LAUNCH09: Neutrinos and Beyond, 9–12 Nov 09, MPIK, Heidelberg

Axion Dark Matter

Georg Raffelt, Max-Planck-Institut für Physik, München

### **CP Violation in Particle Physics**

Discrete symmetries in particle physics

- C Charge conjugation, transforms particles to antiparticles violated by weak interactions
- P Parity, changes left-handedness to right-handedness violated by weak interactions
- T Time reversal, changes direction of motion (forward to backward)
- CPT exactly conserved in quantum field theories
- CP conserved by all gauge interactions violated by three-flavor quark mixing matrix



All known CP-violating effects derive from a single phase in the quark mass matrix (Kobayashi-Maskawa phase), i.e. from complex Yukawa couplings

**Physics Nobel Prize 2008** 

### The CP Problem of Strong Interactions



Remove phase of mass term by chiral phase transformation of quark fields

$$\psi_{q} \rightarrow e^{-i\gamma_{5}\theta_{q}/2}\psi_{q}$$

$$L_{QCD} = \sum_{q} \overline{\psi}_{q}(i\not\!\!D - m_{q})\psi_{q} - \frac{1}{4}GG - \underbrace{(\Theta - \arg\det M_{q})}_{-\pi < \Theta < +\pi} \widehat{\Theta} \widehat{S}_{\pi}G\widetilde{G}$$

- $\overline{\Theta}$  can be traded between quark phases and  $\,G\tilde{G}\,$  term
- Induces a large neutron electric dipole moment (a T-violating quantity)

Experimental limits:  $|\Theta| < 10^{-10}$  Why so small?

### **Neutron Electric Dipole Moment**



Violates time reversal (T) and space reflection (P) symmetries

### Natural scale

$$e/2m_N = 1.06 \times 10^{-14} e cm$$

### Experimental limit

$$|d| < 0.63 \times 10^{-25} e cm$$

### Limit on coefficient

$$\overline{\Theta} \, \frac{m_q}{m_N} \lesssim 10^{-11}$$

### **Dynamical Symmetry Restoration**

Peccei & Quinn 1977, Wilczek 1978, Weinberg 1978

• Re-interpret **O** as a dynamical variable (scalar field)

$$L_{CP} = -\frac{\alpha_{S}}{8\pi}\overline{\Theta} \operatorname{Tr}(G\tilde{G}) \rightarrow -\frac{\alpha_{S}}{8\pi}\frac{a(x)}{f_{a}} \operatorname{Tr}(G\tilde{G})$$

a(x) pseudoscalar axion field, f<sub>a</sub> axion decay constant (Peccei-Quinn scale)

• Axions generically couple to two gluons and mix with  $\pi^0$ ,  $\eta$ ,  $\eta'$  mesons, inducing a mass (potential) for a(x)

$$m_{a}f_{a} = \frac{\sqrt{m_{u}m_{d}}}{m_{u} + m_{d}} m_{\pi}f_{\pi} \qquad \begin{pmatrix} Axion mass \\ \& couplings \end{pmatrix} \sim \begin{pmatrix} Pion mass \\ \& couplings \end{pmatrix} \times \frac{f_{\pi}}{f_{a}}$$

Potential (mass term) induced by L<sub>CP</sub> drives a(x) to CP-conserving minimum



### **The Cleansing Axion**









"I named them after a laundry detergent, since they clean up a problem with an axial current." (Nobel lecture 2004 written version)

### **Axions as Nambu-Goldstone Bosons**

$$L_{CP} = \frac{\alpha_{S}}{8\pi} \overline{\Theta} \ G_{a} \widetilde{G}_{a} \rightarrow \frac{\alpha_{S}}{8\pi} \left( \overline{\Theta} - \frac{a(x)}{f_{a}} \right) G_{a} \widetilde{G}_{a}$$
Periodic variable (angle)
$$\Phi = \frac{f_{a} + \rho(x)}{\sqrt{2}} e^{ia(x)/f_{a}}$$



- New U(1) symmetry, spontaneously broken at a large scale fa
- Axion is "phase" of new Higgs field: angular variable a(x)/fa
- By construction couples to GG term with strength  $\alpha_s/8\pi$ , e.g. triangle loop with new heavy quark (KSVZ model)
- Mixes with  $\pi^0$ - $\eta$ - $\eta'$  mesons
- Axion mass (vanishes if  $m_u$  or  $m_d = 0$ )  $m_a = \frac{\sqrt{m_u m_d}}{m_u + m_d} \frac{m_\pi}{f_\pi f_a}$

# **Creation of Cosmological Axions**

- T ~ f<sub>a</sub> (very early universe)
- U<sub>PQ</sub>(1) spontaneously broken
- Higgs field settles in "Mexican hat"
- Axion field sits fixed at
   a<sub>1</sub> = Θ<sub>1</sub> f<sub>a</sub>
- T ~ 1 GeV (H ~  $10^{-9}$  eV)
- Axion mass turns on quickly by thermal instanton gas
- Field starts oscillating when m<sub>a</sub> ≥ 3H
- Classical field oscillations (axions at rest)



Axion number density in comoving volume conserved

 $n_a R^3 = m_a(T_1) a_1^2 R_1^3 \sim 3H_1 R_1^3 \Theta_1^2 f_a^2$ 

• Axion mass density today:  $\rho_a = m_a n_a \propto \Theta_1^2 m_a f_a^2 \propto \Theta_1^2 \frac{m_a^2 f_a^2}{m} \propto \Theta_1^2$ 

Modern values for QCD parameters and temperature-dependent axion mass imply (Bae, Huh & Kim, arXiv:0806.0497)

$$\Omega_{a}h^{2} = 0.195 \Theta_{i}^{2} \left(\frac{f_{a}}{10^{12} \text{ GeV}}\right)^{1.184} = 0.105 \Theta_{i}^{2} \left(\frac{10 \ \mu\text{eV}}{m_{a}}\right)^{1.184}$$

If axions provide the cold dark matter:  $\Omega_a h^2 = 0.11$ 

$$\Theta_{i} = 0.75 \left( \frac{10^{12} \text{ GeV}}{f_{a}} \right)^{0.592} = 1.0 \left( \frac{m_{a}}{10 \ \mu eV} \right)^{0.592}$$

- $\Theta_i \sim 1$  implies  $f_a \sim 10^{12}$  GeV and  $m_a \sim 10 \mu eV$  ("classic window")
- $f_a \sim 10^{16}$  GeV (GUT scale) or larger (string inspired) requires  $\Theta_i \leq 0.003$  ("anthropic window")

### Lee-Weinberg Curve for Neutrinos and Axions



### **Axion Hot Dark Matter Limits from Precision Data**



Credible regions for neutrino plus axion hot dark matter (WMAP-5, LSS, BAO, SNIa) Hannestad, Mirizzi, Raffelt & Wong [arXiv:0803.1585]

Marginalizing over unknown neutrino hot dark matter component

ma < 1.0 eV (95% CL)</th>WMAP-5, LSS, BAO, SNIaHannestad, Mirizzi, Raffelt<br/>& Wong [arXiv:0803.1585]ma < 0.4 eV (95% CL)</th>WMAP-3, small-scale CMB,<br/>HST, BBN, LSS, Ly-αMelchiorri, Mena & Slosar<br/>[arXiv:0705.2695]

### **Cold Axion Populations**

Case 1:

Inflation after PQ symmetry breaking

Homogeneous mode oscillates after  $T \leq \Lambda_{QCD}$ Dependence on initial misalignment angle  $\Omega_a \propto \Theta_i^2$ 

Dark matter density a cosmic random number ("environmental parameter")

- Isocurvature fluctuations from large quantum fluctuations of massless axion field created during inflation
- Strong CMB bounds on isocurvature fluctuations
- Scale of inflation required to be small

### Case 2:

Reheating restores PQ symmetry

- Cosmic strings of broken U<sub>PQ</sub>(1) form by Kibble mechanism
- Radiate long-wavelength axions
- $\Omega_a$  independent of initial conditions
- N = 1 or else domain wall problem

Inhomogeneities of axion field large, self-couplings lead to formation of mini-clusters

Typical properties

- Mass ~  $10^{-12}$  M<sub>sun</sub>
- Radius ~ 10<sup>10</sup> cm
- Mass fraction up to several 10%

# Inflation, Axions, and Anthropic Selection

If PQ symmetry is not restored after inflation

- Axion density determined by initial random number  $-\pi < \Theta_i < +\pi$
- Different in different patches of the universe
- Our visible universe, after inflation, from a single patch
- Axion/photon ratio a cosmic random number, chosen by spontaneous symmetry breaking process

Allows for small  $\Theta_i \leq 0.003$  and thus for  $f_a$  at GUT or string scale

- Is this "unlikely" or "unnatural" or "fine tuning"?
- Should one design experiments for very small-mass axion dark matter?

Difficult to form baryonic structures if baryon/dark matter density too low, posterior probability for small  $\Theta_i$  not necessarily small

- Linde, "Inflation and axion cosmology," PLB 201:437, 1988
- Tegmark, Aguirre, Rees & Wilczek, "Dimensionless constants, cosmology and other dark matters," PRD 73:023505, 2006 [astro-ph/0511774]

### Creation of Adiabatic vs. Isocurvature Perturbations

# Inflaton field:

# De Sitter expansion imprints scale invariant fluctuations



Inflaton decay  $\rightarrow$  matter & radiation Fluctuations in both (adiabatic)

# Axion field:



Inflaton decay  $\rightarrow$  radiation Axion field oscillates late  $\rightarrow$  matter Fluctuations of matter relative to radiation: Entropy fluctuations

### **Amplitudes of Adiabatic and Isocurvature Perturbations**

Entropy fluctuations induced by de Sitter expansion on axion field

Isocurvature power spectrum, assuming Gaussian fluctuations  $(n_{iso} = 1 - 2\epsilon, slow-roll parameter \epsilon)$ 

Usual curvature power spectrum

Total power spectrum uncorrelated sum

Isocurvature fraction at pivot scale  $k_0 = 0.002 \text{ Mpc}^{-1}$ 

$$\begin{split} S(k) &= \frac{\Theta^2 - \left\langle \Theta^2 \right\rangle}{\left\langle \Theta^2 \right\rangle} \\ \left\langle |S(k)|^2 \right\rangle - \sigma_{\Theta}^2 - \frac{H_I^2}{\pi^2 f_a^2 \Theta_I^2} \propto \left(\frac{k}{k_0}\right)^{n_{iso}-1} \\ \left\langle |R(k)^2| \right\rangle - \frac{H_I^2}{\pi M_{PI}^2 \epsilon} \propto \left(\frac{k}{k_0}\right)^{n_{ad}-1} \\ P(k) &= \left\langle |R(k)^2| \right\rangle + \left\langle |S(k)^2| \right\rangle \\ \alpha &= \frac{\left\langle |S(k)^2| \right\rangle}{\left\langle |R(k)^2| \right\rangle + \left\langle |S(k)^2| \right\rangle} \\ \left|_{k=k_0} - \frac{H_I^2}{A_S \pi^2 f_a^2 \Theta_I^2} \right\rangle \end{split}$$

### **CMB Angular Power Spectrum**



Hamann, Hannestad, Raffelt & Wong arXiv:0904.0647

### **Isocurvature Forecast**



Hamann, Hannestad, Raffelt & Wong, arXiv:0904.0647

#### Experimental Tests of the "Invisible" Axion

P. Sikivie

Physics Department, University of Florida, Gainesville, Florida 32611 (Received 13 July 1983)

Experiments are proposed which address the question of the existence of the "invisible" axion for the whole allowed range of the axion decay constant. These experiments exploit the coupling of the axion to the electromagnetic field, axion emission by the sun, and/or the cosmological abundance and presumed clustering of axions in the halo of our galaxy.

### Primakoff effect:

Axion-photon transition in external static E or B field (Originally discussed for  $\pi^0$  by Henri Primakoff 1951)



### **Pierre Sikivie:**

Macroscopic B-field can provide a large coherent transition rate over a big volume (low-mass axions)

- Axion helioscope: Look at the Sun through a dipole magnet
- Axion haloscope: Look for dark-matter axions with A microwave resonant cavity

### Search for Solar Axions





- Tokyo Axion Helioscope ("Sumico") (Results since 1998, up again 2008)
- CERN Axion Solar Telescope (CAST) (Data since 2003)

Alternative technique: Bragg conversion in crystal Experimental limits on solar axion flux from dark-matter experiments (SOLAX, COSME, DAMA, CDMS ...)

# CAST at CERN



### **Helioscope Limits**



CAST-I results: PRL 94:121301 (2005) and JCAP 0704 (2007) 010 CAST-II results (He-4 filling): JCAP 0902 (2009) 008

### Search for Galactic Axions (Cold Dark Matter)



### **Axion Dark Matter Searches**

### Limits/sensitivities, assuming axions are the galactic dark matter



K.Imai (Panic 2008)

### Axion hardware (cont'd)





### **Experimental Insert**



Gianpaolo Carosi, Fermilab, May 2007

# The radiometer eqn.\* dictates the strategy A D



### The enabling technology – GHz SQUID amplifiers\* $\underline{ADMX}$

### Presently the noise temperature of our HFET amps is ~ 1.5K But the quantum limit at 1 GHz is ~ 50 mK

\*Prof. John Clark and Dr. Darin Kinion (UC Berkeley)



### Our latest SQUIDs are now within 15% of the Standard Quantum Limit

Gianpaolo Carosi, Fermilab, May 2007

### First ADMX Results using SQUID Amplifiers



Asztalos et al. (ADMX Collaboration), 30 Oct 2009, arXiv:0910.5914



 Cosmic Axion Research with Rydberg Atoms in Cavities in Kyoto

T. Arai, A. Fukuda, H. Funahashi#, T. Haseyama,
S.Ikeda, K. Imai, Y. Isozumi, T. Kato, Y. Kido\$,
A. Matsubara, S. Matsuki\$, T. Mizusaki, T. Nishimura\$,
D. Ohsawa, A. Sawada, Y. Takahashi, T. Tosaki
and K. Yamamoto

Kyoto Univ. # Osaka Electro-comunication Univ. \$ Ritsumeikan Univ.

Kenichi Imai

# New CARRACK (Kyoto)



### **Axion Bounds and Searches**



### Summary

Peccei-Quinn dynamical CP symmetry restoration is better motivated than ever

Provides well-motivated cold dark matter candidate in the form of axions

Realistic full-scale search in "classic window" ( $m_a \sim 1-100 \mu eV$ ) is finally beginning (ADMX and New CARRACK)

Isocurvature fluctuations could still show up (Planck, future CVL probe)

Experimental approach in "anthropic window" (m<sub>a</sub>  $\lesssim$  neV) is missing

| Axions 2010 - Mozilla Fir     | refox                                         |                                                                                     |                                                                                                                  |    |
|-------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----|
| ile Edit <u>V</u> iew History | <u>B</u> ookmarks <u>T</u> ools <u>H</u> elp  |                                                                                     |                                                                                                                  |    |
| < > - C 🚔                     | 🗙 🏠 📄 http://www.phys.ufl.e                   | du/research/Axions2010/index.shtml                                                  | ☆ • Google                                                                                                       | J. |
| 🔄 Most Visited  🥐 Getting S   | Started 🔊 Latest Headlines                    |                                                                                     |                                                                                                                  |    |
| Axions 2010                   | *                                             |                                                                                     |                                                                                                                  |    |
|                               | UNIVERSITY of                                 |                                                                                     |                                                                                                                  |    |
|                               | <b>UF</b>  FLORIDA                            |                                                                                     | Department of Physics                                                                                            |    |
|                               |                                               | * AXIONS 20                                                                         | 10 *                                                                                                             |    |
|                               |                                               | JANUARY 14-17, 2010<br>UNIVERSITY OF FLORIDA                                        |                                                                                                                  |    |
|                               |                                               |                                                                                     |                                                                                                                  |    |
|                               | Carlo Carlos                                  | The cosmology, astrophysics and particle                                            | physics of the axion,                                                                                            |    |
|                               |                                               | and the results of recent searches for th                                           | is hypothetical particle                                                                                         |    |
|                               | Home                                          | Topics                                                                              | Venue                                                                                                            |    |
|                               | Organizers                                    | Theoretical contexts of the axion and axion-like particles                          | B<br>B<br>University of Florida<br>Physics Department                                                            |    |
|                               | Scientific Advisory                           | Axion cosmology and astrophysics                                                    |                                                                                                                  |    |
|                               | Committee                                     | Searches for the axion in the laboratory and in the sky                             | Gainesville, Florida                                                                                             |    |
|                               | Invited Speakers                              |                                                                                     |                                                                                                                  |    |
|                               | Dentisinanta                                  | -                                                                                   | and the second second second second second                                                                       |    |
|                               | Participants                                  | Announcements                                                                       | ough                                                                                                             |    |
|                               | Program                                       | Registration begins <b>October 1</b> and will continue through <b>December 18</b> . |                                                                                                                  |    |
|                               | Deadlines and Fees                            |                                                                                     |                                                                                                                  |    |
|                               | Pre-register                                  |                                                                                     |                                                                                                                  |    |
|                               |                                               | _                                                                                   | and the second |    |
|                               | Registration                                  |                                                                                     |                                                                                                                  |    |
|                               | Travel                                        |                                                                                     |                                                                                                                  |    |
|                               |                                               |                                                                                     |                                                                                                                  |    |
|                               |                                               |                                                                                     |                                                                                                                  |    |
|                               |                                               |                                                                                     |                                                                                                                  |    |
|                               |                                               |                                                                                     | UNIVERSITY of                                                                                                    |    |
|                               | Department of Physics, P.<br>352.392.0524 (F) | D. Box 118440, Gainesville, FL 32611-8440, 352.392.0521 (P)                         | <b>UF</b> FLORIDA                                                                                                |    |
|                               | Search UF                                     | Go                                                                                  | The Foundation for The Gator Nation                                                                              |    |