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ABSTRACT

Future reactor and long baseline neutrino oscillation experiments will lead to
precision measurements of neutrino mass splittings and mixings. The flavour
structure of the lepton sector will therefore at some point become better known
than that of the quark sector. The potential of future oscillation experiments is
discussed on the basis of detailed simulations with an emphasis on experiments
which can be done in about ten years. In addition, some theoretical implications
for neutrino mass models will be briefly discussed.

1. Introduction

The observation of atmospheric neutrino oscillations by the SuperKamiokande
experiment1) triggered a remarkable discovery phase. The initial evidence turned
into a solid proof of neutrino flavour conversions as well as of the L/E dependence
as required by oscillations. The solar neutrino problem has also been resolved in
the last years. The Gallex experiment2) detected initially a rate effect which implied
flavour conversion on the basis of solar models. The SNO experiment proved then
model independent neutrino flavour transitions3,4). The initially allowed parameter
islands were cleaned up by the KamLAND experiment, which demonstrated finally
with reactor anti-neutrinos5,6) that the so-called LMA-solution is correct. Altogether
the existing experimental results fit now very nicely into a picture with three massive
neutrinos, which corresponds to the simplest scenario for three generations. The only
exemption is the disputed LSND result7), which would have far reaching consequences
if it were confirmed, but this possibility will be ignored here. The oscillations of three
neutrino generations involve then two mass-squared differences ∆m2

12 ! ∆m2
sol. and

∆m2
23 ! ∆m2

atm., three mixing angles, θ12, θ23, and θ13, and a CP-violating phase
δ. Atmospheric neutrino data8) and the first results from the K2K long-baseline
accelerator experiment8) determine ∆m2

23 = (2.2+0.6
−0.4) × 10−3 eV2 and θ23 ≈ 45◦ 8,9),

whereas solar neutrino data10,11), combined with the results from the KamLAND
reactor experiment5) lead to ∆m2

12 = (8.2+0.3
−0.3) × 10−5 eV2 and tan2 θ12 = 0.39+0.05

−0.04
9).

The results can now approximatively be summarized by two independent two flavour
oscillations where the solar and atmospheric ∆m2 values are roughly now known.

The key parameter for genuine three flavour effects is the mixing angle θ13 which is
so far only known to be small from the CHOOZ12,13) and Palo Verde14) experiments.
The current bound for θ13 depends on the value of the atmospheric mass squared



difference and it gets rather weak for ∆m2
31 ! 2 × 10−3 eV2. However, in that region

an additional constraint on θ13 from global solar neutrino data becomes important15).
At the current best fit value of ∆m2

31 = 2.2 × 10−3 eV2 we have at 3σ the bound
sin2 θ13 ≤ 0.0419). There is no reason why θ13 should vanish and one should expect
therefore θ13 to be finite.

Neutrino oscillations may appear less interesting in the future, since it might lead
only to parameter improvements of the leading 2× 2 oscillations and maybe a finite
parameter value of θ13. However, this misses completely the fact, that neutrinos may
again uncover completely unexpected results, like sterile neutrinos or non-standard
interactions. But there exists a very interesting physics program even if a standard
three neutrino picture is correct. The point is that the neutrino sector is, unlike the
quark sector, not obscured by (experimental and theoretical) hadronic uncertainties.
The precision to which the underlying flavour information is determined will therefore
only be limited by the ultimate experimental precision. If high precision measure-
ments are possible, then they will be very sensitive tests of flavour models and related
topics, like the unitarity of three flavours. Genuine three flavour oscillation effects
occur only for a finite value of θ13 and establishing a finite value of θ13 is therefore one
of the next milestones in neutrino physics. Leptonic CP violation is another three
flavour effect which can only be tested if θ13 is finite. The usual see-saw scenario
includes besides δ in addition two further Majorana CP phases in the light neutrino
sector, as well as other CP phases in the heavy Majorana sector, which are involved
in leptogenesis. In general the heavy and light CP phases are not connected, but
most flavour models create relations between these two sectors, relating thus low en-
ergy leptonic CP violation to leptogenesis and mass models. Precision measurements
of neutrino oscillations test therefore very interesting questions of particle physics
which are connected to the origin of flavour and to phenomenological consequences of
flavour. There is thus a very strong motivation to establish first in the next generation
of experiments a finite value of θ13 in order to aim in the long run at a measurement
of leptonic CP violation16,17,18,19,20).

2. Three neutrino oscillation in matter

Future precision oscillation experiments require a full three flavour formalism and
the inclusion of matter effects. Generalization of the two flavour oscillation formulae
in vacuum to the vacuum probabilities for flavour transitions νfl

→ νfm of N neutrinos
leads to

P (νfl
→ νfm) = δlm − 4

∑

i>j

ReJflfm
ij sin2∆ij

︸ ︷︷ ︸
PCP

−2
∑

i>j

ImJflfm
ij sin 2∆ij

︸ ︷︷ ︸
!!PCP

(1)

where the shorthands Jflfm
ij := UliU∗

ljU
∗
miUmj and ∆ij :=

∆m2
ijL

4E have been used. These



generalized vacuum transition probabilities depend on all combinations of quadratic
mass differences ∆m2

ij = m2
i − m2

j as well as on different products of elements of the
leptonic mixing matrix U . We will assume a three neutrino framework, i.e. 1 ≤ i, j ≤
3 and U is a 3 × 3 mixing matrix parameterized in the standard way

U =




c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13



 , (2)

where cij = cos(θij) and sij = sin(θij). U contains three leptonic mixing angles
and one Dirac-like leptonic CP phase δ. Note that the most general mixing matrix
for three Majorana neutrinos contains two further Majorana-like CP phases, but
it can easily be seen that these extra phases do not enter in the above oscillation
formulae. Disappearance probabilities, i.e. the transitions νfl

→ νfl
, do not even

depend on δ, since Jflfl
ij is only a function of the modulus of elements of U . Appearance

probabilities, like νe → νµ are therefore the place where leptonic CP violation can be
studied. Eq. (1) contains a CP conserving part PCP and a CP violating part !!PCP,
and both terms depend on the CP phase δ. An obvious extraction strategy for CP-
violation would thus be to look at CP asymmetries21). Note, however, that the beams
of a long baseline experiment traverse the Earth and the presence of matter violates
CP by itself. This implies modifications of eq. (1) and it makes a measurement of
leptonic CP violation more involved.

Eq. (1) leads to well known, but somewhat lengthy vacuum oscillation formulae
which many trigonometric terms. These expressions become even longer, and do not
exist in closed form, when arbitrary matter corrections are taken into account. For
effectively constant matter densities, which is often a good assumption, the problem
simplifies somewhat, but the general oscillation probabilities are still quite complex
expressions. The Hamiltonian which describes three neutrino oscillation in matter
can then be written in flavour basis as

H =
1

2Eν
U




m2

1 0 0
0 m2

2 0
0 0 m2

3



UT +
1

2Eν




A + A′ 0 0

0 A′ 0
0 0 A′



 . (3)

The first term describes oscillations in vacuum in flavour basis. The quantities A and
A′ in the second term are given by the charged current and neutral current contribu-
tions to coherent forward scattering in matter. The charged current contribution is
given by

A = ± 2
√

2GFY ρEν

mn
= 2V Eν , (4)

where GF is Fermi’s constant, Y is the number of electrons per nucleon, mn is the
nucleon mass and ρ is the matter density. A is positive for neutrinos in matter and
anti-neutrinos in anti-matter, while it is negative for anti-neutrinos in matter and



neutrinos in anti-matter. The flavour universal neutral current contributions A′ lead
to an overall phase which does not enter the transition probabilities. The over-all
neutrino mass scale m2

1 can be written as a term proportional to the unit matrix and
can similarly be removed, such that only ∆m2

21 and ∆m2
31 remain in the first term

of eq. (3). After re-diagonalization of the Hamiltonian in constant matter density
one finds that matter effects lead in a very good approximation to an A-dependent
parameter mapping in the 1-3 subspace which can be written as22)

sin2 2θ13,m =
sin2 2θ13

C2
±

, (5)

∆m2
31,m = ∆m2

31C± , (6)

∆m2
32,m =

∆m2
31 (C± + 1) + A

2
, (7)

∆m2
21,m =

∆m2
31 (C± − 1) − A

2
. (8)

The index m denotes effective quantities in matter, where

C2
± =

(
A

∆m2
31

− cos 2θ

)2

+ sin2 2θ . (9)

Note that A in C± can change its sign and the mappings for neutrinos and anti-
neutrinos are therefore different, resulting in different effective mixings and masses.
This is an important effect, which will allow detailed tests of coherent forward scat-
tering of neutrinos in matter. Note that oscillations in matter depend unlike vacuum
oscillations on the sign of ∆m2

31. This allows to extract the sign(∆m2
31) via matter

effects.
Inserting the parameter mappings eqs. (5)-(8) into the full oscillation formulae

leads still to quite lengthy expressions for the oscillation probabilities in matter, where
it is not easy to oversee all effects. It is therefore instructive to simplify the problem
further such that a qualitative analytic understanding of all effects becomes possible,
while quantitative statements should be evaluated numerically with the full expres-
sions. The key for further simplification is to expand the oscillation probabilities in
small quantities. These expansion parameters are α = ∆m2

21/∆m2
31 =O(10−2) and

sin2 2θ13 ≤ 0.16. The matter effects can be parameterized by the dimensionless quan-
tity Â = A/∆m2

31 = 2V E/∆m2
31, where V =

√
2GFne. The oscillation probabilities

for all channels can in this way be significantly simplified23). Using ∆ ≡ ∆31, the



leading terms for P (νµ → νµ) and P (νe → νµ) can, for example, be written as17,24,22)

P (νµ → νµ) ≈
1 − cos2 θ13 sin2 2θ23 sin2∆+2 α cos2 θ13 cos2 θ12 sin2 2θ23∆cos∆, (10)

P (νe → νµ) ≈ sin2 2θ13 sin2 θ23
sin2((1−Â)∆)

(1−Â)2

± sin δ · sin 2θ13 α sin 2θ12 cos θ13 sin 2θ23 sin(∆)
sin(Â∆) sin((1−Â)∆)

Â(1−Â)

+ cos δ · sin 2θ13 α sin 2θ12 cos θ13 sin 2θ23 cos(∆)
sin(Â∆) sin((1−Â)∆)

Â(1−Â)

+ α2 sin2 2θ12 cos2 θ23
sin2(Â∆)

Â2
, (11)

where “+” in eq. (11) stands for neutrinos and “−” for anti-neutrinos. The most
important feature of eq. (11) is that all interesting effects in the νe → νµ transition
depend crucially on θ13. The size of sin2 2θ13 determines thus if the total transition
rate, matter effects, effects due to the sign of ∆m2

31 and CP violating effects are
measurable. This is the reason why the size of θ13 is one of the most important
questions for future oscillation experiments.

Before we discuss some features of eqs. (10) and (11) in more detail, we would
like to comment on the underlying assumptions and the reliability of these equations.
First eqs. (10) and (11) are an expansion in terms of the small quantities α and
sin 2θ13. Higher order terms are suppressed at least by another power of one of these
small parameters and these corrections are thus typically at the percent level. Note
that the expansion in α is actually an expansion in the solar and not the atmospheric
frequency. The expansion does therefore not break down at the first atmospheric
oscillation maximum, i.e. at ∆ ! 1, but at much larger baselines before the first
(sub-dominant) solar oscillation maximum, i.e. at α∆ ! 1. The latter condition gives
an upper bound for the baseline where eqs. (10) and (11) are good approximations

L ! 8000 km

(
Eν

GeV

) (
10−4eV 2

∆m2
21

)
, (12)

while the first oscillation maximum sits at α · L ! L/30. Eqs. (10) and (11) are
therefore excellent approximations at and well beyond the first oscillation maximum
of long baseline experiments. The matter corrections in eqs. (10) and (11) are derived
for constant average matter density which is a good approximation.

Note that all quantitative results which will be presented are based on numerical
simulations in matter. The results are therefore not affected by any approximation.
Eqs. (10) and (11) will only be used to understand the problem analytically, which is
extremely helpful in order to oversee the multi-dimensional parameter space.



In addition to long baseline experiments, reactor experiments with identical near
and far detectors have an excellent potential for precise measurements. The near
detector is used to eliminate many common systematical errors and the far detector
is located typically at a baseline of a few kilometer. For these short baselines matter
effects can be ignored and one finds to second order in the small quantities sin 2θ13

and α for the oscillation probability

1 − Pēē = sin2 2θ13 sin2∆31 + α2∆2
31 cos4 θ13 sin2 2θ12 . (13)

At the first atmospheric oscillation maximum, ∆31 is approximately π/2 and sin2∆31

is close to one, which means that the second term on the right-hand side of this equa-
tion can be neglected for sin2 2θ13 " 10−3. The reactor measurement is dominated in
this case at short baselines by the product of sin2 2θ13 and sin2∆31, which must be
measured as deviation from one. Eq. (13) implies that correlations and degeneracies
play essentially no role in reactor experiments. The behavior in the sin2 2θ13-∆m2

21-
plane will also be different since eq. (13) is essentially independent of ∆m2

21. A reactor
experiment will improve the global parameter determination in two ways. First, a di-
rect, essentially uncorrelated and clean measurement for θ13

25) can be obtained which
can be used to disentangle the long baseline results. Secondly, the reactor measure-
ment can replace the cross-section suppressed anti-neutrino running of the accelerator
experiments, leading to statistical improvements in the neutrino measurements26).

3. Correlations and degeneracies

Eqs. (10) and (11) exhibit certain parameter correlations and degeneracies, which
play an important role in the analysis of long baseline experiments, and which would
be hard to understand in a purely numerical analysis of the high dimensional param-
eter space. The most important properties are:

• Eqs. (10) and (11) depend only on the product α ·sin 2θ12 or equivalently ∆m2
21 ·

sin 2θ12. This are the parameters related to solar oscillations which will be taken
as external input. Note that the product is better determined than the product
of the individual measurements of ∆m2

21 and sin 2θ12.

• Next we observe in eq. (11) that the second and third term contain both a factor
sin(Â∆), while the last term contains a factor sin2(Â∆). Since Â∆ = V L/2,
we find that these factors depend only on L, resulting in a “magic baseline” 27)

when V Lmagic = 2π, where sin(Â∆) vanishes. At this magic baseline only the
first term in eq. (11) survives and P (νe → νµ) does no longer depend on δ, α
and sin 2θ12. This is in principle very important, since it implies that sin2 2θ13

can be determined at the magic baseline from the first term of eq. (11) whatever
the values and errors of δ, α and sin 2θ12 are. For the given matter density of
the Earth we find Lmagic = 2π/V ! 8100 km which fits nicely into the Earth.



This value is quite amazing, since V is given in terms of completely unrelated
constants of nature like GF .

• Next we observe that only the second and third term of eq. (11) depend on the
CP phase δ, and both terms contain a factor sin 2θ13 · α, while the first and
fourth term of eq. (11) do not depend on the CP phase δ and contain factors
of sin2 2θ13 and α2, respectively. The extraction of CP violation is thus always
suppressed by the product sin 2θ13 · α and the CP violating terms are obscured
by large CP independent terms if either sin2 2θ13 ) α2 or sin2 2θ13 * α2. The
relative contribution of the CP phase δ to the probability is thus largest for
sin2 2θ13 ! 4θ2

13 ! α2.

• Another observation is that the last term in eq. (11), which is proportional to
α2 = (∆m2

21)
2/(∆m2

31)
2, dominates in the limit of tiny sin2 2θ13. The error of

∆m2
21 limits therefore for small sin2 2θ13 the parameter extraction. This last

term implies a finite transition probability even for θ13 = 0. Observing νe → νµ

or νµ → νe appearance transitions does therefore not necessarily establish a
finite value of θ13 = 0 in a three flavour framework.

• Eqs. (10) and (11) suggest that transformations exist which leave these equa-
tions invariant. Therefore degeneracies, i.e. parameter sets having identical
oscillation probabilities for a fixed L/E are expected. An example of such an
invariance is given by a simultaneous replacement of neutrinos by anti-neutrinos
and ∆m2

31 → −∆m2
31. This is equivalent to changing the sign of the second term

of eq. (11) and replacing α → −α and ∆ → −∆, while Â → Â. It is easy to
see that eqs. (10) and (11) are unchanged, but this is not a degeneracy, since
neutrinos and anti-neutrinos can be distinguished experimentally.

• The first real degeneracy28,29) can be seen in the disappearance probability
eq. (10), which is invariant under the replacement θ23 → π/2 − θ23. Note
that the second and third term in eq. (11) are not really invariant under this
transformation, but this change in the sub-leading appearance probability can
approximately be compensated by tiny parameter shifts. This implies that the
degeneracy can in principle be lifted with high precision measurements in the
disappearance channels.

• The second degeneracy can be found in the appearance probability eq. (11) in
the (δ − θ13)-plane30,31). In terms of θ13 (which is small) and δ the four terms
of eq. (11) have the structure

P (νe → νµ) ≈ θ2
13 · F1 + θ13 · (± sin δF2 + cos δF3) + F4 , (14)

where the quantities Fi, i = 1, .., 4 contain all the other parameters. The re-
quirement P (νe → νµ) = const. leads for both neutrinos and anti-neutrinos



to parameter manifolds of degenerate or correlated solutions. Having both
neutrino and anti-neutrino beams, the two channels can be used independently,
which is equivalent to considering simultaneously eq. (14) for F2 ≡ 0 and F3 ≡ 0.
The requirement that these probabilities are now independently constant, i.e.
P (νe → νµ) = const. for F2 ≡ 0 and F3 ≡ 0, leads to more constraint manifolds
in the (δ − θ13)-plane, but some degeneracies still survive.

• The third degeneracy32) is given by the fact that a change in sign of ∆m2
31 can

essentially be compensated by an offset in δ. Therefore we note again that the
transformation ∆m2

31 → −∆m2
31 leads to α → −α, ∆→ −∆ and Â → −Â. All

terms of the disappearance probability, eq. (10), are invariant under this trans-
formation. The first and fourth term in the appearance probability eq. (10),
which do not depend on the CP phase δ, are also invariant. The second and
third term of eq. (10) depend on the CP phase and change by the transforma-
tion ∆m2

31 → −∆m2
31. The fact that these changes can be compensated by an

offset in the CP phase δ is the third degeneracy.

• Altogether there exists an eight-fold degeneracy 29), as long as only the νµ → νµ,
ν̄µ → ν̄µ, νe → νµ and ν̄e → ν̄µ channels and one fixed L/E are considered. How-
ever, eqs. (10) and (11) also imply that the degeneracies can be broken by using
in a suitable way information from different L/E values. This can be achieved
in total event rates by changing or combining different L or E33,34,35), but it can
in principle also be done by using information in the event rate spectrum of a
single baseline L, which requires detectors with very good energy resolution17).
Another strategy to break the degeneracies is to include further oscillation chan-
nels in the analysis (“silver channels”)33,36).

The discussion of this section shows the strength of the analytic approximations,
which allow to understand the complicated parameter interdependence. It also helps
to optimally plan experimental setups and to find strategies to resolve the degenera-
cies.

4. The potential of future neutrino oscillation experiments

Building on the success of previous experiments, various plans for future projects
are under discussion. Some projects are even under construction or have already been
completed. It is interesting to explore where these experiments will bring us in the
determination of neutrino oscillation parameters in about ten years from now. It is
also interesting to look further into the future and to estimate the ultimate precision
which could be obtained.

The precision of quantities like sin2 2θ13 which is found form the simulation of
experiments will be presented in a way shown in fig. 1. The bands show how the initial
value, which is given by statistics alone (left edge of blue/dark grey band) deteriorates



by systematic errors, by parameter correlations (e.g. with the unknown or partly
known CP phase) and parameter degeneracies (due to trigonometric ambiguities). It
is important to note that a given experiment (or combination of experiments) typically
measures some parameter combination with a precision which is considerably better
than the final limit. This precision of the experiment is shown in fig. 1 as the right
edge of the blue/dark grey band. This precision might be called

(
sin2 2θ13

)
eff

, since
it expresses the precision if all other unknown parameters are fixed and no errors are
included. However, if one properly extracts a limit of sin2 2θ13 with all unknowns
properly taken into account, then one ends up at the right edge of the yellow/light
grey band. Distinguishing in this way between the precision and the sensitivity is
quite useful, since it also shows the room for improvement by combinations with
other similarly precise experiments with other parameter dependence.

Figure 1: The precision for sin2 2θ13 is shown in colored bands, where the left edge of the blue/dark
grey band shows the initial value which is obtained if only statistics is considered. The right edge of
the blue/dark grey band is the result after the systematic errors are included. This is the principal
precision of the experiment. However, the sensitivity for sin2 2θ13 deteriorates further due to param-
eter correlations and parameter degeneracies. The final value is the right edge of the yellow/light
grey band. The range covered by the green and yellow bands can lead to remarkable synergies when
this experiment is combined with another experiment with similar precision, but different parameter
dependence.

4.1. Next generation experiments

Future oscillation experiments can be grouped according to their time scale of
operation. The K2K experiment is already running and its results tests the leading
atmospheric oscillation already now. The MINOS experiment has recently started and
the CNGS projects is nearing the completion of construction. We include therefore in
our study the conventional next generation beam experiments MINOS37), as well as
the CNGS experiments ICARUS38) and OPERA39). We include also the subsequent
superbeam experiments J-PARC to SuperKamiokande (T2K)40) and NuMI off-axis
(NOνA)41), as well as new reactor neutrino experiments42) with a near and far detec-
tor. The main characteristics of these experiments are summarized in tab. 1. For the
reactor experiments we use the Double-Chooz proposal (D-CHOOZ)43) as initial stage



setup with roughly 6 × 104 events, and an optimized setup called Reactor-II, with a
slightly longer baseline and 6 × 105 events. Such a configuration could be realized
at several other sites under discussion42). The results presented in the following are
based on Ref.44), where more details on the analysis can be found. The simulations
of the experiments as well as the statistical analysis is performed with the GLoBES
software package45).

Label L [km] 〈Eν〉 trun channel
Conventional beam experiments:
MINOS 735 3 GeV 5 yr νµ→νµ,e

ICARUS 732 17 GeV 5 yr νµ→νe,µ,τ

OPERA 732 17 GeV 5 yr νµ→νe,µ,τ

Off-axis superbeams:
T2K 295 0.76 GeV 5 yr νµ→νe,µ

NOνA 812 2.22 GeV 5 yr νµ→νe,µ

Reactor experiments:
D-CHOOZ 1.05 ∼ 4 MeV 3 yr νe→νe

Reactor-II 1.70 ∼ 4 MeV 5 yr νe→νe

Table 1: Characteristics of the considered experiments.

A first interesting question concerns improvements of ∆m2
31 and sin2 θ23. In tab. 2

we show the precision which can be obtained in the future in comparison to the current
precision, as obtained from a global fit to SuperKamiokande (SK) atmospheric and
K2K long-baseline data15). The last row is the precision which can be obtained by
combining all experiments. We observe from these numbers, that the accuracy on
∆m2

31 can be improved by one order of magnitude, whereas the accuracy on sin2 θ23

will be improved only by a factor two.

|∆m2
13| sin2 θ23

current 88% 79%
MINOS+CNGS 26% 78%
T2K 12% 46%
NOνA 25% 86%
Combination 9% 42%

Table 2: Precision for |∆m2
31| and sin2 θ23 at 3σ for the values ∆m2

31 = 2× 10−3 eV2, sin2 θ23 = 0.5.

Tab. 2 depends on the value of ∆m2
31 which is shown in fig. 2. The sensitivity

suffers for all experiments for low values of ∆m2
31. T2K will provide a precise deter-

mination of ∆m2
31 at the level of a few percent for ∆m2

31 " 2 × 10−3 eV2. Although
NOνA can put a comparable lower bound on ∆m2

31, the upper bound is significantly
weaker, and similar to the bound from MINOS. The reason for this is a strong corre-
lation between ∆m2

31 and θ23, which disappears only for ∆m2
31 " 3× 10−3 eV2. From



the right panel of fig. 2 one can see that for ∆m2
31 ∼ 2×10−3 eV2 only T2K is able to

improve the current bound on sin2 θ23. One reason for the rather poor performance
on sin2 θ23 is the fact that these experiments are sensitive mainly to sin2 2θ23. This
implies that for θ23 ≈ π/4 it is very hard to achieve a good accuracy on sin2 θ23,
although sin2 2θ23 can be measured with relatively high precision46).

1 2 3 4
True value of !m2

31 [10-3 eV2]

-0.4

-0.2

0

0.2

0.4

Re
la

tiv
e 

er
ro

r a
t 2
"

1 2 3 4
-0.4

-0.2

0

0.2

0.4

SK
+K

2K

M
INOS

!m2
31-precision

1 2 3 4
True value of !m2

31 [10-3 eV2]
1 2 3 4

CNGS

SK
+K

2K
 exluded at 3"

MINOS
T2K

NO#ACNGS

NO
#A

T2K

SK+K2K current data

sin2
$23-precision

Figure 2: The precision of ∆m2
31 (left panel) and sin2 θ23 (right panel) as a function of the “true

value” of ∆m2
31 for θtrue

23 = π/4 (from Ref. 47)).

Another interesting question is if the next generation long baseline experiments
which will operate in the next years will be able to test the three flavourness of the
oscillations. The sensitivity to a finite value of the key parameter θ13 is shown in
fig. 3 for MINOS, OPERA and ICARUS. It can be seen that these experiments have
only a modest potential for improvements of the existing θ13 limit.

The combined sensitivity to sin2 2θ13 of the next-to-next generation experiments is
compared in the left panel of fig. 4 with new reactor experiments, T2K (JPARC-SK)
and NOνA (NuMI). It can be seen that the sin2 2θ13-limits from beam experiments
are strongly affected by parameter correlations and degeneracies, whereas reactor
experiments provide a “clean” measurement of sin2 2θ13, dominated by statistics and
systematics48).

The dependence of the sin2 2θ13-limit on the value of ∆m2
31 is shown in the right

panel of fig. 4, where the sensitivity of all experiments gets again rather poor for low
values of ∆m2

31. For ∆m2
31 ∼ 2×10−3 eV2 we find roughly an improvement by a factor

2 from conventional beam experiments (MINOS+ICARUS+OPERA combined), a
factor 4 from Double Chooz (D-CHOOZ), and a factor 6 from the superbeams T2K
and NOνA with respect to the current bound from global data15). Note that an
optimized reactor experiment such as Reactor-II has the potential for even better
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Figure 3: Left plot: The sensitivity of the MINOS experiment to θ13 as a function of the protons
on target (pot) assuming a 5% flux uncertainty. The dashed lines represent what 1,2 and 5 years of
operation might achieve (from left to right). Right plot: Comparison of 5 years of operation for the
MINOS and CNGS experiments. The grey area for large sin2 2θ13 indicates in all cases the current
limit from the CHOOZ experiment. The color code of the error bars is explained in fig. 1. Further
details can be found in 44).

sin2 2θ13-sensitivities than the superbeams (c.f. left panel of fig. 4).

4.2. Synergies

The previous discussion shows that complimentary and partly competing plans
with similar potential might be realized at the same time scale. This allows to com-
bine the statistics of similar experiments leading to improved global fits. However, it
is also possible to utilize synergies between experiments which are more than the sim-
ple combination of statistics. One aspect is here the fact that individual experiments
measure some parameter combinations with certain degeneracies and correlations.
Experiments with similar sensitivities, but with different correlations and degenera-
cies allow to separate the parameters partly or almost fully. An example of such a
discussion is given by combining the T2K and NOνA experiments for a fixed time of
operation in the best possible way. T2K is essentially insensitive to matter effects,
while matter effects play already some role for the longer NOνA baselines. Both
experiments could run partly with neutrino and partly with anti-neutrino beams. A
second synergy aspect lies in the cross-sections for anti-neutrinos, which are smaller
than neutrino cross-sections, leading to fewer events for the same running period. An
anti-neutrino running is moreover in many aspects like a different experiment, but it
is clear that anti-neutrino information is crucial in order to resolve the parameters. A
comparable reactor neutrino experiment would lead to two kinds of synergy, since it
could provide the required anti-neutrino information and it would allow in addition
T2K and NOνA to run (at least initially) fully in neutrino mode, with more events
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and therefore better statistics.
Such a synergetic combination would be especially interesting if sin2 2θ13 would be

close to the current bound. In order to demonstrate these synergy effects we assume
that sin2 2θ13 = 0.1 and investigate what we could be learned about the CP-phase
δ and the neutrino mass ordering. First we note that T2K, NOνA and the reactor
experiment will all be able to establish the non-zero value of sin2 2θ13. However,
depending on the unknown value of δ different values of sin2 2θ13 will be allowed. This
can be seen as allowed regions in the θ13-δ-plane shown in Figs. 8 and 9 of Ref.44).
None of the experiments on their own can give any information on the CP-phase δ
and on the mass hierarchy. The determination of sin2 2θ13 from beam experiments is
strongly affected by the correlations with δ, and especially for NOνA also correlations
with other parameters are important. Moreover, the inability to rule out the wrong
mass hierarchy leads to a further ambiguity in the determination of sin2 2θ13. In
contrast, since the ν̄e-survival probability does not depend on δ, Reactor-II provides
a clean determination of sin2 2θ13 at the level of 20% at 90% CL. If all experiments
are combined the complementarity of reactor and beam experiments allows to exclude
up to 40% of all possible values of the CP-phase for a given hierarchy. The wrong
hierarchy can be ruled out at a modest confidence level with ∆χ2 ! 3 due to matter
effects in NOνA. However, at high confidence levels all values of δ are allowed, and
moreover, even for a given hierarchy CP-conserving and CP-violating values of δ
cannot be distinguished at 90% CL. These results depend also to some extent on the
value of δ.

So far we have considered only neutrino running for the superbeams, since it is
unlikely that significant data can be collected with anti-neutrinos within ten years
from now. Nevertheless, it is interesting to investigate the potential of a neutrino-
anti-neutrino comparison. In fig. 5 we show the results from T2K+NOνA with 3



years of neutrinos plus 3 years of anti-neutrinos each (left), in comparison with the
case where the anti-neutrino running is replaced by Reactor-II (right). We find that
anti-neutrino data at that level does neither solve the problems related to the CP-
phase nor to the hierarchy. Still CP-violating and CP-conserving values cannot be
distinguished at 90% CL. Moreover, the determination of sin2 2θ13 is less precise
than from the reactor measurement. To benefit from anti-neutrino measurements a
significantly longer measurement period would be necessary, to obtain large enough
data samples. Given the fact that a reactor experiment is considerably cheaper than
the beam experiments, it would probably be better to compare 3+3 years beams
without a reactor experiment with 6 years of neutrino running of the beams plus a
reactor. The reactor experiment would provide a precise sin2 2θ13 measurement and
the beam experiments would collect more statistics by fully running in neutrino mode.
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Figure 5: Anti-neutrino running vs Reactor-II. We show the 90% CL (solid curves) and 3σ (dashed
curves) allowed regions in the sin2 2θ13-δ-plane for the assumed values sin2 2θ13 = 0.1 and δ = π/2.
The blue/dark curves refer to the allowed regions for the normal mass hierarchy, whereas the red/light
curves refer to the sgn(∆m2

31)-degenerate solution (inverted hierarchy), where the projections of the
minima onto the sin2 2θ13-δ-plane are shown as diamonds (normal hierarchy) and dots (inverted
hierarchy). For the latter, the ∆χ2-value with respect to the best-fit point is also given.

4.3. Long term perspectives

Beyond the discussed accelerator and reactor based oscillation experiments there
exist more ambitious projects like the JHF-HyperKamiokande project, beta beams
and neutrino factories. Such experiments clearly require further R&D both on the
accelerator as well as on the detector side before they can be built. However, assuming
current knowledge, we are quite certain that such setups are possible in the future.
In order to demonstrate the power of such setups we show the potential of the JHF-
HyperKamiokande experiment and a neutrino factory in fig. 6 in comparison to T2K
(JHF-SK) and NOνA. It can be seen that the existing limits can be improved by a



few orders of magnitude compared to now.
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Figure 6: Left plot: The θ13 sensitivity of different future accelerator based neutrino oscillation
experiments 20). Right plot: The θ13 values for which sensitivity to matter effects, i.e. sign(∆m2

31)
exists. The shown bands are again the reduction of sensitivity from a purely statistical limit (left
end of the dark grey/blue range) by systematics (right end of dark grey/blue), correlations (medium
grey/green) and degeneracies (light grey/yellow). The right end of the light grey(yellow) band
represents the final 90% CL limit. The grey area for large sin2 2θ13 indicates the current limit from
the CHOOZ experiment.

5. Theoretical implications and conclusions

One of the most interesting unsolved topics is the origin of of flavour and fermion
masses. There exist apparent regularities in the fermionic field content which make
it very tempting to introduce right-handed neutrino fields leading to both Dirac and
Majorana mass terms for neutrinos. Diagonalization of the resulting mass matrices
yields Majorana mass eigenstates and due to the see-saw mechanism very small neu-
trino masses. This can be nicely realized in embeddings of the SM into GUTs with
larger symmetries, such as SO(10). Before the discovery of large leptonic mixing,
many theorists expected the leptonic mixings to be similar to quark mixing, charac-
terized by small mixing angles. Experiment led theory in showing the striking results
that sin2 2θ23 ! 1 and tan2 θ12 ! 0.39, while θ13 is small. By finding two large mixing
angles, neutrino physics has already provided surprising and very valuable informa-
tion which severely constrains models of neutrino masses. Future neutrino oscillation
experiments will lead to very precise measurements which are also very valuable,
since they will provide precision tests of the flavour sector. The level of precision will
confirm or rule out many ideas about the origin of flavour and connected topics.

One topic is the small value of sin2 2θ13. Since there are two large mixing angles,
there is no particular reason to expect the third angle, θ13, to be extremely small
or even zero. A small value of sin2 2θ13 ! 0.1 could be a numerical coincidence in a



framework which predicts generically large or sizable mixings. However, if the limit
on sin2 2θ13 would become smaller by an order of magnitude then some protective
mechanism like a “symmetry” would be required. This can be seen in neutrino mass
models which are able to predict the large values for θ12 and θ23. Such models have
a certain tendency to predict a sizable value of θ13 as can be seen, for example,
in49,50,51,52,53,54). The conclusion is that a value of θ13 close to the CHOOZ bound
would be quite natural, while much smaller values are less likely or hard to understand.

Future precision measurements can also test if relations like θ23 = π/4 or θ12+θC =
π/4 which are currently fulfilled within experimental errors still hold at the percent
level or below. If so, then this would provide strong constrains on the origin of the
flavour structure. Precision is also valuable, even if such special relations are not
found. The point is that it is generally not easy to predict a set of very precisely
known masses and mixings in a certain model or class of models.

Neutrino masses and mixing parameters are also subject to quantum corrections
between low scales, where measurements are performed, and high scales where some
theory typically predicts the masses and mixings. This has interesting implications,
since it implies that certain deviations from special relations are expected due to
quantum corrections (renormalization group or RGE effects). Suppose, for example,
that some theory were able to predict θ13 ≡ 0. Then RGE effects would still predict
a tiny, but finite value at low energy. Strictly speaking, θ13 = 0 cannot be excluded
completely by this argument, as the high-energy value could be just as large as the
change due to running and of opposite sign. However, a complete cancellation of
this kind would be a miraculous fine-tuning, since the physics generating the value
at high energy is not directly related to quantum corrections at lower energies. The
strength of the running of θ13 depends on the neutrino mass spectrum and whether
or not supersymmetry is realized. For the Minimal Supersymmetric Standard Model
one finds a shift ∆ sin2 2θ13 > 0.01 for a considerable parameter range, i.e. one would
expect to measure a finite value of θ13

55). Conversely, limits on model parameters
would be obtained if an experiment were to set an upper bound on sin2 2θ13 in the
range of 0.01. In any case, it should be clear that a precision of the order of quantum
corrections to neutrino masses and mixings is very interesting in a number of ways.

Precision measurements would also allow very interesting tests of many other top-
ics, like MSW matter effects, three neutrino unitarity, neutrino decay, de-coherence
and NSI effects. There exists also an interesting interplay with theories beyond the
Standard Models, flavour models as well as astroparticle physics (leptogenesis, super-
novae, nucleosynthesis, structure formation). In summary, future precision oscillation
experiments will provide the best window into the so far un-understood flavour sector.
It may give us a glimpse on the origin of flavour, but it may also lead to unexpected
results and insights as it happened before in neutrino physics.
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