LAUNCH 09 (Heidelberg, 9-12 November 2009) "Learning from Astroparticle, Underground, Neutrino Physics and Cosmology"

Nuclear matrix elements for neutrino-less double beta decay

Fedor Šimkovic

JINR Dubna, Comenius University, University of Tuebingen

11/11/2009

Fedor Simkovic

1

Presented results obtained in collaboration with Amand Faesler, V. Rodin, Th. Gutsche, M. Saleh (Tuebingen U.), P. Vogel (Caltech), S. Kovalenko (Valparaiso U.), **M. Krivoruchenko** (ITEP Moscow), E. Moya de Guerra, P. Sarrigurren, O. Moreno (Madrid U.), J.D. Vergados (U. of Ioannina) R. Dvornický (Comenius U.), S.M. Bilenky (JINR Dubna), J. Engel (North Caroline U.), A. Smirnov (ICTP Trieste), A. Dolgov (Bologna U), A. Barabash (ITEP Moscow) ...

Study of the $0\nu\beta\beta$ -decay is one of the highest priority issues in particle and nuclear physics

APS Joint Study on the Future of Neutrino Physics (physics/0411216) We recommend, as a high priority, a phased program of sensitive searches for neutrinoless double beta decay (first in the list of recommendations)

ASPERA road map:

- Requirement for construction and operation of two double-beta decay experiments with a European lead role or shared equally with non-European partners (GERDA, COBRA, CUORE, SuperNEMO)
- Different nuclear isotopes are necessary to minimize the impact of uncertainties in matrix elements to the extracted information about neutrino properties.
- We finally reiterate the importance of assessing and reducing the uncertainty in our knowledge of the corresponding nuclear matrix elements, experimentally and theoretically.

Standard Model Lepton Universality									lity		
PARTICLES Particle			Symbol	Anti - p.	m	ass	L_e	L_{μ}	L_{τ}	life-time	
					[M]	eV]				[s]	
	electron		e^-	e^+	0.5	511	1	0	0	stable	
	el.neutrii	no	ν_e	$\overline{\nu}_e$	$< 2.2 \ 10^{-6}$		1	0	0	stable	
	muon		μ^-	μ^+	10	5.6	0	1	0	$2.2 \ 10^{-6}$	
	muon ne	utr.	$ u_{\mu}$	$\overline{ u}_{\mu}$	< (0.19	0	1	0	stable	
I III III Three Generations of Matter	tau .		τ^{-}	τ^+	17	77.	0	0	1	$2.9\ 10^{-13}$	
	tau neutr	rino	$ u_{ au}$	$\overline{ u}_{ au}$	< .	18.2	0	0	1	stable	
Lepton Family		N	EW PH	IVSICS		7	Fota	l Le	pto	n	
Number Violation massiv			e neutrinos SUSV Number					er Vi	Violation		
$\overline{\mathcal{U}} \leftrightarrow \mathcal{U} \overline{\mathcal{U}} \leftrightarrow \overline{\mathcal{U}}$	$\overline{\mu}$	heern	ed 🔺	$\overline{\nu} \leftrightarrow \overline{\nu}$;			1	not o	hserved	
νε,μτ νε,μτ, νε,μτ	ν ε,μτ	03010	ca	ν ε,μτ Υν	$e,\mu\tau$				101 0	JSCI UCU	
$\mu^+ ightarrow e^+ + \gamma$	R	$l \leq 1.$	2×10^{-11}	$K^+ \to \pi^-$	$^{-} + e^{+}$	$+ \mu^+$			$R \leq 5$	$5 imes 10^{-10}$	
	T) - 1	0 10-12							0 10-6	
$\mu' \rightarrow e' + e' + e'$	K	$\ell \leq 1.$	0×10^{-4}	$\tau \rightarrow \pi$	$+\pi'$	+ e'			$R \leq 1$	1.9×10^{-9}	
$K^+ \rightarrow \pi^+ + e^- + \mu^+$	R	$l \leq 4.$	7×10^{-12}	$W^{-} + W$	$- \rightarrow e^{-}$	$^{-} + e^{-}$					
$\tau^- \to e^- + \mu^+ + \mu^ R \le 1.$		8×10^{-6}	$(A, Z) \rightarrow$	(A, Z)	+2) + 0	e ⁻ +	e	$T^{0\nu} \geq$	1.9×10^{-25}		
$Z^0 \to e^{\pm} + \mu^{\mp}$ $R \le 1.$		$2 \leq 1.$	7×10^{-6}	$\mu_b^- + (A,$	$Z) \rightarrow$	(A, Z -	2) +	e+ .	$R \leq 3$	3.6×10^{-11}	
$\mu_b^- + (A, Z) \to (A, Z) +$	e ⁻ R	$l \leq 1$.	2×10^{-11}	$e^{-} + e^{-}$ -	$\rightarrow \pi^-$ -	π^{-}			?		
11/11/2009			Fedor S	Simkovic						4	

The answer to the question whether neutrinos are their own antiparticles is of central importance, not only to our understanding of neutrinos, but also to our understanding of the origin of mass.

$$\frac{1}{T_{1/2}} = G^{0\nu}(E_0, Z) |M'^{0\nu}|^2 |\langle m_{\beta\beta} \rangle|^2 , \qquad m_{\beta\beta} = \sum_{i=1}^3 U_{ei}^2 m_i$$

An accurate knowledge of the nuclear matrix elements, which is not available at present, is however a pre-requisite for exploring neutrino properties.

The double beta decay process can be observed due to nuclear pairing interaction that favors energetically the even-even nuclei over the odd-odd nuclei

11/11/2009

Double Beta Decay Nuclei of experimental interest

Emission of two electrons (A,Z)→(A,Z+2)+e+e **Double electron capture** $e_b + e_b + (A,Z) \rightarrow (A,Z)^*$

If (or when) the 0vββ decay is observed two theoretical problems must be resolved

1) What is the mechanism of the decay, i.e., what kind of virtual particle is exchanged between the affected nucleons (quarks).

2) How to relate the observed decay rate to the fundamental parameters, i.e., what is the value of the corresponding nuclear matrix elements.

The $0\nu\beta\beta$ -decay mechanisms

Two basic categories are long-range (exchange of light Majorana ν) and short-range (exchange of heavy ν, squarks, gluinos ...) contributions to the Ονββ-decay

11/11/2009

Light neutrino
Mass
mechanism
$$\mathcal{H}_{W}^{\beta} = \frac{G_{F}}{\sqrt{2}} \ \overline{e} \gamma_{\alpha} (1 + \gamma_{5}) \nu_{e} \ j_{\alpha} + h.c.$$

$$\nu_{eL} = \sum_{k} U_{lk}^{L} \chi_{kL}$$

$$\downarrow_{eL} =$$

Squark mixing RPV SUSY

Neutrino

vertex

 \sim

 $_{k}$

$$\mathcal{L}^{LH} = \frac{G_F}{\sqrt{2}} \sum_i U_{ei} \left(\overline{e} \gamma_\alpha (1 - \gamma_5) \nu \right) \left(\overline{u} \gamma^\alpha (1 - \gamma_5) d \right) + h.c. \quad (V - A)$$

R-parity violating SUSY vertex

Hirsch, Klapdor-Kleingrothaus, Kovalenko PLB 372 (1996) 181

$$\mathcal{L}_{SUSY}^{eff} = \frac{G_F}{\sqrt{2}} \left(\frac{1}{4} \eta_{(q)LR} \sum_{i} U_{ei}^* \left(\overline{\nu}(1+\gamma_5)e \right) \left(\overline{u}(1+\gamma_5)d \right) \right)$$

$$+ \frac{1}{8} \eta_{(q)LR} \sum_{i} U_{ei}^* \left(\overline{\nu}\sigma_{\alpha\beta}(1+\gamma_5)e \right) \left(\overline{u}\sigma^{\alpha\beta}(1+\gamma_5)d \right) + h.c. \right)$$

$$\mathbf{Paes, Hirsch, Klapdor-Kleingrothaus, PLB 459 (1999) 450$$

$$\mathbf{LN-violating parameter}$$

$$\eta_{(q)LR} = \sum_{k} \frac{\lambda'_{11k}\lambda'_{1k1}}{8\sqrt{2}G_F} \sin 2\theta_{(k)}^d \left(\frac{1}{m_{\tilde{d}_1(k)}^2} - \frac{1}{m_{\tilde{d}_2(k)}^2} \right)$$

$$\mathbf{W}$$

gluino/neutralino exchange R-parity breaking SUSY mechanism of the 0vββ–decay

quark-level diagrams $\mathbf{d}_{\mathbf{R}}$ $d+d \rightarrow u + u + e^- + e^$ d_R e_L $\tilde{\mathbf{d}}_{\mathbf{R}}$ $\mathbf{d}_{\mathbf{R}}$ $|\mathbf{\widetilde{u}}_{\mathrm{L}}|$ $\widetilde{\mathbf{u}}_{\mathrm{L}}$ \mathbf{u}_{L} \mathbf{u}_{L} χ,ĝ χ,ĝ exchange of χ,ĝ \mathbf{u}_{L} e_L squarks, \mathbf{u}_{L} $\mathbf{\widetilde{u}}_{\mathrm{L}}$ d_R $\boldsymbol{\tilde{d}}_{R}$ $\boldsymbol{\tilde{d}}_{R}$ $\mathbf{d}_{\mathbf{R}}$ neutralinos \mathbf{u}_{L} e_L d_R \mathbf{e}_{L} and gluinos $\mathbf{d}_{\mathbf{R}}$ $\mathbf{d}_{\mathbf{R}}$ $\mathbf{d}_{\mathbf{R}}$ \mathbf{u}_{L} \mathbf{u}_{L} \mathbf{u}_{L} ${\bf \widetilde{e}}_{\rm L}$ $\tilde{\mathbf{e}}_{\mathrm{L}}$ \widetilde{e}_{T} e_T e_L \mathbf{e}_{L} $(\lambda'_{111})^2$ mechanism χ χ χ e_L \mathbf{u}_{L} ${\widetilde{u}}_{
m L}$ \tilde{e}_{L} $\boldsymbol{\tilde{d}}_{R}$ $\mathbf{d}_{\mathbf{R}}$ \mathbf{u}_{L} d_R d_R \mathbf{u}_{L} \mathbf{e}_{L} • **R**-parity violation 1987 R. Mohapatra, J.D. Vergados Fedor Simkovic 12

Calculation of Nuclear Matrix Elements

Nuclear Matrix Elements

In double beta decay two neutrons bound in the ground state of an initial even-even nucleus are simultaneously transformed into two protons that are bound in the ground state or excited $(0^+, 2^+)$ states of the final nucleus

It is necessary to evaluate, with a sufficient accuracy, wave functions of both nuclei, and evaluate the matrix element of the Ονββ-decay operator connecting them

This can not be done exactly, some approximation and/or truncation is always needed. Moreover, there is no other analogues observable that can be used to judge the quality of the result.

- **Computationally exact methods** for A up to 16
- **Approximate many-body methods** for A up to 60
- Mostly mean-field pictures for A greater than 60 or so

Nuclear Structure

Many-body Hamiltonian

• Introduce a mean-field U to yield basis

$$H = \sum_{i} \left(\frac{\vec{p}_i^2}{2m} + U(r_i) \right) + \sum_{i < j} V_{NN} \left(\vec{r}_i - \vec{r}_j \right) - \sum_{i} U(r_i)$$

Residual interaction

The success of any nuclear structure calculation depends on the choice of the mean-field basis and the residual interaction!

- The mean field determines the shell structure
- In effect, nuclear-structure calculations rely on perturbation theory

11/11/2009

Goeppert-Mayer and Haxel, Jensen, and Suess proposed the independent-particle shell model to explain the magic numbers

Origin of the shell model

Two complementary procedures are commonly used: • Nuclear shell model (NSM)

Quasiparticle Random Phase Approximation (QRPA)

In NSM a limited valence space is used but all configurations of valence nucleons are included. Describes well properties of low-lying nuclear states. Technically difficult, thus only few Ονββ-decay calculations

In QRPA a large valence space is used, but only a class of configurations is included. Describe collective states, but not details of dominantly few particle states. Relative simple, thus more 0nbb-decay calculations

Nuclear Shell Model

$$H = \sum_{a} \varepsilon_{a} a_{a}^{\dagger} a_{a} - \sum_{abcd} \frac{\langle j_{a} j_{b}; JT | V | j_{c} j_{d}; JT \rangle_{A}}{\sqrt{(1 + \delta_{ab})(1 + \delta_{cd})}} \left[\left[a_{a}^{\dagger} \otimes a_{b}^{\dagger} \right]^{T} \otimes \left[\tilde{a}_{c} \otimes \tilde{a}_{d} \right]^{T} \right]_{0}^{T}$$

- •Define a valence space
- •Derive an effective interaction $H \Psi = E \Psi \rightarrow H_{eff} \Psi_{eff} = E \Psi_{eff}$ •Build and diagonalize Hamiltonian matrix (10¹⁰)
- •Transition operator $< \Psi_{eff} | O_{eff} | \Psi_{eff} >$
- •Phenomenological input:

Energy of states, systematics of B(E2) and GT transitions (quenching f.)

Quasiparticle Random Phase Approximation (QRPA) and its variants

Only Bratislava-Tuebingen group

Large model space (up 23 s.p.l, ¹⁵⁰Nd – 60 active prot. and 90 neut.)
Spin-orbit partners included
Possibility to describe all multipolarities of the intermed. nucl. J^π (π=±1, J=0...9)

quasiparticle mean field

Realistic NN-interactions used in the QRPA calculations

Modern (phase-shift equivalent) NN potentials

Nijmegen I - $(P_D = 5.66\%) - 41$ parameters - $\chi^2/N_{data} = 1.03$ Nijmegen II - $(P_D = 5.64\%) - 47$ parameters - $\chi^2/N_{data} = 1.03$ Argonne V₁₈ - $(P_D = 5.76\%) - 40$ parameters - $\chi^2/N_{data} = 1.09$ CD Bonn - $(P_D = 4.85\%) - 43$ parameters - $\chi^2/N_{data} = 1.02$

based upon the OBE model

Brueckner G-matrices from Tuebingen (H. Muether group)

(1999 NN Database: 5990 pp and np scattering data)

Renormalization of the NN interaction

Bethe-Goldstone equation

Difficulty in the derivation of V_{eff} from any modern NN potential: existence of a strong repulsive core which prevents its direct use in nuclear structure calculations.

Traditional approach to this problem: Brueckner *G*-matrix method. The *G* matrix is model-space dependent as well as energy dependent.

The vectors X and Y are obtained by solving the equations of motion:

$$\begin{pmatrix} A & B \\ -B & -A \end{pmatrix} \begin{pmatrix} X \\ Y \end{pmatrix} = \omega \begin{pmatrix} X \\ Y \end{pmatrix}$$
Eigenvalue equation for ω^2 , unphysical solutions with $\omega^2 < 0$ possible

with

$$\begin{split} A_{pn,p'n'}^{J} &= \langle O|(c_{p}^{\dagger}c_{n}^{\dagger})^{(JM)^{\dagger}}\hat{H}(c_{p'}^{\dagger}c_{n'}^{\dagger})^{(JM)}|O\rangle & \text{particle-hole} \\ &= \delta_{pn,p'n'}(E_{p} + E_{n}) \\ &+ (u_{p}v_{n}u_{p'}v_{n'} + v_{p}u_{n}v_{p'}u_{n'})g_{ph}\langle pn^{-1}, J|V|p'n'^{-1}, J\rangle \\ &+ (u_{p}u_{n}u_{p'}u_{n'} + v_{p}v_{n}v_{p'}v_{n'})g_{pp}\langle pn, J|V|p'n', J\rangle , \\ B_{pn,p'n'}^{J} &= \langle O|\hat{H}(c_{p}^{\dagger}c_{n}^{\dagger})^{(J-M)}(-1)^{M}(c_{p'}^{\dagger}c_{n'}^{\dagger})^{(JM)}|O\rangle \\ &+ (-1)^{J}(u_{p}v_{n}v_{p'}u_{n'} + v_{p}u_{n}u_{p'}v_{n'})g_{ph}\langle pn^{-1}, J|V|p'n'^{-1}, J\rangle \\ &- (-1)^{J}(u_{p}u_{n}v_{p'}v_{n'} + v_{p}v_{n}u_{p'}u_{n'})g_{pp}\langle pn, J|V|p'n', J\rangle . \end{split}$$

Fedor Simkovic

11/11/2009

The $0\nu\beta\beta$ -decay NME: g_{pp} fixed to $2\nu\beta\beta$ -decay

Each point: (3 basis sets) x (3 forces) = 9 values

The Interacting Boson Model¹

- The low-lying states of the nucleus, composed by n and z valence nucleons, are modeled in terms of (n+z)/2 bosons.
- The bosons have either L = 0 (s boson) or L = 2 (d boson).
- The bosons can interact through one-body and two-body forces giving rise to bosonic wave functions.
- Any observable can be calculated using these wave functions provided that the relevant operator is employed.

¹F. lachello and A. Arima, *The Interacting Boson Model*, Cambridge University Press, 1987

Projected Hartree-Fock-Bogoliubov Model

PHFB Model

States of good angular momentum J

$$\left|\Psi_{M}^{J}\right\rangle = \frac{2J+1}{8\pi^{2}a_{J}}\int d\Omega D_{MK}^{J}\left(\Omega\right)\hat{R}\left(\Omega\right)\left|\Phi_{K}\right\rangle$$

Axially symmetric HFB intrinsic state

$$\left|\Phi_{0}\right\rangle = \prod_{im} \left(u_{im} + v_{im}b_{im}^{+}b_{i\overline{m}}^{+}\right)$$

where

$$b_{im}^{+} = \sum_{m} C_{i\alpha m} a_{im}^{+}$$
 $b_{i\overline{m}}^{+} = \sum_{m} (-1)^{l+j-m} C_{i\alpha m} a_{i-m}^{+}$

Hamiltonian:

$$H = H_{sp} + V(P) + \zeta_{qq}V(QQ)$$

Only quadrupole interaction,
GT interaction is missing

The $0\nu\beta\beta$ -decay NME (light ν exchange mech.)

1

The $0\nu\beta\beta$ -decay half-life $\frac{1}{T_{1/2}} = G^{0\nu}(E_0, Z) |M'^{0\nu}|^2 |\langle m_{\beta\beta} \rangle|^2 ,$ NME= sum of Fermi, Gamow-Teller and tensor contributions

$$M'^{0\nu} = \left(\frac{g_A}{1.25}\right)^2 \langle f| - \frac{M_F^{0\nu}}{g_A^2} + M_{GT}^{0\nu} + M_T^{0\nu}|i\rangle$$

Neutrino potential (about 1/r₁₂)

$$H_{K}(r_{12}) = \frac{2}{\pi g_{A}^{2}} R \int_{0}^{\infty} f_{K}(qr_{12}) \frac{h_{K}(q^{2})qdq}{q + E^{m} - (E_{i} + E_{f})/2}$$

$$f_{F,GT}(qr_{12}) = j_{0}(qr_{12}), \quad f_{T}(qr_{12}) = -j_{2}(qr_{12})$$
Induced pseudoscalar
form-factors:
finite nucleon
size

$$h_{F} = g_{V}^{2}(q^{2})$$

$$h_{GT} = g_{A}^{2} \left[1 - \frac{2}{3}\frac{\vec{q}^{2}}{\vec{q}^{2} + m_{\pi}^{2}} + \frac{1}{3}\left(\frac{\vec{q}^{2}}{q^{2} + m_{\pi}^{2}}\right)^{2}\right]$$
(pion exchange)

$$h_{T} = g_{A}^{2} \left[\frac{2}{3}\frac{\vec{q}^{2}}{\vec{q}^{2} + m_{\pi}^{2}} - \frac{1}{3}\left(\frac{\vec{q}^{2}}{\vec{q}^{2} + m_{\pi}^{2}}\right)^{2}\right]$$

$$M_{K=F,GT,T} = \sum_{J^{\pi},k_{i},k_{f},\mathcal{J} pnp'n'} (-1)^{j_{n}+j_{p'}+J+\mathcal{J}}\sqrt{2\mathcal{J}+1}\left\{\begin{array}{c}j_{p} & j_{n} & J\\j_{n'} & j_{p'} & \mathcal{J}\end{array}\right\}$$

$$J^{\pi} = 0^{+},1^{+},2^{+},...$$

$$(p(1), p'(2):\mathcal{J} \parallel f(r_{12})O_{K}f(r_{12}) \parallel n(1), n'(2):\mathcal{J})$$

$$X \langle 0_{f}^{+} || [c_{p'}^{+}\tilde{c}_{n'}]_{J} || J^{\pi}k_{f}\rangle\langle J^{\pi}k_{f} |J^{\pi}k_{i}\rangle\langle J^{\pi}k_{f} || [c_{p}^{+}\tilde{c}_{n}]_{J} || 0_{i}^{+}\rangle$$

A claim of evidence and other experiments (current status)

Anatomy of the $0\nu\beta\beta$ -decay NMEs

11/11/2009

r-dependence of the 0νββ-decay NME

The radial dependence of **M**⁰ⁿ for the three indicated nuclei. The contributions summed over all components shown in the upper panel. The `pairing' J = 0 and `broken pairs' $J \neq 0$ parts are shown separately below. Note that these two parts essentially cancel each other for r > 2-3 fm. This is a generic behavior. Hence the treatment of small values of *r* and large values of q are quite important.

QRPA F.Š, Faessler, Rodin, Vogel, Engel PRC 77, 045503 (2008) Large Scale Shell Model Menendez, Poves, Caurier, Nowacki, Arxive:0901.3760 [nucl-th]

Neutrinoless double beta decay matrix elements

It is of interest to see the contribution of individual orbits to the 0vββ matrix element. Within QRPA and its generalization this can be done by using the basic formula:

Summing over all indeces except *n*,*n*' (or *p*,*p*') will tell give us the required contribution. Note that it can be positive or negative.

11/

How good is the closure approximation?

Comparison between the QRPA M^{0v} with the proper energies of the virtual intermediate states (symbols with arrows) and the closure approximation (lines) with different $\langle E_n - E_i \rangle$.

Note the mild dependence on $\langle E_n - E_i \rangle$ and the fact that the exact results are reasonably close to the closure approximation results for $\langle E_n - E_i \rangle \langle 20 \text{ MeV}.$

Graph by F. Simkovic

11/11/2007

51

Both 2νββ and 0νββ operators connect the same states. Both change two neutrons into two protons.

Explaining 2vββ-decay is necessary but not sufficient

ββ-decay

$(A,Z) \rightarrow (A,Z+2) + 2e^- + 2\overline{\nu}_e$

Observed for 10 isotopes: ⁴⁸Ca, ⁷⁶Ge, ⁸²Se, ⁹⁶Zr, ¹⁰⁰Mo. ¹¹⁶Cd. ¹²⁸Te, ¹³⁰Te, ¹⁵⁰Nd, ²³⁸U, T_{1/2}≈10¹⁸-10²⁴ years

1967: ¹³⁰Te, Kirsten et al, Takaoka et al, (geochemical) 1987: ⁸²Se, Moe et al. (direct observation) 2008: ¹⁰⁰Mo, NEMO 3 coll. ~ 300 00 events

$$(A,Z) \to (A,Z+2) + 2e^{-1}$$

SM forbidden ,not observed yet: $T_{1/2}$ (⁷⁶Ge)>10²⁵ years

 $T(J_{\mu}(x_{1})J_{\nu}(x_{2})) = J_{\mu}(x_{1})J_{\nu}(x_{2}) \quad (two \ \beta - decays) \\ + \Theta(x_{20} - x_{10})[J_{\nu}(x_{2}), J_{\mu}(x_{1})] \quad (2\nu\beta\beta - decay)$

A sum over intermediate nuclear states represents a sum over all meson and gamma exchange correlations of two beta decaying nucleons

$$J_{\alpha}(0,\vec{x}) = \sum_{n} \tau_{n}^{+} (\delta_{\alpha 4} + ig_{A}(\vec{\sigma})_{k} \delta_{\alpha k}) \delta(\vec{x} - \vec{x}_{n})$$

11/11/2009

 $J_{\mu\nu}^{2\beta2\nu}(p_1, p_2, k_1, k_2) = -i2M_{GT}\delta_{\mu k}\delta_{\nu k}$ $\times 2\pi\delta(E_f - E_i + p_{10} + k_{10} + p_{20} + k_{20}), \ k = 1, 2, 3,$

Integral representation of M_{GT}

$$M_{GT} = \frac{i}{2} \int_0^\infty (e^{i(p_{10}+k_{10}-\Delta)t} + e^{i(p_{20}+k_{20}-\Delta)t}) M_{AA}(t) dt$$

with

$$M_{AA}(t) = <0_f^+ |\frac{1}{2} [A_k(t/2), A_k(-t/2)] |0_i^+ >$$

$$A_k(t) = e^{iHt} A_k(0) e^{-iHt}, \quad A_k = \sum_i \tau_i^+(\vec{\sigma}_i)_k, \ k = 1, 2, 3.$$

$$\mathbf{A}_{k}(t) = e^{itH} A_{k}(0) e^{-itH} = \sum_{n=0}^{\infty} \frac{(it)^{n}}{n!} \underbrace{[H[H...[H], A_{k}(0)]...]]}_{H[H...[H]}$$

44

Completeness: $\Sigma_n |n > < n| = 1$

$$< A'|J_{\alpha}(x_{1})J_{\beta}(x_{2})|A> = \sum_{n} < A'|J_{\alpha}(0,\vec{x}_{1})|n> < n|J_{\beta}(0,\vec{x}_{2})|A> \times e^{-i(E'-E_{n})x_{10}}e^{-i(E_{n}-E)x_{20}}$$

$$\int_0^\infty e^{-iat} dt \Rightarrow \lim_{\epsilon \to 0} \int_0^\infty e^{-i(a-i\epsilon)t} dt = \lim_{\epsilon \to 0} \frac{-i}{a-i\epsilon}$$

$$M_{GT} = \sum_{n} \frac{\langle 0_{f}^{+} | A(0)_{k} | 1_{n}^{+} \rangle \langle 1_{n}^{+} | A(0)_{k} | 0_{i}^{+} \rangle}{E_{n} - E_{i} + \Delta}$$

11/11/2009

Constraining the $0\nu\beta\beta$ -decay NMEs

Nucleons that change from neutrons to protons are valence neutrons

11/11/2009

Fedor Simkovic

47

How can we take into account theoretically the constraint represented by the experimentally determined occupancies?

The experiment fixes $n_j^{e\times p} = \langle 0^+_{init} | \Sigma c_{j,m}^+ c_{j,m}^- | 0^+_{init} \rangle$ and the same for the final nucleus

particle creation and annihilation operators

In BCS $n_j^{BCS} = v_j^2 \times (2j+1)$ depends only on v_j which in turn depends on the mean field eigenenergies

In QRPA the ground state includes correlations and thus

Fedor Simkovic

11/11/2009

Initial and add	wated we can	Gold lovels				$^{76}\mathrm{Ge}$				$^{76}\mathrm{Se}$	
Initial and adj	usted mean	rield levels	neut.	BCS	Q	\mathbf{S}	\exp	BCS	Q	S	\exp
			p	5.65	5.27	4.64	4.9 ± 0.2	5.57	5.05	4.12	4.4 ± 0.2
While n.exp and	n.BCS are c	onstrained	$f_{5/2}$	5.54	5.12	4.34	4.6 ± 0.4	5.53	5.00	3.63	3.8 ± 0.4
			$f_{7/2}$	7.91	7.67	7.62	-	7.90	7.54	7.37	-
by $\Sigma n_i = N$ (or	Z) the n_i^{QKP}	A are not	$s_{1/2}$	0.01	0.05	0.07	-	0.01	0.04	0.08	-
constrained by	that requir	ement	$d^{3/2}$	0.03	0.14 0.20	0.15	-	0.02	$0.14 \\ 0.27$	0.10	-
constrained by	that i equi		$a_{5/2}$	0.09	0.50	0.30	-	0.07 0.19	0.27 0.56	0.59	-
The particle n	umber is no	t conserved,	$\frac{g_{7/2}}{g_{0/2}}$	4.63	4.78	6.35	65+03	2.78	3.55	5.66	58 ± 03
even on averag	e. Thus the	ORPA	$\frac{99/2}{\text{prot.}}$	1.00	1.10	0.00	0.010.0	2.10	0.00	0.00	0.010.0
	• • •		p p	2.23	2.34	1.75	$1.77 {\pm} 0.15$	2.77	2.76	2.28	$2.08 {\pm} 0.15$
must be modif	ied to remed	ly this \Rightarrow	$f_{5/2}$	1.61	2.27	2.08	$2.04{\pm}0.25$	2.95	2.97	3.03	$3.16{\pm}0.25$
Selfconsistent	Renormaliz	ed ORPA	$f_{7/2}$	7.83	7.19	7.13	-	7.76	7.12	7.06	-
			$s_{1/2}$	0.00	0.02	0.03	-	0.00	0.03	0.04	-
$^{76}Ge \rightarrow ^{76}Se$	prev.	new	$d_{3/2}$	0.01	0.07	0.07	-	0.01	0.09	0.09	-
Le strorr s n s	4.94(0.44)	2 40(0.92)	$d_{5/2}$	0.01	0.12	0.15	-	0.02	0.17	0.18	-
Jastrow s.r.c.	4.24(0.44)	3.49(0.23)	97/2	0.02	0.19	0.10	- 0 23+0 25	0.03	1.51	0.27	$-$ 0.84 \pm 0.25
UCOM s.r.c.	5.19(0.54)	4.60(0.39)	99/2	V.25	0.00	0.02	0.2510.25	0.40	1.15	1.04	0.04±0.20
			F	'.S., A	. Fae	ssler,	P. Vogel,	PRC	2 79, (1550	2 (2009)
	ljusted V	VS Adjusted		5		WS	Adjusted		WS	Adj	usted
5	d _{3/2}			-	σ						-
$d_{3/2}$	g _{7/2} *			0	d _{3/2}	¥		g _{7/2}	4	_	
s _{1/2} ×	d _{5/2} ×			-	s _{1/2} ; d _{5/2} ;	×		s _{1/2}	×		-
∑ ^d _{5/2} × → → ×		-		⋝ -5 -	512	Ň		d _{5/2}	×		= -
× ¹ We	g _{9/2} ×	* =		Me	g _{9/2}	¥ \	*			\ <u>*</u>	
□ -5 - g _{9/2} ,	p _{1/2} →				n	λ	λ	g _{9/2}		<u>.</u>	-
$\begin{bmatrix} p_{1/2} \\ f_{rn} \end{bmatrix} \times$	$ \begin{array}{c} & \stackrel{1_{5/2}}{\mathbf{p}_{3/2}} \lambda = = \\ \end{array} $	× λ			Ρ _{1/2} f _{5/2}	——————————————————————————————————————	````````````````````````````````	р _{1/2}	λ ——×	, il	λ
$-10 \begin{bmatrix} -5/2 \\ p_{3/2} \end{bmatrix} \xrightarrow{\times} \lambda$	<u>*</u>				P _{3/2}	——————————————————————————————————————	*	f _{5/2} n			×
-	f _{7/2}			-15				F 3/2			<u> </u>
$-15 - f_{7/2} - \star$	v			F	f _{7/2}	——×	×	f.,,		×]
-			lor Simk	-20				2			_
76		76 _C		20		70	⁶ С а			76 ₆	

Staircase plot (running sum) of the contributions to the $2\nu\beta\beta$ decay (⁷⁶Ge \rightarrow ⁷⁶Se)

Shell structure of the mean field changed

Deformation

Anisotropic harmonic oscillator

Nuclear deformation

$$\beta = \sqrt{\frac{\pi}{5}} \frac{Q_p}{Z r_c^2}$$

Exp. I (nuclear reorientation method) Exp.II (based on measured E2 trans.) Theor. I (Rel. mean field theory) Theor. II (Microsc.-Macrosc. Model of Moeller and Nix)

Till now, in the QRPA-like calculations of the 0vββ-decay NME spherical symetry was assumed

The effect of deformation on NME has to be considered

Nucl.	Exp. I	Exp. II	Theor. I	Theor. II
^{48}Ca	0.00	0.101	0.00	0.00
⁴⁸ Ti	+0.17	0.269	-0.01	0.00
⁷⁶ Ge	+0.09	0.26	0.16	0.14
76 Se	+0.16	0.31	-0.24	-0.24
82 Se	+0.10	0.19	0.13	0.15
⁸² Kr		0.20	0.12	0.07
⁹⁶ Zr		0.081	0.22	0.22
⁹⁶ Mo	+0.07	0.17	0.17	0.08
¹⁰⁰ Mo	+0.14	0.23	0.25	0.24
¹⁰⁰ Ru	+0.14	0.22	0.19	0.16
110				
¹¹⁶ Cd	+0.11	0.19	-0.26	-0.24
¹¹ ^o Sn	+0.04	0.11	0.00	0.00
128-				
¹²⁰ 'le	+0.01	0.14	-0.00	0.00
^{12°} Xe		0.18	0.16	0.14
130m	10.02	0.10	0.02	0.00
130 V	+0.03	0.12	0.03	0.00
лос _{Хе}		0.17	0.13	-0.11
$136 \mathbf{V}_{\odot}$		0.00	0.00	0.00
136 Do		0.09	0.00	0.00
Ба		0.12	0.00	0.00
150 N.A	± 0.37	0.28	0.22	0.24
150Sm	+0.37	0.28	0.22	0.24
	10.20	0.13	0.10	0.21

11/11/2009

New Suppression Mechanism of the DBD NME

The suppression of the NME depends on relative deformation of initial and final nuclei F.Š., Pacearescu, Faessler. NPA 733 (2004) 321

Systematic study of the deformation effect on the $2\nu\beta\beta$ -decay NME within deformed QRPA

Alvarez, Sarriguren, Moya, Pacearescu, Faessler, F.Š., Phys. Rev. C 70 (2004) 321

QRPA with realistic forces in deformed nuclei

M. Saleh Yousef, V. Rodin, A. Faessler, F.Š, PRC 79 (2009) 014314

$$\begin{split} \left\langle p\rho_{p}\overline{n} \rho_{n} \middle| \mathcal{G} \middle| p'\rho_{p'}\overline{n'}\rho_{n'} \right\rangle &= \sum_{J} \sum_{(N_{v}U_{J})_{p}} \sum_{(N_{v}U_{J})_{p}} \sum_{(N_{v}U_{J})_{p}} \sum_{(N_{v}U_{J})_{p'}} B_{(N_{v}U_{J})_{p}}^{(p)} B_{(N_{v}U_{J})_{p}}^{(n)} B_{(N_{v}U_{J})_{p'}}^{(p)} B_{(N_{v}U_{J})_{p'}}^{(n)} B_{(N_{v}U_{J})_{p'}$$

11/11/2009

2νββ-decay and statistical properties of v

11/11/2009

Mixed statistics for neutrinos

- Definition of
mixed state $|\nu \rangle = \hat{a}^{\dagger}|0 \rangle$ $\equiv \cos \delta \ \hat{f}^{\dagger}|0 \rangle + \sin \delta \ \hat{b}^{\dagger}|0 \rangle$ $= \cos \delta \ |f \rangle + \sin \delta \ |b \rangle$
- with commutation $\hat{f}\hat{b} = e^{i\phi}\hat{b}\hat{f}$ $\hat{f}^{\dagger}\hat{b}^{\dagger} = e^{i\phi}\hat{b}^{\dagger}\hat{f}^{\dagger}$ Relations $\hat{f}\hat{b}^{\dagger} = e^{-i\phi}\hat{b}^{\dagger}\hat{f}$ $\hat{f}^{\dagger}\hat{b} = e^{-i\phi}\hat{b}\hat{f}^{\dagger}$

 $\begin{aligned} \mathbf{Amplitude \ for \ } 2\nu\beta\beta \\ A^{2\nu} &= [\cos\delta^4 + \cos\delta^2 \sin\delta^2(1 - \cos\phi)]A^f + [\cos\delta^4 + \cos\delta^2 \sin\delta^2(1 + \cos\phi)]A^b \\ &= \cos\chi^2 A^f + \sin\chi^2 A^b \end{aligned}$

Decay rate

$$W^{2\nu} = \cos \chi^4 W^f + \sin \chi^4 W^b$$

$$= (1 - b^2) W^f + b^2 W^b$$

Partly bosonic neutrino requires knowing NME or log ft values for HSD or SSD

(calculations coming up soon)

Looking for a signature of bosonic v

$$2\nu\beta\beta - \text{decay half-lives } (0^+ \rightarrow 0^+_{g.s.}, 0^+ \rightarrow 0^+_1, 0^+ \rightarrow 2^+_1)$$

• HSD - NME needed
• SSD - log ft_{EC}, log ft_{\beta} needed

Normalized differential characteristics The single electron energy distribution The distribution of the total energy of two electrons Angular correlations of two electrons (free of NME and log ft)

Mixed v excluded for $\sin^2 \chi < 0.6$

 $^{100}Mo \rightarrow ^{100}Ru (SSD)$

11

Neutrinoless Double Electron Capture

11/11/2009

Modes of the 0vECEC-decay: $e_b + e_b + (A,Z) \rightarrow (A,Z-2) + \gamma$ $+ 2\gamma$ $+ e^+e^-$ + M

Neutrinoless double electron capture

Theoretically, not well understood yet: • which mechanism is important? • which transition is important?

Different types of Oscillations (Effective Hamiltonian)

$$H_{eff}^{K_0\overline{K_0}} = \begin{pmatrix} M - \frac{i}{2}\Gamma & M_{12} - \Gamma_{12} \\ M_{12}^* - \Gamma_{12}^* & M - \frac{i}{2}\Gamma \end{pmatrix}$$

$$H_{eff}^{n\overline{n}} = \begin{pmatrix} M & V^{BNV} \\ V^{BNV} & M - \frac{i}{2}\Gamma \end{pmatrix}$$

 H_{eff}^{atom}

Eigenvalues

 $\begin{array}{ccc} M_i & V^{LNV} \\ V^{LNV} & M_f - \frac{i}{2}\Gamma \end{array}$

Oscillations of $v_l - v_{l'}$ (lepton flavor)

Oscillation of K₀-anti{K₀} (strangeness)

> Oscillation of n-anti{n} (baryon number)

> > 64

Oscillation of atoms (total lepton number)

Full width of unstable atom/nucleus

$$\begin{split} \lambda_{+} &= M_{i} + \Delta M - \frac{i}{2}\Gamma_{1}, \\ \lambda_{-} &= M_{f} - \frac{i}{2}\Gamma - \Delta M + \frac{i}{2}\Gamma_{1} \end{split} \qquad \Delta M = \frac{V^{2}(M_{i} - M_{f})}{(M_{i} - M_{f})^{2} + \frac{1}{4}\Gamma^{2}}, \\ \lambda_{-} &= M_{f} - \frac{i}{2}\Gamma - \Delta M + \frac{i}{2}\Gamma_{1} \qquad \text{Fedor} \ \Gamma_{1} &= \frac{V^{2}\Gamma}{(M_{i} - M_{f})^{2} + \frac{1}{4}\Gamma^{2}}. \end{split}$$

J ^π =0 ⁺	Calculated double electron capture half-lives (m _{BB} = 1 ϵ	eV)
--	--	-----

Transition	$M_{A,Z-2}^* - M_{A,Z-2}$	$M_{A,Z-2}^{**} - M_{A,Z}$	Holes	$T_{1/2}^{\min}$	$T_{1/2}$
$^{112}_{50}\mathrm{Sn} \rightarrow ~^{112}_{48}\mathrm{Cd}^*$	1871 ± 0.2	$-5.9 \pm 4.2 \pm 2.7$	$1s_{1/2} \ 1s_{1/2}$	2×10^{24}	8×10^{30}
$^{152}_{64}\text{Gd} \rightarrow ^{152}_{62}\text{Sm}$	0	$-0.3 \pm 2.5 \pm 2.5$	$1s_{1/2} \ 2s_{1/2}$	5×10^{24}	9×10^{29}
	0	$5.9\pm2.5\pm2.5$	$1s_{1/2} \ 3s_{1/2}$	4×10^{25}	8×10^{29}
	0	$7.4\pm2.5\pm2.5$	$1s_{1/2} \ 4s_{1/2}$	8×10^{26}	10^{33}
$^{148}_{64}\text{Gd} \rightarrow ~^{148}_{62}\text{Sm}^*$	3045 ± 2	$5.7\pm2.5\pm2.5$	$2s_{1/2} \ 2s_{1/2}$	8×10^{25}	3×10^{32}
	3045 ± 2	$11.8 \pm 2.5 \pm 2.5$	$2s_{1/2} \ 3s_{1/2}$	3×10^{26}	8×10^{33}
	3045 ± 2	$13.3 \pm 2.5 \pm 2.5$	$2s_{1/2} \ 4s_{1/2}$	4×10^{27}	2×10^{35}
	3045 ± 2	$6.6 \pm 2.5 \pm 2.5$	$2p_{1/2} \ 2p_{1/2}$	2×10^{29}	2×10^{36}
$^{156}_{66}\text{Dy} \rightarrow ~^{156}_{64}\text{Gd}^*$	1988.5 ± 0.2	$7.0 \pm 6.6 \pm 2.5$	$2s_{1/2} \ 2s_{1/2}$	2×10^{27}	8×10^{31}
	1988.5 ± 0.2	$7.9 \pm 6.6 \pm 2.5$	$2p_{1/2} \ 2p_{1/2}$	8×10^{29}	4×10^{35}

Transition	J^P	$M^*_{A,Z-2} - M_{A,Z-2}$	$M_{A,Z-2}^{**} - M_{A,Z}$	Holes	$ ilde{T}_{1/2}^{\min}$	$ ilde{T}_{1/2}$
$^{162}_{68}{ m Er} \rightarrow ~^{162}_{66}{ m Dy}^*$	1^{+}	1745.716 ± 0.007	$-10.1 \pm 3.5 \pm 2.5$	$1s_{1/2} \ 1s_{1/2}$	8×10^{23}	2×10^{29}
$^{156}_{66}\text{Dy} \rightarrow ~^{156}_{64}\text{Gd}^*$	1^{+}	1965.950 ± 0.004	$-12.5 \pm 6.6 \pm 2.5$	$1s_{1/2} \ 2s_{1/2}$	10^{25}	3×10^{30}
	1^{+}	1965.950 ± 0.004	$-5.8 \pm 6.6 \pm 2.5$	$1s_{1/2} \ 3s_{1/2}$	2×10^{26}	2×10^{31}
	1-	1946.375 ± 0.006	$8.4 \pm 6.6 \pm 2.5$	$1s_{1/2} \ 2s_{1/2}$	8×10^{26}	4×10^{31}
$^{74}_{34}\text{Se} \rightarrow ^{74}_{32}\text{Ge}^*$	2^{+}	1204.204 ± 0.007	$3.0 \pm 1.7 \pm 1.6$	$2p_{1/2} \ 2p_{3/2}$	10^{36}	10^{45}

Lepton number and parity oscillations

Double electron capture $e_{1s1/2}^+ e_{1s1/2}^+ \stackrel{112}{} Sn \rightarrow \stackrel{112}{} Cd(0^+_3)$

Reletivistic electron w.f. (j=1/2, l=0, l'=1)

$$\Psi_{jm}^{(\alpha)}(\vec{x}) = \begin{pmatrix} f_{\alpha}(r) \ \Omega_{jlm} \\ (-1)^{\frac{1+l+l'}{2}} g_{\alpha}(r) \ \Omega_{jl'm} \end{pmatrix} \quad l = j \pm 1/2, \ l' = 2j - l$$

Potential		.0.0)22	
$V^{1s_{1/2}1s_{1/2}}(0_3^+) = \frac{1}{4\pi} \ m_e \ \left(G_\beta^2 m_a^2\right)$	$\begin{pmatrix} 4\\ e \end{pmatrix} \frac{m_{\beta\beta}}{m_e} \; \frac{1}{R \; m_e}$	$\frac{\left(\bar{f}_{1s_{1/2}}\right)^2}{4\pi \ m_e^3} g_A^2 \ N$	$M^{0\nu}(0_3^+).$	
Width		Matr	ix element	
$V^{1s_{1/2}1s_{1/2}}(0)$	$(+)^{2}$	Exc. state	E _{ex} (MeV)	M ⁰ ∨
$\Gamma^{ECEC} = -$	Γ_X	0 ⁺ g.s.	0	2.69
$(M_i - M_f)^2 +$	$-\frac{1}{4}$	$0^{+}_{1}(1 \text{ ph.})$	1.224	3.02
		0 ⁺ ₂ (2 ph.)	1.433	0.90
11/11/2009	Fedor Simkovic	0 ⁺ ₃ (1 ph.)	1.224	2.78

Experimental activities (112Sn)

In comparison with the 0νββ-decay disfavoured due:
process in the 3-rd (4th) order in electroweak theory
bound electron wave functions
favoured: resonant enhancement ?

A.S. Barabash et al., NPA 807 (2008) 269

Double electron capture of ¹¹²Sn (perspectives of search)

F. Šimkovic, M. Krivoruchenko, A. Faessler, to be submitted

 $T_{1/2}^{0v}$ (⁷⁶Ge)= (2.95 – 5.74) 10²⁶ years for $m_{\beta\beta}$ = 50 meV

68

Program: Matrix Elements for Fundamental Processes

Ονββ-decay:

- Systematic study of NMEs for all mechanisms (general parameterization), coexistence of different LNV mechanisms, angular distributions, transitions to excited states
- Improvement of the nuclear structure model (QRPA-deformation, non-linear phonon operator, calculation from single vacuum state)
- A detailed comparison with other approaches (NSM, IBM, PHFB) and with available nuclear structure data (occupation numbers, β-strengths) 2 vββ-decay:
- Better understand the role of residual interaction
- Predictions for transitions to 2⁺ states in the context of bosonic neutrinos
 OvECEC: resonant transition to excited states of final atoms, Analysis of capture probabilities, calculation of corresponding nuclear and atomic matrix elements
 Single β-decay: in the context of neutrino mass (³H, ¹⁸⁷Re) and relic neutrino detection
- *dark matter detection: spin-dependent interaction, scattering of neutralinos on odd-odd nuclei, role of exchange currents*

Frank Avignone:

^{11/11/2009} Nuclear Matrix Elements are as important as DATA

69

What is the nature of neutrinos?

Only the 0vββ-decay can answer this fundamental question

