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ABSTRACT

The renormalization group running of neutrino masses, mixing angles and CP
phases is discussed, including analytical formulae for the Standard Model and
MSSM. Several applications are presented, in particular consequences for the po-
tential of future precision measurements of θ23 as well as the stability of texture
zeros against radiative corrections in the see-saw scenario.

1. Introduction

Renormalization group (RG) effects are important for testing models for fermion

masses and mixings, since they cause an energy dependence of all quantities of a the-
ory. Thus, model predictions, which are typically obtained at a very high energy scale,

cannot be compared to experimental data unless the RG evolution or running is taken
into account. We discuss this effect in the lepton sector and study the running of the

mixing angles and CP phases as well as the neutrino mass eigenvalues.

2. Analytical Understanding of the Running below the See-Saw Scale

At energies below the scale of new physics that generates neutrino masses, massive

neutrinos can be incorporated into the Standard Model (SM) or MSSM in a model-
independent way by including an effective dimension 5 mass operator with coupling con-

stant κ, which is related to the Majorana mass matrix of the light neutrinos by mν = −v2

4
κ.

Then the running of neutrino masses and mixings is determined by the RG equation [1–4]

16π2 dκ

dt
= C (Y †

e Ye)
T κ + C κ (Y †

e Ye) + α κ , (1)

where C = −3
2

in the SM, C = 1 in the MSSM, and t := ln(µ/µ0) with the renormalization

scale µ and an arbitrary energy scale µ0. The first two terms contain the matrix of charged
lepton Yukawa couplings Ye and thus distinguish between the generations. Hence, they

are responsible for the running of the mixing parameters. We work in the basis where Ye

is diagonal. The quantity α contains gauge and Yukawa couplings as well as the Higgs

self-coupling in the SM. As it consists only of real numbers, it is flavour-blind. Thus, it
influences the running of the mass eigenvalues but not that of the mixings.

In order to calculate the evolution of the neutrino mass matrix, Eq. (1) is not sufficient,
since all the couplings it contains are running quantities themselves. Hence, one needs to
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solve a rather complex system of coupled differential equations, which can only be done
numerically. Nevertheless, it is possible to gain an analytic insight into the running of

the neutrino masses and mixings by employing suitable approximations. To this aim,
Eq. (1) can be translated into differential equations for these quantities [5–7]. In the limit

ye, yµ � yτ and θ13 � 1, they become very simple. For example, the RG equations for
the mixing angles are [7]

θ̇12 = − Cy2
τ

32π2
sin 2θ12 s2

23

|m1 eiϕ1 + m2 eiϕ2 |2
∆m2

�
+ O(θ13) , (2)

θ̇13 =
Cy2

τ

32π2
sin 2θ12 sin 2θ23

m3

∆m2
a (1 + ζ)

×
× [m1 cos(ϕ1 − δ) − (1 + ζ)m2 cos(ϕ2 − δ) − ζm3 cos δ] + O(θ13) , (3)

θ̇23 = − Cy2
τ

32π2
sin 2θ23

1

∆m2
a

[
c2
12 |m2 eiϕ2 + m3|2 + s2

12

|m1 eiϕ1 + m3|2
1 + ζ

]
+ O(θ13) . (4)

All expressions are multiplied by a numerical factor and the tau Yukawa coupling.
Their product is of the order of 10−6 tan2 β in the MSSM. Hence, the change of the mixing

angles is very small in the SM and in the MSSM for a small tan β. If tanβ is large, a
fast running still requires some enhancement from the other terms, which can stem from

those involving the mass eigenvalues, provided that the absolute neutrino masses are large
enough. In this case, the CP phases become important, since they can damp the running.

This happens for non-zero Majorana phases ϕ1, ϕ2 in the case of θ12 and θ23, while the
running of θ13 is maximally damped if all phases are zero. Generically, the change of the

solar angle is largest, since θ̇12 is proportional to 1/∆m2
�, while the larger atmospheric

mass squared splitting appears in the denominators of θ̇13 and θ̇23.

The RG evolution of the neutrino masses mi (i = 1, 2, 3) is determined by

ṁi =
mi

16π2

(
α + Cy2

τ Fi

)
, (5)

where the functions Fi depend on the mass eigenvalues, the mixing angles and the Dirac
phase δ. As the flavour-blind term α contains large quantities like the top Yukawa cou-

pling, it usually dominates the running, except in the MSSM with a large tanβ. This
results in a common rescaling of all three masses. They increase by about 10% to 25% in

the MSSM, and by up to 80% in the SM [7].

3. Applications

Planned oscillation experiments will yield a significantly more precise measurement of

the lepton mixing angles, see e.g. [8–10]. This means that even small radiative corrections
to these parameters could be interesting. As an example, let us consider the running

of θ23 under the assumption that it is exactly maximal at a very high energy scale,
possibly due to some symmetry [7,9]. The resulting change is shown in Fig. 1. The gray-

shaded regions mark those parts of the parameter space where the expected experimental
uncertainty is smaller than the RG change, with the lightest region requiring the most
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Figure 1: Corrections to sin2 θ23 caused by the RG evolution from 2 · 1016 GeV to 100 GeV in the MSSM
with a normal mass hierarchy. The initial conditions were θ23 = π/4, θ13 = 0 and the best-fit values for
θ12 and the mass squared differences. The left diagram shows the dependence on tanβ and on the mass
m1 of the lightest neutrino for vanishing Majorana phases. In the right diagram, the dependence on the
Majorana phases ϕ1 and ϕ2 is displayed for m1 = 0.075 eV and tan β = 50. The contour lines correspond
to the sensitivities of planned experiments as given in [9], ∆sin2 θ23 = 0.02, 0.05, 0.08 and 0.1.

sensitive experiment. As these regions cover a significant part of the parameter space,
we expect precision experiments to have a good potential to discover deviations from

maximal atmospheric mixing and to provide valuable input for neutrino mass models.
The evolution of the neutrino mass eigenvalues has to be applied when calculating

the size of the baryon asymmetry generated by leptogenesis, for instance. As the relevant

processes occur at high energies, the running of the input parameters, which include
the neutrino masses, has to be considered [7, 11]. In thermal leptogenesis, there are two

competing effects: while the maximal CP asymmetry in the decays of the singlet neutrinos
increases with increasing masses, the efficiency factor decreases. In numerical studies, it

was found that the second correction is usually larger, so that the upper bound on the
mass of the light neutrinos becomes stronger due to RG effects [12, 13].

4. Stability of Texture Zeros in the Type I See-Saw Scenario

In the type I see-saw scenario, the RG evolution exhibits new effects in the energy
region above the mass scale of the heavy singlet neutrinos. There the masses and mixings

of the light neutrinos are determined by the neutrino Yukawa couplings Yν and the singlet
mass matrix M via mν = −v2

2
Y T

ν M−1Yν . The RG equation for mν has the same form as

Eq. (1), but with additional terms proportional to Y †
ν Yν , which in general are non-diagonal

in the basis where Ye is diagonal. These terms can cause a significant running, since Yν

may have large entries.
An application of this concerns texture zeros in the neutrino mass matrix. If these

are realized at very high energy, they are removed by the RG evolution provided that
Yν is not diagonal. Therefore, textures which have been classified as incompatible with

experimental data [14,15] can be reconciled with the data [16]. A rather extreme example
is shown in Fig. 2, where the correct low-energy values of the lepton mixing angles are

generated from vanishing mixings, i.e. a diagonal neutrino mass matrix, at high energy.
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Figure 2: Running from vanishing lepton mixings at 1016 GeV to the LMA solution at low energy. We
used the MSSM with tanβ = 50 and a SUSY breaking scale MSUSY = 1 TeV.

However, the usual classification of forbidden and allowed textures is valid for hierarchical
neutrino masses and for Majorana phases significantly different from 0 and π.
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