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Neutrino mass models predict masses and mixings typically at very high scales,
while the measured values are determined at low energies. The renormalization
group running which connects models with measurements is discussed in this paper.
Analytic formulae for the running which include both Dirac- and Majorana CP
phases are provided and they allow a systematic understanding of all effects. Some
applications and numerical examples are shown.

1. Introduction

The determination of neutrino masses and mixings has made enormous
progress in recent years. Furthermore it is expected that precision neu-
trino physics will become possible in the future such that the lepton sector
may ultimately provide the most precise information on flavour structures.
Already now exists enough information to try to understand the patterns
of masses and mixings in different models of flavour, but this will become
much more interesting in the future with growing precision. One class of
models is, for example, given by discrete flavour symmetries which might
emerge as unbroken subgroups of broken flavour gauge symmetries. There
are different reasons why the scale where an understanding of flavour be-
comes possible is very high. This has the consequence, that like in the quark
sector 1,2 renormalization group (RGE) effects must potentially be taken
into account when high energy predictions are compared with low energy
measurements. We will show that such RGE effects can be important and
that the pattern which needs to be explained at high energies may differ
substantially from that at low energies.
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2. Running below the seesaw scale

We will discuss neutrino masses which can be described by the lowest-
dimensional neutrino mass operator compatible with the gauge symmetries
of the Standard Model (SM). This dimension 5 operator reads in the SM

Lκ =
1
4
κgf "CL

g

cε
cdφd "f

Lbε
baφa + h.c. , (1)

and in its minimal supersymmetric extension, the MSSM,

L MSSM
κ = Wκ

∣∣
θθ

+ h.c. = − 1
4κgf

g
cε

cd (2)
d

f
b ε

ba (2)
a

∣∣
θθ

+ h.c. . (2)

κgf has mass dimension −1 and is symmetric under interchange of the gen-
eration indices f and g, ε is the totally antisymmetric tensor in 2 dimen-
sions, and "CL is the charge conjugate of a lepton doublet. a, b, c, d ∈ {1, 2}
are SU(2)L indices. and denote lepton doublets and the up-type Higgs
superfield in the MSSM. After electroweak (EW) symmetry breaking, a
Majorana neutrino mass matrix proportional to κ emerges as shown in
Fig. 1. The d=5 mass operator describes neutrino masses in a rather model-

EW symmetry−−−−−−−−−−→
breaking

Figure 1. The Majorana mass matrix for light neutrinos from the dimension 5 operator.

independent way to (see e.g. 3). Integrating out heavy singlet fermions
and/or Higgs triplets as for instance in left-right-symmetric extensions of
the SM or MSSM leads to tree-level realizations which are usually referred
to as type I and type II see-saw mechanisms. The energy dependence of
the effective neutrino mass matrix below the scale M1 where the operator
is generated is given by its RGE. At the one-loop level we have 4,5,6,7

16π2 dκ
dt

= C (Y †
e Ye)T κ + C κ (Y †

e Ye) + ακ , (3)

where t = ln(µ/µ0) and µ is the renormalization scalea and where

C = 1 in the MSSM and C = −3
2

in the SM . (4)

aIn the MSSM, the RGE is known at two-loop 8. In this study, we will, however, focus
on the one-loop equation.
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In the SM and in the MSSM, α reads

αSM = −3g2
2+2(y2

τ +y2
µ+y2

e)+6
(
y2

t +y2
b +y2

c +y2
s +y2

d+y2
u

)
+λ, (5a)

αMSSM = −6
5
g2
1 − 6g2

2 + 6
(
y2

t +y2
c +y2

u

)
. (5b)

Here Yf (f ∈ {e, d, u}) represent the Yukawa coupling matrices of the
charged leptons, down- and up-quarks, respectively, gi denote the gauge
couplingsb and λ the Higgs self-coupling. We work in the basis where Ye

is diagonal. The masses are proportional to the eigenvalues of κ and the
mixing angles and physical phases are given by the leptonic mixing matrix
9

U = V (θ12, θ13, θ23, δ) diag(e−iϕ1/2, e−iϕ2/2, 1) , (6)

which diagonalizes κ in this basis. V is the leptonic analogon to the CKM
matrix in the quark sector and we use the standard parameterization 10.

3. Analytical Formulae

In 11 explicit RGEs for the all physical parameters (including CP phases)
are given. ye and yµ are neglected against yτ and the expansion parameter

ζ :=
∆m2

sol

∆m2
atm

, (7)

is introduced, whose LMA best-fit value is about 0.03. We furthermore
define mi(t) := v2 κi(t)/4 with v = 246 GeV in the SM or v = 246 GeV·cos β
in the MSSM and, as usual, ∆m2

sol := m2
2 − m2

1 and ∆m2
atm := m2

3 − m2
2.

With these conventions, we obtain for the mixing angles:

θ̇12 = − Cy2
τ

32π2
sin 2θ12 s2

23
|m1 eiϕ1 + m2 eiϕ2 |2

∆m2
sol

+ O(θ13) , (8)

θ̇13 =
Cy2

τ

32π2
sin 2θ12 sin 2θ23

m3

∆m2
atm (1 + ζ)

× [m1 cos(ϕ1 − δ)

− (1 + ζ)m2 cos(ϕ2 − δ) − ζm3 cos δ] + O(θ13) , (9)

θ̇23 = − Cy2
τ

32π2
sin 2θ23

1
∆m2

atm

[
c2
12 |m2 eiϕ2 + m3|2

+s2
12

|m1 eiϕ1 + m3|2
1 + ζ

]
+ O(θ13) . (10)

bWe are using GUT charge normalization for g1.
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The O(θ13) terms in the above RGEs can become important if θ13 is not too
small and if cancellations appear in the leading terms. This is, for example,
the case for |ϕ1 −ϕ2| = π in (8). The RGE for the Dirac phase is given by

δ̇ =
Cy2

τ

32π2

δ(−1)

θ13
+

Cy2
τ

8π2
δ(0) + O(θ13) , (11a)

δ(−1) = sin 2θ12 sin 2θ23
m3

∆m2
atm (1 + ζ)

× [m1 sin(ϕ1 − δ)

− (1 + ζ) m2 sin(ϕ2 − δ) + ζm3 sin δ] , (11b)

δ(0) =
m1m2 s2

23 sin(ϕ1 − ϕ2)
∆m2

sol

+m3 s2
12

[
m1 cos 2θ23 sinϕ1

∆m2
atm(1 + ζ)

+
m2 c2

23 sin(2δ−ϕ2)
∆m2

atm

]

+m3 c2
12

[
m1 c2

23 sin(2δ−ϕ1)
∆m2

atm(1 + ζ)
+

m2 cos 2θ23 sinϕ2

∆m2
atm

]
. (11c)

The physical Majorana phases are given by

ϕ̇1 =
Cy2

τ

4π2

{
m3 cos 2θ23

m1s2
12 sinϕ1 + (1 + ζ) m2 c2

12 sinϕ2

∆m2
atm (1 + ζ)

+
m1m2 c2

12 s2
23 sin(ϕ1 − ϕ2)
∆m2

sol

}
+ O(θ13) , (12)

ϕ̇2 =
Cy2

τ

4π2

{
m3 cos 2θ23

m1s2
12 sinϕ1 + (1 + ζ) m2 c2

12 sinϕ2

∆m2
atm (1 + ζ)

+
m1m2 s2

12 s2
23 sin(ϕ1 − ϕ2)
∆m2

sol

}
+ O(θ13) . (13)

The above expressions can be further simplified by neglecting ζ against
1. Note that singularities can appear in the O(θ13)-terms at points in
parameter space, where the phases are not well-defined. For the masses,
the results for ye = yµ = 0 but arbitrary θ13 are

16π2 ṁ1 =
[
α + Cy2

τ

(
2s2

12 s2
23 + F1

)]
m1 , (14a)

16π2 ṁ2 =
[
α + Cy2

τ

(
2c2

12 s2
23 + F2

)]
m2 , (14b)

16π2 ṁ3 =
[
α + 2Cy2

τ c2
13 c2

23

]
m3 , (14c)

where F1 and F2 contain terms proportional to sinθ13,

F1 = −s13 sin 2θ12 sin 2θ23 cos δ + 2s2
13 c2

12 c2
23 , (15a)

F2 = s13 sin 2θ12 sin 2θ23 cos δ + 2s2
13 s2

12 c2
23 . (15b)
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These formulae lead to RGEs for the mass squared differences,

8π2 d
dt
∆m2

sol=α∆m2
sol+Cy2

τ

[
2s2

23

(
m2

2 c2
12−m2

1 s2
12

)
+Fsol

]
, (16a)

8π2 d
dt
∆m2

atm =α∆m2
atm+Cy2

τ

[
2m2

3 c2
13 c2

23−2m2
2 c2

12 s2
23+Fatm

]
(16b)

where

Fsol =
(
m2

1 + m2
2

)
s13 sin 2θ12 sin 2θ23 cos δ

+ 2s2
13 c2

23

(
m2

2 s2
12 − m2

1 c2
12

)
, (17a)

Fatm = −m2
2 s13 sin 2θ12 sin 2θ23 cos δ − 2m2

2 s2
13 s2

12 c2
23 . (17b)

4. RG Evolution of θ13, θ23, θ12

An interesting question is if deviations from θ13 = 0 and θ23 = π/4 at low
energies could be the consequence of radiative corrections. Therefore we
study RG corrections to θ13 and θ23 from the running of the effective neu-
trino mass operator between the see-saw scale and the electroweak scalec.

The corrections to θ13 are in a good approximation described by the
leading term which does not depend on θ13. Then θ̇13 % const. in Eq. (9),
i.e. a constant slope depending on the Dirac CP phase δ and the Majorana
phases ϕ1 and ϕ2. Assuming at some high scale M1 where neutrino masses
are generated θ13 = 0, Eq. (9) allows to determine the RG corrections at
102 GeV. For the examples we take M1 = 1012 GeV and the approximate
size of the RG corrections to sin2 2θ13 in the MSSM is shown in Fig. 2.
In the upper diagram it is plotted as a function of tanβ and the lightest
neutrino mass m1 for constant Majorana phases ϕ1 = 0 and ϕ2 = π. The
lower diagram shows the dependence of the corrections on ϕ1 and ϕ2 for
tanβ = 50 and m1 = 0.08 eV in the case of a normal mass hierarchy. The
diagrams look rather similar for an inverted hierarchy. Analytically, the
pattern of the upper plot is easy to understand, and for the lower one there
is a simple explanation as well. Consider partially or nearly degenerate
neutrino masses. Then Eq. (9) yields to a reasonably good approximation

θ̇13 ≈ Cy2
τ

32π2
sin 2θ12 sin 2θ23

m2

∆m2
atm

[cos(ϕ1 − δ) − cos(ϕ2 − δ)]

∝ sin
ϕ1 + ϕ2 − 2δ

2
sin

ϕ1 − ϕ2

2
. (18)

cThe potential of future long-baseline neutrino oscillation experiments to determine de-
viations from maximal νµ − ντ mixing was discusses in 12.
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This gives an understanding of the diagonal bands in Fig. 2, in particular
the white one corresponding to ϕ1 − ϕ2 = 0.

Planned reactor experiments 13 and next generation superbeam experi-
ments 14,15 are expected to have an approximate sensitivity on sin2 2θ13 of
10−2. From Fig. 2 we find that the radiative corrections exceed this value
for large regions of the currently allowed parameter space, unless there are
cancellations due to Majorana phases, i.e. ϕ1 = ϕ2. If so, the effects are
generically smaller than 10−2 as can be seen from the lower diagram. Future
upgraded superbeam experiments like JHF-HyperKamiokande have the po-
tential to further push the sensitivity to about 10−3 and with a neutrino
factory even about 10−4 might be reached.

From the theoretical point of view, one would expect that even if some
model predicted θ13 = 0 at the energy scale of neutrino mass generation,
RG effects would at least produce a non-zero value of the order shown
in Fig. 2. Consequently, experiments with such a sensitivity have a large
discovery potential for θ13. We should point out that this is a conservative
estimate, since if neutrino masses are e.g. determined by GUT scale physics,
model-dependent radiative corrections in the region between M1 and MGUT

contribute as well 16,17,18,19 and there can be additional corrections from
physics above the GUT scale 20. On the other hand, if experiments do not
measure θ13, this will improve the upper bound on θ13. Parameter space
regions where the corrections are larger than this bound will then appear
unnatural from the theoretical side.

Next we consider the RG corrections to θ23, where very interesting ques-
tions arise if θ23 turns out to be close to π/4. The deviation of θ23 from
π/4 might again be an effect of the RG running which induces a deviation
of θ23 from π/4. In order to understand the corrections we use the analyt-
ical formula (10) with a constant right-hand side in order to calculate the
running in the MSSM between MZ and the see-saw scale, where we take
again M1 = 1012 GeV for our examples. As initial conditions we assume
small θ13 at M1 and low-energy best-fit values for the remaining lepton
mixings and the neutrino mass squared differences. In leading order in θ13,
the evolution is of course independent of the Dirac phase δ.

The size of the RG corrections in the MSSM is shown in Fig. 3. From the
upper diagram it can be read off for desired values of tanβ and the lightest
mass eigenvalue m1 in an example with vanishing Majorana phases. The
lower diagram shows its dependence on the Majorana phases ϕ1 and ϕ2

for tanβ = 50, m1 = 0.1 eV and a normal mass hierarchy. The diagrams
look rather similar in the case of an inverted hierarchy. The effects of the
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Figure 2. Corrections to θ13 from the RG evolution between 102 and 1012 GeV in the
MSSM, calculated using the analytical approximations with initial conditions θ13 = 0
and LMA best-fit values for the remaining parameters. The upper diagram shows the
dependence on tan β and on the mass of the lightest neutrino for the case of a normal
mass hierarchy and phases ϕ1 = 0 and ϕ2 = π. In the lower diagram the dependence on
the Majorana phases ϕ1 and ϕ2 is shown for tan β = 50 and m1 = 0.08 eV. The contour
lines are defined as in the upper diagram.

Majorana phases can easily be understood from Eq. (10). In the region
with ϕ1 ≈ ϕ2 ≈ π, both |m2 eiϕ2 + m3|2 and |m1 eiϕ1 + m3|2 are small
for quasi-degenerate neutrinos, which gives the ellipse with small radiative
corrections in the center of the lower diagram. Such cancellations are not
possible with hierarchical masses, but the RG effects are generally not very
large in this case, as shown by the upper plot.

Even if a model predicted θ23 = π/4 at some high energy scale, we would
thus expect radiative corrections to produce at least a deviation from this
value of the size shown in Fig. 3, so that experiments with such a sensitiv-
ity are expected to measure a deviation of θ23 from π/4. The sensitivity
to sin2 2θ23 of future superbeam experiments like T2K is expected to be
approximately 1% (see e.g. 21). This can now be compared with Fig. 3.
We find that the radiative corrections exceed this value for large regions of
the currently allowed parameter space, where no significant cancellations
due to Majorana phases occur. This means that ϕ1 and ϕ2 must not be
to close to π. Otherwise, the effects are generically smaller as can be seen
from the lower diagram. Upgraded superbeam experiments or a neutrino
factory might even reach a sensitivity of about 0.5%. As argued for the case
of θ13, if experiments measure θ23 rather close to π/4, parameter combi-
nations implying larger radiative corrections than the measured deviation
will appear unnatural from the theoretical point of view.
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Figure 3. Corrections to θ23 from the RG evolution between 102 GeV and 1012 GeV in
the MSSM, calculated from the analytical approximation Eq. (10) with initial conditions
θ23 = π/4, small θ13 = 0 and LMA best-fit values for the remaining parameters. The
upper diagram shows the dependence on tanβ and on the mass m1 of the lightest
neutrino for the case of a normal mass hierarchy and phases ϕ1 = ϕ2 = 0. In the lower
diagram the dependence on the Majorana phases ϕ1 and ϕ1 is shown for the example
tan β = 50 and m1 = 0.1. Note that for small θ13 the results are independent of the
Dirac phase to a good approximation.

Next we discuss the RG Evolution of θ12. From Eq. 8 we see that
the running of the solar angle θ12 is proportional to (∆m2

sol)−1, while
the running of the other angles is proportional to (∆m2

atm)−1. There-
fore, ∆m2

sol) ( ∆m2
atm) explains why θ12 has generically the strongest RG

effects among the mixing angles, especially for for quasi-degenerate neu-
trinos and for the case of an inverted mass hierarchy. Furthermore, it is
known that in the MSSM the solar angle always increases when running
down from M1 for θ13 = 0 22. This is confirmed by our formula (8). From
the term |m1 eiϕ1 +m2 eiϕ2 |2 in Eq. (8), we see that a non-zero value of the
difference |ϕ1 − ϕ2| of the Majorana phases damps the RG evolution. The
damping becomes maximal if this difference equals π, which corresponds
to an opposite CP parity of the mass eigenstates m1 and m2. This is in
agreement with earlier studies, e.g. 23,24,25.

Let us now compare the analytical approximation for θ̇12 of Eq. (8)
with the numerical solution for the running in the case of nearly degenerate
masses, which is shown in Fig. 4. The dark-gray region shows the evolution
with LMA best-fit values for the neutrino parameters, θ13 varying in the
interval [0◦, 9◦] and all CP phases equal to zero. The medium-gray regions
show the evolution for |ϕ1−ϕ2| ∈{ 0◦, 90◦, 180◦, 270◦}, θ13 ∈ [0◦, 9◦] and δ ∈
{0◦, 90◦, 180◦, 270◦}, confirming the expectation of the damping influence
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of ϕ1 and ϕ2. The flat line at low energy stems from the SM running below
MSUSY, which is negligible.

2 4 6 8 10 12
log10 #Μ%GeV$

0

15

30

45

Θ 1
2
!°"

&&1"&2 &)180°
&&1"&2 &*'90° ,270° (

Θ12 #Μ$, no CP phases&&1"&2 &)0°
2 4 6 8 10 12

log10 #Μ%GeV$
0

15

30

45

Θ 1
2
!°"

Figure 4. RG evolution of θ12 in the MSSM with tan β = 50, a normal mass hierarchy
and m1 = 0.1 eV. The dark-gray region shows the evolution with best-fit values for the
neutrino parameters, θ13 ∈ [0◦, 9◦] and all CP phases equal to zero. The medium-gray
regions show the evolution for |ϕ1 − ϕ2| = 0◦, |ϕ1 − ϕ2| ∈ {90◦, 270◦} and |ϕ1 − ϕ2| =
180◦. They emerge from varying θ13 ∈ [0◦, 9◦] and δ ∈ {0◦, 90◦, 180◦, 270◦}. The light-
gray regions can be reached by choosing specific values for the CP phases different from
the ones listed above. The dashed line shows the RG evolution with |ϕ1 − ϕ2| = 0,
θ13 = 9◦ and δ = 180◦. Note that for the numerics we use the convention where θ12

is restricted to the interval [0◦, 45◦], so that the angle increases again after reaching 0.
The dotted line shows the evolution with |ϕ1 − ϕ2| = 90◦ and θ13 = 0◦.

In the case of large cancellations by phases, the O(θ13)-term in the
RGE turns out to be important. The dominant contribution to the next-
to-leading term is given by Υ where

Υ =
Cy2

τ

32π2

m2 + m1

m2 − m1
cos

(
ϕ1 − ϕ2

2

)
×

×
[
cos(2θ12) cos δ cos

(
ϕ1 − ϕ2

2

)
+ sin δ sin

(
ϕ1 − ϕ2

2

)]
· θ13 . (19)

Clearly, the RG evolution of θ12 is independent of the Dirac phase δ only in
the approximation θ13 = 0. The largest running, where θ12 can even become
zero, occurs for θ13 as large as possible (9◦), δ = π and ϕ1−ϕ2 = 0. In this
case the leading and the next-to-leading term add up constructively. It is
also interesting to observe that due to O(θ13) effects θ12 can run to slightly
larger values. The damping due to the Majorana phases is maximal in
this case, which almost eliminates the leading term. Then, all the running
comes from the next-to-leading term (19).
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In the inverted scheme, m1 ) m2 − m1 always holds, so that large RG
effects are generic, i.e. always present except for the case of cancellations
due to Majorana phases. For a normal mass hierarchy with a small m1, the
running of the solar mixing is of course rather insignificant.

Finally, we would like to emphasize that it is not appropriate to assume
the right-hand sides of Eq. (8) and Eq. (19) to be constant in order to
interpolate θ12 up to a high energy scale, since non-linear effects especially
from the running of sin 2θ12 and ∆m2

sol cannot be neglected here. This is
easily seen from the curved lines in Fig. 4.

5. RG Corrections to Leptogenesis Parameters

One of the most attractive mechanisms for explaining the observed baryon
asymmetry of the universe, ηB = (6.5+0.4

−0.8) · 10−10 26, is leptogenesis 27.
In this scenario, ηB is generated by the out-of-equilibrium decay of the
same heavy singlet neutrinos which are responsible for the suppression of
light neutrino masses in the see-saw mechanism. The masses of the heavy
neutrinos are typically assumed to be some orders of magnitude below the
GUT scale. Though the parameters entering the leptogenesis mechanism
cannot be completely expressed in terms of low-energy neutrino mass pa-
rameters, it is possible to derive bounds on the neutrino mass scale from
requiring successful leptogenesis 28. However, since leptogenesis occurs at
high temperatures and correspondingly at high scales, one cannot directly
use the low energy parameters and the RGE evolution has to be taken into
account. The neutrino masses experience corrections of about 20-25% in
the MSSM or more than 60% in the SM and we expect therefore sizable
corrections to the leptogenesis bounds. The maximal baryon asymmetry
generated in the thermal version of this scenario is given by 29,30,28

ηmax
B % 0.96 · 10−2 εmax

1 κf . (20)

κf is a dilution factor which can be computed from a set of coupled Boltz-
mann equations (see, e.g. 31). In 28, an analytic expression for the maximal
relevant CP asymmetry was derived,

εmax
1 (m1, m3, m̃1) =

3
16π

M1 m3

(v/
√

2)2

[
1−m1

m3

(
1+

m2
3−m2

1

m̃2
1

)1/2
]

(21)

which refines the older bound

εmax
1 (m1, m3) =

3
16π

M1

(v/
√

2)2
∆m2

atm +∆m2
sol

m3
(22)
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and is valid for a normal mass hierarchy in the SM as well as in the MSSM.d

m̃1 is defined by

m̃1 =
(m†

DmD)11
M1

(23)

with mD ∼ Yν being the neutrino Dirac mass and typically lies between
m1 and m3. It can be constrained by the requirement of successful lep-
togenesis because it controls the dilution of the generated asymmetry.
The authors of 28 introduced the ‘neutrino mass window for baryogenesis’
which corresponds to the region in the m̃1-M1 plane allowing for successful
thermal leptogenesis. The shape and size of the ‘mass window’ depends
on m =

√
m2

1 + m2
2 + m2

3, i.e. it becomes smaller for increasing m, and
m ≥ 0.2 eV is not compatible with thermal leptogenesis.

The calculations relevant for leptogenesis, however, refer to processes at
very high energies, and therefore the RG evolution of the input parameters
has to be taken into account 32. The size of the error arising if RG effects are
neglected has been estimated in 11. It was found that there are two effects
in opposite directions: The CP asymmetry is enhanced because the mass
squared differences increase, and the dilution of the baryon asymmetry is
more effective since the overall mass scale rises due to RG effects. As the
dependence of the dilution factor on the mass scale is stronger than that of
the CP asymmetry, it is expected that the mass window for baryogenesis
shrinks when RG effects are included in the analysis. An exception is the
case of large tanβ, where the situation is more complicated.

There exist also different other, non-thermal baryogenesis mechanisms
35 in which the masses of the light neutrinos may be almost degenerate 36.
In these kinds of scenarios, RG effects increase the baryon asymmetry, since
ε1 increases, while the effects from the expected decrease of the dilution
factor do not occur.

6. Conclusions

We discussed the RG running of neutrino parameters. Analytical solutions
of the running mixings and masses were presented and phenomenologiacl
consequences were discussed for leptogenesis. Further phenomenological is-
sues and possibilities as, for example, the radiative generation of CP Phases,

dTo use these formulae in our conventions for the inverted scheme, one would have to
replace (m1, m2, m3) → (m3, m1, m2).
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are discussed in 11. Running above the see-saw threshold leads also to im-
portant effects and this will be discussed in a forthcoming paper.
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