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Abstract

We discuss Dynamical Symmetry Breaking via top condensation models and argue
that phenomenologically viable scenarios are possible. First model independent sym-
metry and order of magnitude arguments in favor of such ideas are given. Then
models which realize these features are listed with comments on their advantages and
problems. Finally it is argued that scenarios with a scale of new physics A = O(TeV')
may produce a low enough top mass and may be consistent with available electro—

weak precision data.
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1 Introduction

The last five years of particle physics resulted in a spectacular confirmation of the Stan-
dard Model including by now even genuine electro-weak radiative corrections. This may
be viewed as the success story of renormalizable gauge theories starting from QED to non—
abelian QCD based on SU(3). and cumulating in the full Standard Model gauge group
SU(3). x SU(2), x U(1)y. The Standard Model has however the property that the ground
state of the theory does not respect the symmetry of the Lagrangian. A technically consis-
tent way to realize this symmetry breaking is given by the Higgs mechanism which requires
to introduce a fundamental scalar doublet into the theory. There is however so far no evi-
dence for the existence of such a scalar Higgs particle. Moreover there are the well known
theoretical arguments against the Standard Model Higgs sector, most important the hier-
archy problem. Thus it is widely believed that despite its success the symmetry breaking
sector of the Standard Model cannot be the final word.

There appear two ways to avoid the problems of the scalar sector: First scalars can become
“natural” as superpartners of supersymmetric (SUSY) extensions of the Standard Model.
This very attractive possibility solves the hierarchy problem and leads even to models
which nicely fit into a GUT picture. The second possibility is that fundamental scalars
do not exist at all. In this case the Higgs mechanism is just an effective description of
some dynamical symmetry breaking (DSB) mechanism. A nice analogy is the Ginsburg—
Landau formulation of superconductivity, where the Meissner effect is nicely understood
via an effective photon mass inside the superconductor. DSB is an attractive possibility
since it is a mechanism which arises automatically in field theories if the corresponding
rearrangement of the vacuum leads to an energetically favored situation. This is well known
in solid state physics and it would be very natural if it explained the breaking of the electro—
weak gauge group in particle physics. If the Higgs mechanism is really such an effective
description of electro-weak symmetry breaking like the Ginsburg-Landau description of
superconductivity, then a microscopic model leading to DSB in analogy to the BCS theory
must exist. There are in principle many possibilities and similar to superconductivity it
is very likely that the correct mechanism is only recognized with the help of experimental
input. We will argue that models which lead to the formation of a top quark condensate
have systematically nice features and are good good candidates for DSB models of electro—
weak symmetry breaking.

Note that a gauge invariant Higgs mechanism does not imply the existence of a scalar Higgs
particle. l.e. composite Goldstone Bosons required for a gauge invariant Higgs mechanism
arise from the broken global symmetries and the remaining composite spectrum depends
strongly on the dynamics involved. But if the resulting effective model has to be valid over
large scale ranges then at least one extra composite scalar (Higgs) or vector (rho) particle
must show up to unitarize otherwise unboundedly growing Goldstone Boson scattering
amplitudes. The type of particle which shows up to unitarize amplitudes is a dynamical
property of the DSB model under consideration. Technicolor (TC) models [1], for example,
are constructed in analogy to QCD and contain a “Techni-rho”. The BHL model [2] is
an example where only a single composite Higgs scalar shows up. This is an important
difference since it is often said these days that DSB models are inconsistent with precision
data since TC models typically give deviations from the Standard Model at the percent
level. One has to realize that this is only an argument against models with relatively light
(composite or fundamental) vector—like states. In DSB models with composite Higgses,



however, one typically gets deviations from the Standard Model at an acceptable permille
level like in non—composite models with scalars. Thus the smallness of deviations from the
Standard Model is an argument for the absence of vector like states and not for or against
DSB. Since most models of top condensation systematically lead to composite Higgses we
think that these models are not endangered by to large deviations from the Standard Model,
even though it is unfortunately very hard or impossible to calculate radiative corrections
precise enough.

2 Model Independent Features of Top Condensation

Before we consider explicit models of top condensation we would like to discuss the ex-
pected model independent features following from considerations about symmetry, order of
magnitude and Flavor Changing Neutral Currents (FCNC). Due to these features we think
that there are good reasons to hope that some top condensation model may be relevant in
nature. These model independent features are:

i) Global symmetries: If the scalar field of the Standard Model is discarded then there
are only kinetic terms of known fermions and gauge bosons left. The remaining
Lagrangian is however phenomenologically unacceptable since the electro-weak sym-
metry is unbroken. If we call the left-handed doublet of top and bottom L = (11, bz,)
and the right-handed top quark singlet ¢z then the remaining Lagrangian possesses
a global U(2);, x U(1);r symmetry. To trigger electro-weak symmetry breaking via
top condensation we must add some new attractive force to the Lagrangian which
we choose to respect the original global symmetry. If this force is strong enough in
order to produce a top condensate (0| Ltg |0) = (¢;A%,0) with ¢; # 0 then the global
symmetry is broken to U(1)s x U(1),r. Three Goldstone Bosons corresponding to
the three broken generators emerge as a consequence of the Goldstone theorem. The
Goldstone Bosons have the correct quantum numbers to be “eaten” by the SU(2)y,
gauge bosons such as to give mass. The relation of the Goldstone Boson decay con-
stants Fy and Fp to the weak boson masses is as usual given by

myy =g Ff s my = (91 +93)Fy . (1)

Note that this dynamical Higgs mechanism is merely a consequence of the global
symmetries and the assumed top condensate. Thus many forces which respect the
above symmetries and which produce the desired top condensate should work.

ii) Order of magnitude: If the symmetry breaking is triggered by a fermionic conden-
sate, then the Goldstone Boson decay constants F. and F{ must be homogeneous
functions of the dynamically generated fermion mass(es) ¥(k*). This follows sim-
ply from the previous symmetry considerations which require that the Goldstone
Bosons must disappear in the limit where the condensate vanishes. Such homoge-
neous relations can be seen explicitly in the Pagels—Stokar [3] formulas arising from
the transition of Goldstone Bosons to the SU(2);, gauge bosons via a fermion loops.
Equivalent results are obtained by looking at the difference between broken and un-
broken phase of the gauge boson — gauge boson transition [4] (see also Section 4.).



For the charged Goldstone Boson decay constant one obtains for example for the
contribution of a single fermion

N ¥2(k2)
o /k?dk? . 9
£ 7 302 (k2 1 S2(k2)) k2 (2)

As expected FL goes to zero when the dynamical fermion mass function Y vanishes.
When Y (k?) behaves smoothly then one finds furthermore that m, and F; are of the
same order of magnitude. This can be seen by inserting the test—function

Si(p?) = my O(A% — p?) (3)

for which one obtains N2 A2
F2a 2y (2 4
+ 3272 t (m%) (4)

The Goldstone Boson decay constants F; are therefore naturally linked to the magni-
tude of the dynamically created fermion mass(es), i.e. F; = O(m;). A nice example
where the above argument can be used is QCD. With appropriately modified coeffi-
cients similar relations arise and explain why the dynamically generated quark masses
(i.e. the difference between current and constituent quark masses) are naturally linked
to the order of the magnitude of the pion decay constant f,.

fr=0(Amy) = O(Agep) - (5)

In practise this order of magnitude statements are often rather insensitive to details
of the underlying force and are mostly a consequence of the smoothness of ¥ or the
absence of widely different mass scales.

In the electro—weak interactions the above order of magnitude statements fit nicely to
the experimental fact that there is a heavy top mass of the order of the electro-weak
Goldstone Boson decay constant F; ~ 123 GeV. This suggest that the electro—
weak symmetry could be broken dynamically by a top condensate such that the
electro-weak Goldstone Bosons are composite objects made of 7 — ¢. To achieve
this we just have to drop the Higgs scalar and invent new forces which trigger top
condensation. The relation m; = O(v) becomes then a natural consequence together
with three Goldstone Bosons from global symmetry considerations. This agrees nicely
with phenomenological facts while on the other side more condensates would typically
lead to more (unwanted) Goldstone Bosons and would also require more (unobserved)
heavy fermions. Thus one single heavy top quark seems ideal from order of magnitude
and symmetry considerations.

ii1) FCNC: The absence of Flavor Changing Neutral Currents (FCNC) in the limit where
light fermions are mass-less is a further advantage of most top condensation models.
This must be compared with the difficulties of other approaches. E.g. extended
(horizontal) interactions must be added to Technicolor models (Extended Techni-
color=ETC) in order to produce ordinary fermion masses. There is initially no top



mass and the quark masses are then typically given by

<@Q>TC’ typ- o Ae
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The diagonalization of such a quark mass matrix does however not diagonalize the
induced four—fermion operators in flavor space. This leads to experimentally unob-
served FCNC’s and AS = 2 interactions which produce a too large K — Kg mass
difference. To be compatible with experimental limits it becomes necessary to choose
Agre > 500 TeV [5]. Such a big value of Agr¢ in eq. (6) does however imply very tiny
quark masses unless the techniquark condensate (0] Q@ |0}, is much bigger than its
natural value, A}.. Such an enhancement of the condensate is achieved in “walking
technicolor” ideas [6] in order to cope with the phenomenologically required value
of Agrc. Nevertheless even then it seems hardly possible to generate radiatively a
heavy top mass O(v) [7].

In contrast it is easily seen that top condensation models based on new flavor di-
agonal interactions amongst the known fermions can produce naturally m; = O(v)
without FCNC problems. The main reason is that the heavy top mass and the gauge
boson masses are produced together by the symmetry breaking. Thus there is no
need to generate a large top mass radiatively which can easily generate large FCNC’s
[8]. If we consider the top quark to be the only massive fermion at this level then
FCNC’s are exactly absent since the mass matrix is diagonal with a (3,3) entry only.
The explanation of light quark and lepton masses would require further interactions,
probably at even higher scales, which should also be helpful to explain fermion mass
hierarchies. Such extra interactions would feed the top condensate via see—saw dia-
grams into other places of the mass matrices such that all masses and a non—trivial
KM matrix may arise. The resulting mass matrix must be re-diagonalized and small,
acceptable FCNC’s may arise.

These model independent features work very generally for top condensation models. Thus
these models produce systematically phenomenological desirable features.

3 A Partial List of Models

First models of top condensation assumed simple attractive Nambu—Jona-Lasinio (NJL)
type four-fermion interactions. The well known BHL model [2] is a nice example where
the above model independent features are realized in a very economic way. Unfortunately
the BHL model is theoretically not fully satisfactory and predicts a too high top mass.
Nevertheless the predicted top mass is of the correct order of magnitude. The BHL scenario
was quickly generalized to extensions of the Standard Model like the two Higgs model [9],
models with more generations [10] and supersymmetric extensions [11].

The NJL type models are unsatisfactory for a number of reasons. One problem is that these
models are non-renormalizable and do not make much sense from a fundamental point of
view. Consequently there were attempts to generate the four—fermion interactions from the
exchange of heavy bosons. Among the first models of this type were so called “Topcolor”



models [12] where SU(3). is a subgroup of a broken SU(3); x SU(3)s gauge group. Exten-
sions of these Topcolor models were systematically discussed [13] later. Another direction of
extended gauge groups was to embed U(1)y into a U(1); x U(1); gauge group [14]. Further
examples are embeddings of the Standard Model into a SU(3). x SU(2), x U(1)y x SU(2)y
gauge group [15] or embeddings into even larger groups [16]. More attempts can be found

in ref. [17].

All these models have good and weak points. It is probably fair to say that none of these
models appears to be a final scenario. In other words the model independent features
and the idea are still better than all the existing realizations. But this may just mean
that some essential ingredient is still missing. It might easily be that there exist further
fields in nature (like e.g. Majorana neutrinos, extra fermions, gauge fields or “unusual”
representations) which have to be included before one can arrive at a satisfying theory.

4 A Scale of New Physics A = O(TeV)

One important aspect is that eq. (4) together with F; ~ 123 GeV and m; ~ 175 GeV seems
to require very large values of A. On the theoretical side one would however like to keep
A of the order of several T'eV in order to solve the hierarchy problem. In that case eq. (4)
would predict a top mass which si to large by about a factor 2. Therefore one may ask if
it is possible to have small A and an acceptable top mass prediction simultaneously. It is
now shown that this is possible.

Assume the formation of a 7t condensate is driven by some “pairing force” responsible
for a dynamical breaking of the electro-weak symmetry. We can study this problem by
assuming to know the solution Y;(p?) of the relevant Schwinger-Dyson (“gap”) equation
for the dynamically generated top mass[4]. Thus we pretend to know the electro-weak
symmetry breaking top propagator to be

S(6) = T @

with the (pole) top mass m; = X;(m?). All other quarks and leptons are assumed to be
massless at this level. Without specifying the gap equation we assume furthermore that for

2—>OO . . .
the theory under considerationt ¥,(p?) =" 0 and that there is only one unique solution

for ms.

The breaking of the electro—weak symmetry (i.e. ¥; # 0) is assumed to be the result of
unspecified new strong forces acting only on the known quarks and leptons and especially
on the t — b doublet. The emergence of the top condensate breaks the global symmetries as
discussed and the resulting Goldstone Bosons are “eaten” in a dynamical Higgs mechanism
such that W and Z become massive. Presumably such a theory does not change significantly
if the weak U(1)y coupling g; is sent to zero*. In the limit g; = 0 the corrections which

TThis is e.g. justified for asymptotically free theories where chiral symmetry breaking disappears as
p? — oo.

‘ndirectly (via vacuum alignment) a small U(1)y coupling could be very important such that g; = 0
should be understood as the result of the limiting procedure g; — 0.



give mass to the W3 and W, propagators must be induced by those fermions which are
representations under both SU(2);, and the new strong force. We should therefore study
the contributions of ¥; to the vacuum polarizations of the W and Z propagators. In an
expansion in powers of g3 the leading contribution is given by diagrams which connect
the Wi or Wjs line to a fermion pair from both sides. There are two ways [4] how the
four fermion lines can be connected: By inserting twice the full fermionic propagators or
by inserting once the full four—fermion Kernel of the new, strong interaction. Note that
in leading order g7 the fermion propagators and the Kernel do not contain any electro—
weak gauge boson propagation themself since this would cost at least an extra power of g3.
Insertions of fermionic vacuum polarizations into higher order electro—weak loop diagrams,
for example, are suppressed by corresponding powers of ¢g3. Thus in leading order g3,
but exact in the new strong coupling, the W propagator is corrected by two types of
diagrams. The first contribution is a generalization of the leading Standard Model fermion
loop with hard fermion masses replaced by the dynamically generated X’s, i.e. the sum
of all one particle irreducible diagrams which generate the fermion masses. The second
contribution conects the four fermion lines via the exact four—fermion Kernel K of the
strong forces responsible for condensation. This Kernel is connected via a fermion loop
(with full propagators) on both sides to the external W-lines. It is useless to expand the
four—fermion Kernel perturbatively in powers of the coupling constant of the new strong
force. The Goldstone theorem tells us however that the Kernel must contain poles of
massless Goldstone Bosons due to the breaking of global symmetries by the fermionic
condensates. This can be expressed by writing

. ‘ o
[x:P-q—Q-P—HR, (8)
where P is a function describing the coupling of Goldstone Bosons with the propagator q%
to fermion pairs and where K is the part of the Kernel which does not contain any further
massless poles. But K may (and typically will) contain all sort of massive bound states
which could e.g. be vectors, Higgs—like scalars etc. in all possible channels.

The Goldstone Boson contributions® of eq. (8) were used by Pagels and Stokar [3] to obtain
a relation between the ¥’s and the Goldstone Boson decay constants. Their derivation
uses the fact that only the Goldstone Bosons contribute a term proportional p,p,/p* to
the W polarization at vanishing external momentum, but this method ignores possible
contributions from K which enter indirectly via the use of Ward identities. The p,p, /p*
contributions to II,,, are balanced (up to small corrections from [{’) by ¢,, terms created
by pure fermionic loop mentioned first. Following ref. [4] we derive now relation (2) from
these g,, terms. The result can be compared with the Pagels—Stokar relation and we will

see that contributions from K are significantly suppressed.

Let us therefore work with rescaled fields such that gauge couplings appear in the kinetic
terms of the gauge boson Lagrangian like (—1/4¢%) (W,,)?. Since we do not include any
propagating W bosons we need not gauge fix at this stage. The inverse W propagator is
written as

Lo 1 Pubv
— Dy, (P7) = = (—gw + =5 ) p* =1, (p*) (9)
93 93 p

$Which are essential for a gauge invariant dynamical Higgs mechanism.



with the polarization tensor I1,,(p*) = (=g p® + pupy) (p?). At vanishing external mo-
mentum the pure fermion loop contributes to I1,,

o [ T + Sa(kDDL(F + Sab)]
o = —7N [ G s e - Sy 1o

where N, is the number of colors, Z~' = v/2,2 in the charged and neutral channel, respec-

tively, I'y, = (1 75) Yo, and +ie is generally implied in the denominator. In the neutral

channel we get corrections from 7t (i.e. ¥y = ¥, = Y, bb (ie. ¥y = Xy = X, = 0)
and in the charged channel contributes only b or bt (i.e. ¥y = X4, ¥y = ¥, = 0). By
naive power counting eq. (10) has quadratic and logarithmic divergences. Since we assume

¥i(p?) i 0 for the top quark and all other fermions we find that the divergences of
I, (p*) are identical to those calculated for ¥, = 0. It makes therefore sense to split
,.,(p*) = wa(pz) + All,,(p*) where wa is defined as II,, for ¥; = 0. wa is then an
uninteresting ¥; independent constant which contains all divergences and needs renormal-
ization. Contrary the interesting ¥; dependent piece AlIl,, = II,, — HSW is finite, even
when the external momentum is sent to zero. Thus

d*k Tu(F + 50T (F + %)) Tr[Tu ¢, F]
A, = =N [ { BosnE-s3) M } )

S T =Sk -5
where angular integration was performed in Fuclidean space and subsequently Continued
back to Minkowski space. Under the integral one has as usual Tr [T kT, §] = —g,.. k?

and Tr[[',I',] = 0. Note that this separation procedure for All,, does not spoil gauge
invariance.

The Goldstone Boson decay constants F? are the poles of II(p*) at vanishing external

momentum. For our definition of 11, we find that F? is identical to eq. (12) without the
factor —g,,. Using the above values of Z for the charged and neutral channel one finds

N, 7 2 N. 7 kN2 lyd
. C/dk? ‘ F?:—C/dlﬁ# 13
+ 327’(’2 k2 _ Z% ) 3 327T2 ) (k2 _ Z%)Q ’ ( )
such that
N, T 4
F2_F? = C/dlﬁif. 14
B0 EF T 6dn? / (k2 — %2)2 (14)

Eq. (13) for F? is equivalent to the result obtained by Pagels and Stokar [3] from the
quq,/q* contributions of Goldstone Bosons to II,,. The result for the neutral channel in
eq. (13) looks however somewhat different. But by using the integral identity

eo 2

L)~ f@
[ =y =) (15)




for x = k* and f = X? we can rewrite eq. (13) into

N2 2R,y

(EESIa o)

N, T
J / dk? &2
3272 J

where Y} = d¥;/dk*. Even though this looks now formally like the Pagels—Stokar result
it differs by a factor 2 in front of the derivative term in the nominator of eq. (16). This
difference may appear less important, but we will see that in the limit of a hard top mass
our method produces the correct p—parameter, while the Pagels—Stokar result produces

3/2 times the correct answer. Additionally our expression leads also to a better numerical
estimate of f, if we follow the methods of ref. [3].

The p-parameter [18] is defined as p := 7/ F7 which can now be written as

F2 (F2— F2)\ ™ (F2— F2)
pzl—l—Ap:F—;;:(l—l-BFiii) 21—2%7 (17)
and from eq. (14) we find the contribution of the ¢ — b doublet
N Fo,
Ap= s O/dk i (18)

where we used F7 = v?/2 with v ~ 175 GeV in the denominator. Model independent
parametrizations of radiative corrections parametrize the information contained in Ap es-
sentially in the variables T' [19] or ¢; [20].

With the expressions for Ap in eq. (18) and F? in eq. (13) we can calculate for given

K3

¥(p?) i 0 three independent observable quantities which are one of the weak gauge
boson masses (either M7, = ¢3F% or M2 = (g7 +¢3)F3 ), Ap and furthermore the physical
top mass m;. These three quantities are dominated by different momenta and therefore
Y # constant leads to a different relation than a constant, i.e. hard mass. It is instructive
to look at the degree of convergence of the involved integrals. The Goldstone Boson decay
constants F? are formally log. divergent, but are finite with our assumption on ¥,(p?).
In that case renormalization is not needed, but due to the formal log. divergence ¥,
contributes with equal weight at all momentum scales. In other words, the magnitude of
F? depends crucially on the high energy tail of ¥;. The difference F7 — F} has better
convergence properties and is always finite, even for X,(p*) = constant. This implies that
Ap is finite, as it should be, and it is most sensitive to infrared scales somewhat above m;.
Finally m;, is of course only sensitive to one point, namely m; = X,(m3).

We would like to study now corrections in the relation between m;, My and Ap when ¥, is
the solution of a hypothetical Schwinger-Dyson equation which deviates from ¥, = m; =
constant. First we would like to see if the correct Standard Model result emerges for a t —b
doublet when ¥; — m; = constant. Therefore we take the ansatz (3) and ignore again the
b quark mass. From eq. (18) we obtain then

2 2
A Nem; ( 1 ) Ao ApSM Neaven, m; (19)

T 327207 \ 1 — m3?/A? 167 sin? Oy cos? Oy M2



Note that in the limit A — oo (i.e. a hard, constant top mass) we obtain correctly the
leading Standard Model value while the Pagels—Stokar relation would produce 3/2 times
the Standard Model result. For finite A eq. (19) describes furthermore the modification
of the Standard Model result due to a physical high energy momentum cutoff. Such a
cutoff makes Ap a little bit more positive than in the Standard Model which implies for a
fixed experimental value of Ap a lower top mass prediction. From eq. (13) it is in addition
possible to determine My for the ansatz eq. (3)

2 A? 2 2 2 2
2 9252 93 Ne 2 n B 92N A* —mj
My, =g 1] = 5072 O/dk [EpSe = 3902 m; In (T% . (20)

Taking as experimental input My = 80.2 GeV, Ap = 0.004, a (M%) = 127.9 and
sin? G%f(M%) = 0.2318 we plot in Fig. 1 the two central top mass values resulting from
eqs. (19) and (20) as a function of A (dashed lines).

The ansatz eq. (3) can be viewed as the result of a Nambu—Jona-Lasinio (NJL) gap equa-
tion of top condensation as for example in the BHL model [2]. In fact a NJL gap equation
is the simplest conceivable Schwinger—Dyson equation where ¥; is forced to be a constant.
Fig. 1 shows clearly that very high values of A and experimental errors of the input data
are required to get the two top mass values in agreement. For such high A the effective
Lagrangian is valid for many orders of magnitude which led in the BHL analysis to the
so—called “renormalization group improvement”. This means in the current language that
¥, = constant is replaced by X, = ¢;(p*)v, where v = 175 GeV and g¢;(p?) is the solution
of the one-loop renormalization group equation. In BHL the predicted top mass is then
the “effective fixedpoint” of the renormalization group flow. The BHL scenario has how-
ever phenomenological problems. First the very high value of A is nothing else then the
old hierarchy problem which appears now as a fine-tuning of the four—fermion coupling
GG. Furthermore the infrared fixedpoint prediction is higher than the dashed curve result-
ing from eq. (20) which is shown in Fig. 1 and has (within newest experimental errors)
no intersection with the line resulting from eq. (19). Thus this simplest scenario seems
unacceptable even for very high values of A.

Remembering that Ap and My are sensitive to details of 3, in a different way one may
ask if the above problems can be solved by moderate modifications of the solution ¥,(p?).
The answer is yes, and we illustrate therefore now the two most important type of changes:
The addition of a slowly falling tail and/or the addition of a “bump” somewhat above m;.

First we consider a very rough ansatz for a “bump” between A; and A with m; < Ay < A
by modifying eq. (3)

0 for p* > A?;
Ye(p?) =< r-my for A2 < p? < A?; (21)
my for p* < A},

where ¥ is changed between A; < A and A. For r > 1 there is an extra “bump” between
Ay and A which affects Ap. For A%, A > m? rm? we obtain

Nemf mi  [mi(A? —AD)
Ap 397292 (1 + 2 AQ—A% (T - 1) ’ (22)




where the leading extra contributions due to r # 1 and A; # A are isolated in square
brackets. We can see that the bump counteracts the effect of the cutoff and makes Ap
less positive. In principle the bump can even be chosen to make Ap vanish. The relation

eq. (20) between m, and My becomes also modified. For A% A} > m? rm? we obtain

approximately
2 2 2 2
g Nc A —m A

where extra contributions due to the bump are again isolated in square brackets.

Now we add a slowly falling high energy tail to the last ansatz eq. (21)

equation (21) for p* < A%

2\ —a 24
Ty (%) for p* > A? | (24)

Si(p?) = {
where o > 0 is assumed. This high energy tail which is parametrized by « leads to

N.m? m? mi(A? — A3) r2  m?
Ap o~ e (g me b = B e gy) i3 25
P 3271'21)2( * [ AZA? r )] {4a+1 A2 }) ’ %)

2 2 2 2
5 gsN. A —m A r

where the leading extra corrections due to the tail are isolated in curly brackets.

and

Note that we are looking for a scenario which simultaneously avoids the fine~tuning problem
and which is phenomenologically acceptable. Consequently A and A; should be T'eV—ish
and the top mass values required from the Ap— and My —data should agree. This requires
consequently some gap equation with a generic condensation scale O(TeV) capable of
producing a bump, and a tail — maybe of the type discussed in ref. [4]. The asymptotic
high energy behaviour of ¥; might be described by a renormalization group equation if
the spectrum of the theory does not contain further mass thresholds. This would imply a
logarithmic tail and the parameter a should be very small. We could for example fix a in
the minimal scenario by expanding the Higgs less one—loop renormalization group equation
for ¢; in the Standard Model . This would lead to @ ~ 0.04. For such small values of « the
tail leads to mild effects in the p—parameter and drastic changes in the My—m; relation.

We can illustrate the effects of the combined bump and tail by plotting eqs. (25) and (26)
in Fig. 1 as solid lines for the parameters r = 2, A = 2A¢, Ay = 2m; and o = 0.04. The
small value of a (corresponding to a logarithmic high energy tail of ;) influences mostly
the My —m; relation while the bump affects essentially only the Ap—m; relation. Taking
into account experimental and theoretical errors the two top mass values can agree for low
values of A consistent with the above assumptions and avoiding fine-tuning. We have thus
illustrated that solutions of ¥; with moderate structure can solve the fine-tuning problem,
i.e. allow for A—values within a few T'eV. Furthermore the predicted m,—Mpy—Ap relations
are modified to be consistent with the data on My and Ap. The predicted top mass
differs however typically somewhat from its Standard Model value — something that is be



tested by a direct search for the top quark. It will therefore be extremely interesting what
the final value of m; from direct searches will be. A bump and a tail as discussed could
for example be relevant in models of top condensation where heavy gauge bosons trigger
condensation [14] or in bootstrap scenarios where the ¢—channel effects of a composite Higgs
are non-negligible [21].

There are other electro-weak observables which are sensitive to the top mass value like for
example the Zbb vertex. If my is replaced by ¥, in the relevant diagrams then one finds
however that the top mass dependence is replaced by sensitivity to ¥; at low momenta.
Thus in a first approximation these quantities depend essentially on the pole mass. There
are however corrections which should become observable if high enough precision can be
reached.

5 Summary

In summary there should exist top condensation models which are phenomenological viable.
If 3, has suitable structure then it is even possible to choose a low lying scale of new physics
A. The calculation of ¥; for low A is for a given theory in general very difficult due to
the non—perturbative nature of the relevant Schwinger—Dyson equation. An important test
of the discussed effects arises from the comparison of the direct top mass with its indirect
window from radiative corrections. The better these values agree in the Standard Model the
less room is left for structure in ¥;. If the presented ideas are relevant then the top quark
should typically be somewhat above the Standard Model window. We listed some of the
models which have been discussed in the literature and expressed the view that none of the
models constructed so far appears to be a final scenario. The model independent features in
favour of top condensation appear therefore still better than any specific realization. This
may simply reflect the fact that some essential ingredient is missing in model building so far.
One should also not conclude that top condensation or any Dynamical Symmetry Breaking
scenario is incompatible with precision data since Technicolor leads to deviations at the
percent level while only effects at the permille level are allowed. Such large deviations have
nothing to do with Dynamical Symmetry Breaking but are a consequence of rather low
lying (composite or fundamental) vector states. For systematic reasons top condensation
models do not have such vector states. The Higgses which do arise should lead to small
deviations from the Standard Model independently of their composite nature.
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Figure 1: The predicted (pole) top mass m, versus the scale of new physics A using Ap

and My as experimental input. The upper dashed line follows from eq. (20) and the lower

dashed line from eq. (19). The solid lines follow from the combined bump and tail ansatz
for ¥; eq. (24) showing that low values of A are then possible.



