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Two roads diverged in a wood, and I–

I took the one less traveled by,

And that has made all the difference.

Robert Frost, The Road Not Taken
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Chapter 1

Introduction

Within the last fifty years, astroparticle physics has drawn more and more
interest and attention within the scientific communtity. This is partially due to
the fact that the universe provides us with a lot of data from processes whose
energies are much higher than the scales ever to be reached by experiments
executed on the surface of our earth. Therefore astroparticle physics can be
used to study physics at higher energy scales and to test theories that yield
new effects at these scales. The processes with the highest energies took place
during the very early stages of our universe, which makes this period especially
interesting.

One of the processes that supposedly took place during this time will be
focused on more closely in this thesis: The generally accepted fact that our
universe mainly consists of matter and barely any antimatter has not necessarily
always been true. Its possible transition from a state in which matter and
antimatter were equally abundant to a state in which pratically only matter is
present is called baryogenesis. This process cannot be explained within the
standard model of elementary particle physics and therefore opens the door for
new theories. These theories have to stand the test of yielding various data
gathered from experiments and must hereby reproduce the standard model
of particle physics to a certain degree. On the other hand, they also should
introduce new processes such as baryogenesis, with the parameters partially
fixed by the just mentioned measurements.

However, these tests of a theory all rely on the assumption that the laws
governing physics in the early universe were the same as the ones today. While
this assumption might seem plausible and attractive, it is not guaranteed to
be true. One scenario in which it might be falsified is one of time-varying
parameters, in which, of course, the shape of the laws would not be any different
but the quantitative results would. This time dependence does not need to be
explicit, the parameters can for example depend on the vacuum expectation
value (VEV) of a field, which varies as the universe expands.

The interplay of the two topics baryogenesis and time varying coupling
constants seems to yield a whole new variety of possible baryogenesis scenarios,
as ingredients that are needed to create an asymmetry between matter and
antimatter in the early universe do not necessarily have to be visible in the

1



2 CHAPTER 1. INTRODUCTION

theory that describes physics today.
This thesis treats these topics. It takes a closer look at a baryogenesis

scenario which is also called neutrinogenesis and presents typical problems
that occur when trying to realize its idea of hiding asymmetries in decoupled
sectors without the ad-hoc introduction of new particles in the original model.
A specific model is constructed and it is shown how its problems in creating
a baryon-asymmetric universe can be circumvented by the introduction of ef-
fectively time-dependent coupling constants, due to a quintessence field. Of
course, such couplings will also provide some difficulties, and their treatment
will be the center of the last part of this thesis.

The structure of this thesis is the following:
As some basic knowledge about early universe cosmology is needed, a brief

introduction into this topic is given in the second chapter mainly focussing on
the so called Robertson-Walker metric and its connection to the thermody-
namics of the the early universe.

Since several baryogenesis scenarios make use of non-perturbative (B+L)-
violating processes within the standard model, that occur due to anomalies,
some more details on this topic will be presented in chapter three.

Chapter four will reflect the general idea behind quintessence fields, which
are a possible explanation for the present accelaration of our universe, and also
present some specific classes of quintessence models.

The general conditions for a baryogenesis scenario, as well as the concepts
of several specific models are presented in chapter five, where also an example
for a possible interplay of quintessence and baryogenesis is given.

Chapter six mainly presents the work done in the course of this thesis. It
starts with general considerations on the embedding of neutrinogenesis in real-
istic theories and the problems that are most likely to occur. This is followed by
the presentation of a more detailed Pati-Salam model and its specific problems
to produce a baryon asymmetry via neutrinogenesis. It is then shown, how a
quintessence coupling of various constants might possibly solve these problems,
while also some newly occuring problems are considered. In this course it is also
found, how mass variations of several orders of magnitude due to a quintessence
field might be realized. At the end of this chapter further issues and comments
are presented, mainly dealing with assumptions made during the calculations
and their influence on the results.

The last chapter includes a summary of this work and general conclusions
are drawn, while some further information and details are presented in the
appendix.
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1.1 Einleitung

Innerhalb der letzten fünfzig Jahre hat die Astroteilchenphysik mehr und mehr
Interesse und Aufmerksamkeit innerhalb der wissenschaftlichen Gemeinschaft
auf sich gezogen. Dies ist teilweise darauf zurückzuführen, dass das Universum
uns sehr viele Daten von Prozessen liefert, deren Energien bei weit höheren
Skalen liegen als diejenigen, die jemals durch auf der Erdoberfläche ausgeführte
Experimente erreicht werden können. Daher ergibt sich durch die Astroteilchen-
physik die Möglichkeit Physik an höheren Energieskalen zu untersuchen und
Theorien zu testen, die neue Effekte bei diesen Skalen vorraussagen. Die
Prozesse mit den höchsten Energien ereigneten sich während der sehr frühen
Phasen unseres Universums, was diese Zeit besonders interessant macht.

Mit einem der Prozesse, die vermutlich in dieser Zeit stattgefunden haben,
wird sich diese Arbeit genauer auseinandersetzen: Die allgemein akzeptierte
Aussage, dass unser Universum hauptsächlich aus Materie und kaum aus Anti-
materie besteht, muss nicht immer wahr gewesen sein. Den möglichen Übergang
von einem Zustand, in dem Materie und Antimaterie zu gleichen Teilen vorhan-
den waren, in einen Zustand, in dem praktisch nur noch Materie vorhanden ist,
nennt man Baryogenese. Dieser Prozess kann nicht innerhalb des Standard-
modells der Elementarteilchenphysik erklärt werden, womit sich die Möglichkeit
für neue für neue Theorien eröffnet. Diese Theorien müssen den Test bestehen
verschiedene, aus Experimenten gewonnene Daten zu liefern und hiermit zu
einem gewissen Grad das Standardmodell zu reproduzieren. Auf der anderen
Seite sollten sie auch neue Prozesse wie Baryogenese ermöglichen, wobei die Pa-
rameter teilweise schon durch die eben erwähnten Messungen festgelegt sind.

Diese Tests einer Theorie beruhen jedoch alle auf der Vermutung, dass die
Gesetze, die die Physik im frühen Universum bestimmt haben, damals und
heute dieselben waren. Obwohl diese Vermutung plausibel und attraktiv er-
scheinen mag, gibt es keine Garantie für ihre Richtigkeit. Ein Szenario, in dem
sie sich als falsch herausstellen könnte, ist eines mit sich zeitlich verändernden
Parametern, in dem die Form der Gesetze natürlich nicht verschieden wäre,
wohl aber die quantitativen Ergebnisse. Diese Zeitabhängigkeit muss nicht
explizit sein; die Parameter können zum Beispiel vom Vakuumerwartungswert
(VEW) eines Feldes abhängen, der sich während der Expansion des Universums
verändert.

Das Zusammenspiel der beiden Themen Baryogenese und zeitlich veränder-
lich Kopplungskonstanten scheint eine ganz neue Auswahl an Baryogenese-
szenarien hervorzubringen, da Eigenschaften, die benötigt werden um eine Asym-
metrie zwischen Materie und Antimaterie zu erschaffen nicht notwendigerweise
in der Theorie sichtbar sein müssen, die die Physik von heute beschreibt.

Diese beiden Themen werden in dieser Arbeit behandelt. Wir beschäftigen
uns näher mit einem Baryogeneseszenario, welches auch Neutrinogenese ge-
nannt wird. Typische Probleme werden präsentiert, die auftreten, wenn man
versucht die Neutrinogeneseidee zu realiseren Asymmetrien in entkoppelten Sek-
toren zu verstecken, hierbei jedoch auf die ad-hoc Einfürung neuer Teilchen wie
im ursprünglichen Modell verzichten will. Ein spezielles Modell wird konstru-
iert, und es wird gezeigt, wie dessen Schwierigkeiten ein baryonasymmetrisches
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Universum zu erschaffen umgangen werden können, indem man effektiv zeit-
abhängige Kopplungen einführt, die auf ein Quintessenzfeld zurückgeführt
werden können. Natürlich bringen solche Kopplungen auch neue Probleme mit
sich. Deren Behandlung bildet den zentralen Punkt des letzen Teils dieser Ar-
beit.

Der Aufbau der Arbeit ist folgendermaßen:
Da elementare Grundkenntnisse über Kosmolgie im frühen Universum be-

nötigt werden, wird im zweiten Kapitel eine kurze Einführung in dieses Kapi-
tel gegeben, die sich hauptsächlich auf die sogenannte Robertson-Walker-
Metrik und ihre Verbindung zur Thermodynamik im frühen Universum bezieht.

Da mehrere Baryogeneseszenarien von nicht-pertubativen (B+L)-verletz-
enden Prozessen innerhalb des Standardmodells Gebrauch machen, die auf-
grund von Anomalien auftreten, werden einige Details zu diesem Thema in
Kapitel drei präsentiert.

Kapitel vier wird die allgemeine Idee hinter Quintessenzfeldern reflektieren,
die eine mögliche Erklärung für die gegenwärtige Beschleunigung unseres Uni-
versum liefern. Zusätzlich werden einige spezielle Klassen von Quintessenz-
modellen präsentiert.

Sowohl die allgemeinen Bedingungen für ein Baryogeneseszenario als auch
die Konzepte mehrerer spezieller Modelle werden in Kapitel fünf präsentiert,
wobei auch ein Beispiel für ein mögliches Zusammenspiel von Quintessenz und
Baryogenese gegeben wird.

Kapitel sechs zeigt hauptsächlich was im Zuge dieser Diplomarbeit entstand.
Es beginnt mit allgemeinen Erwägungen über die Einbettung der Neutrino-
genese in realistische Theorien und die am wahrscheinlichsten auftretenden
Probleme. Hierauf folgt die Vorstellung eines detaillierteren Pati-Salam Mo-
dells und seiner speziellen Probleme durch Neutrinogenese eine Baryonasym-
metrie zu erzeugen. Es wird dann gezeigt, wie eine Quintessenzkopplung ver-
schiedener Konstanten diese Probleme möglicherweise lösen könnte, wobei auch
neu auftretende Probleme betrachtet werden. Im Zuge dessen wird ebenfalls
herausgefunden, wie Massenänderungen mehrerer Größenordnungen aufgrund
eines Quintessenzfeldes realisiert werden könnten. Am Ende dieses Kapitels
werden weitere Probleme und Kommentare präsentiert, die sich hauptsächlich
mit Vermutungen beschäftigen, die während der Rechnungen gemacht wurden,
und mit ihrem Einfluss auf die Ergebnisse.

Das letzte Kapitel beinhaltet eine Zusammenfassung dieser Arbeit und allge-
meine Schlussfolgerungen, wohingegen in den Appendizes weitere Informationen
und Details präsentiert werden.
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1.2 Remarks

• Within the whole course of this thesis we will work in natural units

~ = c = kB = 1.

• Temperatures and masses will be given in units of GeV.

• For the numerical calculations concerning the quintessence field the pro-
gram xppaut has been used, while all plots were done with Mathemat-
ica.

• For help with the English language and for the German translation refer-
ences [1, 18] were used.

• This thesis was written with the help of LATEX.
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Chapter 2

Introductory Cosmology

2.1 Robertson-Walker Metric and Expansion

For most of the formulas in this chapter we refer the reader to [19, 33].
On large scales, we find our universe to be impressively homogeneous and

isotropic. If we postulate that its space-time metric also posesses these two
properties, we find that it can always be brought to the form

ds2 = dt2 −R2(t)

(
dr2

1− kr2
+ r2dθ2 + r2 sin2 θ dφ2

)

, (2.1)

which is called the Robertson-Walker metric. Here, (t, r, θ, Φ) are the
coordinates, while R(t) is called the cosmic scale factor, which can be time de-
pendent. The metric can always be chosen such that the constant k either equals
1, 0, or -1, which refers to an open, a flat, and a closed universe respectively.

To determine the dynamical behaviour of R(t), we also need the Einstein
equations, which determine the dynamics of any system in general relativity:

Rµν −
1

2
Rgµν = 8πGTµν + Λgµν , (2.2)

where Rµν stands for the Ricci tensor (not to be confused with the scale factor
R(t)), R for the Ricci scalar, G ≡ 1/m2

Pl for the gravitational constant, Tµν for
the energy-momentum tensor of all fields of the system, and Λ for a possible
cosmological constant.

Our postulates of spatial homogeneity and isotropy yield a simple form of
the energy-momentum tensor, in which all non-diagonal entries are zero and all
spatial components are equal. Therefore it has the form of that of a perfect
fluid

T µ
ν = diag(ρ,−p,−p,−p). (2.3)

Here ρ(t) represents the energy density, while p(t) stands for the pressure.
The principle of general covariance leads to the conserved currents

T µν
;ν = 0, (2.4)

which, in our case, yields for µ = 0

d(ρR3) = −pd(R3). (2.5)

7
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Physically this just says that the loss of energy in a certain volume is equal to
the work done by it, which is the change of volume times its pressure. In spite
of the fact that this statement seems quite simple, it allows us to determine the
qualitative behaviour of R(t) in dependence of ρ and its composition.

For most energy forms there is a simple connection between the energy
density and the corresponding pressure, which is of the form

p = ωρ, (2.6)

where ω is independent of time. Now it is simple to solve the differential
equation (2.5) and we get

ρ ∝ R−3(1+ω). (2.7)

For the most common examples of energy forms this yields:

non-relativistic matter : p = 0 ⇒ ρ ∝ R−3,
radiation : p = 1

3ρ ⇒ ρ ∝ R−4,
vacuum energy : p =−ρ ⇒ ρ =const.

In order to find the behaviour of R(t) and ρ(t) with respect to time, we need
to determine Rµν and R from the metric and plug the results into the Einstein
equations. Only the four diagonal elements of these yield equations differing
from 0=0, and only two of these are independent. As the two independent
equations we choose

Ṙ2

R2
+

k

R2
=

8πG

3
ρ, (2.8)

which is called the Friedmann equation, and

R̈

R
= −4πG

3
(ρ+ 3p). (2.9)

Introducing the variables

ρC ≡
3H2

8πG
and Ω ≡ ρ

ρC
, (2.10)

where ρC is called the critical density, we can transform the Friedmann equation
to

k

H2R2
= Ω− 1, (2.11)

where H ≡ Ṙ/R is the Hubble ratio.
Given the fact that, especially during early stages of the universe, its energy

density was very close (if not equal) to the critical density (which means Ω ≈ 1),
we see that the error in most calculations should not be too big, if k = 0 is
assumed.

With this assumption, eq.(2.7), and ∆t ≡
∫ R(t)
Ri

Ṙ′−1dR′, the Friedmann
equation yields:

∆t = 2
3(1+ω)H

−1
0

[
(

R
R0

) 3(1+ω)
2 −

(
Ri
R0

) 3(1+ω)
2

]

for ω 6= −1,

∆t = H−1
0 ln

∣
∣
∣

R
Ri

∣
∣
∣ for ω = −1,

(2.12)
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where the 0 subscript refers to today’s value of the corresponding parameters.

With the assumption that the universe was radiation dominated through
all of its early stages (ti = 0, R(ti) = 0), we find the formula

R ∝ t 1
2 , (2.13)

which we will use later on.

From eq.(2.12), we can also see that in case of dominating vacuum energy
(ω = −1), the universe expands exponentially with respect to time.

2.2 Early Universe Thermodynamics

The universe of the cosmological standard model (CSM) can strictly never
have been in thermal equilibrium. This is due to the fact that this model,
which mainly bases on the Robertson-Walker metric, does not posess a time-
like killing-vector. Still we can say that there were stages during which the
universe has been in local thermal equilibrium (LTE), which can always be said
if the reaction rates of all processes are faster than the rate of change of the
cosmological circumstances. Thus, when speaking of equilibrium, we will think
of LTE in the following parts of this thesis, if not specified differently.

2.2.1 Particle and Energy Densities

To determine the particle density n, energy density ρ, and the pressure p of a
particle species in LTE, we have to evaluate the phase space integrals

neq =
g

(2π)3

∫

f(~p)d3p, (2.14a)

ρeq =
g

(2π)3

∫

E(~p)f(~p)d3p, (2.14b)

peq =
g

(2π)3

∫ |~p|2
3E

f(~p)d3p, (2.14c)

where g is the number of the degrees of freedom of the particle species, E ≡
√

m2 + p2 is their energy, m is their mass, f(~p) is their total phase-space dis-
tribution, and the integrals are to be taken over all phase-space. For the phase-
space distribution we have

f(~p) =
1

exp((E − µ)/T )± 1
, (2.15)

where µ represents the chemical potential of the particle species, and the +
refers to fermions, while the − refers to bosons.

For species with f(~p) � 1 for all ~p, we can simplify things by using the
Maxwell-Boltzmann distribution

f(~p) = exp

(

−(E − µ)

T

)

. (2.16)
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In these cases we can compute eqs.(2.14) analytically [20]:
By making the substitutions x ≡ m/T and z ≡ E/T and integrating out the
angular parts of ~p eq.(2.14a) becomes

neq, MB =
gT 3

2π2

∫ ∞

x
z
√

z2 − x2e−(z−µ/T )dz. (2.17)

This expression turns out to be

neq, MB =
gT 3eµ/T

2π2
x2K2(x), (2.18)

where K2(x) is a modified Bessel function.
In the limits of large x this leads to

neq, MB = g

(
mT 3

2π

) 3
2

e−(m−µ)/T

[

1 +
15

8x
+

105

128x2
+ . . .

]

, m� T, (2.19)

while it yields

neq, MB =
gT 3eµ/T

π2

[

1− 1

4
x2 − . . .

]

, m� T, (2.20)

for small x.
We see that the particle density is (in leading order) independent of the mass of
the particle in the extreme relativistic case, while its abundance is exponentialy
suppressed in the non-relativistic limit and m > µ.

To calculate the mean energy and energy density, we first present the inter-
mediate result for the mean time dilation

〈mE 〉MB =
R ∞

x
x
√

z2−x2e−zdz
R ∞

x
z
√

z2−x2e−zdz

= K1(x)
K2(x) .

(2.21)

In classical non-relativistic statistical mechanics the equipartition theorem states
that the mean energy per quadratic degree of freedom is 1

2T . By finding a cor-
responding relativistic quantity, we will finally be able to calculate the mean
energy of a particle. This quantity turns out to be

Q ≡ pi
∂E

∂pi
, (2.22)

where i is arbitrary but fixed. For its mean value we get

〈Q〉MB =

〈

pi
∂E

∂pi

〉

MB

= T, (2.23)

after integrating by parts.
In the non-relativistic case we have E =

∑
p2

i /(2m) and thus eq.(2.23)
confirms the classical equipartition theorem. In the relativistic case, however,
we have Q = p2

i /E and eq.(2.23) therefore gives
〈
~p 2

E

〉

MB

=

〈

E − m2

E

〉

MB

= 3T. (2.24)
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Figure 2.1: The behaviour of the quotient K1(x)/K2(x) in dependence of the
logarithm of x with x ranging from 10−4 to 104.

Since we know the mean time dilation from eq.(2.21), we can now calculate the
mean energy:

〈E〉MB = 3T +m
K1(x)

K2(x)
. (2.25)

In fig.2.1 the behaviour of the quotient in the second term of the sum is shown,
and we reach the intuitively clear solution that for m� T the mean energy of
a particle is more or less its rest energy, while for large temperatures m � T ,
the mass of the particle becomes irrelevant and its mean energy basically is 3T .

To calculate the energy density ρ, all one has to do is to multiply the particle
density with the mean energy, giving [20]

ρeq, MB = neq, MB · 〈E〉MB

= gT 4eµ/T

2π2

[
3x2K2(x) + x3K1(x)

]

' gm
(

mT
2π

) 3
2 e−(m−µ)/T

[
1 + 27

8x + . . .
]
, T � m,

' 3gT 4eµ/T

π2

[
1− 1

12x
2 + . . .

]
, T � m.

(2.26)

Using Fermi-Dirac or Bose-Einstein statistics, the expressions in eqs.(2.14)
cannot be given in terms of special functions for all parameter values. However,
approximation formulas can be given for most relevant parameter ranges [19]:
In the relativistic limit (T � m, T � µ), eqs.(2.14) yield

neq '
{

ζ(3)
π2 gT

3 for bosons
3
4

ζ(3)
π2 gT

3 for fermions ,
(2.27a)

ρeq '
{

π2

30 gT
4 for bosons

7
8

π2

30 gT
4 for fermions ,

(2.27b)

peq =
ρ

3
, (2.27c)

where ζ(x) is the Riemann zeta function with ζ(3) ≈ 1.202.
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For degenerate fermions we find

neq =
1

6π2
gµ3, (2.28a)

ρeq =
1

8π2
gµ4, (2.28b)

peq =
ρ

3
, (2.28c)

while we get for fermions or bosons with µ < 0 and |µ| < T

neq = e
µ
T
g

π2
T 3, (2.29a)

ρeq = e
µ
T

3g

π2
T 4, (2.29b)

peq =
ρ

3
. (2.29c)

We see that for all kinds of radiation we get ω = 1/3, which we used extensively
in the last section.
In the limit of non-relativistic temperatures (T � m) eqs.(2.14) lead to

neq = g

(
mT

2π

) 3
2

e−(m−µ)/T , (2.30a)

ρeq = mn, (2.30b)

peq = Tn, (2.30c)

from which we can see that it was reasonable to assume ω = 0 for non-relativistic
matter, since p� ρ in that case.

We can see that the total energy density and pressure of all fields in the
universe

ρtotal =
∑

i ε all fields

ρi and ptotal =
∑

i ε all fields

pi (2.31)

are mainly given by the relativistic fields, as long as they are not decoupled
from the other ones. Therefore the total energy density and pressure are often
given as [19]

ρR = π2

30 g∗T
4,

pR = π2

90 g∗T
4 = ρR

3 ,
(2.32)

where T is the photon temperature and g∗ is the number of effectively massless
degrees of freedom with

g∗ ≡
∑

i ε bosons

gi

(
Ti

T

)4

+
7

8

∑

i ε fermions

gi

(
Ti

T

)4

, (2.33)

where the sums are only to be taken over the effectively massless particles.
Finally we plug eq.(2.32) into the Friedman equation (eq.(2.8)) with k = 0,
which leads to

H ≈ 1.66 · g
1
2∗
T 2

mPl

. (2.34)
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In addition eq.(2.13) gives us a connection between the cosmic scale factor and
time during the radiation dominated era, such that we can now write down the
relation between time and temperature during this phase

t = 0.301 · g−
1
2∗
mPl

T 2
. (2.35)

2.2.2 Chemical Potentials

If temperature and rest energy of a particle species is fixed, its abundance is de-
termined by its chemical potential. Therefore chemical potentials are especially
important, when dealing with the different abundances of particles and their
anti-particles, which is what every baryogenesis model is essentially about.

By saying that a certain process or particle reaction is in equilibrium, we
mean that its reaction rate is much faster than the rate at which the cosmo-
logical circumstances change, for which the corresponding scale is given by the
Hubble rate H. If this is the case, the system will reach an equilibrium state
with respect to this process, where forward and backward reactions will occur
at the same rate and the system will no longer go through any changes due to
this reaction.

If a certain volume has reached an equilibrium state, its free energy F is at
a minimum with respect to possible changes it could undergo due to any fast
enough process (see e.g. [21]).

We now denote an arbitrary reaction in equilibrium by

∑

α

cαα −→
∑

β

cββ, (2.36)

where α and β run over the various particle species in the respective channels,
while cα,β represent the number of particles per species needed for one reaction.
This can also be written in the form

∑

ξ∈({α}∪{β})
cξγ = 0, (2.37)

with cξ ≡ cα for ξ = α and cξ ≡ −nβ for ξ = β.

If such a reaction takes place, F changes by

dF =
∑

γ
nγ

∂F
∂Nγ

=
∑

γ
nγµγ ,

(2.38)

where µγ is the the chemical potential of the corresponding particle species.
Since F is at a minimum with respect to all processes in equilibrium, we have
the condition dF = 0, which leads to

∑

γ

nγµγ = 0, (2.39)
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for any process in equilibrium.
This immediately results in the fact that the chemical potential of photons is
zero

µγ = 0, (2.40)

as an arbitrary nummber of them can be emitted or absorbed in any reaction.
From this it can now be deduced that the chemical potential of a particle

and its anti-particle only differ in the sign, as long as pair-annihilation is in
equilibrium (a+ ā↔ 2γ)

µa = −µā. (2.41)

In this case the excess of a fermion species over its antiparticle can be calculated,
and we find

n+ − n− = gT 3

2π2

∫ ∞

x
dz z
√
z2 − x2

[
(ez−µ/T + 1)−1 − (ez+µ/T + 1)−1

]

= gT 3

6π2

[

π2 µ
T +

( µ
T

)3
]

forT � m

= 2g
(

mT
2π

) 3
2 sinh

( µ
T

)
e−

m
T forT � m,

(2.42)
as both particles have the same mass.

2.2.3 Entropy and Entropy Density

If we apply the second law of thermodynamics to a comoving volume element,
we find

TdS(V, T ) = d(ρ(T )V ) + p(T )dV = d ((ρ+ p)V )− V dp, (2.43)

where V ≡ R3 is the physical volume of the comoving volume element, which
has coordinate volume one, and dS is its change of entropy.
From the condition

∂2S

∂T∂V
=

∂2S

∂V ∂T
(2.44)

we get

T
dp

dT
= ρ(T ) + p(T ). (2.45)

The first law of thermodynamics (eq.(2.5)) can also be written as

V
dp

dt
=

d

dt
(V (ρ+ p)) , (2.46)

which together with eq.(2.45) takes the form

d

dT

[
R3

T
(ρ(T ) + p(T ))

]

= 0. (2.47)

But using eq.(2.43) along with eq.(2.45), we find

dS =

[
R3

T
(ρ(T ) + p(T ))

]

, (2.48)
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which yields
dS

dt
= 0, (2.49)

stating that the entropy in a comoving volume does not change with time.
Eq.(2.48) also tells us that the entropy per unit volume s ≡ S/V is

s =
ρ(T ) + p(T )

T
+ possible additive constant. (2.50)

Using eqs.(2.32), we find

s =
2π2

45
g∗ST

3, (2.51)

with

g∗S ≡
∑

i ε bosons

gi

(
Ti

T

)3

+
7

8

∑

i ε fermions

gi

(
Ti

T

)3

, (2.52)

where the sum is again to be taken over all effectively massless particles.
Conservation of S yields s ∝ R−3, which changes at the same rate as the

particle density of a species that has effectively been frozen out, since this means
that its number per comoving volume is not changing.

Therefore a quantity like the baryon asymmetry nB has to be compared to
the entropy density

B ≡ nB

s
≡ nb − nb̄

s
(2.53)

or to the density of another effectively frozen particle species like the photon
η ≡ nB/nγ to yield a meaningful value.

Finally we find from the conservation of S and eq.(2.51) that g∗ST 3R3 is
a conserved quantity, and in periods during which the number of effectively
massless particles is not changing, we have the relation

T ∝ 1

R
. (2.54)

2.3 The Matter-Antimatter Asymmetry

The fact that there are almost only baryons and no anti-baryons in our universe
is usually refered to as the matter-antimatter asymmetry or simply baryon
asymmetry.

So far, no primordial antimatter has been observed. Antimatter is con-
tained in cosmic rays (namely antiprotons) but the ratio np/np̄ ≈ 10−4 can be
explained by secondary production of anti-protons arising from protons hitting
interstellar matter, which leads to processes like p+ p→ 3p+ p̄.

This still leaves the possible existance of huge amounts of antimatter far
away from us, equalling out the surplus of matter in our galaxy, such that the
total baryon asymmetry is zero. However, if such bunches of antimatter would
exist, there would also be annihilation radiation sent out from the borders of
areas with respective matter and antimatter domination. The failure to observe
this radiation leads to the conclusion that such areas must be separateded on
scales of the size of at least 1014M�. On the other hand, the size of B, which we
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will get to in the course of this section, is of an order of magnitude that implies
that the temperature of separation of matter and antimatter must have been at
a value greater than 38 MeV. But at this time, the causally connected region
contained only about 107M�, such that causality forbids such a scenario.

Therefore it is reasonable to assume that we actually live in a baryon asym-
metric universe.

A very precise estimate for B comes from the theory of big bang nucle-
osynthesis (BBN), where today’s abundances of light nuclei (p, D, 3H, 4H, etc.)
are predicted in dependence of the input parameter B. Comparing this with
astro-physical observations yields [25]

B ≈ (2− 8)× 10−11. (2.55)

Examples for processes yielding a universe with the measured matter-antimatter-
asymmetry at cold temperatures, but starting out from a symmetric state at
early times, will be given in a separate chapter.



Chapter 3

Sphalerons

A large fraction of baryogenesis scenarios also involves non-perturbative pro-
cesses at a certain stage, alongside all the regular perturbative processes typical
for all areas of particle physics. These processes arise from the topological struc-
ture of gauge field theories, and shall be considered more closely in this section,
were we mainly follow [6, 17, 27, 29, 35].

3.1 Anomalies

While in classical physics there is a definite connection between symmetries
and conserved quantities given by Noether’s theorem, which states that every
symmetry of the Langrangian of a physical system directly leads to a conserved
quantity, things get more complicated in quantum field theory, where quan-
tum effects can destroy symmetries of the Langrangian and therefore lead to
violation of the conservation laws acquired from the classical treatment of the
Langrangian. This is usually the case in parity-violating theories.

3.1.1 The Axial Anomaly

The most common example for an anomaly is the Adler-Bell-Jackiw anomaly
or simply axial anomaly:
A massless gauge theory (e.g. massless QED), is invariant under the chiral
transformation

Ψ(x)→ e−iωγ5Ψ(x). (3.1)

Noether’s theorem now yields a conserved current, which is normally taken to
be the chiral current

jµ5 ≡ Ψ̄γµγ5Ψ, (3.2)

where classical treatment yields

∂µj
µ
5 = 0. (3.3)

As stated before, in the quantum case things are a little different, which can be
seen from the two diagrams in fig.3.1.

17



18 CHAPTER 3. SPHALERONS

���������	��

�

�� ���

� ��� �
��� �������

��� � � ���

���	���
���������	 �! "

"
# ���

" ��� �
$�% ���� �&

$�' � �  �(

$�)	$�*

Figure 3.1: Two diagrams that lead to the Adler-Bell-Jackiw anomaly. In
QED they give the lowest-order amplitude for an external source creating two
photons. In the Weinberg-Salam model, it yields the lowest-order description
of the the process Z → 2γ, when summed over all internal fermion loops. The
last process is only a virtual process, as a spin one state cannot decay into two
photons.

These two diagrams are divergent, so that they have to be regularized when
calculating their value (see e.g. [17]). The problem when doing this is that one
can only conserve the axial current by sacrificing the gauge symmetry, which in
this case would mean violation of the Ward identity. Since the conservation of
currents associated with the gauge symmetry is an experimental fact (at least in
QED), one has to choose a regularisation scheme that violates eq.(3.3). Since it
can be shown that the axial anomaly is only due to the one-loop feyman graphs
of the processes described in fig.3.1, the quantitative calculation shows

(k1 + k2)
µTαβµ(k1, k2) =

i

2π2
kµ
1 k

ν
2εαβµν , (3.4)

where Tαβµ(k1, k2) is the renormalized matrix-element for the two processes,
and we stress again that we are in the limit of a gauge theory with zero fermion
masses.

Fourier transformation of this expression and the insertion of the coupling
constant (e.g. e in QED) yields the final result

〈k1, α; k2, β|∂µj5µ(0)|0〉 = − e2

16π2
〈k1, α; k2, β|εανβλFανFβλ(0)|0〉, (3.5)

where we can see that, even in the massless limit, the axial current is not
conserved in this process and therefore in the whole theory.

3.1.2 Anomalies in the Path-Integral Formalism

The origin of anomalies in the path-integral formalism can help understanding
their nature quite a bit. Since axial anomalies are not the only important ones,
we will perform a more general treatment in this part of the section, and hereby
mostly follow [35], where also the reference to the original paper is given.

In the canonical formalism the symmetry of a theory under a transforma-
tion of the fields Ψ(x)→ U(x)Ψ(x) is usually shown by plugging the tranformed
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fields into the Langrangian L and showing that it is invariant under this tran-
formation. In the path-integral formalism, however, we also have the fermionic
measures, that additionally transform under U , which can be a transformation
in Lorentz- as well as in flavor-space: 1

dΨdΨ̄→ (detU det Ū)−1dΨdΨ̄, (3.6)

with

Uxn,ym ≡ U(x)nmδ
4(x− y), (3.7a)

Ūxn,ym ≡ (γ0U(x)†γ0)nmδ
4(x− y), (3.7b)

where the indices n and m can run in Lorentz- and any flavor-space, depending
on the symmetry. We see that, unless U contains a tranformation in Lorentz-
space, the two factors of γ0 in eq.(3.7b), can be contracted and Ū simply be-
comes the hermitian conjugate of U .

In the case of U only operating in flavor-space, we can write it as

U(x) = exp(iα(x)t), (3.8)

where t is an ordinary hermitian matrix, which also does not work on Lorentz-
space. This leads to the fact that U is either unitary or pseudounitary:

ŪU = 1, (3.9)

which both implies that the measure is invariant under the transformation we
described. Therefore no anomalies will occur.

However, if U also contains a chiral transformation (compare eq.(3.1)) with

U(x) = exp(iγ5α(x)t), (3.10)

where t again only acts on flavor-space, U turns out to be pseudo-hermitian,
with

Ū = U . (3.11)

Now the measure is not invariant under U ; instead, we have

dΨdΨ̄→ (detU)−2dΨdΨ̄. (3.12)

Working only with infinitesimal transformations and using the formula detM =
exp(tr(lnM)), as well as ln(1 + x) → x for x → 0, we can transform this
expression to

dΨdΨ̄→ exp

[

i

∫

d4xα(x)A(x)

]

dΨdΨ̄, (3.13)

where A(x) is called the anomaly function, given by

A(x) ≡ −2 tr(γ5t)δ
4(x− x). (3.14)

1In this part of the text we do not necessarily refer to what is also called generation-space
by using the expression flavor-space, but to some general space in which our full Langrangian
is embedded.
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So far, A(x), has no physical meaning, since the trace over γ5 will be zero, but
we also have an infinite factor due to the δ-function in the equation. Therefore
some method of regularization will have to be used.

Putting this aside for a moment, we see that besides the weight exp(i
∫
d4xL),

which is always present when integrating over the fields in the path-integral
method, an additional factor has appeared due to eq.(3.13), such that instead
of having a measure that transforms under U , we can also consider the measure
to be fixed and the Lagrangian to be transforming under U as

L(x)→ L(x) + α(x)A(x), (3.15)

if it was originally invariant under the corresponding transformation.

As stated before, A(x) can be regularized. This can be done in a gauge and
Lorentz invariant manner [35] yielding

A(x) = − 1

16π2
εµνρσF

µν
α (x)F ρσ

β (x)tr(tαtβt), (3.16)

where tα,β are generators of the gauge group, while the F µν
α are the correspond-

ing generators. If t is the unit matrix (referring to eq.(3.1)), the expression on
the right-hand side of eq.(3.16) is called the Chern-Pontryagin density.

In the case of U being a symmetry of the system the action will be left
invariant for constant α. Whereas, if α(x) is allowed to be space-time depen-
dent, but going to zero at the integration borders, the change in the action will
be [34]

δS =

∫

d4xJµ
5 (x)∂µα(x), (3.17)

with Jµ
5 (x) being the classically conserved current, which is of course the chiral

current if U is described by eq.(3.1).

Combining this with eq.(3.15), we see that the complete change of a path-
integral is

δ

∫

dΨdΨ̄eiS =

∫

dΨdψ̄

[

i

∫

d4xA(x)α(x) + Jµ
5 (x)∂µα(x)

]

eiS , (3.18)

for infinitesimal α(x).

But since U is just describing an infinitesimal change of variables for arbi-
trary α(x), it must not change the quantum averages of the fields, that obey
the Euler-Lagrange equations. Therefore eq.(3.18) has to yield zero for both
sides and arbitrary α(x). Integration by parts within the squared brackets thus
yields

〈∂µJ
µ
5 (x)〉A = A = − 1

16π2
εµνρσF

µν
α (x)F ρσ

β (x)tr(tαtβt), (3.19)

where the brackets 〈〉A represent the quantum average, and the equation is valid
for arbitrary gauge fields.

In the special case of tij = e2δij and the right normalization of the gauge
generators this confirms our result in eq.(3.5).
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Even though we find the axial current not to be conserved due to quantum
effects, we can still find a conserved quantity:
Defining the Chern-Simons class

Gµ ≡ 2εµνλρ

[

Aγν∂λAγρ +
1

3
CαβγAανAβλAγρ

]

, (3.20)

with Cαβγ being the structure constant of our gauge group, we get the identity

∂µG
µ =

1

2
εµνρσF

µν
α F ρσ

α . (3.21)

Therefore we find the conservation of the current Kµ

∂µK
µ = 0, (3.22)

where

Kµ ≡ 〈Jµ
5 〉µ +

N

8π2
Gµ, (3.23)

and N is the norm of the gauge group generators. However we have to stress
that this current is not gauge invariant.

For the sake of completeness we also want to mention the possible violation
of gauge symmetries by anomalies. Besides the aesthetical problem that a
gauge theory in which only the Lagrangian and not the actual physics have a
certain symmetry and the hereby much more questionable motivation for the
postulation of gauge symmetries, there are also real physical problems occuring
in anomaly violated gauge theories. One of them being the fact that these
theories will might generate divergent gauge boson mass terms through triangle
diagrams [27].

In general, a theory can also be formulated by only using left-handed weyl
spinors, which is usually the case in grand unified theories. In this case the
anomalous current is given by

〈∂µJ
µ
α (x)〉 = − 1

32π2
Dαβγε

κνλρF β
κν(x)F

γ
λρ(x), (3.24)

where D ≡ 1
2tr({Tα, Tβ}Tγ) and the Ti are the generators of the used represen-

tations of the gauge theory.

To prevent our gauge symmetries from being destroyed, the condition

Dαβγ = 0 (3.25)

needs to be fullfilled for all indices α, β, γ.

For the model presented in this thesis, it is enough to know that its gauge
group is a subgroup of SO(10), for which it has been shown that all its repre-
sentations are anomaly free.
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3.1.3 Anomalies and Topology

Important new insights can also be gained, when treating anomalies topolog-
ically. Some of them will be presented in this section, where we will simplify
things by fixing our gauge group to be SU(2) with coupling constant g, gauge
fields Aµ, and field strength tensors Fµν .

Since we just saw that the axial current is not conserved, we now want to
calculate the possible change of the axial charge qax(t) ≡

∫
d3xΨ̄γ0γ5Ψ within

time. Herefore we take a step back and consider vacuum transition amplitudes
of gauge fields: In order for the action to be finite in any process, we get the
condition

F µν x→∞−→ O(x−3), with x2 = x2
0 + ~x2, (3.26)

which implies

Aµ x→∞−→ − i
g
U∂µU−1 +O(x−2), (3.27)

with U(x) ∈ SU(2), since the Aµ should except for the gauge freedom be
completely determined by F µν .

Now we define the four dimensional Volume in Minkowski space

V4 ≡ {(t, x)|ti ≤ t ≤ tf ∧ 0 < x < r} , (3.28)

which can be understood as a large four-dimensional cylinder, with top and
bottom surfaces tf and ti, and consider the topological charge qtop, defined by

qtop ≡
g2

16π2

∫

V4

d4x ∂µG
µ, (3.29)

where Gµ is the Chern-Simons class defined by eq.(3.20).
Gauss’ theorem, which is also valid in Minkowski space, now gives

qtop =
g2

16π2

∫

∂V4

dSµG
µ, (3.30)

where dSµ represents an element of the three-dimensional hyper-surface ∂V4.
When choosing r, ti, tF large enough, our fields will be of the form given

in eq.(3.27), such that the vacuum will be totally determined by U(x) with
x ∈ ∂V4, and we can regard q as the functional

qtop[U ] =
1

24π2

∫

∂V4

dSµε
µαβγtr

[
U(∂αU

−1)U(∂βU
−1)U(∂γU

−1)
]
. (3.31)

Since ∂V4 is isomorphic to the three dimensional spherical hyper-surface S3, we
may allso write

qtop[U ] =
1

24π2

∫

S3

dSµε
µαβγtr

[
U(∂αU

−1)U(∂βU
−1)U(∂γU

−1)
]
. (3.32)

Any arbitrary U(x) is now a continous function with domain and range S3,
which can therefore be categorized by homotopy classes, that differ from each
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other in the winding number. It can further be shown that eq.(3.32) exactly
yields this winding number.

Since q is gauge invariant, one can now choose a gauge (the temporal gauge),
in which the only contribution comes from the top and the bottom of the
cylinder:

qtop =
g2

16π2

∫

R3

d3xG0

∣
∣
∣
∣

tf

ti

, (3.33)

such that qtop can now be seen as the difference of two spatial winding numbers
[35]; one of them at t = ti ≈ −∞ and one of them at t = tf ≈ ∞. These spatial
winding numbers can be changed by regauging, but their difference is gauge
invariant. It can therefore be said that a topological charge different from zero
is due to the transition between distinct vacua.

If we now look at eq.(3.23) and integrate both sides over V4 in temporal
gauge, we see that the change of the axial charge exactly equals the topological
charge, such that the axial current is not conserved in the transition of the
gauge fields between two topologically different vacua. 2

3.2 (B+L) Violation in the Standard Model

The standard model Langrangian has global symmetries in addition to the
postulated gauge symmetries. Two of them are the invariance under separate
phase rotations of quarks and leptons:

Uq : q(x) → eiω/3q(x) , l(x) → l(x),

Ul : q(x) → q(x) , l(x) → eiλl(x).
(3.34)

Classically these symetries would again yield conserved currents, namely

∂µJ
µ
B ≡ ∂µ

∑

q

1
3 q̄γ

µq = 0

and ∂µJ
µ
L ≡ ∂µ

∑

q
l̄γµl = 0,

(3.35)

hereby implying the conservation of baryon- and lepton-number.

However, the conservation of these currents is destroyed by anomalies: De-
composing the fermionic fields into left- and right-handed ones, we get (see
eq.(3.5))

∂µf̄Lγ
µfL = −cL g2

32π2 εµνρσF
aµνF aρσ ,

∂µf̄Rγ
µfR = +cR

g2

32π2 εµνρσF
aµνF aρσ ,

(3.36)

where the cL,R depend on the different gauge groups, and the F -tensors can
be the field-strength tensors of any gauge group within the standard model.
But since left- and right-handed fermions belong to the same representations
in SU(3)C and because there are no degenerate vacua in U(1)Y , we only care
about SU(2)L in the following.

2The coat of the cylinder does also not give a contribution for the fermionic fields, since
they should fall off quickly for |~x| → ∞ to have a finite amount of energy.
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Figure 3.2: Qualitative slice through the different field constellations. One can
see that to get from one vacuum states to another, the fields can either tunnel
through the barrier, or thermal fluctuations can help the fields to transform
continuously, if their temperature is different from 0. (Picture taken from [6])

Adding left- and right-handed currents up, we obtain

∂µJ
µ
B = ∂µJ

µ
L = − 3

32π2
g2εµνρσF

aµνF aρσ, (3.37)

from which we can see that even though the baryonic and leptonic current are
both violated, their difference is conserved:

∂µ(Jµ
B − J

µ
L) ≡ ∂µJ

µ
B−L = 0 (3.38)

Using our knowledge from the last section, we know that these anomalies
are due to topological transitions between different vacuum states, which are
seperated from each other by barriers of finite energy. If we integrate over V4

again, we find [6]
∆B̂ = ∆L̂ = 3qtop[U ], (3.39)

whereas a closer investigation of the global U(1)-symmetries yields [6]

∆B̂/3 = ∆L̂e = ∆L̂µ = ∆L̂τ = qtop[U ]. (3.40)

Since transitions between adjacent vacua are the most probable ones, we now
want to find the transition amplitude beween these states. To make things
more illustrative, we consider the qualitative one-dimensional slice through the
different field constellations and their energy in fig.3.2 . We see that at T =
0 it would not be possible for classical fields to get from one vacuum state
to another. For quantum fields, however, this is possible by the well-known
tunneling effect. In this case the virtual transition between the different gauge-
field configurations is called Instanton. Nevertheless, the probability for such
a process is incredibly small. [29] e.g. finds the probability for a corresponding
decay process to be of the order of 10−262, which corresponds to a time scale of
approximately 10218 years.

Yet, if the standard model is connected to a heat bath the situation changes
since the fields now also have the possibility of transforming continously. Such
transitions between vacua are called sphalerons. This term was also used for



3.2. (B+L) VIOLATION IN THE STANDARD MODEL 25

bL

bL

tL
sLsL

cL

dL

dL

uL νe
νµ

ντ

Figure 3.3: An example for a (B+L)-violating sphaleron process. (Picture taken
from [6])

the field constellation right at the top of the energy barrier separating different
vacua. Sphaleron processes are often illustrated by diagrams similiar to Feyn-
man diagrams and of which we present an example in fig.3.3 . It should be
kept in mind however that these processes are non perturbative as opposed to
Feynman diagrams.

The rate for such processes is difficult to compute and we will only present
the result given in [6] for temperatures T at which these processes are in thermal
equilibrium (Γ� H):

TEW ∼ 100GeV < T . 1012GeV (3.41)

This relation is the reason, why it was thought for a long time that any (B-
L)-conserving baryon asymmetry would be washed out by sphaleron processes.
However, we will get to know a counter example in the course of this thesis.
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Chapter 4

Quintessence

For most of the information in this chapter the reader is refered to [30] and its
references.

4.1 Acceleration of the Universe

Observations of high red-shift Type Ia supernovae (SNIa), which are used as
standard candles in cosmology, seem to indicate that the expansion rate of our
universe is increasing at present times and that the universe is therefore ac-
celerating. Looking at eq.(2.9) we see that this has to be due to some new
form of energy with negative pressure, if the results as well as the Robertson-
Walker metric are valid. This new kind of energy is also referred to as dark
energy. One possibility for such a behaviour is a positive Λ-term, which natu-
rally posesses negative pressure, due to its accompaniment by the metric tensor
(see eq.(2.2)), which has negative spatial eigenvalues. Another possibility is the
appearance of additional classical fields, which we will look at later on. When
combinig the observations of the mentioned supernovae with the ones of the
cosmic microwave background (CMB) a model with Ωm +ΩΛ ' 1 is suggested.

Also, the conservative limit for the amount of clustered matter yielded by
dynamical estimates is Ωm . 0.3. The attempt to make a model with Ωm ≈ 1 by
the addition of cold dark matter failed to quantitatively explain the structure
formation within our universe, whereas a model with Ωm ≈ 0.3 as well as
Ωm ≈ 0.7 goes together remarkably well with a variety of observational data.

One reason why the possibility of a cosmological constant is less attractive
to many people than the possibility of a dynamical Λ-term is its smallness.
Since ΩΛ and Ωm are of the same order of magnitude today, they must have
been at very different orders of magnitude in the early universe, if Λ remained
constant. Reference [2] presents a ratio of 10−123 between the two densities at
Planck time, which would require a dramatic amount of fine tuning.

4.2 Field-Theoretic Models for a Varying Λ-Term

Of the different classes of models to achieve a time-varying Λ-term a highly
favored one is the field-theoretical ansatz, which is also quite successful in de-

27



28 CHAPTER 4. QUINTESSENCE

scribing early universe inflation.
In this case an additional homogeneous scalar field Φ, which is often called

quintessence field, is assumed together with some self-interacting potential,1

such that we get the additinal term

LΦ = 1
2∂

µΦ∂µΦ− V (Φ)

= 1
2 Φ̇2 − V (Φ)

(4.1)

for the complete Lagrangian of the system.
This leads to the energy-momentum tensor

T µν
Φ = ∂µΦ∂νΦ− V (Φ), (4.2)

hereby yielding
ρΛ ≡ ρΦ = 1

2 Φ̇2 + V (Φ)

pΛ ≡ pΦ = 1
2 Φ̇2 − V (Φ),

(4.3)

from which we can see that for constant Φ we get a cosmological constant with
ω ≡ ρΛ/pΛ = −1. Variation of the full Lagrangian now leads to the equations
governing the evolution of the universe (with k = 0):

H2 =
8πG

3
(ρm + ργ + ρΛ) (4.4a)

Ḣ = −4πG(ρm +
4

3
ργ + ρΛ + pΛ) (4.4b)

Φ̈ + 3HΦ̇ +
dV

dΦ
= 0 (4.4c)

In the work in the later parts of this thesis, we will work with the simplified
version of these equations: When differentiating with respect to the cosmic
scale factor R instead of time, the first two of these equations are sufficient to
determine Φ(R) as we find 2

dΦ

dR
= Y/H, (4.5a)

dY

dR
= −3Y − dV (Φ)

dΦ
·
(

8π

3
H

)−1

, (4.5b)

with Y ≡ Φ̇ in orders of MPlH0, Φ in orders of MPl, and V in orders of the
critical energy density ρc.

4.3 Quintessence Potentials

4.3.1 Positive Power Potentials

One of the earlier models for an appropriate quintessence potential, was a po-
tential of the form

V ∝ Φq, q ≥ 2. (4.6)

1By homogeneous it is meant that the field can be considered as spatially constant at least
on a scale comparable to H−1.

2The author is very grateful to Mathias Garny for pointing this out to him, as well as for
providing him with some private notes on this topic.
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If Φ fullfills the slow-roll condition Φ̇2 � V (Φ), its equation of state (pΛ ≈ −ρΛ)
will resemble that of a cosmological constant, which is a favoured value emerging
from SNIa and CMB measurements as mentioned before. For the potential
V = 1

2m
2Φ2 this yields the constraint (m/H0)

2 . 1 which leads to the extremely
small mass of m . 10−33eV.

It must also be pointed out that models with simple potentials like V =
1
2m

2Φ2 run into similiar problems as the cosmological constant: Due to eq.(4.4)
the system is enormously overdamped at times ranging from the Planck epoch
z ≈ 1019 until z ≈ 2 (z being the red shift), such that the energy density of
the scalar field at early times, must have already been extremely small at early
stages, which in return leads again to the already mentioned extreme fine tuning
problem ( [5, 30] and references).

4.3.2 Tracker Fields

The just mentioned problem of a possible cosmological constant or a positive
power potential for the quintessence field, can be circumvented when using a
potential of the type

V (Φ) =
M4+α

Φα
. (4.7)

To see why this model works better than the model before we assume the uni-
verse to expand according to a power law R(t) ∝ tq, which is true for radiation
or matter dominated stages (see eq.(2.12)). Eg.(4.4) then yields

Φ̈ + 3
q

t
Φ̇− αM4+α

Φα+1
, (4.8)

with the solution

Φ ∝ t
2

2+α . (4.9)

Carrying on with the calculation, we find

ρΦ

ρB
∝ t

4
2+α , (4.10)

such that for α ≥ 0, the energy densitiy of Φ will eventually get bigger than
the background density ρB .

This can also be seen from the fact that ρΦ decreases as 1/R3(1+ωΦ) as can
be seen from eq.(2.7), whereas ρm ∝ 1/R3 and ρm ∝ 1/R4/3. Which means
that the background energy density will get smaller at a faster pace.

The fact that the energy density decreases faster than the density of the dark
energy is of course also true for a cosmological constant or the positive power
potential. The difference here is that the constraints for the parameters are
much less rigid, since this class of potentials posseses what is called a tracker
property, meaning that after the Hubble constant has reached a certain value,
ρΦ and ρB will keep track of each other and ρB will only slowly get smaller than
ρΦ. The model now even features the possibility of a dark energy, which starts
out only few orders of magnitude smaller than the background energy density,
but which will not be dominant until very recent times, therfore not interrupting



30 CHAPTER 4. QUINTESSENCE

10
14

10
12

10
10

10
8

10
6

10
4

10
2 10

0

z+1

10
-47

10
-37

10
-27

10
-17

10
-7

10
3

ρ
 (

G
e

V
4
)

radiationmatter

Q-field energy

Q-field energy

if initial ρQ<< ρrad

Figure 4.1: An example for the tracker property of a quintessence field is shown
in the left graph. In this case the potential is V (Φ) = M 4[exp(MMB/Q) − 1].
For the quintessence curve that starts out at a lower energy, one can see that
its energy density remains more or less constant, until it is only a few orders
of magnitude smaller than the background energy density. Then the tracking
behaviour starts, and both densities decrease at a similiar rate until finally ρΛ

gets bigger. If both energy densities start out with approximately the same
orders of magnitude, one can see that their ratio does not change very much.
The behaviour of ωΦ in this model is shown in the graph on the right-hand
side. [36]

bounds from big bang nucleosynthesis (BBN). Hereby the fine tuning problem
of the potentials before can be circumvented. An example for a model with
similiar behaviour is shown in fig.4.1 .

4.3.3 Exponential Potentials

Even though the potentials presented in the last paragraphs had appealing
features, not everybody is fully pleased with them. This is due to the fact that
observations favor an equation of state with ωΛ ≈ −1 as stated before. Without
fine tuning the potentials presented in the last section yield ωΛ > −0.7, which
still is within the 2σ bounds of ref. [5], but not the favored value. We therefore
take a look at one more class of potential quintessence models:
Solutions of quintessence models with potentials of the form

V ∝ eλΦ/MPl (4.11)

yield a slightly different qualitative quintessence behaviour from the ones ob-
tained from the potentials in the last section.They are called attractor solu-
tions:

• In the case λ2 > 3(ωB + 1), where ωB is the equation of state of the
background energy, ΩΛ takes on a constant value of ΩΛ = 3(ωB + 1)/λ2

after an initial phase and the equation of state yields ωΛ = ωB .
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Figure 4.2: The behaviour of the energy density of a quintessence field for
several initial conditions in case of a potential described by eq.(4.12) and pa-
rameters α = 20, β = 0.5. The solid line shows the case of equipartition at the
end of inflation. The dotted line represents ρB [5]

• In the case λ2 < 3(ωB + 1) the equation of state goes to ωΛ = −1 + λ2/3
and we additionally find ΩΛ = 1.

Both cases are not satisfactory: While the second case does not yield a sub-
dominant dark energy density during BBN, the first case will not lead to a
dominating one today, since it is also constrained by BBN, and the ratio of the
energy densities remains fixed in both cases.
The situation changes however when choosing a potential of the form

V = M4

[

exp

(
αΦ

MPl

)

+ exp

(
βΦ

MPl

)]

, (4.12)

with α leading to case one and β leading to case two, if they were used sepa-
rately. This way, we can obtain a behaviour of the field that is subdominant
during the phase of BBN, but also one that leads to a dark energy dominated
universe today.

Another nice feature of these potentials is the enlarged range for acceptable
initial conditions. Even though this range was also big for the models presented
in the last section, it did not allow the dark energy density to start out bigger
than the energy density of the other fields. Now we can also get appealing
behaviour from fields with such initial conditions. A qualitative behaviour of
such a case is shown in fig.4.2 .

Things get even nicer, when we choose β to be smaller than zero. In this
case the potential will have a minimum, and the differential equation of Φ will
be that of a damped oscillator. Thus, the field will actually become constant,
and we achieve the desired equation of state ωΛ = −1 mentioned earlier. A
possible shape of ωΛ for positive and negative β is shown in fig.4.3 .

Finally we want to address the issue of fine tuning in such potentials as it is
not clear why the factor M in eq.(4.12) should be of the order of approximately
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Figure 4.3: The evolution of the equation of state of the quintessence field at
late times in the cases of α = 20, β = 0.5 (dashed line) and α = 20, β = −20
(dotted line). [5]

10−31MPl to achieve a value for ρΛ of the order of 10−47GeV today. Luckily
we do not have introduce a new energy scale for this, if we assume the original
potential to be of the form

V = M4

[

exp

(
α(Φ−A)

MPl

)

+ exp

(
β(Φ−B)

MPl

)]

. (4.13)

In this case all the parameters can be much closer to the Planck scale and we
still get the values needed to fit astrophysical observations. While it can still
be said that this ansatz includes fine tuning, it at least allows the pre-factor to
be small without the introduction of a new energy scale.



Chapter 5

Baryogenesis Models

5.1 The Sakharov Conditions

Even though the class of processes that can transform a symmetric universe into
a baryon asymmetric one is quite big, they all have to fullfill certain conditions,
called the Sakharov conditions [31], if their framework is a local quantum
field theory:

• Baryon number violation (B-violation):
Obviously any theory starting from a B-symmetric state and ending up
in an asymmetric state has to violate B at some point.

• C- and CP-violation:
If B changes its sign when acted on by some unitary operator O, the
baryon number of any eigenstate Ψ of O is zero:

〈B̂〉 = 〈Ψ|B̂|Ψ〉
= 〈Ψ|O†OB̂O†O|Ψ〉
= 〈Ψ| − B̂|Ψ〉
= 0.

(5.1)

Since B does change its sign under C and CP and we believe the early
universe has been C- and CP- symmetric and therefore an eigenstate of
these operators, both of them need to be violated at some point to create
a baryon asymmetry.

• Departure from thermal equilibrium:
In chemical equilibrium all chemical potentials refering to non-conserved
quantum numbers have to be zero to minimize the free energy. Starting
from a symmetric state in which µi = 0 for any particle (see eq.(2.42)),
we see that any change in B, would be due to a change of the chemical
potential of a non-conserved quantum number. But since these have to
be equal to zero in order to minimize the free energy, they will not change
their value and keep B hereby fixed. Therefore baryon asymmetric states
can only exist, if not all of the processes (i.e. mainly the B-violating
processes) are in equilibrium.

33
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particle final state branching ratio Γ B

X → qq rx 2/3
X → q̄l̄ 1− rx −1/3
X̄ → q̄q̄ r̄x −2/3
X̄ → ql 1− r̄x 1/3

Y → qq ry 2/3
Y → q̄l̄ 1− ry −1/3
Ȳ → q̄q̄ r̄y −2/3
Ȳ → ql 1− r̄y 1/3

Table 5.1: The decay channels and rates, as well as the corresponding baryon
number of the decay channel in the model specified in the text.

5.2 A Simple Baryogenesis Model

A simple toy-model leading to baryogenesis is presented in ref. [19]. Here two
GUT-motivated heavy bosons are added to the standard model and couple
to quarks and leptons in a CP-violating manner. This leads to the decay of
the heavier bosons with the various branching ratios illustrated in table 5.1.
Therefore the decay of a boson-antiboson pair gives the net baryon numbers
εX,Y

εX =
∑

i
Bi

Γ(X → fi)− Γ(X̄ → f̄i)
ΓX,total

,

εY =
∑

i
Bi

Γ(Y → fi)− Γ(Ȳ → f̄i)
ΓY,total

,

(5.2)

where i runs over all decay channels.
The CP-violating couplings can be realized by the interaction term

Lint = g1Xf
†
2f1 + g2Xf

†
4f3 + g3Y f

†
1f3 + g4Xf

†
2f4 + h.c. (5.3)

in the Lagrangian, where the fi denote various fermionic states, and the gi are
complex Yukawa couplings. The one-loop corrections to the decay diagrams
now yield CP-violating structures. Since these diagrams are similiar to the
ones presented in the model of this thesis, they are not shown here explicitely.

A departure from equilibrium can be achieved when the decay rate is much
smaller than the Hubble rate (compare section 2.2.2):

Assume the bosons were in thermal equilibrium at some early time, corre-
sponding to a high temperature. At these times, the equilibrium abundance of
the bosons is approximately the same as the one of massless particles such as
photons (see eq.(2.27)). Since the equilibrium particle density is proportional
to T 3, which is in return proprotional to R−3 the abundance of the particles
will remain in equilibrium, even if no reactions take place as long as they can
be considered massless. At temeperatures below their mass, their abundance
should be exponentially suppressed. Which leads to the fact that they will be
overabundant, if their decay rates are not fast enough.



5.2. A SIMPLE BARYOGENESIS MODEL 35

The important rates are in this case the decay (ΓD) and inverse decay
processes (ΓID), as well as B-nonconserving 2 ↔ 2 scattering processes (ΓS)
and pair annihilation (ΓAnn). The rate for pair annihilation is proportional to
nX and therefore ”self-quenching”. The important processes for keeping the
particles in thermal equilibrium are therefore given by the first three ratios.
Reference [19] gives the following approximate values for them:

ΓD ' αmX

{
mX/T , T ≥ mX

1 , T ≤ mX

ΓID ' ΓD

{

1 , T ≥ mX
(

mX
T

)3/2
exp

(
−mX

T

)
, T ≤ mX

ΓS ' nσ ' α2T 5

(T 2 +m2
X)2

,

(5.4)

where α ∼ g2/(4π) is a measure of the coupling strength and the formulas for
Y are of the same shape. The additional factor of mX/T in the first equation
comes from the fact that most particles are at relativistic energies, and therefore
their decay time is dilated. The supression factor in the second equation roots
from the supressed abundance of particles having enough energy to generate a
heavy boson.

We see that after the temperature has fallen below the rest energy of the
bosons the decay processes are the most important ones. To see if they decay
out of equilibrium, we introduce the quantity

K ≡
(

ΓD

2H

)

T=mX

=
αmPl

3.3g
1/2
∗ mX

. (5.5)

Taking the limit in which the particles simply drift and eventually decay (called
the British limit) we can easily calculate the created baryon asymmetry: The
particles decay around t ∼ Γ−1

D which can be tranformed to the condition

T ∼ K 1
2mX , (5.6)

with the help of eq.(2.35). At this time, they are overabundant by many orders
of magnitude, such that we can say that all of the particles will decay. As each
decay produces baryon number ε and since the abundance of heavy bosons is
nγ before they decay, the baryon asymmetry density nB will be

nB ∼ εXnX + εY nY ∼ (εX + εY )nγ . (5.7)

With s ∼ g∗nγ we can now calculate the baryon asymmetry to be

B ≡ nB

s
∼ ε

g∗
. (5.8)

With g∗ of the order 102 to 103 we see that a small CP-violation is sufficient to
account for B ∼ 10−11.
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Figure 5.1: The two interfering diagrams leading to CP-violating decays of
right-handed neutrinos used in the original leptogenesis paper [13]. In other
leptogenesis scenarios additional diagrams were considered.

5.3 Leptogenesis

One of the most attractive baryogenesis scenarios is given by what is referred
to as leptogenesis, which was first introduced in Reference [13]. Here, a heavy
gauge singlet per generation N i

R is added to the standard model, leading to the
Lagrangian

L = LSM + N̄ i
R 6∂N i

R +MiN̄
ic
R NR + gijN̄

i
Rl

j
LΦ† + h.c., (5.9)

where LSM is the standard model Lagrangian, Φ is the standard model Higgs
doublet, and lL are the left-handed leptons. The nice feature is that these
particles do not only get their motivation from leptogenesis. As we can see
from the Lagrangian they also give masses to the neutrinos and can therefore
be interpreted as the right-handed neutrino component. The Mi-terms im-
ply a Majorana nature for neutrinos and yield a natural explanation for the
small neutrino masses via the see-saw-mechanism in case of large Mi (e.g. [24]).
Therefore these particles are not only introduced for the sake of baryogenesis,
which makes this model attractive to a large fraction of the scientific commu-
nity.

The Lagrangian yields the tree-level decays

NR → lL + Φ̄, (5.10a)

NR → l̄L + Φ, (5.10b)

which have different branching ratios due to interferences of diagrams like the
ones shown in fig.5.1 . Therefore the average decay of a right-handed neutrino
produces a mean lepton number ε. Depending on the ratio K of the decay rate
and the Hubble rate, the asymmetry might be partially washed out again (or
even completely washed out if K � 1), and the lepton asymmetry L′ is found
to be

L′ ≡ nL − nL̄

s
= κ′

ε

g∗
, (5.11)

where κ′ is the wash-out factor due to the processes considered so far.
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Since all of this takes place at very high temperatures, the sphaleron pro-
cesses are in thermal equilibrium (eq.(3.41)). Therefore a significant part of this
lepton asymmetry is now converted to a baryon asymmetry, so that we finally
get

L = κ
ε

g∗
, (5.12)

B = −a(B − L) ' −aL, (5.13)

where κ represents all wash-out effects including sphalerons and a is a constant.
To give the reader a feeling for the size of a, we present its value in the model
from section 5.5 . There we get a = 28

79 [7, 14].
To yield a baryon asymmetry of the observed order of magnitude references

[8, 9] find the bounds

M1 ≤ 1010GeV and m̄ ≤ 0.2eV, (5.14)

with M1 being the lightest Majorana mass of the right-handed neutrinos and
m̄ being the mean of the light neutrino masses.

5.4 Neutrinogenesis

The neutrinogenesis scenario is a basis for this thesis and therefore we will
consider it in some more detail than the other two scenarios. It was originally
introduced in [11, 28].

While the leptogenesis scenario assumes neutrinos to be Majorana particles
and therefore exploits the hereby following lepton-number violations, the neu-
trinogenesis requires them to be Dirac particles and takes advantage of the small
Yukawa couplings that follow from this assumption. These couplings can in fact
be so small that the right-handed neutrinos (which are of course gauge singlets
as in the Majorana case) will be totally decoupled from the other particles
during relevant stages. Neutrinogenesis uses this fact to hide an asymmetry in
this sector while sphalerons are active. Hereby a baryogenesis scenario was in-
troduced that was (B-L)-conserving at all stages, a feature not given by many
theories, since sphalerons were thought to wash-out every (B+L)-asymmetry
before electro-weak symmetry breaking.

To create an asymmetry in the right-handed neutrino sector, before hiding
it there, two heavy scalar particles Φ,Ψ (with the same quantum numbers as
the standard model Higgs doublett, but not developing a VEV) are added to
the standard model Lagrangian in addition to the right-handed neutrinos νR.
While the Majorana mass term was forbidden new Yukawa interactions were
introduced:

L′Yuk = F (ll · Φ)νc
R + F ′(ll · Φc)ec

R +G(ll ·Ψ)νc
R +G′(ll ·Ψc)ec

R + h.c., (5.15)

where F, F ′, G,G′ are 3× 3-matrices in generation space.
These couplings lead to the decays

Φ
Ψ

}

→
{
l̄ + νR

l + ēR
(5.16)
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Figure 5.2: The two important one-loop diagrams that interfere with the tree-
level decay diagram of Ψ. The diagrams interfering with the tree-level decay of
Φ can be obtained by interchanging Φ and Ψ

and the corresponding charge conjugated processes.
Again the interference of the the tree level decay diagrams with higher order

corrections, for which the most important diagrams are shown in fig.5.2, yields
a CP-violating decay. The important part of the asymmetry is created in the
right-handed neutrinosector and is calculated to be

εΨ =
Γ(Φ→ l̄ν)− Γ(Φ̄→ lν̄)
Γ(Φ→ l̄ν) + Γ(Φ̄→ lν̄)

=
Im
(

tr[G†F ′G′†F ]
)

16π
(

tr[G†G] + tr[G′†G′]
) ·
[

1− M2
Φ

M2
Ψ

ln

(

1 +
M2

Ψ

M2
Φ

)]

−
Im
(

tr[G†F ] + [G′F ′†]
)

16π
(

tr[G†G] + tr[G′†G′]
) ·
[

M2
Ψ

M2
Ψ −M2

Φ

]

,

(5.17)

where MΨ,Φ are the masses of the scalars, and the simplifying condition (MΦ−
MΨ)2 � (ΓΦ−ΓΨ)2 is assumed. The corresponding value for εΦ can be obtained
when making the interchanges Ψ↔ Φ and G↔ F . We get the formula for the
asymmetry Yν in the right-handed neutrino sector by similiar argumentation to
the one leading to eq.(5.8) and find

Yν ≡
nν

s
∼ εΦ + εΨ

g∗
, (5.18)

in the case of out-of equilibrium decay. This in return is ensured by the condi-
tion

KΨ ≡
Γ(Φ)

2H(MΦ)
≤ 1, (5.19)

and the same condition for KΦ, which is analogously defined.
With the simplifying assumptions

MΦ ∼MΨ ∼ O(M),

tr[F †F ] ∼ tr[F ′†F ′] ∼ tr[G†G] ∼ tr[G′†G′] ∼ tr[G†F ] ∼ tr[G′†F ′] ∼ O(λ2),

Im
(
tr[G†F ′G′†F ]

)
O(λ4),

(5.20)
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Figure 5.3: The diagrams responsible for the equilibration of the right-handed
neutrinos. The dashed lines represent the standard model Higgs doublet, while
solid lines represent fermions and wavy lines gauge bosons.

one obtains the conditions

ε ∼ λ2

16π
,

λ2MPl

g
1/2
∗ M

. 1. (5.21)

If a lepton asymmetry is stored in the right-handed neutrino sector, sphalerons
will partially transform the corresponding asymmetry in the left-handed sector
into a brayon asymmetry. This can be seen in an anlysis of chemical potentials,
which has also been used in sections 5.3 and 6.2.1. Quantitatively one gets

nB = −28

79
nνR

. (5.22)

Therefore the observed baryon asymmetry can be obtained if λ ∼ 10−3 and
M ≥ 1012GeV.

To keep the right-handed neutrinos from equilibrating, the processes shown
in fig.5.3 must be effectively innactive during the era of sphalerons activity.
With all Yukawa and gauge couplings of the order one or smaller, their reac-
tion rate at temperatures above the critical temperature Tc is estimated to be
roughly

Γ . h2
i T, (5.23)

with hi being the Yukawa coupling of the neutrinos responsible for their mass
mνi and i being a generation index.
This rate has to be smaller than the Hubble rate in order to be frozen out.
With the estimate H ∼ T 2/MPl, this yields

hi ≤
√

Tc

MPl

∼ 10−8 or mνi ∼ hiTc ≤ 1keV (5.24)

A more detailed analysis using Boltzmann equations [28] even yields mνi ≤
10keV, which is easily fullfilled by all experimental bounds.

Therefore the smallness of the neutrino masses enables them to hide an
asymmetry in their sector and keep it from being washed out by sphalerons.
The principle is also illustrated in fig.5.4 .



40 CHAPTER 5. BARYOGENESIS MODELS

�

�

�����
�	��


�

������
���������

�

��

��
 "!$#&%('*),+�-�+�.0/21435+�6�7

8� 8�9 �
9 �;:

 !

�

�
8�8�

�� !

Figure 5.4: This graph illustrates the principle of neutrinogenesis: An inital de-
cay produces a positive lepton asymmetry in the right-handed neutrino-sector
and a negative one in the left-handed sector, hereby conserving (B-L). The
asymmtery in the right-handed sector remains uncoupled, while sphalerons
partially transform the negative lepton asymmetry into a positive baryon
asymmtery. After electro-weak symmetry has been broken and sphaleron ac-
tivities stopped, left-right equilibration can take place, yielding positive baryon
and lepton asymmetries. The little picture illustrates the simple washout of a
(B+L)-asymmetry that cannot partially be hidden. [11]
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5.5 Interplay of Quintessence and Baryogenesis

Before presenting the model developed for this thesis, we want to take a look at
an example for an interplay of quintessence and baryogenesis. The information
within this section is mainly drawn from [7] and its references.

Even though leptogenesis is an attractive option for the creation of a baryon
asymmetry in the early universe there are still some subtle points worth men-
tioning in this context.

If the universe went through a time of inflation, which would be an explana-
tion for the estimated age, flatness, isotropy and homogeneity of our universe,
and a hereby followed period of reheating, a reheating temperature of the or-
der of magnitude of the right-handed neutrinos would be needed to populate
these states, whose decay yields the lepton asymmetry. As we already saw in
section 5.3 the mass of these particles has to be at least 1010GeV, which hereby
sets the scale for the rehaeting temperature TR. Unfortunately, this provides
a problem in super-symmetric theories, since the (non-)abundance of graviti-
nos yields the bound TR ≤ 108 to 1010GeV. As we can see, these bounds are
only marginally compatible. Also, the possibility of degenerate small neutrino
masses is strongly disfavored in the regular leptogenesis scenario, while there
are cosmological studies that prefer degenerate neutrinos with masses of 0.2eV.

Before explaining the mechanism used in reference [7] to solve these prob-
lems, let us look at leptogenesis more quantitatively than we did before. In
the case of minimal thermal leptogenesis and a hierarchical neutrino spectrum
(m3 ≈

√

∆m2
atm ≈ 0.05eV �

√

∆m2
sol ≈ 0.008eV � m1), an upper bound for

the maximal CP-asymmetry ε is given by

|ε| . 3

8π

M1

√

∆m2
atm

v2
, (5.25)

where ∆m2
atm is the atmospheric mass difference and v = 246GeV the VEV of

the standard model Higgs doublet.
In the case of degenerate neutrinos (m1 ≈ m2 ≈ m3 ≈ m̄/

√
3 �

√

∆m2
atm) we

find

|ε| . 3
√

3

8π

M1

√

∆m2
atm

v2m̄
, (5.26)

with m̄ being the quadratic mean of the light neutrino masses.

The final baryon asymmetry can then be calculated with the help of two
coupled Boltzmann equations, yielding a result that only depends on four input
parameters: The mass of the lightest right-handed neutrino M1, the effective
light neutrino mass m̃, the quadratic mean of the light neutrino masses m̄,
and the maximal CP asymmetry ε given by eqs.(5.25) and (5.26). The impor-
tant information is that the wash-out of the asymmtery supresses the resulting
asymmetry exponentially, as soon as M1m̄

2 becomes sizeable. Therefore the
bounds on the masses in minmal thermal leptogenesis are mainly due to the
fact that we need a large enough CP-asymmetry (⇒ M & 1010GeV) and a
small washout (⇒ m̄ . 0.2eV), which are exactly the bounds leading to the
problems that were mentioned above. One can also see that the degenerate
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Figure 5.5: This graph shows the dependence of the final baryon asymmetry
ηB on the parameter K as specified in the text. MD

1 has been fixed at several
values, while m̄0 was assigned to be 0.05eV, and the effective neutrino mass m̃
has been fixed at 6× 10−4eV. The three horizontal lines form the boundary of
the observed value of ηB . [7]

neutrino case is disfavored, since the corresponding ε is much smaller than the
one in the hierarchical case.

The method used in reference [7] to soften these bounds is to make the heavy
mass parameter of the right-handed neutrinos dependent on a quintessence field
Q, such that it will have two different values at the time of their decay and
today:

M0
1 = MD

1 ·K(QD), (5.27)

where K(Q) is some function of Q to be specified later.
This variation of M1 also leads to a dependence of m̄ on Q due to the see-saw
mechanism:

m̄ ∝ 1

M1
=⇒ m̄→ m̄ ·K(Q) (5.28)

Since ∆m2
atm also varies the way m̄ does, we get the following implications:

• In the hierarchical case, we can now fix MD
1 at a value below 1010GeV

and still get a large enough ε, since this is now proportional to K(Q):

|ε| . 3

8π

MD
1

√

∆m2
atm

v2
·K(QD) (5.29)

Therefore the needed reheating temperature can be several orders of mag-
nitude smaller as in the uncoupled model. A graph showing the final
matter-antimatter asymmetry in dependence of K with MD

1 fixed at sev-
eral values can be found in fig.5.5 .

• In the degenerate case a fixed MD
1 leads to a dependence ε ∝ K(Q)−1.

Therefore K needs to be smaller during the era of decay. A graph similiar
to the one in the hierarchical case is shown in fig.5.6 . We see that
now the Mass MD

1 has to be much higher than in the hierachical case,
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Figure 5.6: The final baryon asymmetry in the case of degenerate neutrinos
and in dependence of the parameter K for different parameter values. [7]

which leads to the fact that we are still left with the mentioned gravitino
problem. On the other hand, without varying masses a baryon asymmetry
of the required magnitude could not be achieved at all with the chosen
parameters, and hence some progress still is still achieved.

What is left to show is that such a coupling is actually possible and that the
coupling does not disturb the behaviour of the quintessence field. In this model
a quintessence potential of the form

V (Q) ≡ V0(e
λQ + e−λQ) (5.30)

was chosen (compare section 4.3.3), with λ = 100M−1
Pl and the initial conditions

Qi = 1.374MPl and ωi = 0.
The ratio K(Q) is given by

K(Q) ≡ exp

(

β
Q

MPl

)

. (5.31)

Also, an additional effective quintessence potential VI(Q) is given by the mass
couplings Mi(Q)

VI(Q) ≡
∑

i

∫
d3k

(2π)3

√

k2 +M2
i (Q)fi(k), (5.32)

where the index i runs over the three different reight-handed neutrinos and
fi(k) is the corresponding distribution function.
In the case of a Maxwell-Boltzmann distribution this expression yields (see
eq.(2.26))

VI(Q) =
∑

i
ni〈E〉

= 1
π2

3∑

i=1

3M2
i (Q)T 2K2

(
Mi(Q)

T

)

+M3
i (Q)TK1

(
Mi(Q)

T

)

.
(5.33)
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Now the authors let the numerics for the quintessence field run with the modified
potential and find that it does not change its behaviour (to a significant degree),
hereby supposedly justifying their model. Yet, this method has some subtleties,
and we will get a little more into this when treating the effective quintessence
potential in the model developed in context with this thesis.

For the moment, we just want to point out that quintessence dependent
couplings of what would otherwise be constants of our theory, can be able to
solve problems in baryogenesis. This due to the fact that bounds on several
parameters given by recent measurements have not necessarily been valid at
early stages when baroygenesis takes place in most models.



Chapter 6

Quintessence Driven
Neutrinogenesis

A less attractive feature of the original neutrinogesis model was the postula-
tion of two additional scalar bosons, that only suited the purpose of igniting
the baryogenesis process. Therefore one could make the neutrinogenesis pro-
cess more appealing, if one succeeds in embedding it into a theory that natu-
rally yields particles with the necessary features. The most important of these
features might be the complex couplings to different sectors of the particle
spectrum, which is necessary to yield CP-violating decays, combined with the
effective decoupling of these decay channels during relevant stages.

On the other hand, it is desirable not to give up the attractive features
that are already present in the original scenario. One of them is the fact that
it yields a possible baryogenesis process in a (B-L)-conserving theory. This
characteristic, which we consider a key difference to the leptogenesis scenario,
shall not be given up. In the remaining parts of this section, we will show
how this and some other reasonable assumptions about our model will greatly
reduce the class of candidates for initially decaying particles. Therefore, we will
subsequently look at the different types of particles:

• Fermions:

In opposition to the original leptogenesis scenario, it seems unlikely that
fermions can also play the role of the initially decaying particles in a
neutrinogenesis scenario which is embedded into an appealing extension
of the standard model.

In the (B-L)-conserving case, left-right symmetric models, Pati-Salam-,
SU(5)-, and SO(10)-models will usually just contain the standard model
fermions and right-handed neutrinos. Since Majorana mass terms are
forbidden, none of them is likely to decay out of equilibrium before electro-
weak symmetry breaking. Thus the possibly created asymmetry cannot be
transformed by sphalerons, which rules them out as suitable candidates.

Models basing on the gauge group E6, contain additional fermions. How-
ever, if these fermions have masses of the order of the GUT breaking scale,
their decay will most likely take place before the breaking of SU(2)R,

45
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which is a subgroup of E6. In this case any (B-L)-conserving asymmetry
should be washed out by left- and(!) right-handed sphalerons.

All these arguments indicate (though not proove) that fermions might not
be suitable candidates for starting a neutrinogenesis scenario. Hence, we
will not consider them for this role in the rest of this thesis.

• Gauge Bosons:

Gauge bosons also do not seem to be suitable canditates, since all of the
coupling constants connected to them are real, and therefore it is unlikely
that a suitable CP-violation will occur.

• Higgs Bosons:

After excluding fermions and vector bosons we are back with scalar bosons,
also used in the original neutrinogenesis toy model. Since we do not want
to introduce new scalars for the sake of neutrinogenesis, we have to take
a look at the scalar bosons already present. We can either consider Higgs
bosons that were introduced to break a gauge symmetry and do not cou-
ple to fermions as the initially decaying particles or we can consider Higgs
particles that yield masses for fermions at lower temperatures in addition
to breaking a symmetry.

In the first case complex and therefore CP-violating couplings connected
to these bosons could only occur in the Higgs sector itself. This case
would, however, most likely only lead to possible asymmetries in this
sector, as it might be hardly possible to transfer this asymmetry to the
fermion sector, since each scalar that couples to fermions will create a
particle and an antiparticle. It is also not easy to imagine a transfer of
this asymmetry via the gauge sector.

Therefore the only candidates left are mass generating scalar bosons.

Even though these arguments seem to quailfy mass generating Higgs scalars
as the most promising candidates for starting a neutrinogenesis processes by
their decay, this scenario will also yield serious problems, as we will see in the
course of this thesis. However, since we will be able to solve these problems
with some additional assumptions, we first want to introduce a model, which
was constructed in the course of this thesis, and which includes two different
Higgs representations for generation of the fermion mass spectrum. Hereby the
ad-hoc introduction of new particles in the original neutrinogenesis scenario
becomes obsolete.

6.1 The Model

6.1.1 Gauge Groups and Representations

In this section the model with which we will be working with in the remaining
parts of this thesis is presented. As its gauge group we choose

SU(2)L ⊗ SU(2)R ⊗ SU(4)PS ⊗D, (6.1)
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where D stands for the discrete D-Parity representing the interchange between
R and L. 1 This gauge group is also called the Pati-Salam gauge group [26].
It will be successively broken down, hereby following the pattern

−→ SU(2)L ⊗ SU(2)R ⊗ U(1)B−L ⊗ SU(3)C ⊗D
−→ SU(2)L ⊗ U(1)Y ⊗ SU(3)C

−→ U(1)Q ⊗ SU(3)C .

The fermion sector consists of two multiplets per generation. The left-handed
fermions are the constituents of the representation fL = (2, 1, 4) and the right-
handed fermions are represented by the fR = (1, 2, 4). 2 These two represen-
tations interchange under D. To make things more illustrative and in order to
see which component of f corresponds to which standard modell particle, we
write

fL/R =

















(
νe

e−

)

(
ur

dr

)

(
ug

dg

)

(
ub

db

)

















L/R

(6.2)

for the first generation and the generalization to the other two generations
should be clear.

It is now easy to illustrate the action of the different gauge group generators
on fL and fR: The specific SU(2) generators act on all the small brackets simul-
taneously, whereas the SU(4) generators interchange the small brackets, but do
not change their inner (SU(2)-)structure. The generators for the two SU(2)
groups are given by the well-known pauli-matrices τ i/2 and the generators of
the fundamental group of SU(4) used in this model are given in appendix A
and are refered to by T i

PS, where i runs from 1 to 15.

The Higgs sector has to provide us with particle representations that either
break down the gauge groups, following the pattern given in this section, or that
generate fermion masses, with parts of them starting the baryogenesis process
as discussed in the previous section.

For the first symmetry breaking we will use a scalar boson which we will call
ΞPS and which transforms as (1, 1, 15). The component Ξ1

PS has to develop a
VEV to yield the achieved breaking pattern. After calculating the adjoint
representation, one finds that this VEV leaves the generators T 1

PS to T 3
PS and

T 10
PS to T 15

PS unbroken, whereas it breaks all the other generators of SU(4)PS .
In regular scenarios this VEV is usually chosen to be of the order 1014 to 1016

1This symmetry also ensures that the coupling constants of SU(2)L and SU(2)R are equal
in the unbroken state, therfore leaving us with only 2 different coupling constants: gL = gR ≡ g
and gPS.

2These two representations could easily result from a (16) of SO(10), which breaks down
to (2, 1, 4) + (1, 2, 4̄), therefore evening the way towards a grand unifying theory.



48 CHAPTER 6. QUINTESSENCE DRIVEN NEUTRINOGENESIS

GeV or a little lower. 3 After the breaking T 1
PS represents U(1)(B−L) (up to

some constant factor), whereas the other unbroken generators of SU(4)PS form
SU(3)C .

For the breaking of SU(2)R and D, we will employ the two representations
ΞR = (1, 2, 4) and ΞL = (2, 1, 4), which interchange under D, but where only
ΞR will develop a VEV, which will be in the Ξ1

R,1 component. 4 It is not hard
to see that this VEV is left invariant by Y ≡ IR,3 + (B − L), with IR,3 being
the third component of the right-handed isospin, as well as by SU(3)C specified
above. Left-right symmetry breaking scales are usually of the order of 1012GeV
or less.

Finally, since all the particles of one generation are combined in only two
representations, we need two different Higgs representations to generate their
various masses. At least one of the VEVs needs to couple differently to leptons
and quarks. This will become clearer, when we explicitely calculate the fermion
masses in section 6.1.3 . We choose Ψ = (2, 2, 1) and Φ = (2, 2, 15) with the
VEVs at Ψ11 and Φ1

11, respectively. This leaves us with the unbroken groups
are SU(3)C and U(1)Q with Q ≡ IL,3 + IR,3 + (B − L).

6.1.2 Gauge Boson Masses

Having specified the gauge group and the various particle representations, we
now want to calculate their masses in dependence of the various parameters of
our theory. The gauge-boson masses are generated by the kinetic terms of the
Higgs-fields in the Lagrangian:

LHiggs, kin = (DµΞPS)†(DµΞPS) + (DµΞR)†(DµΞR) + (DµΞL)†(DµΞL)

+(DµΦ)†(DµΦ) + (DµΨ)†(DµΨ)
(6.3)

By inserting the VEVs and writing down all terms that include two gauge-
boson fields (or one gauge-boson field twice), we get the mass matrices for all
gauge bosons. We will do this explicitely for Φ, and just present the final terms
stemming from the other fields:
The covariant derivative of Φ is

DµΦ = (∂µ − igW a
L,µ

τa
L

2
︸ ︷︷ ︸

≡α

− igW a
R,µ

τa
R

2
︸ ︷︷ ︸

≡β

− igPSW
a
PS,µT

a)
︸ ︷︷ ︸

≡γ

Φ, (6.4)

which leads to the terms

〈α〉 = 〈igW a
L,µ

τa
L

2
Φ〉 = i

g

2

(

〈Φ〉W 3
L,µ 0√

2〈Φ〉W−
L,µ 0

)

⊗








1
0
0
...







, (6.5)

3In contrast to the breaking of left-right symmetry, the exact value of this symmetry
breaking temperature cannot be chosen arbitrarily, since it includes a unification of constants.

4Upper indices always refer to SU(4)PS , whereas the lower indices refer to the two SU(2)
gauge groups. If not specified it should be clear, which of the two is meant in each case. If
there are two indices the first one refers to SU(2)L.
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with W±
L =

W 1
L∓iW 2

L√
2

,

〈β〉 = 〈igW a
R,µ

τa
R

2
Φ〉 = i

g

2

(
−〈Φ〉W 3

R,µ −
√

2〈Φ〉W+
R,µ

0 0

)

⊗








1
0
0
...







, (6.6)

with W±
R defined analogously to W±

L , and

〈γ〉 = 〈igPSW
a
PST

a
adjΦ〉 =

√

2

3
gPS〈Φ〉

(
1 0
0 0

)

⊗






























0
0
0
W 5

−W 4

W 7

−W 6

W 9

−W 8

0
0
0
0
0
0






























. (6.7)

With respect to 6.3 the following terms will contribute to the gauge boson
masses:

α†α+ α†β + α†γ + β†α+ β†β + β†γ + γ†γ + γ†β

Hence, plugging in the obtained results we find the terms

g2

4 |〈Φ〉|2
(
|W 3

L|2 + 2|W+
L |2
)
− g2

2 |〈Φ〉|2W 3
LW

3
R + g2

4 |〈Φ〉|2
(
|W 3

R|2 + 2|W+
R |2
)

+4
3g

2
PS|〈Φ〉|2

(

|W 1,−
PS |2 + |W 2,−

PS |2 + |W 3,−
PS |2

)

,

(6.8)

where W
1,± 4

3
PS ≡ W 4

PS∓iW 5
PS√

2
,W

2,± 4
3

PS ≡ W 6
PS∓iW 7

PS√
2

,W
3,± 4

3
PS ≡ W 8

PS∓iW 9
PS√

2
.

Doing similiar calculations for the other fields, we end up with the following
masses and mass matrices for the gauge bosons.

Charged Sector

In the charged sector we do not get any mixing terms with the VEVs specified
earlier. Therefore the results are particulary simple and we get

• two singly charged left-handed bosons W±
L with mass g2

2 (|〈Φ〉|2 + |〈Ψ〉|2),

• two singly charged right-handed bosonsW±
R with mass g2

2 (|〈Φ〉|2+|〈Ψ〉|2+
|〈ΞR〉|2),

• six bosonsW
1,± 4

3
PS , W

2,± 4
3

PS ,W
1,± 4

3
PS with charges± 4

3 and mass g2
PS(4

3 |〈Φ〉|2+
4
3 |〈Ψ〉|2 + 1

2 |〈ΞR〉|2).
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Neutral Sector

Since SU(3)C has not been broken, our theory still contains eight massless glu-
ons, which are in this case denoted by W 2

PS, W 3
PS , W 10

PS, W 11
PS, W 12

PS, W 13
PS,

W 14
PS, and W 15

PS.
The other three neutral particles W 3

L, W 3
R, and W 1

PS are no mass eigenstates.
Instead we find the following mass marix:

W 3
L W 3

R W 1
PS

W 3
L

g2

2 (|〈Φ〉|2 + |〈Ψ〉|2) − g2

2 (|〈Φ〉|2 + |〈Ψ〉|2) 0

W 3
R −g2

2 (|〈Φ〉|2 + |〈Ψ〉|2) g2

2
(|〈Φ〉|2+|〈Ψ〉|2+|〈ΞR〉|2) −

√
3
8ggPS |〈ΞR〉|2

W 1
PS 0 −

√
3
8ggPS |〈ΞR〉|2 3g2

PS
4 |〈ΞR〉|2

For further treatment it is convenient to define e and θW by 5

sin θW =
e

g
and

√

cos(2θW ) =

√

2

3

e

gPS
, (6.9)

and to work in the basis

A ≡ sin θW (W 3
L +W 3

R) +
√

cos(2θW )W 1
PS

Z ≡ cos θWW 3
L − sin θW tan θWW 3

R − tan θW

√

cos(2θW )W 1
PS

Z ′ ≡
√

cos(2θW )

cos θW
W 3

R − tan θWW 1
PS ,

(6.10)

where A is the eigenvector of the neutral mass matrix with eigenvalue zero and
therefore represents the photon. The other two states are only approximately
eigenvectors of the mass matrix (small mixing angle) but were defined to give
the neutral current interaction within the Lagrangian the form

Lnc = eJµ
emAµ +

g

cos θW

[

Kµ
LZµ +

1
√

cos(2θW )
(sin2 θWKµ

L + cos2 θWKµ
R)Z ′

µ

]

,

(6.11)
which is similiar to the SM interaction

Lnc = eJµ
emAµ +

g

cos θW
Kµ

LZµ,

and where in both cases Kµ
L/R ≡

∑

f f̄γ
µ[IL/R,3PL/R −Q sin2 θW ]f and Jµ

em ≡
∑

f f̄γ
µQf , with the latter one being the the electromagnetic current.

The modification of Lnc will yield constraints for the additional gauge bosons
and hereby for the breaking scales of some of our gauge symmetries; but before
we take a brief look at them we return to the neutral mass-mixing matrix.

5The following paragraphs are very similiar to a treatment of left-right symmetric models
in reference [24]
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After the basis transformation to (6.10) we get the new mass-mixing

Z Z ′

Z g2

2
(|〈Φ〉|2+|〈Ψ〉|2)

cos2 θW

−g2

2

√
cos(2θW )

cos2 θW

(
|〈Φ〉|2 + |〈Ψ〉|2

)

Z ′ −g2

2

√
cos(2θW )

cos2 θW

(
|〈Φ〉|2+|〈Ψ〉|2

)
g2

2

»

cos(2θW )

cos2 θW
(|〈Φ〉|2+|〈Ψ〉|2)+ cos2 θW

cos(2θW )
|〈ΞR〉|2

–

So, for |〈ΞR〉|2 � |〈Φ〉|2 + |〈Ψ〉|2, we get the mass eigenstates

Z1 ≡ Z cos ξ + Z ′ sin ξ
Z2 ≡ −Z sin ξ + Z ′ cos ξ ,

(6.12)

with

| tan(2ξ)| ≈ 2
cos

3
2 (2θW )

cos4 θW

|〈Φ〉|2 + |〈Ψ〉|2
|〈ΞR〉|2

(6.13)

and the eigenvalues

M2
Z ≈M2

Z1
≈ g2

2 cos2 θW

(
|〈Φ〉|2 + |〈Ψ〉|2

)

M2
Z′ ≈M2

Z2
≈ g2

2
cos2 θW
cos(2θW ) |〈ΞR〉|2 .

(6.14)

It is therefore clear that the values of our model in the gauge sector easily go
together with all results from the experiments done so far, if we choose the
VEVs of ΞPS and ΞR high enough. [24] postulates for L-R-symmetry breaking
values in the TeV range. Since we will need the breaking of SU(4)PS to take
place at temperatures higher than 1015GeV and the breaking of SU(2)R not
much below (if at all), constraints coming from the results in this section should
be obeyed easily. 6

6.1.3 Fermion Masses

For the moment, we will restrict our equations to one generation of particles.
In this case mass terms in our model will have to be of the form

mij f̄R,ifL,j + h.c. .

Since direct mass terms are forbidden by gauge invariance, we need to generate
the masses via the Higgs mechanism. For the cartesian product of the 4 and
the 4̄ of SU(4) we get [32]:

4̄⊗ 4 = 1⊕ 15

Therefore the two obvious choices for fermion mass generating Higgs represen-
tations are (2, 2, 1) and (2, 2, 15), which we called Ψ and Φ, respectively. 7 The

6With the time-variation of constants, which is introduced later, these bounds could of
course be weakened again.

7To be more exact one should either write (2, 2̄, 1) and (2, 2̄, 15) or include several σ2-
matrices in the Yukawa couplings. But as 2 and 2̄ are isomorphic in SU(2) people tend to
omit the bar as well as the σ2-matrices, which we will also do in this thesis.
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resulting Yukawa terms are therefore

LYuk = gΨf̄R,iΨijfL,j + gΨ̃f̄R,iΨ̃ijfL,j

+gΦf̄R,iT
a
PSΦa

ijfL,j + gΦ̃fR,iT
a
PSΦ̃a

ijfL,j + h.c.,
(6.15)

where Ψ̃ ≡ σ2Ψσ2 and Φ̃a ≡ σ2Φ
aσ2 are the charge conjugates of the original

scalar particles.
By letting the Higgs bosons develop the VEVs specified before, we get find

〈LYuk〉 = gΨ|〈Ψ〉|
(
|νe|2 + |ur|2 + |ug|2 + |ub|2

)

+gΨ̃|〈Ψ〉|
(
|e−|2 + |dr|2 + |dg|2 + |db|2

)

+gΦ

√
3
8 |〈Φ〉|

(
−|νe|2 + 1

3 |ur|2 + 1
3 |ug|2 + 1

3 |ub|2
)

+gΦ̃

√
3
8 |〈Φ〉|

(
−|e−|2 + 1

3 |dr|2 + 1
3 |dg|2 + 1

3 |db|2
)

+ h.c..

(6.16)

Here one can see why two different Higgs representations are necessary: We
now have four different variables to yield four different masses. If only one
of these representations, or two identical ones, were used the ratio of the two
quarks would be connected to the ratio of the two leptons. So if we do not want
to rely on radiative corrections to achieve different fermion masses, we need to
introduce two mass generating Higgs representations in this model to meet the
experimental data. Since these particles are the ones that are also supposed to
start neutrinogenesis, the ad-hoc introduction of new particles for this purpose
has disapeared.

6.1.4 Yukawa Couplings

In order to get a feeling for the orders of magnitude of the different Yukawa
couplings in this model, we will plug in numbers that will return the measured
values for the fermion masses. It is emphasized that the chosen parameters
are not necessarily the ones that have to be measured in order to confirm this
model, but are rather some more or less natural choices giving us what we need
in order to go on with our calculation.

With this in mind, we fix the values for |〈Ψ〉| and |〈Φ〉| to be of the same
size, which seems to be a rather natural choice. From section 6.1.2 we know
that the sum of their squares is connected to the light gauge boson masses.
This leaves us with

|〈Ψ〉| = |〈Φ〉| ≈ 246GeV√
2

. (6.17)

Plugging in values for the various fermion masses and their mixings, eq.(6.16)
now yields a system of linear equations from which the various Yukawa cou-
plings can be determined. However, doing this without any treatment of the
data would lead to a real system of equations with real Yukawa couplings as
solutions. This would lead to CP-conserving decays and baryogenesis could
not take place. Therefore we make the additional assumption that the lepton
masses have relative phase compared to the quark masses. This assumption
leads to complex Yukawa couplings. And even though the imaginary mass of
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the leptons can be made real, by a specific tranformation, the Yukawa couplings
will keep relative phases, which is crucial for CP-violating decays, as we will
see later. 8 All of this finally leads to

gΨ ≈





0.000012931+i1.49555·10−13 0.+i1.41379·10−13 0.+i8.97701·10−14

0.+i1.41379·10−13 0.00431034+i1.55089·10−13 0.+i1.32411·10−13

0.+i8.97701·10−14 0.+i1.32411·10−13 0.775862+i1.59342·10−13



 ,

gΨ̃ ≈





0.000049233+i7.34195·10−7 0.0000997324−i9.66723·10−7 0.0000684053−i0.00002755

0.0000997324+i9.66723·10−7 0.00043173+i0.000152299 0.000633093+i1.02064·10−8

0.0000684053+i0.00002755 0.000633093−i1.02064·10−8 0.0176412+i0.00255316



 ,

gΦ ≈





0.0000211163−i7.32665·10−13 −i6.92614·10−13 −i4.39782·10−13

−i6.92614·10−13 0.00703876−i7.59778·10−13 i6.48678·10−13

−i4.39782·10−13 i6.48678·10−13 1.26698−i7.80613·10−13



 ,

gΦ̃ ≈





0.0000803971−i3.59681·10−6 0.000162862−i1.57865·10−6 0.000111705−i0.0000449889

0.000162862+i1.57865·10−6 0.000705012−i0.000746109 0.00103384+i1.6667·10−8

0.000111705+i0.0000449889 0.00103384−i1.6667·10−8 0.0288079−i0.0125079



 ,

(6.18)
where the approximated values for femion masses and mixings are given in B
for reasons of reproduction. 9

Of course, one has to admit that the neutrino masses in this model arise
from some fine tuning, since the same Yukawa couplings that give rise to the
top-quark mass, when being added with some positive pre-factors, are also
responsible for parts of the neutrino mass matrix, when being subtracted from
each other. However, even though this is a rather unattractive feature, it does
not affect the possible validity of this model.

6.2 Neutrinogenesis, first try

Now that we have specified the model and its parameters, we want to see if it
can provide us with a baryogenesis scenario. As mentioned before, we will run
into several severe problems on our way, but we will find a way to handle the
occuring problems in the latter parts of this thesis and the original results will
still be needed. Therefore, we will still do the calculations in detail.

Taking a look at eq.(6.18), we already see a huge difference to the original
scenario: The original neutrinogenesis scenario worked because of the small
Yukawa couplings of Dirac neutrinos. It enabled the right handed neutrinos
to stay decoupled from the other particles and therefore hide an asymmetry
in their sector. Since the small neutrino masses are now due to the fact that
they are determined by the difference of two much bigger Yukawa couplings,

8The fact that all our fermions are part of only two multiplets per generation, whereas one
has five of these in the standard model, also means that additional mixings could occur (e.g.
in the charged lepton sector). Why these mixings are not observed goes beyond the scope of
this thesis. Here we just accept the fact that they are not and chose our parameters in a way
that yields realistic results.

9Since we only want to estimate orders of magnitude, it is not necessary to be highly
precisive at this point.
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the coupling of the neutrinos is now of the same order of magnitude as for the
other fermions. Besides, if their couplings actually were a lot smaller than the
couplings of the other fermions, only a very small fraction of the Higgs bosons
would decay in a channel containing neutrinos.

Therefore, it seems that our only hope for neutrinogenesis to work in this
model is, if the left- and the right-handed fermion sector stay completely de-
coupled during the era of sphaleron activity. This way, an asymmetry could be
stored in the right-handed fermion sector, while the opposite asymmetry in the
left-handed sector would be partially transformed.

6.2.1 Chemical Potentials

As we saw in eq.(2.42) the excess of a particle species over the corresponding
antiparticle is dependent on the chemical potential. In the case of µ,m � T ,
they are even proportional. Since the baryon excess we want to generate is of
the order 10−10, this approximation should be well justified for all particles.

We now use the method of chemical potentials similiar to [12,16,28] in order
to determine the final amount of baryon asymmetry. To make the upcoming
calculations simple we will introduce some notation exclusively for this section.
We will combine all the particles of generation a with weak isospin 1

2 (left- or

right-handed) to the vector ~fa
L/R and all the particles with weak isospin of − 1

2

to the vector ~f ′a
L/R, such that

~f 1
L =







νe

ur

ug

ub







L

, ~f ′1
L =







e−

dr

dg

db







L

,

with obvious definitions for the other two generations and opposite handedness.
With this notation the important processes in equilibrium will be:

fa
L,i +W−

L ←→ f ′aL,i,

which lead to the following equations for the chemical potentials:

µfa
L,i

+ µW−
L

= µf ′a
L,i

(6.19)

At times before electro-weak symmetry breaking we have I 3
L = 0 and therefore

µW−
L

= 0, which leads to

µfa
L,i

= µf ′a
L,i
. (6.20)

From sphaleronic processes we also have the condition

∑

a,i

µfa
L,i

+ µf ′a
L,i

= 0. (6.21)

Since the right-handed sector is completely decoupled from this, the chemical
potentials of all right-handed particles are fixed. We now define the input
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parameter A arising from the specific decays used in the model, that cannot be
changed by the processes in equilibrium:

A ≡
∑

a,i

µfa
R,i

+ µf ′a
R,i

(6.22)

As in [28], we now calculate the chemical potential for (B − L) and set it
afterwards equal to zero, since our model is (B−L)-conserving. In doing so we
will get the final baryon-asymmetry in dependence of our input-parameter A:

µB−L = µB − µL

= µB −
∑3

a=1(µea
L

+ µea
R

+ µνa
L

+ µνa
R
)

(6.21)
= µB −

∑3
a=1(µea

R
+ µνa

R
−∑4

i=2(µfa
L,i

+ µf ′a
L,i

))

= µB −
∑3

a=1(µea
R

+ µνa
R
) + 3µB −

∑3
a=1

∑4
i=2(µfa

R,i
+ µf ′a

R,i
)

= 4µB −A

Hence,

µB =
1

4
A =

1

4

∑

a,i

µfa
R,i

+ µf ′a
R,i
. (6.23)

With the thoughts from the beginning of this section we therefore find

nB = 1
4nR , (6.24)

where nR is for the density of all right-handed fermions per comoving volume.

6.2.2 Initial Decay

Now that we have seen to what degree a left-right asymmetry would be tran-
formed to a matter-antimatter asymmetry, we will calculate the resulting left-
right asymmetry due to the possible out-of-equilibrium decay of our Higgs
scalars.

From the Feynman-rules which originate from (6.15) we can draw many
diagrams which represent a CP-violating decay, such as
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where the first one is a vertex correction, while the second one is a correction
to the self-energy of the scalar.
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Figure 6.1: The corresponding diagrams to the examples in the text. In both
cases the three lose ends have been fixed in a vertex, while the vertex that
could be seen as the origin of the virtual scalar in the original diagram has been
undone.

By connecting the lose ends of these graphs and undoing one of the vertices,
each of these diagrams immediately induces a corresponding diagram, in which
the two scalars change the roles of decaying and mediating particle. For the
just presented examples the coresponding diagrams are shown in fig.6.1 .

Since there are many processes similiar to the just presented ones in our
model, we will take one step back here, and present some general results ob-
tained from graphs with similiar structure as the ones we just introduced.

In graphs like the first one of the presented examples, where some heavy
scalar S decays to some fermionic channel X by exchanging a virtual scalar
S′, and where the fermions can be considered as massless, the difference in the
decay rates of Γ(S → X) and Γ(S̄ → X̄) stems from the interference terms
between this graph and the tree-level graph and can be calculated to be [19,28]

∆1(r) =
mS

32π2
Im
{

tr(gΨ̃g
†
ΦgΨg

†
Φ̃
)
} [

1− r−2 ln(1 + r2)
]
, (6.25)

whith mS/S′ being the mass of S, S ′ respectively and r ≡ mS/mS′ . The nomen-
clature for the Yukawa couplings is the same as in the presented example for
such a process at the beginning of this section. The trace in this expression was
orignally meant for the different generations, but in our case it has also to be
taken in SU(4)-flavor space.

In graphs like the second one in the presented example, which yields a
correction to electron self-energy, the corresponding difference turns out be
[22, 28]

∆2(r) = − mS

32π2
Im
{

tr(gΨ̃g
†
Φ̃
)tr(gΨg

†
Φ)
}[ 1

1− r−2

]

, (6.26)

if (mS − mS′)2 � (ΓS − ΓS′)2 has been assumed, with ΓS/S′ being the total
decay rates. 10 Since we also take the trace in SU(4)-flavor space again, we
find that the net contribution of the self-energy correction diagrams adds up

10Eqns. (6.25) and (6.26) show that one indeed needs two different Higgs representations,
since even though there can be several Higgses in one representation, both eqns. would turn
out to be zero, as Im(gxg∗

x) = 0.
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to a CP-violation of zero, as it is proportional to the trace of the product of a
unit-matrix (coming from Ψ) and a generator of SU(4)PS (due to Φ) which is
traceless by definition.

All the the relevant diagrams for the decays of the various Ψ-particles are
listed in fig. 6.2. These diagrams and the corresponding procceses for decaying
Φs, which create an asymmetry with opposite sign, lead to the net asymmetry
ε′ produced per decay

ε′ =
∑

decay channels

∆1(r)
ΓS
− ∆1(r−1)

ΓS′

= 8× 15×
(

1
32π2

1
2
Im

h

tr(gΨ̃g†ΦgΨg†
Φ̃
)+tr(gΨ̃g†

Φ̃
gΨg†Φ)

i

(1−r−2 ln(1+r2))

1
4π

(tr(g†
Ψ̃

gΨ̃)+tr(g†ΨgΨ))

−
1

32π2
1
2
Im

h

tr(gΨ̃g†ΦgΨg†
Φ̃
)+tr(gΨ̃g†

Φ̃
gΨg†Φ)

i

(1−r2 ln(1+r−2))

1
4π

1
2
(tr(g†

Φ̃
gΦ̃)+tr(g†ΦgΦ))

)

= 1
πIm

[

tr(gΨ̃g
†
ΦgΨg

†
Φ̃
) + tr(gΨ̃g

†
Φ̃
gΨg

†
Φ)
]

·
(

1
2
(1−r−2 ln(1+r2))

tr(g†
Ψ̃

gΨ̃)+tr(g†ΨgΨ)
− 1−r2 ln(1+r−2)

tr(g†
Φ̃

gΦ̃)+tr(g†ΦgΦ)

)

(6.18)
= 8.67×10−3

π

[
0.83 · (1− r−2 ln(1 + r2))− 0.62 · (1− r2 ln(1 + r−2))

]
,

(6.27)
with r ≡ mΨ/mΦ again being the ratio of the masses of the two scalars. The
several factors of 1/2 come from the normalization of the SU(4) generators.
As a result of equation (6.24) only one fourth of this will remain as a baryon
asymmetry.

ε =
1

4
ε′. (6.28)

This finally yields the baryon-asymmetry per comoving voulme

B
[19]
≈ ε

g∗
≈ 1.6 × 10−6

[
(1− r−2 ln(1 + r2))− 0.75 · (1− r2 ln(1 + r−2))

]
,

(6.29)
where we assumed g∗ ≈ 350.

The final baryon asymmetry in a model with the specified Higgs scalars and
Yukawa couplings is therefore given by B(r), if the out-of-equilibrium decay of
the particles is followed by sphaleron wash-out. The behaviour of B(r) is shown
in fig.6.3 .

6.2.3 Problems With Neutrinogenesis

After these introductory calculations, we now have to present the problems that
seem to rule out the possibility of baryogenesis in the introduced model.

The first problem we want to mention is the fact that our decaying Higgs
scalars also develop a VEV. The temperature when this happens is usually of
the order their masses, which is the same scale, when they should start to freeze
out. In the case of out-of-equilibrium decay, the particles will therefore most
likely decay after electro-weak symmetry breaking, and therfore no sphaleron
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Figure 6.2: The different CP-violating decay modes of the various Ψs with
omitted generation indices on the fermions. Each graph stands for two dif-
ferent decays, where the first decay mode always gives a contribution of
Im(tr(gΨ̃g

†
ΦgΨg

†
Φ̃
)), whereas the second gives Im(tr(gΨ̃g

†
Φ̃
gΨg

†
Φ)) in eq.(6.25).

For the lower half of the graphs this is not so obvious. Here it is due to the
fact that for each diagram all the couplings have to be complex conjugated rel-
ative to the corresponding graph in the upper half. The resulting minus sign is
compensated by the fact that these diagrams create an asymmetry of opposite
sign.
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Figure 6.3: The produced baryon asymmetry B in orders of 10−6 depending on
the logarithmic ratio of the masses of the decaying scalars r.

processes will be active to transform the asymmetry in the left handed sector. In
this case left-right equilibration would erase every created asymmetry between
the sectors.

Even if the out-of-equilibrium decay process would somehow take place be-
fore the the end of sphalerons activities there are still problems left. One of
them stems from eq.(6.29), from which we can see that in case of masses of
the same order of magnitude for Ψ and Φ the final baryon asymmetry will
be of the order of 10−7. Comparing this result with the measured value of
B ≈ (2 − 8) × 10−11 (see eq.(2.55)), we find that we are approximately four
orders of magnitude away from reality. The obvious way to fix this issue would
be to finetune r. For r = 0.891983 our values are in the right ballpark. Unfor-
tunately, this requires a funetuning of the order of 10−6, which does not make
this option very attractive.

A further and more important problem arises from the out-of-equilibrium
condition for the decay. Since we need the particles to decay when they are
highly overabundant, their decay rate needs to be much smaller than the Hubble
rate at T ≈ mΨ,Φ, which is the time they would start decaying if they were in
equilibrium. The total decay rate of the scalars is given by

ΓΦ = mΦ

tr(g†ΦgΦ) + tr(g†
Φ̃
gΦ̃)

4π
≡ mΦαΦ (6.30)

and the analogous equation for ΓΨ, which we both already used in the calcula-
tions in section 6.2.2. Thus our out-of-equilibrium condition is

KΦ/Ψ ≡
ΓΦ/Ψ

2H(mΦ/Ψ)
=
αΦ/Ψ√
g∗

MPl

mΦ/Ψ
≤ 1. (6.31)

With the parameters we fixed so far, we find

αΦ/Ψ : O(10−1),√
g∗ : O(101).

(6.32)
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With MPl = O(1019)GeV this would lead to the condition mΦ/Ψ ≥ 1017GeV,
which implies masses even bigger than the GUT-breaking scale of 1016GeV and
is not very appropriate for a paricle within a Pati-Salam-model. What makes it
even worse is that these particles break the electro-weak symmetry in our model.
Therefore their VEVs or at least an upper limit for them, can be determined
by measuring the mass of the electro-weak gauge bosons (see section 6.1.2 and
6.1.3). These conditions combined lead to a difference of 1015GeV between
the mass of our scalars and their VEVs. As the VEV of a scalar particle is
essentially determined by the ratio of its mass µ and the square-root of the
coupling constant λ of its Φ4 coupling term, this would require λ to be of
the order of 1030. It is obvious that, with such a huge value for the coupling
constant, perturbation theory would not be justified, which in returns yields
the possible invalidity of our results.

6.3 Quintessence Driven Neutrinogenesis

At first sight the pure amount of inconsistencies and problems for a neutrino-
genesis process within the presented model seems to rule out this possibility
completely. Yet, the fact that all these problems are due to inconsistencies
in the numbers and the chronological order of processes instead of being due
to the absence of essential ingredients in the model, allows us to circumvent
all of them by making an additional assumption, which has already been in-
troduced in section 5.5 . If we couple some of the constants in our model to
a quintessence field, they will effectively be varying with time. By choosing
appropriate couplings we will be able to change the order of magnitude of the
quantities which yield the problems for neutrinogenesis and hereby get rid of
them. With couplings that yield a change of constants over several orders of
magnitude, we will even be able to change the chronological order of processes,
as we will be shown later. If we now look at the problems presented in the
last chapter, it is obvious that the masses of the Higgs scalars Φ and Ψ as well
as their Yukawa couplings will be among the varied constants. The possible
necessity to also vary gauge coupling constants will be explained later.

6.3.1 The Uncoupled Quintessence Field

Before specifying the dependence of the various couplings on the quintessence
field, we will fix the bare model of the field itself and choose a potential similiar
to the one used in [7] 11

V = V0(e
λQ + e−λQ). (6.33)

For suitable parameters this potential leads to a model that has the appealing
tracker property and all the other characteristics we need. We put λ = 100/MPl

and V0 = 0.375ρc, where ρc is the critical density, such that for a field with
Q = 0 and Q̇ = 0 we get a cosmological constant with an energy density of
0.75ρc. The development of Q and ω with these parameters and the initial

11In contrast to the introductopry chapter on quintessence, we will refer to our quintessence
field by the symbol Q.
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Figure 6.4: The dependence of the quintessence field (in units of MPl) and ω
on the decadic logarithm of the temperature in units of GeV in the uncoupled
case.

conditions Q(T ≈ 1016GeV) = 2.2MPl and ω(T ≈ 1016GeV) = −1 is shown
in fig.6.4 , where we used the differential equations presented in eqs.(4.5) to
calculate their behaviour. In fig.6.5 we can see the behaviour of the various
energy forms in dependence of time, which will help us later on, when we
will approximate their relative orders of magnitude. In the calculations for
these figures as well as in all other numerical calculations the standard model
particle content was assumed and several functions were only approximated, if
not specified otherwise. However most of their features should not be lost when
switching to our model since we are rather concerned with orders of magnitude.

6.3.2 Varying Coupling Constants

This section will treat the idea of quintessence coupled constants in more detail.
However, before we do this in a quantitative way, we will take a closer look at the
possible qualitative behaviours of the various constants with time that might
yield baryogenesis.

To have the scalars Φ and Ψ decay out of equilibrium, we take a look at
eq.(6.31) and see that they need to be very heavy during this stage, while we still
need them to be small today. Of course we could also achieve a smaller KΦ/Ψ

by reducing the size of the Yukawa couplings, but the bounds within which we
can vary them during the time of decay, are mainly set by eq.(6.29), where we
can see that the final brayon asymmetry will be too small if we choose to reduce
the Yukawa couplings by too many orders of magnitude. With Higgs masses
at 1015GeV and above the out-of-equilibrium condtion should be fullfilled if we
simultanously reduce the Yukawa couplings in a way that will be specified later.

But heavy masses at early times and lighter masses today is not the only
condition we need to imply on Φ and Ψ. As we need an era of sphaleron
activity after their decay, the behaviour of their masses on their way down
the energy scale is also constrained. Basically, there are two possibilities for
the qualititative behaviour of these masses or rather their corresponding µ-
parameters which are both presented in fig.6.6 . 12

12By the term µ-parameter we refer to the parameters within the Higgs potential which
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Figure 6.5: The approximate behaviour of the various energy densities. The
solid line is the energy densitiy of the quintessence field, while the shortly dashed
one represents the radiation energy density. The line with the long dashes
stands for the energy density due to matter, and is only to be considered after
electro-weak symmetry breaking.

The first possibility features a constant negative sign of the µ-parameter.
If this is the case, the Higgs bosons will have a VEV during their stage of de-
cay, and therefore the mass-curve of each of these scalars will have to cross the
temperature-curve two more times, such that there is a period with restored
SU(2)L-symmetry after their decay, during which sphalerons are in thermal
equilibrium once more and can partially transform the left-handed asymme-
try.13

The second possibility uses the fact that the mass of a Higgs scalar is mainly
determined by the absolute amount of the µ-paramters and not by its sign.
Therefore we can also think of a Higgs particle with positive µ during the
decay stage. This implies that the field does not have a VEV during this time,
which also means unbroken electro-weak symmetry and sphaleron activities. At
later stages the µ paramter needs to have a negative sign, of course, such that

are responsible for the mass of the corresponding boson. While the mass of a particle is
always a positive quantitity, this parameter can also be negative, as we can see for example
in the standard model Higgs mechanism. Still, the mass and the absolute amount of the
corresponding µ-parameter are usually of the same order of magnitude (except around the
critical temperature), no matter if we are in the broken or unbroken phase. Since orders of
magnitude will be all we need in the remaining calculations, we will therefore treat them as
identical quantities.

13The transformation of the asymmetry however might not be completely described by the
formalism in section 6.2.1, since now, there was a period with broken SU(2)L before the
sphaleron washout. This means that the weak isospin does not have to be the same as in the
beginning of the universe. Therefore the calculations after this point might be a little different.
Yet, it is still likely that the order of the final baryon asymmetry will not differ dramatically
from our result in section 6.2.1, and a baryogenesis of the right order of magnitude might still
be able to take place. Independent of this, the calculation is still completely valid for the
second possibility, which is the one will work with in the remainder of this thesis.
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Figure 6.6: The two different ways for a time dependent µ-paramter that pos-
sibly render baryogenesis. In both graphs, the solid line shows the behaviour
of µ, while the dashed lines represent the temperature as well as the negative
temperature. In the first graph µ is always negative, such that after the decay of
the particles its modulus has to fall below the temperature once more to enable
sphalerons to be active again. In the second graph µ switches signs. Therefore
electro-weak symmetry is not broken during the first decay stage of the scalars,
and sphalerons can transform the left-handed asymmetry immediately.
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the corresponding particles develop VEVs and the fermions and gauge bosons
become massive.

As we already noted, the heavy masses of Φ and Ψ at early times enable
them to decay out of equilibrium, and keep the left- and right-handed fermion
sectors from equilibrating. But since their masses get lower as temperature
falls, left-right-equilibration might take place during later stages. In order to
not let this happen too early (namely while sphalerons are active), the Yukawa
couplings also need to be effectively time-dependent. We will treat this problem
on a more quantitative level later on, but we already note that they need to be
several orders of magnitude smaller than the values we calculated in 6.1.3 .

We also want to note that varying the Yukawa couplings can also make the
fine tuning of the masses of Φ and Ψ obsolete, which was required to obtain
a baryon asymmetry of the right size in eq.(6.29); in addition it enables us to
lower the mass bounds of the Higgs bosons during their era of decay by several
orders of magnitude such that we might at least stay below the GUT-scale
during all periods of baryogenesis in this model.

Mass Variation:

To be able to treat the idea of quintessence coupled constants in our model on
a more quantitative level, we now give explicit formulae for the quintessence
couplings. Of course, these couplings are not the only ones that might yield
a matter-antimatter asymmetry in the end. However, the couplings cannot be
chosen completely arbitrary as they should not destroy the original behaviour
of the quintessence field.

To keep the notation simple, we will only refer to the variation

µ→ µ(Q), (6.34)

hereby meaning the variation of all mass parameters in the Higgs potential of
Φ and Ψ in a way analogous to the presented one.

Of the two different behaviours of µ described above and in fig.6.6 the second
one seems to have the more apealing features. The biggest one of them being
the just mentioned important characteristic that the addition to the effective
quintessence potential stemming from this mass variation mΦ/Ψ(Q) will not
have a big effect on the behaviour of Q itself, whereas a behaviour as the first
one in fig.6.6 can easily destroy the original behaviour of the quintessence field,
and therefore its own behaviour in time will also not be the desired one.

Choosing the second type of behaviour for µ we also have the advantage of
having our particles decay in the unbroken phase. Therefore the calculations
done so far are much more exact: The calculations with the chemical potentials
might not be completely correct, if a phase of broken electro-weak symmetry
preceeds the era of sphaleron activity,as we might not be able to imply I 3

L = 0
during the time of sphaleron activity. Also, the fact that the Higgs bosons
would decay in their broken phase would have an impact on the validity of the
calculations leading to eq.(6.29), since there will most likely be some mixing of
Ψ- and Φ-components in this case. Therefore the propagators in the feynman
diagrams of fig.6.2 would not represent mass eigenstates, and we would have to
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Figure 6.7: The effective temperature dependence of the Higgs mass, driven by
the quintessence model specified in the text. The dashed line represents the
temperature T , such that it is easy to see when the rest energy of Ψ and Phi
is bigger or smaller than T . µ changes sign after its rapid change at around
T = 1011GeV. The effect of this coupling on the quintessence field has not been
considered, yet.

draw other diagrams depending on the specific Higgs potential.
With all of this in mind, we choose the coupling

µ → µ1

2

(

tanh(ω1(Q+Qoff,1)) + 1 + 2µ0

µ1

)

+µ3

2

(

tanh(ω2(Q+Qoff,2)) + 1 + 2µ2

µ3

)

,
(6.35)

where the value of µ is almost constant for several periods, while it can change
very rapidly in others. With ωi and Qoff,i in the right range, µ1 gives the
mass of the scalar boson during the decay stage, while the parameters µ0 and
µ3 fix the value of µ at an intermediate period, which ends after the end of
sphaleron activity. Finally |µ0 + µ2| yields the mass of the particle today.
The parameters ωi and Qoff,i determine the pace and the time of the mass
transitions, respectively. Later on it will become clear why such a kind of
coupling should not destroy the original behaviour of the quintessence field as
opposed to many others.

As in section 5.5 we do not have to worry about renormalizability, since the
coupling terms are renormalizable in the quantum fields, while Q is a classical
field and its Langrangian does not have to be renormalized.

Finally we fix the parameter values at µ1 = 1015GeV, µ0 = −150×108GeV,
µ3 = µ0, µ2 = −µ1 − 150GeV, ω1 = 1000

MPl
, ω2 = 17

MPl
, Qoff,1 = −2.06MPl,

and Qoff,2 = −1.6MPl. A plot of m(Q) with these parameters as well as the
temperature curve is shown in fig.6.7.

Yukawa Coupling Variation

As stated before it is not enough to just vary the mass of the fermion mass
generating Higgs scalars. An additional variation of the Yukawa couplings does
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Figure 6.8: Relevant processes for left-right-equilibration. The solid lines rep-
resent fermions, the dashed ones the Higgs scalars, and the wavy lines represent
gauge bosons. It should be noted that each diagram can represent several pro-
cesses, since there are sixty different Φ particles and four different Ψs.

not only enable us, to lower the masses of the Higgs bosons during the decay
stage, it also seems to be required to prevent left-right-equilibration from taking
place too early.

Generalzing the statements from [11, 28], we find that the dominant pro-
cesses leading to left-right equilibration are shown in fig.6.8 . During stages of
broken symmetry and during the decay stage, the rest energy of the left-right
mediating scalars will be large compared to the temperature, and we estimate
the reaction rates of the various processes in fig.6.8 to be given by (compare
eq.(5.4) and [11, 19])

ΓID ∼ g2
Y uk
4π mΦ,Ψ

(mΦ,Ψ

T

) 3
2 exp

(
−mΦ,Ψ

T

)
,

Γ2↔2 ∼ g2
Y uk
4π

g,2
Y uk
4π

T 5

m4
Φ,Ψ

,

Γgauge ∼ g2
Y uk
4π

g2
gauge

4π
T 5

m4
Φ,Ψ

(mΦ,Ψ

T

) 3
2 exp

(
−mΦ,Ψ

T

)
.

(6.36)

Here gY uk represents a Yukawa coupling, and ggauge stands for a gauge coupling.
ΓID is the reaction rate of the inverse decay processes, while Γ2↔2 denotes 2↔ 2
scattering processes. Γgauge is an estimate for all the processes in fig.6.8 in
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which a gauge boson is produced in addition to a Higgs boson. These processes
can become important when one treats the problem more quantitatively with
Boltzmann equations, which might be due to the fact that in this case the
fermions do not need to have exactly the rest energy of the scalar. In the first
and third ratio we see an additional suppresion factor, since the fraction of
initial particles with enough energy to produce a heavy scalar is suppressed by
a Boltzmannfactor. The second ratio describes a 2 ↔ 2 scattering of massless
fermions and therefore this factor does not appear.

In the period between electro-weak symmetry breaking and heavy particle
decay the temperature is larger than the rest-energy of the Higgs scalars. Here
we estimate (compare [11, 19]):

ΓID ∼ g2
Y uk
4π

m2
Φ,Ψ

T ,

Γ2↔2 ∼ g2
Y uk
4π

g,2
Y uk
4π T,

Γgauge ∼ g2
Y uk
4π

g2
gauge

4π T.

(6.37)

Keeping these results in mind we now take a closer look at the constraints
for the Yukawa couplings. For reasons of simplicity we will vary all Yukawa
couplings in the same way, just as we did for the various µ-parameters of the
Higgs bosons. This should make the notation g → g(Q) self-explanatory.

With the mass variation in eq.(6.35) we need g to be several orders of
magnitude smaller than one in order to fullfill equations (6.29) and (6.32). In
fact, with equal masses for all Φ and Ψ, we need g to be approximately of
the order of 10−2 or g2 to be of the order of 10−4 to get a baryon asymmetry
of order 10−11. This leads to a ratio K of the order of 10−2, which in return
ensures out-of-equilibrium decay.

To also ensure that left-right-equilibration does not take place too early, we
have to take a closer look at the various interaction rates. In the drift-and-decay
model the temperature at which our scalars finally start decaying is given by
eq.(5.6), which in our case means T ∼ 1014GeV. By then the ratios leading
to left-right-equilibration will all have become much smaller. Taking a look
at eq.(6.36), we see that the ratio of each reaction rate and the Hubble rate
has become smaller by a factor of the order 10−3 or even a higher exponent.
Even when summed over all different Higgs channels (order 102 for the largest
processes), the ratio is smaller than one. In addition to that, the reaction rates
for all these particles are falling faster than the Hubble rate. As motivated
in appendix C this should be sufficient to ensure that left-right equilibration
does not take place, as long as the masses of Φ and Ψ remain of the order of
1015GeV.

After the rapid change of the Higgs masses, the reaction rates we used for
our estimations in the last paragraph are no longer valid. We now have to work
with the formulas given in eq.(6.37). As one can see, all these rates are smaller

than
tr(g†Y ukgY uk)

4π T , which makes it enough to show that processes with this
reaction rate are not relevant until sphaleron activity ends. At T1 ∼ 1011GeV
the Higgs masses become smaller than the temperature. The relevant time
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scale for reactions of the specified rate is Γ−1 ∼ 10−10/tr(g†g) corresponding to
a temperature of

T2 ∼ (K|T=T1)
1
2T1, (6.38)

with

K|T=T1 =
ΓD

2H

∣
∣
∣
∣
T=T1

≈ tr(g†Y ukgY uk)

4π

MPl

g
1/2
∗ T1

. (6.39)

Since the sphaleron era ends at approximately 1010GeV in our model, T2

has to be smaller than this value to keep left-right-equilibration from taking
place too early. This leads to the condition (K|T=T1)

1/2 � 10−1, which in
return means g � 10−3 until electro-weak symmetry is broken. Since we have
many diagrams that can yield left-right equilibration (the number of relevant
ones is probably of the order 102 at most of the order 103) the condition should
be sharpened. g gets also constrained more strongly if we set T1 ∼ 1011, which
means that we use the time when µ starts changing instead of the time when
its rest-energy is approximatley equal to the temperature. When we consider
all these points to be surely on the safe side, we find the condition g � 10−5.

Now that we have quantified our constraints, we give an explicit example
for a quintessence coupling of the Yukawa couplings by

g → g1

2

(

tanh(ωg(Q+Qoff,g) + 1 + 2g2

g1
) + 1

)

+ 150GeV
µ(Q) , (6.40)

with g1 = 0.01, g2 = 5×10−7, ωg = 1000, Qoff,g = −2.14, and µ(Q) as specified
before. With this coupling g fullfills all our conditions. The behaviour of g(Q)
and µ(Q) with respect to the temperature is shown in fig.6.9 . We will assume
that these couplings do only have an negligible influence on the behaviour of
the quintessence field, and motivate this assumption in the next section. In this
case, we see that all our chosen couplings seem to yield the desired behaviour
in time, and therefore produce a baryon-asymmetry of the correct order of
magnitude, given the fact that the assumptions and estimations made in the
course of this thesis are justified. 14

We also want to point out that in the likely case that the VEVs and the
µ-parameters of Φ and Ψ are proportional, the fermion masses will not change
after electro-weak symmetry-breaking, due to the fact that they are determined
by the product of the Yukawa couplings and Higgs VEVs, which remains con-
stant with the quintessence coupling we chose. The benefits of this will become
clear when we will take a closer look at the effective quintessence field potential,
and the influence of the quintessence-driven couplings on the behaviour of the
quintessence field itself. At this point we note that at around 1012.5GeV, when
the Yukawa couplings start changing, the decay time Γ−1

D has passed 105 times,
such that it is safe to assume that at this point the density of the heavy particles
is of the order of their equilibrium density (n . 1040 × exp(−102.5), if chemical
potentials can be neglected). We also note that at T ∼ 1011GeV, when the
Higgs scalars have reached their intermediate masses, the age of the universe is

14Also, by looking at the numbers at e.g. t ∼ 1GeV, we see, that left-right-equilbration has
taken place at some point.
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Figure 6.9: The temperature dependence of the Yukawa couplings g and the
Higgs masses, driven by the quintessence model specified in the text. The solid
line shows the logarithmic behaviour of g, while the dashed line represents the
logarithm of the µ-parameters in GeV. The logarithmic temperature (in GeV)
as well as its negative is represented by the dotted lines. Since the plots of µ and
the Yukawa coupling are logarithimc, one can see that their product remains
constant after electro-weak symmetry breaking from the fact that their incline
only differs in sign during this stage.

smaller than 10−3Γ−1
ID+. Where ΓID+ represents the rate of all processes that

produce a Φ or Ψ. This implies that, if no other processes are at work, by the
time the Higgs scalars reach their intermediate masses, their abundance will
still be suppressed by the exponential factor mentioned before.

A process that could also increase the abundance of Φ and Ψ is pair pro-
duction by standard model gauge bosons. In order to keep the scalar particles
from reaching abundances which are not exponentially suppressed after their
inital period of decay, a quintessence dependence of the corresponding gauge
coupling constants might also be needed. It should be obvious that this depen-
dence can also be chosen in such a way that the masses of the gauge bosons
do not change after symmetry breaking by using a coupling that yields to-
days values at T ∼ 1GeV while it changes proportionaly to gYuk until its rapid
change around T = 1012GeV, if the mixing between right- and left-handed
gauge bosons can be neglected, which can always be achievewd by choosing the
VEV of ΞR high enough. Before that the coupling constant for SU(2)L needs
to be approximately of order one to yield unsuppressed sphaleron activity. We
will not give explicit formulae here, since the couplings would be very similiar
to the already presented ones. It should be obviuos that such couplings will
not equilibrate Φ and Ψ during the time of rapid change of their masses, if we
estimate the reaction rates in a similiar way to eq.(6.37). 15

15Note that this kind of coupling would violate D-Parity.
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6.3.3 The Effective Quintessence Potential

When making mass-terms dependent on a quintessence field, this cannot be
done in an arbitrary manner. If the mass of a particle depends on a quintessence
field, the value of this field partially determines the energy of the system not
only through its potential but also through these couplings, which leads to
an effective quintessence potential term. It is important that the additional
potential terms do not change the behaviour of the quintessence field, since
otherwise the effective time-dependence of the coupling constants might be
different. This section takes a closer look at these effective potentials and
shows why the couplings we chose in our model are highly unlikely to destroy
the original behaviour of the quintessence field.

The full Lagrangian of the system is now composed of the original Lan-
grangian of our model in section 6.1 and the quintessence part:

L = Lkin + LY uk + LHiggs +
1

2
∂µQ∂µQ− V (Q), (6.41)

where Lkin represents the kinetic terms of the fermions and the gauge bosons,
LY uk stands for the Yukawa coupling terms, and LHiggs stands for the kinetic
terms of the Higgs bosons as well as the Higgs potential. Q represents the
quintessence field with its potential V (Q), that was spececified in eq.(6.33).

In the uncoupled case minimization of the action with respect to Q and the
scale parameter R leads to the usual equations of motion shown in eq.(4.4). In
the coupled case, V (Q) is no longer the only term depending on Q since now
also LY uk and LHiggs have a Q dependence. To keep the form of eqs.(4.4), we
define the effective quintessence potential [7]

Veff (Q) ≡ V (Q) + VI(Q)

≡ V (Q) +
∑

all particles

ni〈E〉i

= V (Q) +
∑

all particles

∫
d3k

(2π)3

√

k2 +mi(Q)2fi(k),

(6.42)

which replaces V (Q) in eq.(4.4c). Here, ni stands for the particle density of each
species, while 〈E〉i represents their mean energy. Analogously, the parameters
mi(Q) represent the corresponding particle masses, while the fi(k) represent
their distribution functions.

For the masses of Φ and Ψ the Q-dependence is due to the varying µ-
parameters, where we assume the respective moduli to be equal. The gauge
boson masses of SU(2)L also depend on the µ-parameters after electro-weak
symmetry-breaking, since they are proportinal to the VEVs of Φ and Ψ as well
as to the gauge coupling constant. We assume SU(2)R to be broken at a scale,
such that the corresponding gauge bosons effectively do not change their masses,
even if Φ and Ψ do. 16 In addition to the dependence on the VEVs the fermion

16The early time at which neutrinogenesis takes place in our model, requires the breaking
scale of SU(2)R to be much higher than in regular models. In this case it might seem attractive
to have SU(2)R broken by the same representation that breaks SU(4)PS , for which a breaking
scale of 1015GeV to 1016 still is very high but more likely than for SU(2)R. Another possibility
might of course be a quintessence dependent gR.
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masses are also influenced by the variation of the Yukawa couplings. However,
let us not forget that even though various parameters important for the fermion-
and left-handed gauge boson-masses depend on Q, we chose the couplings in
such a way that their masses should be independent of the quintessence field at
all times.

The new terms in the effective potential can provide serious problems for the
tracker property of Q. Since they represent the energy of all the particles in our
model, their absolute value is is usually bigger than the original V (Q), which
has been constructed in such a way that the energy density of the quintessence
field is at most of the same order of magnitude as the energy density provided
by radiation and matter through early stages of the universe. Therefore the
dependence of the masses on Q should not be too drastic, if one wants to
keep the additional terms from overpowering the original potential in terms of
influencing the behaviour of Q. However, the restrictions on the quintessence
dependence of such masses can be extremely weakend, if their abundance is
suppressed, and we will make use of this fact later.

The additional terms usually have their largest influence on Q, when the
particle masses are of the same order of magnitude as the temperature. This
becomes apparent by looking at the formulas for the different energy densities.
If the mass of a particle is much larger than the temperature, its energy density
is exponentially suppressed; on the other hand, if the particle mass is much
smaller than the temperature, the energy density is independent of the particle
mass in leading order (see section 2.2.1). Therefore we have to be especially
carefull when the line representing the rest energy of a particle crosses the
temperature line in graphs such as in fig.6.7.

A very crude estimate of the influence of these couplings can be obtained
by assuming a Maxwell-Boltzmann distribution of the specific particles and
integrating eq.(6.42), which then yields (compare eq.(2.26))

Veff (Q) = V (Q)+
∑

all particles

1

π2

[

3mi(Q)2T 2K2

(
mi(Q)

T

)

+mi(Q)3TK1

(
mi(Q)

T

)]

,

(6.43)
if the chemical potentials can be neglected.

If the numerics do not significantly change upon using this potential, one
can be confident that the couplings will generally not have a big influence on
the system. This method has been used in reference [7].

However, the limits of this method become obvious, when we consider totally
decoupled particles. In this case the number of particles would not change,
regardless of Q, and therefore one could not simply differentiate the above
potential with respect to Q, as the chemical potential would also depend on Q
to keep n independent of it. In appendix D we even motivate the assumtpion
that n in eq.(6.42) should generally not be differentiated with respect to it,
since only its rate of change does instantaneuosly depend on it. For now, we
will only assume

dVI(Q)

dQ
=

d

dQ
(n〈E〉) ≈ nd〈E〉

dQ
, (6.44)

if the reaction rates keeping certain particles in equilibrium are smaller than
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the Hubble rate, which corresponds to the obvious picture that the particles
will not be able to follow a rapid change of Q.

By looking at the orders of magnitude, we see that with this assumption,
the contribution of VI(Q) should be totally neglegible: The rapid change of µ
is before T = 1010GeV, which corresponds to a value of Q of approximately
1.9MPl or more. With these values, we get

dV (Q)
dQ

∣
∣
∣
T=1010GeV

= d
dQ

(

0.375ρc

[

exp( 100
mP lQ) + exp(− 100

MPl
Q)
])

T=1011GeV

> ρc
100
MPl

exp(190)

≈ 1018GeV3,
(6.45)

which now has to be compared to the contribution of VI(Q), where we assume
that the average energy of the particles is always of the order of the initial mass
(∼ 1015GeV) or less (compare eq.(2.25)):

dVI(Q)
dQ

∣
∣
∣
T=1011GeV

≈ nd〈E〉
dQ

. (1015GeV)3 exp(−102.5)dm(Q)
dQ ,

(6.46)

with n being estimated as at the end of the last section. With m(Q) being
specified by eq.(6.35), and with the intermediate result

d
dQ

(
µ1

2

[

tanh(ω1(Q+Qoff,1)) + 1 + 2µ0

µ1

])

= µ1

2

[
1− tanh2(ω1(Q+Qoff,1))

]
ω1

≤ µ1ω1

(6.47)

we finally get

dVI(Q)
dQ

∣
∣
∣
T=1011GeV

. (1015)3 · exp(−102.5)1015 · 10−16GeV3

. 10−92GeV3,
(6.48)

if the chemical potential can be neglected, which we will assume in the rest of
this section. 17

Comparing these two values, we see that it is more than plausible that
these quintessence coupled constants will not have any important effect on its
behaviour during this stage. We can see that as long as the particle abundance
is suppressed by this large factor, and the particles are decoupled, the additional
term to the potential should be negligible. As we stated before, we can assume
the abundance of the particles to be suppressed around T ∼ 1012GeV. Before
that, the abundance might not be suppressed to this degree, however, the factor
dµ/dQ is of the order 10−43 or smaller at higher temperatures. Therefore the
additional potential term is still much smaller than the original quintessence
potential, even at 1015GeV.

When the µ-parameters start changing for the second time, we see that they
are always at least two orders of magnitude larger than the temperature. This

17This should be a reasonable assumption, since the chemical potentials are zero in equilib-
rium, while in the completely uncoupled case the supression should be even stronger.
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Figure 6.10: The behaviour of the quintessence field and the µ-parameter
yielded by using the method from reference [7]. We see that their behaviour is
very different from the uncoupled case

implies a suppression factor of at least 10−42 compared to the energy density
of a massless particle. Since dm/dQ is at most of order µ3 ·ω2 ∼ 10−10, we can
see that the effectice potential term in this case is always much smaller than
the original potential term, which should only be very few orders of magnitude
smaller than the unsuppressed energy density of a massless particle (see fig.
6.5).

Alltogether it can now be seen that we chose our µ-parameters in such a
way that they only vary, when the abundance of the corresponding particles is
extremely suppressed. At all other times the parameters are practically con-
stant. This way, the quintessence field behaves almost identically as in the
uncoupled case. To show the necessity of our new approach to determine the
effect of the couplings on the behaviour of the quintessence field, we consider
fig. 6.10, where the former approach from reference [7] has been used. It can
be seen that it seems to predict a behaviour of the quintessence field, which is
highly different from the uncoupled case, and which is very unlikely to render
baryogenesis.

For the fermion and gauge boson masses things are even easier. Until electro-
weak symmetry breaking they do not have any masses, and therefore the cor-
responding coupling constants can be varied arbitrarily. 18 After symmetry
breaking we chose these coupling constants in such a way that their variation
should be completely annihilated by the variation of the VEVs, due to the fact
that these should be proportional to the µ-parameters. Therefore the corre-
sponding masses should not have a qualitative influence on the quintessence
field. 19

To check this second phase numerically and to show that the exponential
suppression of the disturbances is big enough, we made use of the method

18If the Yukawa couplings or gauge coupling constants would vary in a way that would
enable Φ and Ψ to equilibrate, their varying would, of course, have an influence on the energy
of the system, however, dn/dQ should in this case still be zero (compare D).

19As we will partially see in the last part of this chapter, things might be a little more subtle,
however, this argument works, as long as the fermion and gauge boson masses are determined
by the product of the corresponding couplings and the µ-parameters to a sufficient degree,
which we assume within this thesis.
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Figure 6.11: The behaviour of the quintessence field and the Q-dependent Higgs
masses in the coupled case, where equilibrium distributions are assumed at
temperatures lower than 1010GeV. Fermion and gauge boson couplings have
not been considered. Comparing the graphs with figures 6.9 and 6.4 we see that
even with the assumption that the particles are in equilibrium, the quintessence
behaviour does not change significantly.

from [7] and assumed equilibrium distributions for all Higgs particles (which
might not true, but which should have the largest possible impact on the system)
and therefore plug eq.(6.43) into our numerics instead of the bare potential term
at temperatures lower that 1010GeV. The result for 128 particles of masses
|µ(Q)| is shown in figure 6.11, where we can see that the behaviour of Q has
practically not changed (Φ: 60 particles + 60 antiparticles, Ψ: 4 particles + 4
antiparticles). It is not necessary to also put the fermion and gauge couplings
explicitly into the numerics, as it is obvious that we can increase ωg arbitrarily,
which leads to the fact that the relation g ∝ (µ)−1 holds up to any desired
degree of accuracy, and we can therefore safely assume dmf/dQ = 0. A similiar
relation should also hold for the gauge boson masses.

Putting everything from this section together, we see that the couplings
we chose to achieve a baryon asymmetry are very likely to conserve the orig-
inal quintessence field behaviour. From the specific couplings chosen in our
model, it can also be seen how somewhat extreme couplings of mass-terms to
a quintessence field can be realized: If processes that keep certain particles in
equilibrium are frozen out, their mass generating couplings may vary dramti-
cally, without having an influence on the quintessence field behaviour, if the
particle abundance was initially exponentially suppressed.

6.3.4 Further Issues and Comments

Within the course of our calculations we neglected some rather subtle points
that we will briefly cover here.

• Thermal Running of Coupling Constants:
Throughout most of this thesis, the fact that in quantum field theo-
ries coupling constants change with temperature has been completely
neglected. If this is included, some new conditions arise. In cases with-
out running effects which are not too big, it should still be possible for
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any coupling constant g to achieve any reasonable effective behaviour
g(Q,T ) = α(T ), where α(T ) is some arbitrary function of the temper-
ature: Calculate the behaviour of g(g0, T ), where g is the renormalized
Lagrangian with g(T0) = g0; if the running of g is not too big, there should
always exist some g′0 such that g(g′0, T ) = α(T ). Since Q : T → Q(T ) is
bijective in the relevant temperature range, we can define the function
g0 : Q→ g′0 such that the original behaviour of the coupling constants is
achieved.

Yet, this cannot not neccessarily be done during the phase of broken
electro-weak symmetry. This is due to the fact that if our couplings are
chosen in the way just described, we would find

d

dT
(gµ) =

∂(gµ)

∂Q

dQ

dT
+
∂(gµ)

∂T
= 0, (6.49)

with g, µ being the relevant quantities for the fermion and gauge boson
masses, depending on the fact, if g represents a Yukawa or a gauge cou-
pling. However, since the desired behaviour would rather be

∂(gµ)

∂Q
= 0, (6.50)

in order for the fermion masses to be independent of the quintessence
field, we might, at least in this temperature region, just stick with the
couplings fixed in the previous sections. As long as the squares of the
various gauge and Yukawa coupling constants increase by less than an
order of magnitude in this region, this should not hurt our calculations.
In the standard model this condition is fullfilled for the gauge coupling
constants (see e.g. [23]), which is encouraging, though no proof for our
model. If some or all coupling constants increase by more than an order
of magnitude due to thermal effects, more detailed calculations might be
necessary. For the Higgs masses, we want to stress that they should of
course go to zero, when the µ parameters are of the order of the temper-
ature, and hereby change by several orders of magnitude. However, at
this time µ and all other couplings are very weakly dependending of Q.
If necessary, this dependence can be weakend even more, by increasing
the corresponding ω-parameters in our couplings, such that this seems to
be a minor issue. Still we want to mention that the various ω-parameters
cannot be increased arbitrarily high and problems might occur due to
this fact. During the time of rapid change, the coupling of µ can still be
that of the bare coupling (eq.(6.35)), without our estimations changing
dramatically.

• Momentum Running of Coupling Constants:
Besides the fact that coupling constants change with temperature, they
also change with momentum. The fact that this has been neglected, when
calculating expressions like eq.(2.14a) might yield additional constraints
for this kind of running. However, this is usually neglected in the litera-
ture, and we also assume this effect to be negligible.
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In this context it should also be mentioned that when using approximate
fermion masses to determine the Yukawa couplings at the beginning of
the last section, the running has also not been considered. However, if
this would actually change any any orders of magnitude, it should only
be important during the inital decay phase. At that point, we could have
varied the Yukawa couplings individually instead of all of them the same
way. In this case the right order of magnitude for the produced asymmetry
could still be generated.

• Flavor Changing Neutral Currents:
Models with several Higgs bosons for fermion mass generation yield fla-
vor changing neutral currents (FCNCs) at tree level. The corresponding
branching ratios must be very small in order to go together with measured
data. Yet, since this thesis does not present a model with fixed Yukawa
couplings and Higgs masses as the ones that were chosen were only needed
to show that baryogenesis should be possible in models of this kind, the
branching ratios for FCNCs have not been calculated for the presented
model with the given parameters.

• Left-Right Sphalerons:
Looking at section 3.2 and especially eq.(3.36), we see that SU(3)C might
also yield non-perturbative transitions, due to anomalies; with the differ-
ence that the anomalies of left- and right-handed currents are of the same
size and only differ in sign. This could mean that non-perturbative tran-
sitions between left- and right-handed particles exist. If that was the case
in the early universe, parts of our asymmetry might be washed out and
only the asymmetry in the leptonic sector might be hidden. Yet, this is
unlikely to change the order of magnitude of the created asymmetry, and
even if it would, we could introduce a quintessence coupling of the corre-
sponding gauge coupling constant, that would supress these transitions.
Since gluons are always massless, a subsequent increase of this constant
should have no effect on the quintessence field.

• Big Bang Nucleosynthesis:
In order for our model not to interfere with nucleosynthesis the various
µ-parameters and quintessence driven coupling constants need to reach
their uncoupled values fast enough. At T = 100MeV the graphs in fig.6.11
yield a value of less than 153GeV, while the Yukawa couplings have an
additional multiplicative factor of ∼ 0.98, which means that all values
only differ from their values today by less than approximately two percent,
neglecting the running mentioned above. In case that this might still be
too much, one has some freedom in varying several ω parameters in our
couplings in a way that yields even better results. We also note that even
though the parameters still change a little, all the fermion and gauge
boson masses do not at these scales.

• Further Higgs Parameters:
Since the gauge coupling constants have been chosen to be very small at
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the time of elecro-weak symmetry breaking, other parameters in the Higgs
potential might need considerable sizes to justify the assumption Tc ≈ µ,
where Tc is the critical temperature. This seems to be implied by the
formula for the critical Temperature in the Weinberg-Salam model (see
e.g. [3]). Other constraints on the Higgs parameters might arise from the
assumption 〈Φ〉, 〈Ψ〉 ≈ µ. However, it is assumed that these constraints
go together fairly well.

Additional constraints might also be yielded by a possible proton decay
mediated by the Higgs sector. Yet, this should have no effect on our
baryogenesis scenario.
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Chapter 7

Summary and Conclusions

While it seems to be probable that the universe went through a period of
baryogenesis, the details might not be known for a long time, if ever. One
possible scenario was presented in this thesis.

After introductions into several topics of cosmology and astroparticle physics,
we considered various possibilities of embedding the original neutrinogenesis
scenario into models that could avoid the ad-hoc introduction of two new par-
ticle representations, that only served the purpose of rendering baryogenesis
within this model but were not needed otherwise to explain observational data.
With possible problems arising from various potential substitutes for these ad-
ditional particles in mind, a specific model was introduced, which bases on
the Pati-Salam gauge group SU(2)L × SU(2)R × SU(4)PS . The particles that
were supposed to start the baryogenesis process by decay were two fermion
mass generating Higgs boson representations that both were needed to yield
the measured spectrum of fermion masses and mixings.

After calculating the predictions for the various gauge boson masses in the
limit of high breaking scales for SU(2)R and SU(4)PS and estimating the mini-
mum breaking scales determined by these results, possible vacuum expectation
values for the fermion mass generating Higgs representations were assumed,
while also Yukawa couplings were fixed that yield the approximate fermion
masses. These Yukawa couplings were also a source for the desired CP-violation.
Several problems of this specific model for the creation of a matter-antimatter
asymmetry were dicussed and found to be potentially solved by time-varying
coupling constants.

The effective time dependence of various coupling constants in the theory
was achieved by making these couplings depend on the vacuum expectation
value of a classical quintessence field, which is used in many cosmological sce-
narios to explain the size of the cosmological constant today. Various reaction
rates were estimated, and the quintessence couplings were chosen in such a way
that the constraints needed for baryogenesis, and based on the mentioned esti-
mations, were obeyed by the coupling constants. The model was found to yield
a baryon asymmetry of the correct order of magnitude, given the fact that the
estimations and assumptions made during the course of the thesis were justified.

Finally the effect of these couplings on the behaviour of the quintessence
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field was considered. Hereby the method used in another model [7] was shown
to be limited, and an improved approach was introduced. Using this approach,
the influence of the couplings was examined and found to be negligibly small
in contrast to the result from the earlier method.

While these calculations were done for one specific model, the method used
might be applicable to other models and shows a way of possibly realizing
extreme couplings of mass terms to a quintessence field, by having the mass
variation start at a point where the abundance of the corresponding particles is
exponentially suppressed. A simultaneous suppression of the rates of reactions
that could populate empty states of these particles seems to enable the mass
term to be varied rapidly without having a qualitative effect on the behaviour
of the quintessence field.

In summary, the baryonasymmetry in our universe and therefore its exis-
tence as we know it might be due to the effective time dependence of coupling
constants. One possibility for this has been shown in this thesis, where the ad-
hoc introduction of new particles in the original neutrinogenesis scenario has
been replaced by the introduction of varying coupling constants. In addition
to this example and reference [7], the assumption of effectively time varying
parameters might also help to save other baryogenesis scenarios from being in
conflict with experimental data or being only marginally compatible with other
bounds. An example for this could be electroweak baryogenesis in the standard
model, where the λ-parameter of the Higgs potential might be varied in way
that make electro-weak symmetry breaking a first order phase transition.

Also because of such interesting possibilities it is desirable that the nature
of quintessence fields (if they exist) will be better understood. A goal in the
further future might be to determine their interplay with the standard model
particles on a fundamental level. In this case we might find real criteria to rule
out certain quintessence dependings of coupling constants as well as criteria
that possibly confirm the validity of others.
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7.1 Zusammenfassung und Schlussfolgerungen

Während es scheint, dass das Universum durch eine Phase der Baryogenese
ging, werden die Details für lange Zeit nicht bekannt sein, falls sie es überhaupt
jemals sein werden.

Nach Einleitungen in mehrere Themen der Kosmologie und der Astroteilchen-
physik, fingen wir an verschiedene Möglichkeiten zu erwägen das ursprüngliche
Neutrinogenese-Szenario in realistischere Modelle einzubetten. Hierbei wurde
versucht, auf die ad-hoc Einführung zweier neuer Teilchen Darstellungen zu
verzichten, welche zwar Baryogenese innerhalb dieses Modells ermöglichen, ohne
jedoch anderweitig benötigt zu werden um vorhandene Daten zu erklären. Im
Bewusstsein möglicher Probleme, die von den verschiedenen möglichen Er-
satzkandidaten für diese Teilchen ausgehen könnten, wurde ein spezielles Modell
vorgestellt, welches auf der Pati-Salam Eichgruppe SU(2)L×SU(2)R×SU(4)PS

basiert. Die Teilchen, denen es zugedacht war den Baryogeneseprozess durch
Zerfall zu starten, waren zwei, Fermionenmassen generierende Higgs-Boson
Darstellungen, die beide benötigt wurden um das gemessene Spektrum der
Fermionenmassen und -mischungen zu reproduzieren.

Nachdem die Vorraussagen für die verschiedenen Eichbosonenmassen im
Grenzwert hoher Brechungsskalen von SU(2)R und SU(4)PS berechnet und die
dadurch bestimmten minimalen Brechungsskalen abgeschätzt worden waren,
wurden mögliche Vakuumerwartungswerte für die Fermionenmassen erzeugen-
den Higgs Darstellungen angenommen und Yukawakopplungen festgesetzt, die
die ungefähren Fermionenmassen lieferten. Diese Yukawa Kopplungen waren
auch die Quelle für die gewünschte CP-Verletzung. Mehrere Probleme dieses
speziellen Modells eine Materie-Antimaterie Asymmetrie zu erzeugen wurden
diskutiert und es wurde dargelegt, dass diese möglicherweise durch zeitlich
veränderliche Kopplungskonstanten gelöst werden könnten.

Die effektive Zeitabhängigkeit verschiedener Kopplungskonstanten wurde
dadurch erreicht, dass sie vom Vakuumerwartungswert eines Quintessenzfeldes
abhängiggemacht wurden, welches in vielen kosmologischen Szenarien dazu ver-
wendet wird die heutige Größe der kosmologischen Konstanten zu erklären. Ver-
schiedene Reaktionsraten wurden abgeschätzt, und die Quintessenzkopplungen
wurden so gewählt, dass die Bedingungen eingehalten wurden, die für eine
Baryogenese nötig waren, und die auf den erwähnten Abschätzungen beruhten.
Es wurde erkannt, dass das Modell, eine Baryonasymmetrie der richtigen Grös-
senordnung liefert, für den Fall, dass die im Rahmen der Arbeit gemachten
Abschätzungen und Annahmen gerechtfertigt sind.

Schließlich wurde der Effekt dieser Kopplungen auf das Verhalten des Quint-
essenzfeldes betrachtet. Hierbei wurde gezeigt, dass die Methode, die in einem
anderen Modell benutzt worden war, nur eingeschränkt anwendbar ist, und
ein verfeinerter Ansatz wurde vorgestellt. Mit Hilfe dieses Ansatzes wurde der
Einfluss der Kopplungen untersucht, und es wurde gezeigt, dass dieser ver-
nachlässigbar klein sein sollte, im Gegensatz zum Ergebnis, der vorher erwähn-
ten Methode.

Obwohl die Berechnungen für ein spezielles Modell vollzogen wurden, könnte
die Methode auf andere Modelle anwendbar sein und zeigt eine Möglichkeit
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extreme Kopplungen von Massentermen an ein Quintessenzfeld zu realisieren,
indem die Massenveränderung zu einem Zeitpunkt beginnt, zu dem das Vorkom-
men des zugehörigen Teilchens exponentiell unterdrückt ist. Eine gleichzeitige
Unterdrückung der Raten von Prozessen, die leere Zustände dieser Teilchen
bevölkern könnten, scheint es dem Massenterm zu ermöglichen rapide variiert
zu werden ohne einen qualitativen Effekt auf das Verhalten des Quintessenz-
feldes zu haben.

Zusammenfassend kann man festhalten, dass die Baryonasymmetrie unseres
Universums und damit seine Existenz, wie wir sie kennen, an der effektiven Zeit-
abhängigkeit von Kopplungskonstanten liegen könnte. Eine Möglichkeit hierfür
wurde in dieser Diplomarbeit gezeigt, die die ad-hoc Einführung zusätzlicher
Teilchen im ursprünglichen Neutrinogeneseszenario durch die Einführung sich
verändernder Kopplungskonstanten ersetzt hat. Zusätzlich zu diesem Beispiel
und Referenz [7], könnte die effektive Zeitabhängigkeit von Parametern es
auch anderen Baryogeneseszenarien ermöglichen, nicht in Konflikt mit experi-
mentellen Daten zu stehen oder nur geringfügig kompatibel mit anderen Schran-
ken zu sein. Ein Beispiel hierfür könnte die elektro-schwache Baryogenese im
Standardmodell sein, in der der λ-Parameter des Higgspotentials auf eine Weise
variiert werden könnte, die die elektro-schwachen Symmetriebrechung zu einem
Phasenübergang erster Ordnung machen könnte.

Auch wegen solch interessanter Möglichkeiten ist es wünschenswert, dass die
Beschaffenheit von Quintessenzfeldern (falls sie existieren) besser verstanden
wird. Ein Ziel in fernerer Zukunft könnte es sein, das Zusammenspiel mit
den Teilchen des Standardmodells zu bestimmen. In diesem Fall könnten wir
sowohl echte Kriterien finden, um bestimmte Quintessenzabhängigkeiten von
Kopplungskonstanten auszuschliessen, als auch Kriterien, die möglicherweise
die Richtigkeit anderer Kopplungen bestätigen.



Appendix A

Generators of SU(4)

We chose to work in the following basis of generators, which all have a norm of
1/2:
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Appendix B

Calculated Yukawa Couplings

To enable the reader to reproduce the results obtained for our Yukawa couplings,
we will explicitely give the values we used for the fermion masses and mixings.1

Estimated masses and mixings:

u: m=3MeV, c: m=1GeV, t: m=180GeV,
d: m=7MeV, s: m=100MeV, b: m=4.1GeV,
e: m=0.511MeV, µ: m=106MeV, τ : m=1.777GeV,
νe: m=0.1eV, νµ: m=0.11eV, ντ : m=0.11eV,

CKM-matix:





0.9745 0.217 0.0018 exp( i
3π)

0.217 0.9737 0.036
0.004 exp(i 23

180π) 0.035 0.9991





,

MNS-matix:





0.83 0.56 0.00
0.40 0.59 0.71
0.40 0.59 0.71





.

It is once more stressed that the exactness of these values is not important for
the model introduced in this thesis, and the values are only presented to enable
the reader to reproduce the calculated values.

1The data that was simplified to the values presented was partially taken from [4,10,15,24],
while the author explicitely thanks Mark Rolinec and Felix Schwab for also providing him with
some of the data.
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Appendix C

Particle Freeze Out

Here we want to further motivate the statement from section 6.3.2 that an
asymmetry x will not be washed out, if the rate for the wash-out processes Γ
is smaller than the Hubble rate, while also decreasing at a faster rate:

It seems reasonable to assume that the differential equation for the washout
of the assymetry is given by

dx

dt
= −Γx, (C.1)

where Γ is not necessarily constant. The solution for this equation is given by

x(t) = x0 exp

(

−
∫ t

t0

Γ(t′)dt′
)

(C.2)

or

x(T ) = x0 exp

(

−
∫ T

T0

Γ(T ′)
dt

dT
dT

)

. (C.3)

With help of eq.(2.35) and K(T ) ≡ Γ/(2H) this yields

x(T ) = x0 exp

(∫ T

T0

K(T ′)
2

T ′dT

)

. (C.4)

For all the wash-out processes in our model the ratio K is decreasing propor-
tional to T or faster; in the latter case it would obviously take even longer for
the asymmetry to be washed-out. We therefore write K = αT/T0, with 2α < 1.
Now, we find

x(T ) = x0 exp
(

2α
T0

∫ T
T0
dT
)

= x0 exp
(

2α
[

T
T0
− 1
])

,
(C.5)

from which we see that no matter how deep the temperature falls, the asym-
metry will never change its order of magnitude. Therefore we can say that
processes of the above kind, will not be able to wash-out the corresponding
asymmetry.
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Appendix D

The Effective Quintessence
Potential - a closer look

In section 6.3.3, we used a hand-waiving argument to make it plausible that
the term dn/dQ can be neglected in equation (6.44) as the reaction is basically
frozen out at this point. Yet, it seems that this should generally be true, which
is due to the fact that an instantaneuos and infinitesimal change of Q only
changes dn/dt but not n, even though this has of course an effect on n in the
long run.

The statement can be shown quantitatively, it is assumed that the differen-
tial equation for the behaviour of some particle species with density n, which
is driven towards equilibrium density neq by reactions of combined rate Γ, is
given by

dn

dt
= −Γ(n− neq). (D.1)

We can now formally integrate both sides of these equations with respect to t
and find

n = n0 −
∫ t

t0

Γ(Q(t′))
[
n((Q(t′), t′)− neq(Q(t′))

]
dt′, (D.2)

where n(t0) = n0. Differentiating this expression with respect to Q(t) yields

dn

dQ
= 0, (D.3)

as the right hand side only depends on Q(t′) with t′ < t.
This way we again come to the conclusion that even though the behaviour

of n is not independent of Q(t), it always needs a finite time to react to instan-
taneuos variations of Q, whereas the mean energy of each particle 〈E〉 changes
instantaneously with Q, which leads to the fact that eq.(6.44) seems to be
generally true.
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teilzunehmen. Zu guter letzt natürlich auch für die Zeit, die er sich im-
mer wieder in physikalischen Diskussionen für mich nahm, welche mir oft
weiterhalfen.

• Professor Dr. Ulrich Kneißl (im Ruhestand) dafür, dass er mir weiterhalf,
beim Versuch meine Diplomarbeit extern zu schreiben, und Professor Dr.
Ulrich Weiß, dass er einverstanden war, als Mitberichter bei meiner Diplo-
marbeit aufzutreten,

• Michael Ratz, dessen Diplomarbeit eine Grundlage dieser Arbeit war, für
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