ap) sin(\q) sin()\T)T , (3.48)

22For example for products of two four momenta suchkgs” for which the calculation is straight forward (see
[52]). A different approach has been developed in [53].
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which can again be written in terms of signum functions:
, 1
Dy =5 (sgn(p —q+r) —sgn(p —q —r) +sgn(p+q—r) —1)

After calculatingD we can proceed with the integration of the remaining eneadtadunction in
eqgn. (3.42). Thisis easily done, usi%? = dFE, and changing the lower limit tax,, accordingly.
Integrating overl L, then fixesp.

The Boltzmann equation with the reduced two-dimensionakiral finally reads

1 qdqrdr
E, — F D; — A4
s, | [ 00— P S D g G @as)

L{fl=

wherep = |/E2 —m2 andE, = E, + E, — Ej,. The Heaviside-function prevents us from
integrating over combinations gfandr which are not allowed kinematically.

In appendix E we generalize these steps to collision intedpadecays and inverse decays of the
form

C12 (k) = — / @m)A oWk +q—r) IMP (1= Efi) fofr — fr(1 — Ef) (L — )]

= E
» d3q d3r
(2m)32E, (27)32E,

(3.50)

Furthermore we perform the integration for the various étmqhes|/\/l|2 encountered in the sub-
sequent.

3.7 The Discrete Boltzmann Equation

Since the solution of integro-differential equations i$ astandard task of numerical analysis we
will briefly discuss how this can be carried out in the casenefBoltzmann equatiof?.

We will perform this calculation for the most simple form b&tLiouville operatod.|[f] = 0 f /Ot.
It is straight forward to generalize the results to the foB188), which we actually employ later
on.

In order to solve the Boltzmann equation on a computer we teeedtablish a discrete velocity
model for it?* For this purpose we choose a grid of discrete momkptand divide the physical
relevant momentum space (i.e. we consider only momenta aprtaximum ofkmay) V' C R3 in

a set ofM disjoint but arbitrary domainaAV; with k; € V;.

Then we make the approximation

/ FOK| 6 Ak ~ f(ki| ) AK; = fidMk;,
AV

ZFor numerical standard tasks we refer to [54]

24Due to the numerical complexity of the Boltzmann equatiomarous different numerical techniques have been
developed to solve it. One of these methods are discreteityelnodels. In kinetic theory the velocity is commonly
used instead of the momentum as the independent variable.
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where the size of the domain is given Ay, = wa d3k. Because of the isotropy in momentum
space we can choose the domains as concentric sphericattalisthe origin with volumeAk; =
47rk:§Dk with some constant small numbBy, and an arbitrary vectdk; contained in this volume,
because our distribution functions depend only on the ntadeiof this vectors. By integrating
eqgn. (3.49) over the domaifsV; we obtain for the left hand side

of _ofi
Sh—— ~ A 51
/Avldkﬁt pr ki, (3.51)
with f; = f(k;), and for the right hand side

M

1
A Y OF D ks
647T3Ekl kl ~ (fl7fp7fl7fj) (klvpvklvk])

Ep>mp,p<MDy

k: Dy, k; Dy
By, Ex,

(3.52)

wherep = \/(Ek, + Ek]. — Ekl)Q — mz%

With the help of the discrete velocity model we turned ourtowous Boltzmann equation into a
set of M partial differential equations for the discrete functigis

Oh DL S By Dl b k)R 021, 359
ot 64m3E, L Jp Jis Jj vp ki k) pmps (=1...M). @,

2,7 i J
Ep>myp,p<MDy,

3.8 Statistical Mechanics and Standard Cosmology

The basis of cosmology is formed by tb@smological principl&® It summarizes the observations
thatthe universe is homogeneous and isotropic on large sééles.

A direct kinematic consequence of this requirements tagedlith the theory of general relativity

is, that spacetime is, on large scales, described by therBobhéNalker metric The line element
of Robertson-Walker metric is given by

dr?

1 — kr2

ds* = dt* — R*(t) < + 72 df? + 2 sin? 9d¢2> , (3.54)
whereR(t) is the cosmic scale factor afigd¢ andr are polar coordinates. The spatial separation
between co-moving points increases witit). k is the curvature constant which determines
whether the spatial section of space time is positively edif¢ = +1), flat (¢ = 0) or negatively
curved ¢ = —1). Current astronomical data (in particular the WMAP data)gests that the
universe is flat. We will therefore assurihe= 0 in the following.

The dynamical evolution of the universe is governed by thestein Equation (without cosmolog-
ical constant):

1
Ry = 5 Ry = 87G T (3.55)

535ee e.g. [4], [5], [55], [56].

%5The experimental evidence supporting the cosmologicatjpie comes mainly from galaxy surveys and the mea-
surement of the cosmic microwave background. The latteibéshhat the universe has been homogeneous except for
variations with magnitudé0~* at the time when the radiation decoupled (at a temperatusaifK, which we see
red shifted today to a temperature2o725 K)
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with the energy-momentum-tens@t as source term determining the curvature expressed by the
Ricci-TensorR,,,.. G denotes Newton’s constant. In our units:

Gmp? =1, (3.56)
mp = 1.2-10 GeV = 1.39 - 1032K . (3.57)

This equation, combined with the cosmological principle.(ithe corresponding form of the
energy momentum tensor) yields the Friedmann Equation

R\? 8rG k
H*= (=] =— i — — 3.58
( R) 3 2 Pi— T (3.58)
where we defined the Hubble parameter p; are the different energy density components. The
Friedmann equation relates the rate of increase of the &mat® to the total energy density of all

matter in the universe. We define the critical energy derasity
_ 3H?
Pc = ek

for which the universe would be precisely flat. With this rimta at hand we can write the energy
densities in terms of density parameters

(3.59)

0= (3.60)
Pc

Current observational data suggests, figty ~ 1. This means that the universe is ffat.
The Hubble parameter relates the spe@d a receding galaxy to its distandevia Hubble’s law:

v~ Hd. (3.61)

The present value of the Hubble parameifgris often parametrized

km

Hy = 100h
0 sMpc’

with reduced Hubble parameter
h~0.71. (3.62)

A second equation obtained in this way is the acceleratiomtimn:

R e

5= (i 3p). (3.63)

(2

For k = 0 the Friedmann equation yields for the scale factor

¢\ 5w
R(t) = Ry (?) , (3.64)
0

Z’According to WMAP the total density parameter is partitione Qoarkenergy = 0.73, Qmater = 0.27 andQp =
0.044. Wee see that the universe today is dominated by dark enegi« energy has a negative pressure. It drives the
accelerated expansion of the universe observed todayt{enqud state parameter = —1)
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where the equation of state parametenas been defined by
p=wp. (3.65)

With w = 0 for the matter dominated universe (Einstein-de Sitter ensi®) andv = 1/3 for the
radiation dominated universe (Tolman universe) respelgtiv

So that we have in particular for the radiation dominatedensie

R Vt, (3.66)

or 1
H=—. 3.67
5 (3.67)

In cosmology the expansion of the universe is assumed toikattt and quasi-static. This means
that it passes smoothly from one equilibrium state to anaihd that the entropy is conserved.

In order to calculate quantities such as the number densiyttee energy density of a particular
particle species, we can therefore presume that its equilibrium distribufionction is

1
i) = SEmr g

(3.68)

where isE;(p) = y/p? + m? for massive particles anf(p) = p for massless particles respec-
tively andy; is the chemical potential of speciés
According to (3.9), (3.11) and (3.12) number density, epelgnsity and pressure are given by

ni= o [ r)dp. (369)
G / 2 ‘
pi=55 | PE@)filp)dp, (3.70)
. 4
b= 25 | ha 0. @3.71)

These integrals can be performed explicitly in the ulti@reistic (I" > m) and non-relativistic
(T <« m) limits. The results for zero chemical potential can be fbimthe following table ¢
denotes the Riemann zeta function).

| | rel. bosong] rel. fermions| non-rel. (both) |
3

3 3¢(3 T2 _mi
ni | g1 Qg1 | g (@—;Ty e T

2 4 7 4 non-rel.
pi | 559 5309 mgn;

w[®
=
K

2 n; T

Figure 3.3: Macroscopic quantities number density, endegsity and pressure in thermal equi-
librium. In the non-relativistic case the given formulas ¢ applied to bosons and fermions.
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For particles close to chemical equilibrium with their gatiticles i.e.%& < 1 andy; = fi; one
finds using (3.68):

o T
n; g (T> (bosons)
9T :
g — g = (—T) (fermions) (38.72)

We met these relations before, in section 2.5.

A further useful result is the equilibrium number densityaapecies obeying Maxwell-Boltzmann
statistics. It can be expressed in terms of modified Bessetifuns (see appendix B):

3 m m

With help of these relations and the first law of thermodyr@mie can derive the entropy of the
photon gas:

1 1 14
dS = 7 (d(py ) + 2y d(R)) = = (5 py d(R®) + R dp,)
A7 4
= S (T3 () + 3T R dT) =~ d(T°RY)

It follows that the co-moving entropy is given by

S _ 47T2T3.

2= 3.74
R® 45 (3.74)

One can employ this result and the formulas for the energgityeof relativistic particles to define
an effective number of relativistic degrees of freedom lfier énergy density:

N\ 4 N
=Y g (%) +£ > g (%) ; (3.75)

bosons fermions

and for the entropy density

Ges = > i (%) +g > g (%) : (3.76)

bosons fermions

The numeric values faf, andg.gs lie typically very close to each other, however both depemd o
the epoch the universe is in. For the standard model the sippate results aré

100 if T > 300MeV, above the QCD phase transition
gx = gss = 10 if 300MeV > T > 1 MeV (3.77)
3 if T < 1MeV, belowe™ e~ -annihilation

A more accurate value fay, at7T > 300 MeV is g, = 106.75.

Bstrictly speakingy. changes whenevéf ~ mass of a species. As long @sis constanf” decreases a8 ™!
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With help of these expressions we can write the total enemgyeatropy density as

71.2

= —gT1", 3.78
P=7359 (3.78)
and
272
=" g.¢T3. 7
== 0xs (3.79)

By plugging (3.78) into the Friedmann equation we obtainradirelation betweei#/ and the
temperature for the radiation dominated universe:

=1. 66\/_ — (3.80)

mp|

3.9 Non-Equilibrium Phenomena

As we have seen standard cosmology is based upon the assnrapt quasi-stationary expan-
sion where most of the particle content stays in thermallibgiuim. However many important
processes in the thermal history of the universe are noiit@gum processes. Examples are in-
flation, Big Bang nucleosynethesis, decoupling of neusirdecoupling of the CMB radiation,
and of course baryogenesis or leptogenesis.

Despite of the fundamental problems outlined above, Baltamequations arthe tool for the
investigation of non-equilibrium phenomena in early undé@cosmology.

In order to derive the form of the Boltzmann equation commarged in cosmology we integrate
(3.36) over the remaining three-momentén:

#/L[f]d%:at/( s frd’k — R/ - k—fkd?’

The first integral in this expression is simply the particlener density and the second one can
be evaluated via integration by parts:

g 0 3 g o 3 g o 2
k—fr d°k = == k dk = -3— k* fr. dk = —3ny .
/( ) PRk 2772/0 Ok [k 353 ; Tk 3ny,

We get

(2797 E / L[f] = dyny, + 3Hn . (3.81)

This result tells us that every kind of particles even withiateraction is diluted by the expansion,

at a rate
Oyng, = —3Hny, .

A popular transformation which exploits the conservatibertropy in the universel(sR3) =
is to introducé®

Y = (3.82)

n
S

2This equation is commonly refered to as Boltzmann equatiditérature about cosmology. However, due to the
integration of the left hand side the microscopic informattontained in the distribution function is lost. The réisal
equations cannot be solved without further approximatiamereas the Boltzmann equation in principle can be.

%Since the photon number density is proportional to the egtdensityn., ~ s it is equivalent to defind” = 2
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This gives us _
sY =n+3Hn. (3.83)

Usually after some successive simplifications the collisSidegral becomes a function of temper-
ature rather than time. Therefore it makes sense to trangfmthe new dimensionless variable

=— 3.84
z=2, (3.84)

wherem is an arbitrary mass scale e.g. the mass of the particleespaaoider investigation. In
order to see how this transformation acts on (3.83) we coen{dr80) and (3.67) to

1 mp 5

t =0.301

Ve m?

which leads to 0 Hm) dy
m
— = — 3.85
"t x dr’ (3.85)

with H (m) = 1.66,/g, 2.
On the other hand, we have to evaluate the collision intdgigtit hand side of (3.41); we write

gi% = dII} where we omit the indekwhen only one particle species is involved)
n k

o [ k= [en's Ok +p—q—r) P

X [(1 - gfk)(l - gfp)qur - fkfp(l - gfq)(l - ng)] de de qu dHr .
(3.86)

Performing all these transformations, we can write thegirsted Boltzmann equation as

8

Y =

s | Cm =g =) M

X [(1=&fr) (X = Efp) fofr — Fufp(1 = Efg) (1 — £f,)] dIL,, dIL, dI1, dII,,
(3.87)

whereY’ denotes the derivative of with respect tar.

Strictly speaking the equilibrium distribution functioobstatistical mechanics cannot be solutions
of the transport equation in Robertson-Walker space-tif@yvever it turns out that these distri-
butions are approximate solutions as long as the total feaé#t mteractions of a particle species
is much larger than the expansion of the universe [5%} H.

In cosmology one distinguishes two cases

e I' > H: The particles interact rapidly. They are approximatelyeqguilibrium and the
number density obeys the relations stated above.

e I' < H: The interaction rate fails to keep up with the expansione $pecies is said to be
frozen out. The number density is governed by the expansion.

The interesting physics however happenslfer H.
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Freeze-Out

The abundance of a particle species staying in thermalibgquih decreases exponentially (see
table 3.3). Today its abundance would hardly be measursifihen a particle species is to survive
till today it must decouple before its equilibrium abundamas become to smaf.

The freeze-out of a particle species is usually analyzeddgns of a simple model. Let us assume
that the reaction rate of a (stable) particle species is datad by the annihilation reaction

WP —s XX . (3.88)

When theX's are subject to some different particle number conserviagtiens (typically that
will be electromagnetic interactions with the backgroutebma), which occur rapidly enough to
keep the species in equilibrium the resulting Boltzmanragéiqa can be solved approximately by
analytic methods.

For simplicity one assumes that the particles obey Max®eltzmann statistics. Then one writes
fxx = exp(—Ey ¢/T) i.e. the chemical potentials are set to zero. Furthermaejtiantum
terms in the Boltzmann equations are neglected.

Exploiting the energy conservation enforced by the delteftion, tells us that
% % EQ ., EQ
FEIY = e (—(Ef + BX)/T) = exp (— (B} + EY)/T) = [ [y
We usef,iEQ = exp (—FE;/T) to distinguish it from any other non-equilibrium distrirt only
when this is not obvious. Then we can write eqn. (3.87)

x

Y= H(m)s

EQ .;EQ 7
/(277)46(4)(k: Fp—q—r) | MP [P RTT — fPFY] di, diL, dil, d1,,
(3.89)

Defining the thermally-averaged cross section times watelocity by?

1 EQ ,;EQ
(oppxx v]) = T /(%)45(4’(% +p—q—r) MO ST any din drt d,
¥

(3.90)

we may write

z <U¢¢HX)’( |U|> §

Y= H(m)

[Yiq—Y?]. (3.92)

Since H(m) = x?H(T) we can interpre':("wwﬁ()fn)g'vws - <0w%)§x'v|>n7 ~ 1 as efficiency
factor for the annihilation processes. That means, th&t/# < 1 the annihilation rate will
decrease and th¢’s will freeze out. The time (or temperature) of decoupling tagrefore be
infered from the details of the interactions of a given péatispecies. Equation (3.91) must in

general be solved numerically.

31N this description we follow Kolb and Turner [15].
%2The interaction rate for a particle with crossseciiois typically of the forml’ = n (o).
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After freeze out g (Tireeze-ou) = "Tﬂmf tstays constant. (Just insert the appropriate expres-
. . wireezg-out | . .

sions from table 3.3.) This observation implies bounds ffier masses of relic particles (such as

neutrinos), because the following relation for the dengédyameter must hold:

Qph? = Ipo—”’fﬂ < Qoah? < 1 (3.92)

A discussion of the non-equilibrium effects for the phenaoreof particle freeze-out can be found
in [57]. The authors of this paper find that these effects arallsfor particles decoupling when
strongly non-relativistic. The quantum terms are negtkate¢hese considerations.

Out-of-Equilibrium Scenario

The standard scenario commonly employed to satisfy theé 8akharov condition in baryogenesis
theories is the out of equilibrium decay scenafolt is based on the observation that a heavy
and relatively long-lived particle-species can deviagmi§icantly from its equilibrium distribution
before the particles begin to decay. By this means the backiom, which would erase any baryon
asymmetry in thermal equilibrium, is suppressed.

If the particle decays are governed by a small coupling emnst, then the decays (ratep o
aM; M is the particle mass) are the dominant processes govetmingarticle number density,
since the annihilation rate will be of ordef. As long asT” > M the decays will be fast enough
to maintain thermal equilibrium. When the universe has brexas old as the particles lifetime
(and the temperature has become low enough so that baclorsaate suppressed, because their
typical energy~ T' < M) they begin to decay freely.

Taking only decays and inverse decays into account the géngwf a massive particle species
can be modeled by the following Boltzmann equation:

LI =g [ @m0k = q - ) LM
k
d3q d3r
(2m)32E, (27)32E,

< [+ )V FEQREQ — fE 1+ fFO (1 + £E9)) (3.93)

where we assumed that the particles, whithdecays into stay in perfect equilibrium and obey
Bose-Einstein statistics (say these are photons of thegbawikd plasma). The numerical solution
of this equation is shown in figure 3.4.

%The former popular scenario of electroweak baryogenasishich the non equilibrium condition was created by
supposed first-order phase-transition is essentiallyralé.
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Figure 3.4: Out-of-equilibrium decay of a massive partgpecies (bosons) interacting with the
background plasma, plotted for different coupling streegt The particles first become non-

relativistic and afterwards decouple when- H. For smaller couplings (upper lines) the particles
depart significantly from thermal equilibrium (solid lineAs soon as the energy of the colliding

particles becomes lower than the mass of the decaying dresumber density drops rapidly.

Figures 3.5 and 3.6 show the rates of decay and inverse deosyaced to the Hubble rate. We
see that the decoupling does indeed take place, WhenH .
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Figure 3.5: Rates of decay and inverse decay compared touhkléirate for a massive particle
species close to equilibrium.
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Figure 3.6: Rates of decay and inverse decay compared touhkléirate for a massive particle
species far from equilibrium.

Equilibrium Abundance of Baryons

As advertised in the introduction, we will now calculate #guilibrium abundance of baryons
(protons and neutrons).

ForT < 1GeV ~ my the equilibrium abundance of protons and neutrens € n3) is accord-
ing to table 3.3 given byg = 8 for nucleons)

g "B _ "B
Ny Ty
4 3,
_ Y2 (mayE (3.9
8¢C(3) \' T
The freeze-out temperature is given by
T2
ng (o |v|) ~ H = 1.661/g*—L . (3.95)
mp
In order to get an order of magnitude approximation we mag takv|) ~ -5 = % (my ~
135GeV is the pion mass) and obtain " "
T % myN
I (mN f) e Tr —H. (3.96)
mi 2m
Rearranging this and plugging in the numbers yields
-1/2 my
<@> eTr ~5x109. (3.97)
Ty
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The solution isl’y ~ 20 MeV, which in turn results in

n:n—B:n—BZ2X10718. (398)

Ny Ty
We see that) would indeed be way to small if the nucleons would stay inrttedrand chemical
equilibrium until they freeze out.
In the next section we are going to discuss a simple model,hictwthe baryon asymmetry is
generated by the out of equilibrium decay of a heavy parsipkcies.
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Chapter 4

Baryogenesis in a Toy Model

We will now discuss a simple scalar toy model which possealighe features needed for the
dynamical production of a net baryon asymmetry. This meamsiticular, that it satisfies all the
Sakharov conditions. We will provide the set of Boltzmanuoag@ns governing the time evolution
of all the different particle species contained in this modaen we will solve them by two distinct
methods. First we follow the classic simplification scheregaloped in [11]. Secondly we will
solve it exact in the numerical sense applying the methoelsgmted in the preceding chaptérs.

4.1 The Model

In order to introduce the model we postulate the followingefiLagrangian, and interaction
Lagrangian-¢;.?

1 1 7
Z = §3uXa”X _ 5M?X2 + 0,b0"b (4.1)
Ay A A g 9 X
Ly = St T S (0)” o+ S X0+ XD, (4.2)
L=, (4.3)

The model contains a real scalar fietd(i.e X = X) and a complex and massless scalar fteld
coupled toX by a scalar Yukawa interaction.

We restricted ourselves to a specific choice of the couplomstants. We take to be real but
Im(g) # 0. The imaginary part of accounts for the CP asymmetry as we will see. Jor 0 the
Lagrangian (4.3) with its Yukawa coupling terms is stablEurthermore we demankito be of
the same order ag (O(\) = O(g?)). We note thah\ is dimensionless angihas mass dimension
1.

Since we like to explain the baryon number generation on #seshof this model, we have to

assign charges to the particles (which we will call baryolepton number). Since the interaction
Lagrangian cannot be charge neutral whatever charges vosehwe have to define this quantum
number by means of the free Lagrangi&p and treat the terms it¥’; as perturbation.

Parts of this chapter can also be found in [11], [15], [14] 58]
2For consistency we denote the complex conjugate of the fislds overbar.
3This is not obvious, but can easily be shown, inserting g1 + ig2 andb = by + iby.

57
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The free part of the actiof, = [ d*x L is obviously invariant undet/ (1) symmetry transfor-
mations of the)-fields. By Norther’s theorem this yields a conserved curren

jp" =i (b0"b — bOMD) (4.4)

and the conserved charge

B:/d?’mj%. (4.5)

We assign the charges = 1/2 and—1/2 to b andb respectively. Sinc& is its own antiparticle

it carries zero baryon number. With this assignment it isals that¥; violates baryon number
conservation. In particular th& decays associated with the Yukawa terms in the Lagrangitn wi
be baryon number violating.

Since scalar fields are invariant under parity transforomati(P)
P:¢—9,

parity is a symmetry of the free as well as the interactionraagian.

Charge conjugation transforms a scalar field in its comptejugate?
C:9—09,

i.e.b — b, b — b, whereasX is a real field and transforms into itself — X.
£ is left invariant by this transformation, but dued¢c g« the interaction Lagrangian is not.
Because¥ is invariant undet?, but not undelC, the combined CP symmetry is also violated.

We summarize that our model satisfies the first two Sakharogitons (B, C and CP violation).
In order to investigate the third one in the framework of kimeheory we need to know the
transition amplitudes. We are going to calculate them imiad section.

4.2 Transition Amplitudes

Figure (4.2) depicts the Feynman rules arising from (4.1)(@®R). We are interested énviolating
reactions mainly, because they affect the evolution of Hrgdn asymmetry directly in contrast to
theb conserving ones which are important for the thermalizatimtess only.

*We suppress arbitrary phase factors here, because thepamjway when physical quantities are calculated.
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<Y
|

Figure 4.1: Feynman rules of the toy model

Apart from the tree level graphs it is necessary to take lapections into account, because the

amplitudesM; ,, and M3 ; are just equal at tree level.

We demand\ to be of the same order g$ and consider only terms up t6(¢°) in perturbation
theory. Furthermore the propagator for thefield must be renormalizetl. We postpone this
calculations to appendix C.

The amplitudes foX decay can be parametrised as (tree level and one loop):

My = (146 [Mx/*, (4.6)

N | =

1
M g5 =51 =) IMx[*, (4.7)

where (: is an arbitrary energy scale)

2
A m5

(log 2 —2)Re(92)> . (4.8)

2
9|
Ml = M+ M2 35 =219l (1-
‘ ’ X, bb X, bb lg] 96m§( 82 |g|2

5This is similar to GUT baryogenesis and leptogenesis whier€P -violating terms also stem from the interference
of the tree level and one-loop diagrams.

bIn case of thé-particles we assume that the renormalized mass is negligithen the renormalized propagator
equals the free one.

"We useM? , as abbreviation fofM (a — b)]

2



60 CHAPTER 4. BARYOGENESISIN A TOY MODEL

This means that if we consider a numberXofparticles in a box decaying freely, the resulting
mean net baryon number would beThis is in agreement with the definition of the CP asymetry:

_F(X—>bb)—F(X—>BB)_ A

€ —

A
2y
(X — bb) + (X — bb) gﬂg‘le(Q )= WRG(Q)"“(Q)- (4.9)

Since the amplitudes (4.6) and (4.7) are constants, theydatss for these processes are given
simply by (appendix E):

Mg( bb

[(X — bb) = ’ 4.10
M2

DX — bb) = —%bb 4.11

The amplitudes for the inverse decays can immediately beaetfrom CPT invariance:

1
Mgy x = 51— |Mx|”, (4.12)

1
Mg x =51 +e) Mx[*. (4.13)

Note that because of preferred decayXf— bb according to (4.6) and the suppressed inverse
decay ofbtb — X according to (4.12), taking only decays and inverse deaapsaccount would
inevitably generate baryon number, even in thermal equilib? In order to construct an instruc-
tive model we need to include further processes which teméhtinish baryon number in thermal
equilibrium.

Up to O(¢°) only the vertices in figure 4.2 and thet andu-channel diagrams depicted in figure
4.2 contribute to the 2-2 scattering amplitutle:

2

1 1 1
2 *\ 2
Mbb,bb:')‘+(g) ( + 5+ 2)

2 .
s—m5x +imxI'xy  t—m5 u—m%

2
A%+ gt ! Ty (N ———
(s —m% )% + (mxT)? t—m3  u—m%
2(s —m%) 1 n 1
(s =m3%)2+m3%T% \t—m3 u—m%
1 1 5 —m3
2\Re(g? 2
#2Re") (= o e )
mxI' x
(s —=m%)? + (mxTx)?

— 2XIm(g?)

(4.14)

8This is not to be considered as a violation of Sakharov'sitbisndition. In this case our model would just be
incomplete.
®Here we keep the fulk -propagator in the-channel. TODO: why exactly do | have to do this?
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L X

Figure 4.2: s-,t- and u-channel.

Sincel'y = —~— |[Mx|* = O(g%) andO(\) = O(g4?) the last term containing the imaginary

16mm x

part will be of orderO(¢%) and we drop it:

1 1 12
M2 . :)\2 4
bb, bb *ldl (s —m%)? 4 (mxI)? * t —m% * u—m

2(s —m%) 1 1
+ 2 o~ 5 T 2
(s =m%)? +m3 5 \t—m% u—m3%

1 1 5 —m2
2\Re(g? X )
#2006 (o e )

The amplitude fov\/lgb & emerges by substitutiors— bandg < g*. Thus we have to this order
of perturbation theory*°
2 2
Mbb, bb MBE, bb (4.15)

For the Boltzmann equation we need the amplitudes with thkinermediate state-channel
contributions subtracted out, because these are alreatiyded in the Boltzmann equation as
successive inverse decay and detly— X — bb [14]. Thet andu-channel diagrams do not
receive contributions from physical intermediate statdeveest order:

M
RISz _ X, bb (4.16)
bb, bb (3—m§()2+(mXPX)27
M
RIS2 _ X, bb
MRS = (4.17)

(s —m%)2+ (mxTx)?’
In the narrow width approximation

h

Iimh—»Om = 7'('(5(1') )

this can be written as:

*If we would consider only the two amplitudes(;, ; and M3,  and the corresponding results fdrthis would
clearly violate (2.10), obtained from CPT -invariance andarity.
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v
Mgy = Mk, bmeé(S —-m¥), (4.18)
RIS 4 7T 2
Mbb = Mx, oy d(s —mx). (4.19)

The amplitudes for 2-2 scattering are then, without the RISribution:

2 _ 2 RIS2

My 5 = My 55 — Moy 350 (4.20)
2 9 RIS2

MG o = Mg 5 — Mag - (4.21)

We note that these contributions do violate CP whereas therfiplitudes for2 — 2 scattering do
not (4.15).

4.3 Boltzmann Equations

Now, that we have calculated all the necessary transitioplirdes, we can easily set up the
system of Boltzmann equations which describes the timeugwaol of the X, b and b density
distributions, according to the guidelines elaboratechiapter 3.

For the X -particle evolution X decays and inverse decays) we get:

1

Cf = —+
b oEX

/ @6 (k — g — )L+ FEFFOME,  — FXQ+ )1+ f)ME

A+ FOLME  — A+ )L+ M ] il Il
(4.22)

Theb-particle evolution X decays and inverse decays and 2-2 scattering) is desciybed b

Cp = bfb / @) 6@ (k+q = )1+ A+ fOFEME = Fofy (L + f75) Miy, x] dIT; dILE
! b b /
"o /(27T)45(4)(k +p—q =+ DA+ ILFEME = R+ A+ M 55]%

b b b
X dT1 1 dI1e.
(4.23)

The Boltzmann equation for theparticle evolution can be obtained from the above oney-inte
changingb andb (X decays and inverse decays and 2-2 scattering):

Ch=— [0 k4 a =l + U+ DM 55— SR+ £ ) ant it
k
+§ / (@m)'8W (k+p — g = )L+ L+ LM, 55— FLIRL+ [+ FOME )%
x dI1} dI1? 1 .
(4.24)
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Note, that we added an extra factdn front of the integrals for decays and inverse decays 23(4.
and (4.24) relative to (4.22). This factor accounts for taeiple-number violating character of
these integrals. A single collision in (4.22) leads to améase (or decrease) of the taldparticle
number byl, whereas a single collision in (4.23) increases or decsethgetotab number density
by 2.1 And we exploited the fact thadlI? = dIT°.

4.4 Simplified Boltzmann Equations

Solving the Boltzmann equations [4.22],[4.23] and [4.24¢ctly is numerically expensive (but
possible when making the appropriate analytic simplifaa). Usually some standard approx-
imations are made which turn the above equations into araysfeordinary, linear differential
equations.

e Our first approximation is to assume that the density digtidins are very close to thermal
equilibrium. This is usually a good one, if the reaction iiatgreater than the expansion rate
I' > H. In the early universe the particles will undergo other inlizing reactions such
asy + b — v+ band so on (typically at higher rates) which maintain therawplilibrium.
These processes are of course not included in our toy model.

e Furthermore we assume that the chemical potentials aré §realthat the system is close
to chemical equilibrium). The chemical potentialsbafndb are equal but opposite in sign.
This follows from the existence of reactions like-b «—— ~ 4+ which gives in equilibrium

Mo + pg = 24y = 0.

e The third approximation will be to use Maxwell-Boltzmanmslibution functions instead of
Bose-Einstein or Fermi-Dirac distributions respectivdizis also means that we will com-
pletely neglect the quantum mechanical blocking and stitedl emission terms introduced
in chapter 3. Thus the particles are treated fully as clabgiarticles. *The Maxwell-
Boltzmann distributions can then be expanded;in

F(p) = e E=W/T ~ o= F (1 4 %) = £,P(1 + %) . (4.25)

e Finally we will assume that the entropy is conserved (k&2 = const). This common
cosmological approximation is believed to be satisfied lier bulk of the thermal history
of the universe. However it is in general violated when nqua#ibrium processes (such as
baryogenesis and leptogenesis itself) occur. Such presgssduce additional entropy.

Unfortunately because of the complexity of the Boltzmanuaadign it is hard to estimate the error
introduced by these approximations. And it will remain @@eluntil we solve the equations in a
completely different way in order to compare the resultsathlapproaches.

"This seems to be neglected elsewhere.

21 literature this approximation is sometimes justified bg argument that the particle densities at high tempera-
tures are very similar for bosons and fermions respectivihys is indeed true for particle number densities (cf. ¢abl
3.3). However the distribution functions can have a quiffecént shape. (e.g. by looking at equation (3.68) it become
clear that the distribution function for fermions can neggceedl whereas the that for bosons can get very large for
# = 0 and small momenta and even infinite far= 0).

Bwe will not consider these effects in our ab initio numerisalution within this work. However they can be
incorporated in principle. One then has to solve coupletegy®f Boltzmann and Einstein equations.
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Let us perform the approximations step by step. First of allimtegrate the equations over the

remaining phase space element
dk

(2m)3E)
The Liouville operator will then be given by (3.81).
The collision integral for decays and inverse decays wiklitike (only the first part of (4.22),

neglecting the quantum terms)
[@n) 6k — g = MR, — £ M ) 1LY at
(4.26)

Performing the above approximations for the distributionctions gives
(2m)46@ (k XPQ % M: M2 ] dITY dITb dIr® 4.27
m W (k=g = r)[fit (1 + THIMi x — fir M ] dITg dITGdIT) . (4.27)

Where we exploited the fact that due to energy conservation

EQ EQ .,EQ EQ pEQ
B = R e AT o fE AR (1 4 24, /T

The second part of (4.22) follows, substituting- b (this impliesj, — g = —up). Combining
the two parts and plugging in the Amplitudes (4.6), (4.12)ds

. 21
X o~ / @2r)46@ (k — g — [0 - T) Y My i dibarie. (4.28)
Sincep;, ande are small we can neglect thé term.

The phase space integral ovef (k) | M x|* gives the thermally averageli-decay width times
the number density oK, so that we can write it

% (Tx) [0 —ny] (4.29)

We will determine the temperature dependencdcf) later.
The integrated collision integral (4.23) can be simplifiedhe same way to

2 [ (2n)160 k4 g = 1) {fX 1+ 0 M2 - 15700 = 2L

2 b b X
751 =) [Mx| } dI1? dI1? dIt;

2 2
+ /(271)45(4)&: +p—q—r) e [(1 - #)M% by — (1+ %)be,bb} dI1, drtt drtb dr?
(4.30)

The corresponding integral (4.24) can again be obtained fhis result by simple substitutions.

In order to get rid of the full amplltudeMbb T and/\/lib w WE can subtract these equations and

get a single one governing the evolution of the net baryonlbamg = %(nb —ng)

Performing the integrals over the real intermediate steteadunction at the same time (see ap-
pendix C), and using

M%bb M;)% W= —1672%€ |/\/lX| o(s — mX)
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we find (neglecting higher order terms):

1
2

s

nte
(T'x) [nf(Q — nx] €— 12<§3)n3 <(FX> ni,y +ny (o \v\>> , (4.31)

where we defined the averaged cross section times velodity (gal intermediate state subtracted
out) analogous to (3.90) by

1 —
(o' o) =— /(2w)45<4>(k tp—q—r)e BtE)/T
v

2 m 4 2
X |:2Mbb, b m ’M’ (5(8 — mX)] de de qu dHT . (432)
This expression has again a temperature dependence todpmithetd later.

Now, writing all equations in terms of the variabls= “X and B = “£ introduced in section
3.9, we get the advertised system of ordinary differentiglations describing the evolution of the
X-number density and the baryon asymmetry:

X/ = —I'K’Y)((X — XEQ)7
B = 2Kyx(X — Xpg) — +KvgB, (4.33)

where we made the definitions

B = g.!'B. (4.35)

Note the similarity to the Boltzmann equations encounteneskection 2.5 in the framework of
thermal leptogenesis.

~vx and~p are dimensionless (These quantities are called reactiusitdess.) and fofl” ~ M they
equal the rates aB violating reactions (i.e. decays afd- 2 scattering processes):

Lx) _ K(1) Ki(z)

— — , 4.36
T T Ki() Ka) (4:39)
_ o 24¢(3) o (o’ v])
YB = 2 <1.807xXEQ + ny Tx)_, , (4.37)
with efficiency parametekK':
— <FX>1::1 .
H(mx)

For the temperature dependenced®f|v|), (T'x) and X one finds (see appendix D):

p N2 4ACm3 + T?
<U |’U|> = _2 2 2 T2\’
m
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with
1

Cj:z512w<cn2

and
1 mg( mx
o Ko=)

Xeo(T) T 41.80((3) T2 T

Equations (4.33) can be motivated as follows. The depaftora equilibrium with respect to
the X number densityX — XEQ drives the generation of the baryon asymmetsy;, which
describes the inverse decays and 2 scattering governs the decrease of baryon numket-
(I'x),_, /H(mx) i.e. the reaction rate divided by the Hubble rate can bepné¢ed as a measure
for the effectiveness of the decays.

These equations can in general not be solved analyticaligrefore we do some numerical cal-
culations in the next section.

4.5 Numerical Results

For the calculations we choosex = 10'° GeV (the mass scale of the lightest heavy Majorana
neutrino) and\ = n{’b—z.
X

Solution of the Simplified Equations

We solve the system of the simplified equations (4.33) firstjules 4.3, 4.4 and 4.5 show the
results for several values of the efficiency paraméterAll graphs are plotted over the dimen-
sionless parameter= mx /7.

0.3 — — R
1074 —
0.25 |- 1073 —==- |
1072 -
0.2 1078 ===
100 —
10t ----
x 015~ NN oy N, —
0.1+ |
0.05 - |
0 L \\\\Nqu\ L
0.1 100
mx
T

Figure 4.3: Evolution of the relativ& abundance.
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Figure 4.4: The baryon asymmety = g.e¢ !B, generated by the toy model for variots.
For decreasinds the final asymmetry approaches a maximum value which beltnti®e com-
pletely free decay of th& particles without any back-reactions. For large valueK dhe baryon
number generation is highly suppressed, because the systamot deviate sufficiently far from

equilibrium.
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Figure 4.5: Deviation from equilibrium of the relative alniaxmcng - XEQ. For smaller values
of K the deviation from thermal quilibrium increases. Sidfe- Xgg acts as a source term
driving the baryon number generatidghalso increases with decreasifg
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Full Numerical Solution

In this section the results obtained for the full numeriaalu8on of the unaltered Boltzmann
equation are presentéd.

The coupled set of Boltzmann equations (4.22), (4.23) ar#dlj4or the toy model has been solved
using the analytical reduction formalism outlined in seetB.6. For this purpose the integrals
have been calculated in appendix E. The reduced equatiergtithintegro-differential equations
with two or one integrals in case @f— 2 scattering and decays respectively. These equations are
discretized using the discrete velocity model describeskition 3.7.

A fourth-order Runge-Kutta Integrator with adaptive stége <ontrol was used in order to solve
the discrete system of differential equations.

There are various subtleties with respect to the discteizgrid 1® For the calculations presented
in this thesis a non-equidistant grid has been chosen irr twdeecount for the different behavior
of the equilibrium distributions for small or large momef(ita. large variations for small momenta
and the long smooth Boltzmann tail for large momenta).

Furthermore there is the fundamental problem that the mamegrid is effectively shrinking

due to the expansion (i.e. the momenta are red shifted). ififkes that theb andb particles
produced in the decay of th€ will eventually fall of the upper bound of the grid, when thgper
bound becomes equal to half of the mass. This means that the upper bound has to be chosen
high enough, so that during the relevant time interval foiclithe equations are to be solved this
problem cannot occur. This means however that the densitlyeofirid points is lessened when
the number of points, i.e. the available computing poweysstanstant. The non-equidistant grid
fits these needs by far better than an equidistant one. Tinéyrdif the Bose-Einstein equilibrium
distribution function ak = 0 for zero particle masses also requires a lower thresholtgréhan
zero.

Good values for the upper bound and lower bounds can be foyrtimanding the numerical
value for the number density integrated on the respectigktgibe close to the exact value.

In principle it is necessary to show, that successive refamrof the grid (this implies decreasing
the grid intervals as well as increasing the upper boundg. quality of the calculated momentum
and time distribution can roughly be estimated, testingctheservation laws encountered in the
model. In our case this means that the relaflery + n; + ng = const must hold.

For a first approximation it is sufficient to consider only @gs and inverse decays as well as the
real intermediate state contributione 2 scattering'® These are the only CP violating processes,
because as we have seen thdy, ;; = My; . in this case the only free parameters e |
ande. The later does not enter the simplified Boltzmann equatioesause3 depends only linear
one. With the relation
 mpMx]?
4516w /gim’

one can directly compare the results of both approaches.

(4.38)

Note, that the numerical calculation with respect to thdtened Boltzmann equations turned out to be problematic.
The algorithm has not always been stable. There has not bermle time for extensive testing, so that the results
presented in this must be considered preliminary.

Due to the homogeneity and isotropy of the equations we azewfe referring to an one-dimensional grid here.

The real intermediate stafe— 2 scattering allays needs to be taken into account in ordeesepve the combined
CPT -unitarity condition in (2.10).

Considering only decays and inverse decays would alwaysrgena baryon asymmetry in thermal equilibrium.
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We used the parameter set

mx =101°GeV, e =1 x 1072 and K = 5.22 x 1074, (4.39)

Note the small value ok” compared to the values in figures 4.3, 4.4 and 4.5. Theseapaties
were enforced partly by the necessity of numerical stghiftthe software routines. The one to
one comparison between the full and the simplified equationshese parameters is shown in
figure 4.6. We learn that the errors induced by the simplificadf the Boltzmann equations are
small in the regimd{ <« 1. This is not surprising because the full Boltzmann equataswell as
the simplified ones are then governed by the expansion edterrthan by the interactions of the
particles. In order to clarify how important the correc8do the linearized Boltzmann equations
are it will be necessary also to examine the regime of strougling K > 1.

2'5 T T T T T 1T 17T T T T T T 1T 17T T
— nx/s
- X
) p— nb/s ”””””” —
--- BJe
np—ng
1.5 2se N

Figure 4.6: The solutions of the simplified equations coregdo the full numeric approach for
K = 522 x 10~*. Note that this value corresponds to a far from equilibrititnagion with
maximum baryon production (cf. figure 4.4). One can expeatgel difference for bigger values
of K, because the interaction will than become more importahé dpper case letters belong to
the simplified equations.
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Figure 4.7: Total particle numbeRix + n, + nj) and total entropy normalized by their ini-
tial value. We see that there is significant entropy productiThis observation contradicts the
assumption of conserved entropy made in the derivationeo$itimplified Boltzmann equations.



Chapter 5

Conclusions and Outlook

We have seen that, in the framework of the seesaw mechamptogkenesis can in a natural way
explain the observed baryon asymmetry through the decagafyh speculative Majorana neu-
trino states. The importance of these theories increagbsiecreasing likeliness of baryogenesis
theories such as electroweak baryogenesis.

If leptogenesis is indeed the cause for the baryon asymrivetyr universe, this would have the
delightful aspect, that the lightest and most unimpredsnavn particles, the neutrinos would in
the end be responsible for our own existence.

Although, in view of the numerous different baryogenesid Eptogenesis scenarios the uncer-
tainties in the underlying physics will dominate the ermothe state-of-the-art calculations, it is
desirable to achieve a reliable numerical simulation ofBb#zmann network for a given baryo-
genesis or leptogenesis theory.

We have seen that the entropy production, caused by the GRingpout of equilibrium decay of
the heavy particle species causing baryon or lepton nurrdregrgtion, might produce entropy to
a great extent. The assumption of conserved total entroghtrttierefore be inappropriate, and
the relation between Hubble rate and temperature mightéeedl This well known phenomenon
of entropy production already led to corrections to the etg@ neutrino spectrum. Which effect
these and other corrections such as the employment of thect@uantum statistics (Fermi or
Bose-Einstein statistics) have must be examined on the béaiparticular and realistic baryoge-
nesis model.

Because of the observed similarity of the Boltzmann equnatfor the toy model on the one hand
and thermal leptogenesis on the other, the latter would ibedswell for such investigations.

Furthermore, the numerical algorithms developed in linthwhis work can in principle be ad-
justed to all kinds of non-equilibrium phenomena in the extiag universe, limited mainly by
computer power and the theoretical uncertainties in theetlyidg physics. It has been shown
that the numerical solution of the full Boltzmann equatiémssuch leptogenesis models is feasi-
ble. The incorporation of entropy generating effects (ile solution of the coupled Boltzmann-
Einstein system) implies only minor changes in the softwardines, so that this issue can be
investigated easily.

However the most urgent issue associated with the curreatntient of leptogenesis with respect
to the out of equilibrium decay, is still whether the kinedjaproach itself is an appropriate descrip-
tion of the early universe plasma and the respective noilifgdum phenomena. We outlined the
problems encountered in connection with this approach. Bdlzmann equation has been de-
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veloped for systems of classical dilute gases. Many effexpected to be important in a dense
guantum plasma are not incorporated within this descript8poradic attempts to supplement the
equations accordingly will in general be arbitrary, if nobtimated by superior techniques.

In order to clarify this question a full quantum field the@rdteatment needs to be carried out. In
order to reject or to ratify the validity of the Boltzmann edjons it will be necessary to compare
the numerical solutions of the unaltered Boltzmann equatto the results of a full quantum field
theoretic calculation.

The toy model described in the second part of this thesis thpigiof useful in this context. Ac-
cording to [59] the assembly and numerical solution of theldteff-Baym equations for this toy
model is feasible. Thus a direct comparison of these twewdifft approaches is within reach.



Appendix A

Robertson Walker Metric

In polar coordinates the line element of Robertson-Walketrimis given by
dr?

1 — kr2

The only non-vanishing Christoffel symbols are the follogi

ds* = dt* — R*(t) < + 12 dh?* + 12 sin’ 0 d¢2> . (A1)

RR

My, =——

W=y 2

F022 = T’2RR

Pogg = 7"2 sin2 HRR
kr

'ty =——

U= k2

Flgz = —T’(l — k?T’Q)
I3 = —r(1 — kr?)sin? 6

1
Iy =T33 = -
,

%35 = sinfcosf

F323 = cot f
R
Tlor = T2y = T3 = =

(A.2)

In the spatially flat casé:(= 0) and when we write the line elements in terms of cartesiandioo
nates:

ds®> = dt* — R?(t) (dw12 + 292 + x32) . (A.3)
we get for the remaining Christoffel symbols
IY%; = RRd;;,
i Ry
F Oj - Eé j,
T =0. (A.4)
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Appendix B

Modified Bessel Functions

The modified Bessel functions of the second kind are defined as

\/7?(%)” /OO —2t 42 -1
K, (z) = 2/ A2 1)V T2 dt, B.1
wherel is the Gamma function
!
I(n + l) M (B.2)

2 n:0,_1,2,... nlo2n

Thus the first and second Bessel function are
Ki(z) = z/ e #\t2 — 1dt = / e t\t2 — 22 dt (B.3)
1 z
and
o0 1 o0
Ko(z) = Z—/ e (2 —1)2 dt = —2/ te '\/12 — 22dt. (B.4)
1 z z

The second integral can be found via integration by parts fitwe first one in either case. This
relations can be used to express the equilibrium numbeitganscase of Maxwell Boltzmann
statistics by

1 VpZ+m? T3 [ m\ 2 T3 rmy\2 m
= — T dp=— t*t\/t2—<—> :—<—> Ks(=). (B.5
"MB 2m2 € ! P 212 Jm ¢ T o2m2 \T 2 T ) (8.5)

T
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Appendix C

Matrix Elements

Unitarity condition
Unitarity of the S-matrix requires

D MG = )P =3 IMG =P (C.1)

This can be seen as follows. From the unitarity of $hmatrix ST = S.ST = 1 and the definition
of theT-matrix.S = 1+iT we getI' T = —i(T—T") = T1T and thug(i| TT" |i) = (i| TTT |i).t
We insert) . |j) (j| = 1 and get

D GIT 1) GIT ) =Y G T ) GIT )

J J

or using(a| UT |b) = (b| U |a)*

DIETINE =Y 1GIT ).

J J
Recalling the definition of the invariant matrix elemevt
GT15) = 2m)* 6™ (i = pj)M(i — j),

we can immediately deduce equation (2.8).
Renormalization of the toy model amplitudes

Figure C.1 shows one loop contributions to the self enevfip?) for the X andb fields. As
pointed out in chapter 4 we renormalize only tkiefield propagator and assume that theropa-
gator is equal to the free one (due to the much smaller mase 6fparticles).

This is the sum of all one-particle-irreducible insertighBl)
’|

2
p .
M(p®) = % (m ‘u—? -2 me(p2)> — C1p? + Cym¥%, (C.2)

We use the abbreviatidi) = |p1p- - - -) as an abbreviation for a complete state of incoming or ontgparticles.

e
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wherey is an arbitrary mass scale. The full two point function igtiggven by

1

. C.3
7=k — M7 )
The physicalX mass is defined by
Re(i(GY) " (M1%) = 0, (C.4)
which gives us
M? =m%2Z,, . (C.5)
with
lg/? m3
Zm =14C1+Cr+ —5— <ln—§<— ) (C.6)
8mEmy I
And the decay width"x is
Im(i(GX) ' (M%) = —MT . (C.7)
This gives
2
ry—= 9" (C.8)
87TmX
The residue is defined by
ey )7 PR e (C.9)
dp? P pP=m% 8m2m3 ! . .
ForZ = Z,, = 1 we have to choose
lg/?
Cl = 3
8m2m3
lg/? m
= In — —3). C.10
& 8r2m2 (In 12 3) ( )

Furthermore, we need to compute one loop corrections foveftices. The corresponding dia-
grams forXbb can be found in figure C. The correctionsX@b can be obtained by substituting

g g
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Figure C.1: X and b self energy

[}
! _ lg|? 1.2, ;
> —————— —29*1%2”& (357 +irIn2)

Figure C.2: One loop contributions to the verticesb in MS-prescription calculated by means of
the Feynman rules in chapter 4. The verticesX@b are analogous (substituge— ¢*).

The amplitudeA/l%Q » 1S found by summing up the vertex in figure 4.2 and all the lompexctions,
to be (up toO(g°))
lgl* A

m2
o+ g (0520~ 2Re(?) + o)+ im(s)) . (1)

2
M%(,bb = ’9\ -
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Of course the amplitud#1?. . can again be found interchangip@ndgx (Im(g?) = —Im(g*?)):

X, bb
2 2 |9|4 A m§( 2 2 2
My =191 = Gg o + gz (I C2) —2REg) +gl%) —mim(g") ). (C12)
We define
M = Mgy M =20 (1= A0 A 0™ e (cag)
X X, bb X, 5b g 96m?x 82 ‘9’2 2 g )
and \
e=—"—=Im(g*). (C.14)
87 |

Then the amplitudes fak decay can be parametrised as
1 1
M5 o = 5(1 +e) [Mx?, /\/@(75,; = 5(1 —e) [ Mx]*. (C.15)

This is the form we used in chapter 4. Up @ (¢°) loop corrections do not contribute to the

amplitudesM?, .- and M2 ..



Appendix D

Temperature Dependence of the
Scattering Parameters

In section 4.4 we encounter the quantiti€s, and (o |v|), of which we need to know the tem-
perature dependence in order to solve the simplified Boltuneguations.

Let us first solve the following integral encountered in tlegiehtion of the simplified Boltzmann
equations:

B e
I= [ dll [ dll,e ™ eT §(s—mx), (D.1)

wheres = (k + p)? is a Mandelstamm variable. Performing the angle integessds

2 - _E
I="_ [ dgE, | dE e T e 10 AFLE, — m>
(2 )6 p P X
Y8

72 mx (T'x) 2min e
_ Ty K [ —2) = 22/ 27 X D.2
(2rys X 1< T) Tx (27)omx (D-2)

Now let us turn to the temperature dependenc& g, and (o |v|). With the results of appendix
C we find

1 M2 M

Xpo(T) = 11.80C(3) T2 2(7)-

In order to evaluate

1
(o' o) =— / @AW (k +p— q — r)e” EetE)/T
2
s

2mxT'x

X {ZMibJ)b— IM(|*8(s — m%)| dIT,, dIL, dI1, dII,. , (D.3)

81
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with

1 1 1)
M2 o :)\2 4
bb, bb * gl (s —m%)% + (mxT)? * t—m? * u—m

n 2(s —m%) 1 n 1
(s =m3%)2+m3%T% \t—m3% u—m%

1 1 s —m?2
2)\Re(g? X .
#2Re") (= o e )

We consider two limiting casesl’ > mx andT < myx. Since the average momenta are of
the same order as the temperature we can in the first case heakeroth order approximation
My, 55 =~ A2, Ignoring the real intermediate state subtraction we find

)\2
(o fvl) = 750, (D.4)
where( is a constant factor given by (performing the transfornmatio= ﬁ de = dTH;f
7T4 4 (4 —(E'+E')/T ’ / / /
= 67 /(QW) S (K +p — ¢ —r')e”ETE/T gIT, dIT, 1T, dIT,. . (D.5)
C' can be evaluated analytically to give
C= __ (D.6)
~ 512n¢(3)%° '
In the low energy limitl" <« M, the momenta can be put to zero for a first approximation, fvhic
yields
1 AR
(o |v]) ~ ==C ()\2 +9’g‘ e(g )> . (D.7)
T2 mX mX

For the real intermediate contribution

(o loly — (o o) == / @m) 45D (k4 p — g — r)e Bt B/
Y
X [merx IM|* 5(s—mX)] dIL, dIL, dI1, dII,. , (D.8)
we find with the help of (D.2)
2
5 mx
(olol) = o' o) = 5oy ° K () (D.9)

This part is essentially zero in the regifiex m x and negligible in the casE > mx compared
to the contribution by (D.4).

The total2 — 2 velocity averaged cross section is

AT
(o' Jul) = { €T3 (T">mx) (D.10)
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These results can be plugged together to give the smootipatéding function

2 2 2
<a' ’UD AT ACmx + T

~ L X T (D.11)
T2T2(m + &)

which is used for the numerical evaluation.
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Appendix E

Reduction of the Collision Integrals

Reduction of C'—2 like Collision Integrals

In the upcoming calculations we will assunie %, g, » > 0) for simplicity. The other cases must
be treated separately.

The generalization of the collision integrals for decayd emwerse decays is

O] = g / (2m)'6 W (k — g = ) [MP[(1 = &fi) fofr = fe(1 = €£5) (1 = ££,)]
k
" d3q d®r
(27)32E, (27)32E,

(E.1)
Performing the same steps as those, which led us from edii)@. eqn. (3.42), we derive

d
Y 327?Ek / O(E (f)ZDi(k,q,r)rE;, (E-2)

whereE, = Ej, — E,, ¢ = , /Eg — mg and we have defined the functidn as

D(k.q,r) = & 4/)\2d)\/ MdeA/ Z)‘quq/e_i’\rdQ,»\M\Q

The simplification of the collision integral described abaelies on the analytic computation of
the integralsD for our particular matrix elements. In this section we wélaulate these integrals
for the matrix amplitudes encountered above.

Mandelstamm variables
The three Mandelstamm variables are defined as

s=(k+p)’=(q+r)?,
t=(g—k?=(r—p?,
u=(r—k)?=(q—p)>.

(E.3)
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In the limit of massless particles we get
s = 2kp=2k||p| (1 - cosb,),
t = —2kq=—2[k||al (1 cosby,),
u = —2kr=-=2|k||r| (1 — cosb).
(E.4)

The Mandelstamm variables are not independent. Rathetthbathey satisfy the relation
s—|—t+u:Zm?. (E.5)

Calculation of D for some matrix elements
In the main part we have seen, that reducing the collisiczgiiai means that we have to calculate

D(k,p.q,m) = ¢ 4 = / A2 d\ / ek dQ, / P dQ, / e~ 40, / e~ dQ, | M

(denoting the surface element wiil2 and the inner product byk = (), k) and the absolute
value of a vector by = |k|)

for the respective matrix eIemehM|2. M will in general exhibit a dependence on the angles
between the various (momentum) vectbrg, ¢, r of the formkp, kq andkr.

Cases where the dependencieskpn kq andkr separate and thus each of the integrations over
dQ,, dQ, andd, can be done on its own, and wheké is a homogeneous polynomial (&),

can be treated by the following formula found in [60]:

[P an, - (;’)E%(;)lkjlku)(MPl)(A)-
=0

Here P! is a homogeneous polynomial of degrgeA is the Laplace operatoj, denotes the
spherical Bessel functions of the first kind(z) is the Gamma function angl is a unit vector.

Because of the relation I\
Ssinz
; = (=1)""
in(z) = (=1)"z <zdz> z

these can always be expressed in terms of trigonometritiunscand powers. For the simple case
of M =1 (I = 0) the formula gives the correct results immediately (cf..4@mM5)):

4 [ dA
Dy(k,p,q,7) = — sin(Ak) sin(Ap) sin(Aq) sin(Ar) —; .
kﬂ' 0 )\
This can then be written in terms of signum functions as seexnea
In particular we encountered the matrix element

1 1 1 2
M2 . :)\2 4
bb, bb * 1l (s—m?x)2 + (mxT)? + t—mg( + u—mg(

2(s —m%) < 1 1 >
2 172 2+ 2
(s —m2%)2+m%T% \t—m3% u—m%
1 1 5 —m2
2\Re(g? X :
+2Re0") (= 4 ot A )
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We can treat the different terms separately.
First, we calculateD for matrix elements of the form

1
M|? = ,
’ ’ t —m?2

X

t = —2kq(1 — cosO,) .

All the angle integrals whiclh/\/l|2 does not depend on can be integrated out using relation)(3.44
Thus we have to compute the integral

1 . .
D= I /sm (Ap) sin (Ar)I dA, (E.6)

where we have defined

/ ik / A, dQy, .
1+ W — COS Hkq

For the integration we can choose to orientateztfaxis of the coordinate system in the direction
of k and thex—axis in the direction of the projection @f on thezy-plane. Thenl becomes

(a—l—i—2 )

I = /ei)\k / e—i)\q(cos 0 cos 0q+-sin 6 sin 64 cos @) qu dQ)\ )

a — cos by,

The integration ovep, and¢, gives

/ / eFAasnOxsinba OSON ey dpy = (2m) Jo(Agsin B sin b,) ,
where.J, is a Bessel function of the first kind. Thiids

< < Ag sin 8y sin 6
:(27T)2//62)\k6qucosGAcoseq JO( gsimu) s q) dcos 0 dCOSHq

a — cos b

dcos 6 -
=(2rr)? / 90987 [ giA(k—qcosfy) cos Jo(Agsin 0 sin 0,) dcos 6
a — cos

:(QW)Q/M/ sin @) cos (A(k — gcos by) cos 0))Jo(Agsinb,sinéy) doy . (E.7)
0

a — cos b,

The integral

=

/2 sin x cos (B cos x)Jo(asinz) de = \/g(az + ﬁQ)’iJ (Va?+ 3?)
0
= 721+ 7 sin <\/m> (E.8)

(6%
can be found in the literature [61]. With= Agsin 6, and3 = A(k — g cos 6,) this yields

1:8772/1 sin (A\/q? + k2 — 2kqx)
1A q2+ k2 — quxa—m
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SubStItutIng\/ q + k2 2kqﬂ? =Yy we f|nd (f( ) m)
q+k .
1= 16772/ f(y)wdy
la—k| A
Interchanging the integration ovely and d\ the total expression fab becomes

dX

D L A A Ay)d
= op | W) [ s 0w sin Oy ) dy,

where the inner integral is known from (3.48):

D] =— / % sin (Ap) sin (Ar) sin (Ay) dA

= (San(y — (r —p)) +59n(y — (p — 7))~ SGN(y — (p+ 7)) ~ 1)

Now we can evaluate the outer integral, using the relation

b
/ f(y)sgnly — h)dy = sgn(b — h) (F'(b) — F(h)) + sgn(h — a) (F(a) — F(h)) ,

whereF is the anti-derivative of . The result is
1 q+k
D=—o - fy) (sgn(y — (r —p)) +sgn(y — (p— 7)) —sgn(y — (p+ 7)) — 1) .
—

This can also be written as

D——i{sgn(qw p)(F(a+k) = F(r—p))
+sgn(r —p Iq— k) (F(lq = k|) = F(r — p))
+sgn(q +k—(p—1)) (Flg+ k) — (p—r))
+sgn(p—7"—\q— k) (F(lg— k) = F(p—))
—sgn(g+k—(p+7))(Flg+k) — (p—i—r))
—sgn(p+r —lg—k|) (F(lg—k|) — F(p+ 1))

~(Fla+k) = F(la— k) }

In order to calculate

1
= = d

we have to distinguish two caseBikg — ¢* — k* = m3 — (¢— k)? < 0 and> 0. In the first case

we have ) )
y—=c
Fly)= | ——dy=—1
(y) /yg_CQ Y 26n<y+c>7

with ¢ = —(m% — (¢ — k)?) and in the second case

1 1 Y
Fly) = | ——dy= —arctan(—) ,
(y) /y2+62 y= ;
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with ¢ = m% — (¢ — k)%

The integrals involving

1
IM|? = ——,
u—mX
1
MP = ———
(t —m%)?
and )
IM[* =
(u —m%)?

can be evaluated in the same way.
Now we calculateD for

IM|* = 6(s —m5%),
s = 2kp(1 — cos Op) .

We can start from (cf. (E.6))

D = % /sin (Aq) sin (Ar)I dX, (E.9)
4

where this time
I= /ei)‘k dQA/eiAp5(2kp(1 — cos Ogp) — m%k) dQ, .
Repeating the steps above we can write the second integral as

27 / d cos 0, P 5 Ox s Iy (Apsin 0 sin 6,)6(2kp(1 — cos 6,) — m%) .

The delta function can be rewritten as

i5((:08 0, — (1 — m—%()) .

— i 2 —
d(2kp(1 — cos b)) — m¥%) o oy

Then the integration can easily be performed to give
klei)‘p cos O cosbp Jo (\p sin ) sin 0,,)0(4kp — m% ) ,
P
where the theta function makes sure that the peak of thefdeltion is located within the region

of integration and),, now is fixed such thatos 6, = 1 — %.
Plugging this intaD yields

1

D= ) / dAsin (Ag) sin (Ar) / AN EFPeosbp) cosO 1o (A sin )y sin 6,)0 (4kp — m%) .

Now we can again apply (E.7):
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sin (A\y/k? + p? — 2kpcos b))
M/k? 4+ p? — 2kpcos b, .

1
D= W@(Zlkp —m%) / % sin (A\g) sin (\r)

The last integral can now be evaluated just like the above@ne

1

D === 0(4kp — m%) (sgn(c — (r — ¢)) + sgn(c — (g —r)) = sgn(c = (g + 1)) = 1) ,

where we defined

c= \/k2+p2—2kpcosep:\/(k+p)2—m§(.

Because ofk + p)? — m% = (k — p)? + 4kp — m% > 4kp — m% the radical ofc is always
positive, when the argument of the Heaviside function ishghatD is well defined.
For the term

1 1 201 ((a=1D)0b=y)+b-1)(a—2))?
( 4 2) :_4(( ) ( )2( )2( ) ~ fay),
T ST Y (-7 ()
with 2 = cos 6, y = cos 6, and
L
“= 2kq’
2
m
b=1+ =
+21{7”’

we try to find an approximating functiof(z, y) because the corresponding integrals are hard to
solve. We can make the ansatz

a(a=12 b=y’ +8 b= (@2 + (v @@=y’ +6) (a—2)(b-y)’

1
9(z,y) —m—z);( (a— x)2 (b— y)2
2 2
:% (a EZ:;;+ﬁ((2:i))2+fy(x_y)2+5> . (E.10)

The integration over the different terms can then be peréormccording to the results above.
Demanding thay(z,y) = f(x,y) in the points(z,y) € {(0,0), (1,0), (0,1) (1,1)}, we find for
the parameters, 3, v andé

{a_4ab—a—b _dab—a—b 1 (a — b)? }

= = - 5=
ba—1)"" a@2b-1 "' " a (4ab—2a —2b+ 1) ab

It is important to notice, thag(x, y) is still symmetric under exchange @fandr. The quality of
this approximation depends on the paramegeandr, but fory = x it is always exact.



Appendix F

Integrals

In this chapter we compute some integrals encountered iméie text.
Two particle decay rate

The differential2-particle decay ratell'(A — BC) in the rest frame of the decaying particle is
given by [20]

1 dpp d*pc

dl’' =
2my (27)32Fp (27)32E¢

2m)*0™ (ps — p — pe) |M(A — BC)|* . (F.1)

For a two particle decay process we hav&( A — BC)|? = const.! In this case both integrations
can be carried out and one [62]

M(A — BC)?
ar(a — o) = M 8;”2 sl (F.2)
A
with
(m% — (mp +mc)?)(m% — (mp —mc)?)

il = el = ¥ o (:3)

For radiative decaysip = m¢ = 0 one finds

2
(4 — BC) = MA= BOF (F.4)
16mm 4

'0One can infer this general property by expressing all péssibrentz invariant combinations of momenta in terms
of the masses. Since the amplitude is invariant it can onlynbde up by these combinations and thus it must be
constant.
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