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ABSTRACT

Predictions for the masses My and My arise in models, where the Higgs bo-
son is a fermion—anti-fermion bound state. One type of prediction stems from
Pagels—Stokar relations based on the use of Ward Identities in the calculation
of the Goldstone Boson decay constants and expresses My and My in terms of
integrals containing the dynamically generated mass functions X;(p?). Another
type of prediction emerges from the renormalization group equations via infrared
quasi—fixed—points of the running Yukawa couplings. Especially for a high scale
of new physics A both methods should become rather precise and it 1s unclear
which method is better. We exemplify for the BHL model of top condensation
that these two methods lead to the same predictions for My and My in lowest
loop order.
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1. Introduction

A composite Higgs sector might solve the theoretical problems of scalars in the
Standard Model. One possibility is that the Higgs particle is essentially a fermion—
anti-fermion bound state explaining naturally why some Yukawa couplings are of
order unity. Instead of fundamental scalars one needs therefore suitable interactions
capable of forming a scalar condensate and an effective scalar sector which describes
the symmetry breaking in analogy to the Ginzburg—Landau description of supercon-
ductivity. A nice realization of such ideas is top condensation'?, as e.g. realized in
the so—called BHL model '. We use this model to demonstrate the consistency of dif-
ferent methods to determine the W and Higgs masses. The BHL Lagrangian consists
just of the kinetic parts of the ordinary quarks, leptons and SU(3). x SU(2)r, x U(1)y

gauge fields and a new attractive four—fermion interaction. The BHL Lagrangian is
Lprr = Lrinetic + GLtptrl | (1)

where Lpinetic contains the kinetic terms for all gauge fields, quarks and leptons.
LT = (t1,b1) is the third generation doublet of quarks containing the left-handed
top and bottom fields and ¢g is the right-handed component of the top quark. The
symmetry breaking of the BHL model by loop effects with a high energy cutoff A
can be studied in the large N. limit (where N. is the number of colors) in analogy
to Nambu—Jona-Lasinio (NJL) models. For G > G., = 87*/N.A? the gap equation
is found to be critical and a top condensate emerges. The breakdown of global
symmetries by this condensate implies the existence of composite Goldstone Bosons.
In the NJL-treatment of the BHL model these Goldstone Bosons are found as massless
poles in fermion scattering amplitudes along with a composite Higgs particle of mass
2my. It turns out that this set of composite scalar fields is equivalent to the usual
Standard Model Higgs doublet ¢ with a non—vanishing vacuum expectation value
(VEV). The symmetry breaking is thus more or less identical to the Standard Model.
The composite Goldstone Bosons are therefore eaten exactly as in the Standard Model
and produce the usual W and Z mass relations.

When the W mass is calculated in large N. approximation in terms of the top
mass ' then one finds for N. = 3

2 2
MI%V = m? 392 In (A—z) . (2)

322 m;

Low values of A lead to a phenomenologically unacceptable large top mass and one
is thus forced to large A which requires however a fine—tuning of G — G,. Since
the ratio My /m, is so crucial for the phenomenological viability one should study
improvements of the above large N, relation. Using Ward Identities one can derive



the so—called Pagels—Stokar formulae which can also be obtained directly by inserting
running masses into the derivation of eq. (2). Another possibility is to use immediately
the Standard Model as the effective low—energy theory of BHL. This gives constraints
on the running of the Standard Model top Yukawa coupling ¢;, which determines the
top mass. In the following we will discuss how these two approaches are related and
we will see that the two methods give the same results.

2. Compositeness and the Renormalization Group

Using the auxiliary field formalism we can rewrite the four—fermion coupling term
of eq. (1) with the help of a static, non propagating, scalar doublet ¢ := —GTgL of

mass G~! such that the Lagrangian eq. (1) becomes *

Eaux — Ekinetic - ISOtR - fRS‘QTL - G_IS‘QTS‘Q . (3)

The dynamics of the original model generates further terms in the Lagrangian which
depend on this scalar field ¢. For large cutoff A only renormalizable terms are allowed
in the effective Lagrangian such that we obtain

oA 2 _ B
Eeff = Eaux’—l_Z@ (DMS‘Q)T (DMS‘Q)—I_&MzS‘QTS‘Q_? (S‘QTS‘Q) _5915 (LS‘QtR + tRS‘QTL) +5£kinetic .
(4)

Note that symmetry breaking occurs when §M? > G~! which is achieved for G' >
G Having the Wilson renormalization group approach in mind we can immediately

read off those conditions which express the composite nature of the effective scalar
Lagrangian Z, e 0, 6M* i 0, and oA ey 0. This expresses simply the
fact that all dynamical effects must disappear as the momentum approaches the scale
of new physics. Additionally we have the normalization conditions ég¢; il S 0 and
OL kinetic p2_>—¥ 0. We can now use the freedom to rescale the scalar field ¢ by defining

¢ = \/% such that the Lagrangian becomes®

Av? A 2 _ _
Loty = Lhinesic + (D) (D"6) + 60 — 5 (6'¢) — g (Totr+irs'L) . (5)

. 2 2_ =1 .
Here we introduced % = %, A= g—é and ¢, = 22 and the effective La-
¥ © W/ZQO

grangian has now become the Standard Model. From the definition of ¢;, A and v we
see that the conditions of compositeness are

)\ 2 )\ 2Y,,2( 02
lim g 2(%) =0, lim 4(19) _o. (pzv () _
pP—A2 p2—A2 gi(p?) Az 207 (p?)

_G_l ’ (6)

“We ignore the fermionic wave function contribution as it does not play any role for the constituent
conditions.



where A corresponds to the high energy cutoff of the BHL—model.

These compositeness conditions must obviously be fulfilled in any sensible non—
perturbative treatment of the dynamics like the bubble approximation. Especially
for large A one may impose the compositeness conditions directly on the running
parameters of the effective Lagrangian (the Standard Model). Conditions (6) lead
thus to constraints on the renormalization group equations of the Standard Model
. Using the full one-loop S—functions * these conditions can be studied numerically,
but if we restrict ourself to lowest order 1/N, including the QCD-running we can
study the boundary conditions (6) analytically. The g—functions for N. = 3 are in
this approximation

d 2 1 2 2 2

Egt = (47 )2 (6% - 1693) 9t s (7)
d, 14

EgS - (47T)293 ’ (8)

and using eq. (6) as boundary condition we find the solutions

16/7
th(pz) = 2/7 9 : (p22)/7
313" (p?) — g3 ()]
g5(M3)
14g3(M7) , 7

1+ o t

, (9)

93(p*) (10)

where ¢ = 2 1n ]\72—2%. Thus m; = g/(M2)v/\/2 with v = 246 GV is predicted by eq. (9)
in terms of A and g3(A?). In addition eq. (10) must be used to express g3(A?) by A
and the known experimental input as(M%) = g3(M%) /47 = [0.115 — 0.125].

The predicted top mass is the so called “infrared quasi—fixed-point”. This means
that the resulting top mass depends for large A only extremely mildly on the precise
boundary condition at A. This mild sensitivity can be seen explicitly by demanding
g7 2 =A% § with e.g. |6] < 77! instead of g;? =), Alternatively one can see that
the prediction for the top mass depends only extremely weakly on A when ¢3(A?) in
eq. (9) is expressed by asz(M%) via eq. (10).

The predictions from this renormalization group method should become more
precise as A becomes larger. The reason is that the infrared quasi—fixed—point is
more attractive for large scales and that other effects like thresholds etc. should
become less important compared to the renormalization group running. When using
this renormalization group techniques one should however keep in mind that one



assumes quietly that there are no further bound states in the spectrum?

3. Predictions from Pagels—Stokar Formulae

The dynamically generated W -mass is determined by the eaten composite Gold-
stone modes. The Goldstone Boson decay constants are essentially given by the
fermion—loop self energies of the condensing fermion while the other contributions are
strongly suppressed. Using Ward Identities the W—mass can be calculated in terms
of the momentum dependent mass function of the top quark ¥,(p*) with Euclidean
momentum p. This leads to the well known Pagels—Stokar formula %6

A2
39; S (%)
Mz, = 29 /d%—l———, 1

= aure | Vs )

where ¥,(p?) is the solution of the gap (Schwinger-Dyson) equation which contains
the dynamics of the new interaction at the scale A .We define the top mass at an
Euclidean scale My by

my = Y (M2) . (12)

Now, interpreting the Standard Model as an effective description, we identify the
masses of the top condensation model with their Standard Model definitions. For
the W-mass we have My = gov/2, the running of 3, should be connected to the
corresponding renormalization group of the effective top—Yukawa coupling. A naive
approach for the top mass function therefore leads to

&@ﬁzgfgv, (13)

and we get from the following constituent condition from eq. (11):

_ 3 2 9/(P)
| = /@pQ . (14)

For large A we can neglect the low energy behavior of g,(p*) and replace ¥, in the
denominator by an infrared cutoff of the electro-weak scale:

3 9i(p*) ;
MﬂQ/ =1 (15)

If the running of ¢; is fixed by the renormalization group then eq. (15) constitutes
a top mass prediction since it can be used to determine the single free boundary

’Or equivalently that all other states have mass A such that they do not contribute to the running.



condition. As both the infrared quasi—fixed—point prediction eq. (9) and our new
prediction eq. (15) should become more precise for large A one should expect that

both results are consistent or at least approximately consistent. But inserting eqs. (9)
and (10) into eq. (15) leads to

3 9 (p*) 3 dg
il e S B e (16)

i.e. this consistency of the two predictions appears badly violated. The solution
to this problem can be found in the scale dependence of ¥;. The renormalization
group equation describes the change of the couplings corresponding to a simultaneous
rescaling of all the outer momenta. But the contribution to ¢; which stems from the
Higgs line cannot contribute to }; because there is no momentum flow into the Higgs
leg which ends in the vacuum. To describe this situation correctly we introduce a
new running coupling constant ¢; which is defined by

v
Y =Gi—= 17

t gt\@ ( )

and does not contain wave function corrections of the Higgs (see fig. 1). The

"
Ogt
i —O-O-O— ¢ t —O-O0-O— ¢

Fig. 1. Quantum corrections to ¢; and g;.

v
0

connection between ¢; and ¢; can be seen more clearly if we keep in mind that ¢; is
a three point function with two independent momenta. Let g;(p*, ¢*) be the Yukawa
coupling for parallel®incoming top momentum p and Higgs momentum ¢.Then ¢; and
g: describe the renormalization group running with respect to different momentum
arguments:

a(P®) = g’ p"), (18)
a(p?) = &p’, M) . (19)

This naturally implies §,(M%) = ¢,(M7%) such that the wave function of the Higgs
field is normalized to one at the scale of the Higgs mass.

“Angles between p and ¢ will not be important for our purposes.



w

gt

2 4 6 8 10 12 12 16
log(p[GeV])

Fig. 2. g; and §; for g2(M2) = 1.52 and A = 1017GeV.

The renormalization group equation describes the running of ¢;. Eq. (7) may in

fact be derived by calculating

d d

91 =0 g/((op)*, (op)") (20)
from the relevant diagrams. Similarly we may formally define a corresponding renor-
malization group equation for the newly defined quantity ¢; and calculate the corre-
sponding f—function in large N.—limit

d d -, 2 ar2 1 2\ ~2

59t = oo~ &i((op)", Mz) = (172 (—1643) 7 - (21)
We solve eq. (21) using the boundary condition §;,(M%) = ¢,(M%) with g,(M%) defined
by eq. (9) and obtain

" (r?)
~2/ 2
9:(p") = : (22)
3o (M3) — 43" (A%)
If we insert this result instead of ¢; into the left hand side of eq. (15) we find
A2 93(M7)
3 g, . 3 _,dg
dp” = = g—==1. (23)
| = |
(47) V2 p 52(12) 93

Hence the Pagels—Stokar condition is fulfilled if we use correctly g; instead of g;.
Eq. (15) must be written therefore correctly as

A2
3 g(?)
dp” =1 24
(471')2 ]\4‘/2 p2 p 9 ( )
Z

7



and the Pagels—Stokar formula is then in perfect agreement with the corresponding
renormalization group running.

There is a nice way to see this consistency of eq. (24) without explicitly inserting
eq. (22). Consider the evolution of ¢7/g;:

dg (59 59\ 4
Pl B e al B 2 (25)
dt g; 9i 9 ) 9
If we insert then eq. (7) and eq. (21) into eq. (25), we obtain immediately
d g? 6

/i . 2
dt ¢ (471')2% (26)

According to fig. (1) this equation involves only the wave function correction of the
Higgs sector and at one loop level this is just the single diagram in fig. (3).

H-->--©->-- H

t
Fig. 3. Higgs self energy diagram.

Integrating eq. (26) leads to:

dp?
— / 2 (27)
M2 47r

Since the compositeness condition requires a pole for ¢g; while eq. (21) implies that g
tends to zero we find that g?/¢? goes to zero at A. Together with the normalization
condition ¢:(Mz) = g:(Myz) one obtains therefore exactly the result eq. (23) without
making use of explicit solutions of the renormalization group equations. In this way
we can even add other terms or new interactions which contribute to ¢; and §; but
do not change the Higgs wave function.

It is interesting that the W-—mass generated by a single top—loop is consistent
with the renormalization group method using only the graph in fig. (3). This can
be understood by considering that the W-mass is connected to the Goldstone Boson
wave function by gauge symmetry. Since custodial SU(2) symmetry is just broken
by finite terms, the logarithmically divergent pieces of the Goldstone Boson wave
function and the Higgs wave function must be identical. Only these logarithmically
divergent terms contribute to the renormalization group equation.

4. The Quartic Higgs Coupling

The techniques of the last sections can also be applied to the Higgs mass and the
quartic Higgs coupling A. The renormalization group equation for A is in large N.



approximation

d 12
—\ = A —g7) . 2
dt (47T)2.gt( gt) ( 8)

Note that the term proportional to A? is missing because it is suppressed by 1/N..
Using the compositeness conditions eq. (6) and the above result for ¢; the running A
is

18/7 18/7
2[00 — (A
27 (67 (p?) = /(A1)

Ap*) = (29)

As in the case of the top Yukawa coupling we define a coupling X which does not
contain any Higgs wave function corrections (see fig. (4)):

gt
A= A= 30
/i (30)
so that the renormalization group equation for )\ reads
d 12

i (47T)29t . (31)

Fig. 4. Quantum corrections to A, X and Tg.

We find therefore

A2 A2 A2

d . dp? 6 L4 dp?
_ A / P 2
y /ﬁ<5p e 0 (32)
Z M2

Z

~ g4
AM3) = A%

Now we have to introduce the Standard Model Higgs mass definition. The Higgs
mass function Yy (p?) which corresponds to fig. (4c) involves twice the coupling ¢
and twice ¢;. Expressed in A this means:

21211(}?2) — )\gtz(pz)v2 . (33)



With our normalization condition ¢;(M%) = ¢,(M%) insertion of this mass function
into eq. (32) leads to:

A2
12 . dp?
My = S5 (M3) = (1r) / gfzf(PQ)p—z : (34)
M7

This is a corresponding Pagels—Stokar formula for My which was also found by
V. N. Gribov 7 for a specific case. One can directly evaluate this formula in analogy
to the Pagels—Stokar calculations of the W—mass using the top—loop diagram with
four outer Higgs lines. The outer momenta are kept at the infrared cutoff so that the
Yukawa couplings can be replaced by the running §; to improve the diagram. In this
way one arrives at eq. (34).

We have demonstrated that the renormalization group equations lead to the same
result for My and M as the direct calculation via Pagels—Stokar formulae. Moreover
the behavior of A and ¢, at the scale A shows the real power of the renormalization
group analysis for top condensation models in the following calculation. The ratio of
the running Higgs and top mass squared is defined by

5% _ APt )  4[e” 00 - 6N (35)
S gy a0 9g® () [0 () — 63T (M)
One can easily find the square root of this ratio in the limit p? — AZ%:
2

p21_r>rllx2 Zt(p2)

which is precisely what we expect: The binding energy goes to zero at the conden-
sation scale so that the bound states do not exist above A. This result requires the
1/N.~expansion and does not hold in the one-loop Standard Model, which does not
respect that expansion.

5. Conclusions

We exemplified in this paper for the BHL model connections between two tech-
niques which predict mass ratios m;/Myw and My /My in composite Higgs models
with an effective scalar sector. Since the techniques which are applied in this paper
are rather general we believe that our results are much more generally valid in com-
posite Higgs models with effective Yukawa and Higgs couplings. For a large scale
of new physics A both predictions which arise from infrared quasi-fixed—points of
the renormalization group running of the effective Yukawa coupling and from using
Pagels—Stokar relations which are based on Ward Identities should become rather
precise. This leads to the question if these two methods are related or if one of the

10



methods fails. The insertion of the running Standard Model top Yukawa coupling ¢;
into the Pagels—Stokar formula leads somewhat surprisingly to an infinite W-mass.
This apparent contradiction between the two approaches comes from the fact that
the top mass function ¥; of the Standard Model is not controlled by the running
coupling ¢;, but by a modified running coupling §;. Taking this into account we show
at one loop that the Pagels—Stokar relation and the renormalization group method
are equivalent. This equivalence was then used to generally construct an “analogous
Pagels—Stokar formula” for the Higgs mass by imposing corresponding boundary con-
ditions on the renormalization group flow of the quartic Higgs coupling A. This
relation was also obtained recently by Gribov 7 in a specific model. Additionally we
find the expected mass relation ¥ = 2%, at the compositeness scale A.
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