Tilman Plehn

Mass reconstruction

Parameters

Dark Matter and Missing Energy at the LHC

Tilman Plehn

Heidelberg

MPI für Kernphysik 11/2009

Outline

Tilman Plehn

Mass reconstruction

Parameters

Mass reconstruction (relativistic kinematics)

Underlying parameters (statistics and errors)

Tilman Plehn

Mass reconstruction

Parameters

Effective Standard Model in the LHC era

Expectations from the LHC [Uli Baur's rule: 'there is always new physics at higher scales']

- find light Higgs?
- find new physics stabilizing Higgs mass?
- see dark-matter candidate (WIMP)?

Particle theory and new physics

- model-independent analyses likely not helpful
- testing testable hypotheses [theory: e.g. Higgs sector and underlying theory?] discrete hypotheses: spins,....
 continuous hypotheses: masses,...
- link to other observations [DM+Tevatron: Hooper, TP, Valinotto]
- reconstruction of Lagrangian [theory+experiment]

Tilman Plehn

Mass reconstruction

Parameters

Effective Standard Model in the LHC era

Expectations from the LHC [Uli Baur's rule: 'there is always new physics at higher scales']

- find light Higgs?
- find new physics stabilizing Higgs mass?
- see dark-matter candidate (WIMP)?

Particle theory and new physics

- model-independent analyses likely not helpful
- testing testable hypotheses [theory: e.g. Higgs sector and underlying theory?] discrete hypotheses: spins,.... continuous hypotheses: masses,...
- link to other observations [DM+Tevatron: Hooper, TP, Valinotto]
- reconstruction of Lagrangian [theory+experiment]

Special about LHC [except bigger than Tevatron]

- beyond inclusive searches [that was Tevatron] lots of strongly interacting particles cascade decays to DM candidate
- survive QCD (serious theory problem)
- \Rightarrow aim at underlying theory

Tilman Plehn

Mass reconstruction

Parameters

Effective Standard Model in the LHC era

Expectations from the LHC [Uli Baur's rule: 'there is always new physics at higher scales']

- find light Higgs?
- find new physics stabilizing Higgs mass?
- see dark-matter candidate (WIMP)?

Particle theory and new physics

- model-independent analyses likely not helpful
- testing testable hypotheses [theory: e.g. Higgs sector and underlying theory?] discrete hypotheses: spins,.... continuous hypotheses: masses,...
- link to other observations [DM+Tevatron: Hooper, TP, Valinotto]
- reconstruction of Lagrangian [theory+experiment]

Special about LHC [except bigger than Tevatron]

- beyond inclusive searches [that was Tevatron] lots of strongly interacting particles cascade decays to DM candidate
- survive QCD (serious theory problem)
- \Rightarrow aim at underlying theory

Tilman Plehn

Mass reconstruction

Parameters

Transverse mass

Learning from neutrinos...

- $W \rightarrow \ell \nu$ decay to invisible particles
- longitudinal boost unobserved at hadron colliders
- transverse instead of invariant W mass $[E_T^2 = \vec{p}_T^2 + m^2, \text{ observed 2D } \vec{p}_T]$

$$\begin{split} m_{T,W}^2 &= \left(E_T^{\text{miss}} + E_{T,\ell} \right)^2 - \left(\vec{p}_T^{\text{miss}} + \vec{p}_{T,\ell} \right)^2 \\ &= m_\ell^2 + m_{\text{miss}}^2 + 2 \left(E_{T,\ell} E_T^{\text{miss}} - \vec{p}_{T,\ell} \cdot \vec{p}_T^{\text{miss}} \right) \le m_W \end{split}$$

 \Rightarrow *m*_W from endpoint and shape

Tilman Plehn

Mass reconstruction

Parameters

Transverse mass

Learning from neutrinos...

- $W \rightarrow \ell \nu$ decay to invisible particles
- longitudinal boost unobserved at hadron colliders
- transverse instead of invariant W mass $[E_T^2 = \vec{p}_T^2 + m^2]$, observed 2D \vec{p}_T]

$$\begin{split} m_{T,W}^2 &= \left(E_T^{\text{miss}} + E_{T,\ell} \right)^2 - \left(\vec{p}_T^{\text{miss}} + \vec{p}_{T,\ell} \right)^2 \\ &= m_\ell^2 + m_{\text{miss}}^2 + 2 \left(E_{T,\ell} E_T^{\text{miss}} - \vec{p}_{T,\ell} \cdot \vec{p}_T^{\text{miss}} \right) \le m_W \end{split}$$

 $\Rightarrow m_W$ from endpoint and shape

r

- two invisible particles: $H \rightarrow WW \rightarrow \ell \nu \ \ell \nu$

$$\begin{split} m_{T,WW}^2 &= \left(E_T^{\text{miss}} + E_{T,\ell\ell}\right)^2 - \left(\vec{p}_T^{\text{miss}} + \vec{p}_{T,\ell\ell}\right)^2 \\ &= m_{\ell\ell}^2 + m_{\text{miss}}^2 + 2\left(E_{T,\ell\ell}E_T^{\text{miss}} - \vec{p}_{T,\ell\ell} \cdot \vec{p}_T^{\text{miss}}\right) \end{split}$$

- assumption needed:

 $m_{
m miss} = m_{\ell\ell}$ sharp peak

- $m_{miss} = 0$ endpoint [general $m_T < m$]
- $\Rightarrow H \rightarrow WW$ at Tevatron and LHC [Kauer, TP, Rainwater, Zeppenfeld; Barr, Gripaios, Lester]
- \Rightarrow massive invisible particles and decay chains...?

Transverse masses

Missing Energy at the LHC

Mass reconstruction

Parameters

M_{T2} algorithm [Lester, Summers; Barr, Lester, Stephens]

$$- \text{ SUSY process } pp \to \tilde{\ell}\tilde{\ell}^* \to \ell\tilde{\chi}^0_1 \ \ell\tilde{\chi}^0_1 \ \text{ [massive particles, balancing } \bar{\rho}^{\text{miss}}_T \text{]}$$

- (in)famous m_{T2} [for m_{miss} hypothesis] $m_{T2}(m_{\text{miss}}) = \min_{\substack{\vec{p}_{\text{miss}}^{\text{miss}} = \phi_{1} + \phi_{2}} \left[\max_{j} m_{T,j}(\phi_{j}; m_{\text{miss}}) \right]$
- $\ m^{(1)}_{\rm daughter} + m^{(2)}_{\rm daughter} < m_{\rm T2} < m_{\rm mother} \ {\rm sharp \ endpoint} \ \ {\rm [for \ correct \ } m_{\rm miss}]$
- constraint in $m_{\tilde{\ell}} m_{\tilde{\chi}_1^0}$ plane m_{TX} with more invisible particles not as promising $_{[\nu\nu\tilde{\chi}_1^0\tilde{\chi}_1^0 \text{ etc}]}$

Transverse masses

M_{T2} algorithm [Lester, Summers; Barr, Lester, Stephens]

Tilman Plehn Mass reconstruction

Missing Energy at

the LHC.

Parameters

- SUSY process $pp \to \tilde{\ell}\tilde{\ell}^* \to \ell \tilde{\chi}^0_1 \ \ell \tilde{\chi}^0_1$ [massive particles, balancing \vec{p}_T^{miss}]
- (in)famous m_{T2} [for m_{miss} hypothesis] $m_{T2}(m_{\text{miss}}) = \min_{\vec{p}_T^{\text{miss}} = \phi_1 + \phi_2} \left[\max_j m_{T,j}(\phi_j; m_{\text{miss}}) \right]$
- $\ m^{(1)}_{\rm daughter} + m^{(2)}_{\rm daughter} < m_{\rm T2} < m_{\rm mother} \ {\rm sharp \ endpoint} \ \ {}_{\rm for \ correct \ } m_{\rm miss} {\rm I}$
- constraint in $m_{\tilde{\ell}} m_{\tilde{\chi}_1^0}$ plane m_{TX} with more invisible particles not as promising $_{[\nu\nu\chi_1^0\chi_1^0 \text{ etc}]}$
- *m*_{T2} boost invariant only for correct *m*_{miss}
- scan over m_{miss} accumulation points for many events [Cho, Choi, Kim, Park; Barr, Gripaios, Lester]
- kink for pairwise three-particle decays $pp \rightarrow \tilde{\chi}_2^0 \tilde{\chi}_2^0 \rightarrow f \bar{f} \tilde{\chi}_1^0 f \bar{f} \tilde{\chi}_1^0$
- \rightarrow determine missing mass

Mass relations

Tilman Plehn

Mass reconstruction

Parameters

Same masses in all events [Nojiri, Tovey; McElrath etal; Webber]

- on-shell decay chain
$$\tilde{q}_L \to \tilde{\chi}_2^0 \to \tilde{\ell} \to \tilde{\chi}_1^0$$

 $(p_1 + p_2 + p_3 + \vec{p}^{\text{miss}})^2 = m_{\tilde{q}_L}^2$
 $(p_2 + p_3 + \vec{p}^{\text{miss}})^2 = m_{\tilde{\chi}_2^0}^2$
 $(p_3 + \vec{p}^{\text{miss}})^2 = m_{\tilde{\ell}}^2$
 $(\vec{p}^{\text{miss}})^2 = m_{\tilde{\chi}_2^0}^2$

- pair production, \vec{p}_T^{miss} measured: 4+2 constraints for 8 unknowns [McElrath etal]
- two events: 12+4 constraints for 16 unknowns solve for invisible momenta, extract masses [quantum effects, detector effects]

Mass relations

Tilman Plehn

Mass reconstruction

Parameters

Same masses in all events [Nojiri, Tovey; McElrath etal; Webber]

- on-shell decay chain
$$\tilde{q}_L \rightarrow \tilde{\chi}_2^0 \rightarrow \tilde{\ell} \rightarrow \tilde{\chi}_1^0$$

 $(p_1 + p_2 + p_3 + \vec{p}^{\text{miss}})^2 = m_{\tilde{q}_L}^2$
 $(p_2 + p_3 + \vec{p}^{\text{miss}})^2 = m_{\tilde{\chi}_2^0}^2$
 $(p_3 + \vec{p}^{\text{miss}})^2 = m_{\tilde{\ell}}^2$
 $(\vec{p}^{\text{miss}})^2 = m_{\tilde{\chi}_1^0}^2$

- pair production, \vec{p}_T^{miss} measured: 4+2 constraints for 8 unknowns [McElrath etal]
- two events: 12+4 constraints for 16 unknowns solve for invisible momenta, extract masses [quantum effects, detector effects]
- alternative: samples of 25 events [Webber] fast numerical inversion/goodness of fit

Mass relations

Tilman Plehn

Mass reconstruction

Parameters

Same masses in all events [Nojiri, Tovey; McElrath etal; Webber]

- on-shell decay chain
$$\tilde{q}_L \rightarrow \tilde{\chi}_2^0 \rightarrow \tilde{\ell} \rightarrow \tilde{\chi}_1^0$$

 $(p_1 + p_2 + p_3 + \vec{p}^{\text{miss}})^2 = m_{\tilde{q}_L}^2$
 $(p_2 + p_3 + \vec{p}^{\text{miss}})^2 = m_{\tilde{\chi}_2}^2$
 $(p_3 + \vec{p}^{\text{miss}})^2 = m_{\tilde{\ell}}^2$
 $(\vec{p}^{\text{miss}})^2 = m_{\tilde{\chi}_1}^2$

- pair production, $\vec{p}_{T}^{\text{miss}}$ measured: 4+2 constraints for 8 unknowns [McElrath etal]
- two events: 12+4 constraints for 16 unknowns solve for invisible momenta, extract masses [quantum effects, detector effects]
- alternative: samples of 25 events [Webber] fast numerical inversion/goodness of fit

$\rightarrow \ working \ scheme \ for \ LHC \quad \ \ [backgrounds \ etc \ to \ be \ checked]$

$\delta p/p$	ξ^2_{max}	f _ξ	fcor	M _{q̃} (540)	$M_{\tilde{\chi}_{2}^{0}}$ (177)	$M_{\tilde{\ell}}$ (143)	M _{χ0} (96)
0	∞	100%	72%	538 ± 20	176 ± 12	143 ± 7	95 ± 10
0	100	80%	76%	539 \pm 7	177 ± 1	144 \pm 1	96 ± 2
5%	∞	100%	52%	534 ± 28	176 ± 11	143 \pm 10	95 ± 13
5%	100	57%	55%	539 \pm 9	178 ± 3	144 \pm 2	96 ± 4
10%	∞	100%	40%	522 \pm 37	171 ± 18	140 ± 17	88 ± 26
10%	200	42%	43%	530 ± 22	173 ± 12	140 ± 12	89 ± 20

Tilman Plehn

Mass reconstruction

Parameters

Kinematic endpoints

Cascade decays [Atlas-TDR, Cambridge people]

- new particles strongly interacting and LSP weakly interacting
- long chain $\tilde{g} \to \tilde{b}\bar{b} \to \tilde{\chi}_2^0 b\bar{b} \to \mu^+\mu^- b\bar{b}\tilde{\chi}_1^0$
- tough: $(\sigma BR)_1/(\sigma BR)_2$ [model dependence, QCD uncertainty] easier: kinematics

thresholds & edges
$$0 < m_{\mu\mu}^2 < \frac{m_{\tilde{\chi}_2^0}^2 - m_{\tilde{\ell}}^2}{m_{\tilde{\ell}}} \ \frac{m_{\tilde{\ell}}^2 - m_{\tilde{\chi}_1^0}^2}{m_{\tilde{\ell}}}$$

- new-physics mass spectrum from endpoints
- new-physics spins from shapes [Barr, Lester, Smillie, Webber; Alves, Eboli, TP;...]

Tilman Plehn

Mass reconstruction

Parameters

Kinematic endpoints

Cascade decays [Atlas-TDR, Cambridge people]

- new particles strongly interacting and LSP weakly interacting
- long chain ${ ilde g} o { ilde b} { ilde b} o { ilde \chi}_2^0 b { ilde b} o \mu^+ \mu^- b { ilde b} { ilde \chi}_1^0$
- tough: $(\sigma BR)_1/(\sigma BR)_2$ [model dependence, QCD uncertainty] easier: kinematics
- thresholds & edges $0 < m_{\mu\mu}^2 < \frac{m_{\tilde{\chi}_2^0}^2 - m_{\tilde{\ell}}^2}{m_{\tilde{\ell}}} \ \frac{m_{\tilde{\ell}}^2 - m_{\tilde{\chi}_1^0}^2}{m_{\tilde{\ell}}}$
- new-physics mass spectrum from endpoints
- new-physics spins from shapes [Barr, Lester, Smillie, Webber; Alves, Eboli, TP;...]

Gluino decay [Gjelsten, Miller, Osland, Raklev...]

- only b jets [otherwise dead by QCD]
- no problem: off-shell [Catpiss]
- no problem: jet radiation?
- gluino mass to $\sim 1\%$

Tilman Plehn

Mass reconstruction

Parameters

Kinematic endpoints

Cascade decays [Atlas-TDR, Cambridge people]

- new particles strongly interacting and LSP weakly interacting
- long chain $\tilde{g}
 ightarrow ilde{b} ar{b}
 ightarrow ilde{\chi}_2^0 b ar{b}
 ightarrow \mu^+ \mu^- b ar{b} ilde{\chi}_1^0$
- tough: $(\sigma BR)_1/(\sigma BR)_2$ [model dependence, QCD uncertainty] easier: kinematics
- thresholds & edges $0 < m_{\mu\mu}^2 < \frac{m_{\tilde{\chi}_2^0}^2 - m_{\tilde{\ell}}^2}{m_{\tilde{\ell}}} \ \frac{m_{\tilde{\ell}}^2 - m_{\tilde{\chi}_1^0}^2}{m_{\tilde{\ell}}}$
- new-physics mass spectrum from endpoints
- new-physics spins from shapes [Barr, Lester, Smillie, Webber; Alves, Eboli, TP;...]

Gluino decay [Gjelsten, Miller, Osland, Raklev...]

- only b jets [otherwise dead by QCD]
- no problem: off-shell [Catpiss]
- no problem: jet radiation?
- gluino mass to $\sim 1\%$
- \Rightarrow but why physical masses?

Tilman Plehn

Mass reconstruction

Parameters

Underlying parameters

From kinematics to weak-scale parameters [Fittino; SFitter: Lafaye, TP, Rauch, Zerwas]

- parameters: weak-scale Lagrangian
- measurements: edges or masses, branching fractions, rates,... [NLO, of course] ew precision, dark matter,...
- errors: general correlation, statistics & systematics & theory [flat theory errors!]
- problem in grid: no local maximum problem in fit: no global maximum problem in interpretation: bad observables, secondary maxima?

Probability maps of new physics [Baltz,...; Roszkowski,...; Allanach,...; SFitter]

- want probability of model being true p(m|d)
- can do exclusive likelihood map p(d|m) over m
- LHC challenge: poor data [e.g. endpoints vs rates]
- Bayesian: $p(m|d) \sim p(d|m) p(m)$ [cosmology, BSM] frequentist: best-fitting point $\max_m p(d|m)$ [flavor, Higgs@LHC]
- LHC era: (1) compute high-dimensional map p(d|m)
 - (2) find and rank local best-fitting points
 - (3) predict additional observables

Tilman Plehn

Mass reconstruction

Parameters

Correlations and errors

Toy model: MSUGRA map from LHC [LHC endpoints with free y_t]

- model unrealistic but useful testing ground
- SFitter output #1: fully exclusive likelihood map SFitter output #2: ranked list of local maxima
- \Rightarrow correlations and secondary maxima significant

200 190 É 180 170 160		0			and the second second	1 1 1 1 1 1 1	00000 0000 000 00 0	$\begin{array}{c} & \chi^2 \\ 0.3e-04 \\ 27.42 \\ 54.12 \\ 70.99 \\ 88.53 \\ \dots \end{array}$	<i>m</i> ₀ 100.0 99.7 107.2 108.5 107.7	^m 1/2 250.0 251.6 243.4 246.9 245.9	tan β 10.0 11.7 13.3 13.9 12.9	A ₀ -99.9 848.9 -97.4 26.4 802.7	μ + - -	<i>m_t</i> 171.4 181.6 171.1 173.6 182.7
-1	000 -500	0	500 A ₀	1000	1500	2000								

Tilman Plehn

Mass reconstruction

Parameters

Correlations and errors

Toy model: MSUGRA map from LHC [LHC endpoints with free yt]

- model unrealistic but useful testing ground
- SFitter output #1: fully exclusive likelihood map SFitter output #2: ranked list of local maxima
- \Rightarrow correlations and secondary maxima significant

A word on errors

- statistical errors Gaussian systematic errors Gaussian, correlated theory errors flat
- RFit scheme

[CKMFitter, profile likelihood inspired]

$$\begin{split} \chi^{2} &= -2 \log \mathcal{L} = \vec{\chi}_{d}^{T} C^{-1} \vec{\chi}_{d} \\ \chi_{d,i} &= \begin{cases} 0 & |d_{i} - \bar{d}_{i}| < \sigma_{i}^{\text{(theo)}} \\ \frac{\mathcal{D} |d_{i} - \bar{d}_{i}| - \sigma_{j}^{\text{(theo)}}}{\mathcal{D} \sigma_{i}^{\text{(exp)}}} & |d_{i} - \bar{d}_{i}| > \sigma_{i}^{\text{(theo)}} , \end{cases} \\ C_{i,i} &= 1 & C_{i,j} = C_{j,i} = \frac{0.99 \; \sigma_{i}^{(\ell)} \; \sigma_{j}^{(\ell)} + 0.99 \; \sigma_{i}^{(l)} \; \sigma_{j}^{(l)}}{\sigma_{i}^{\text{(exp)}} \; \sigma_{j}^{\text{(exp)}}} \end{split}$$

Tilman Plehn

Mass reconstruction

Parameters

Correlations and errors

Toy model: MSUGRA map from LHC [LHC endpoints with free y_t]

- model unrealistic but useful testing ground
- SFitter output #1: fully exclusive likelihood map SFitter output #2: ranked list of local maxima
- \Rightarrow correlations and secondary maxima significant

A word on errors

- statistical errors Gaussian systematic errors Gaussian, correlated theory errors flat
- theory error sizeable
- \Rightarrow endpoints instead of masses

	SPS1a	$\Delta_{zero}^{theo-exp}$	$\Delta_{zero}^{expNoCorr}$	$\Delta_{zero}^{theo-exp}$	$\Delta_{gauss}^{theo-exp}$	$\Delta_{\text{flat}}^{\text{theo}-\exp}$
		masses		endp	oints	
<i>m</i> 0	100	4.11	1.08	0.50	2.97	2.17
m1/2	250	1.81	0.98	0.73	2.99	2.64
tan β	10	1.69	0.87	0.65	3.36	2.45
A	-100	36.2	23.3	21.2	51.5	49.6
mť	171.4	0.94	0.79	0.26	0.89	0.97

Tilman Plehn

Mass reconstruction

Parameters

TeV-scale MSSM: SFitter

MSSM map from LHC mass measurements

- 19D parameter space [Markov chain globally + hill climber locally]
- SFitter outputs #1 and #2 still the same
- three neutralinos observed [left: Bayesian right: likelihood]

Tilman Plehn

Mass reconstruction

Parameters

TeV-scale MSSM: SFitter

MSSM map from LHC mass measurements

- 19D parameter space [Markov chain globally + hill climber locally]
- SFitter outputs #1 and #2 still the same
- three neutralinos observed [left: Bayesian right: likelihood]

- quality of fit all the same ...

		μ	< 0		$\mu > 0$				
M1	96.6	175.1	103.5	365.8	98.3	176.4	105.9	365.3	
M2	181.2	98.4	350.0	130.9	187.5	103.9	348.4	137.8	
μ^{-}	-354.1	-357.6	-177.7	-159.9	347.8	352.6	178.0	161.5	
$\tan \beta$	14.6	14.5	29.1	32.1	15.0	14.8	29.2	32.1	
M ₃	583.2	583.3	583.3	583.5	583.1	583.1	583.3	583.4	
Μ _{μ̃}	192.7	192.7	192.7	192.9	192.6	192.6	192.7	192.8	
M _{µ̃}	131.1	131.1	131.1	131.3	131.0	131.0	131.1	131.2	
$A_t(-)$	-252.3	-348.4	-477.1	-259.0	-470.0	-484.3	-243.4	-465.7	
$A_t(+)$	384.9	481.8	641.5	432.5	739.2	774.7	440.5	656.9	
mA	350.3	725.8	263.1	1020.0	171.6	156.5	897.6	256.1	
mt	171.4	171.4	171.4	171.4	171.4	171.4	171.4	171.4	

⇒ combination with astro-particle measurements...

Tilman Plehn

Mass reconstruction

Parameters

Outlook

Once we actually see LHC data...

- from neutrinos we know invisible particles
- WIMP the same, but massive
- transverse masses for short decays mass relations for pure samples cascade endpoints including spin info
- missing: co-transverse mass [Tovey]
- missing: dark matter sectors [Dama, Pamela, Atic, Fermi]
- ⇒ LHC more than a discovery machine!

Tilman Plehn

Mass reconstruction

Parameters