

Neutrino-nucleus reactions

Karlheinz Langanke

GSI & TU Darmstadt & FIAS

Launch09, Heidelberg, November 9, 2009

Karlheinz Langanke (GSI & TU Darmstadt &

Neutrino-nucleus reactions

100, Heldelberg, November 0, 2000

Part I: Astrophysical needs

- supernova neutrinos due to electron captures
- inelastic neutrino-nucleus scattering
- consequences for observation of neutrino-burst
- explosive nucleosynthesis
- neutrino nucleosynthesis
- ...
- Part II: Evaluation of neutrino-nucleus cross sections
 - energy scales and nuclear model requirements
 - examples and uncertainties
 - data?

Core-collapse supernova.

Karlheinz Langanke (GSI & TU Darmstadt &

Electron captures in core collapse.

• T = 0.5-2.0 MeV, $\rho = 10^8$ -10¹³ g cm⁻³.

• The dynamical time scale set by electron captures:

 $e^- + (N, Z)
ightarrow (N+1, Z-1) +
u_e$

• Evolution decreases number of electrons (Y_e) and Chandrasekhar mass $(M_{Ch} \approx 1.4(2Y_e)^2 \text{ M}_{\odot})$

• Capture rates on individual nuclei computed by:

- Shell Model (*A* < 65)
- Shell Model Monte Carlo (A > 65)
- RPA with parametrized occupation numbers (A > 115)

Gamow-Teller strength distributions in pf-shell nuclei.

shell model results agree after overall quenching by $(0.77)^2$

/ 42

With Rampp & Janka (General Relativistic model) $15 M_{\odot}$ presupernova model from A. Heger & S. Woosley

Karlheinz Langanke (GSI & TU Darmstadt &

noo, ricideiberg, November o, 2000

/ 42

'Standard' neutrino burst

- shock dissociates matter into free protons and neutrons
- fast electron captures on free protons create ve neutrino burst
- standard' v_e bursts
- future observation by supernova neutrino detectors
- standard neutrino candles'?

Inelastic *v*-nucleus scattering in supernovae

Potential consequences:

- thermalization of neutrinos during collapse
- preheating of matter before passing of shock
- nucleosynthesis, vp-process
- supernova neutrino signal

- neutrino cross sections from
 (e, e') data
- validation of shell model
- G.Martinez-Pinedo, P. v. Neumann-Cosel, A. Richter

Supernova neutrino signal

inelastic $\nu\text{-nucleus}$ scattering adds to the opacity for high-energy neutrinos

B. Müller, H.-Th. Janka, G. Martinez-Pinedo, A. Juodagalvis, J. Sampaio

Consequences for supernova neutrino detectors

Detector	Material	$\langle \sigma \rangle$ (10 ⁻⁴² cm ²)		Change
		With $A(\nu, \nu')A^{\star}$	Without $A(\nu, \nu')A^*$	•
SNO	d	5.92	7.08	16%
MiniBoone	¹² C	0.098	0.17	43%
	¹² C (N _{gs})	0.089	0.15	41%
S-Kamiokande	¹⁶ O	0.013	0.031	58%
lcarus	⁴⁰ Ar	17.1	21.5	20%
Minos	⁵⁶ Fe	8.8	12.0	27%
OMNIS	²⁰⁸ Pb	147.2	201.2	27%

Change in supernova neutrino spectra reduce detection rates!

Karlheinz Langanke (GSI & TU Darmstadt &

Explosive nucleosynthesis in supernova

- Consistent treatment of supernova dynamics coupled with a nuclear network.
- Essential neutrino reactions in the shock heated region

 $u_e + n \rightleftharpoons p + e^ \bar{\nu}_e + p \rightleftharpoons n + e^+$

Y_e evolution of a mass element

The ν p-process: basic idea

- Protonrich matter is ejected under the influence of neutrino reactions
- Nuclei form at distance where a substantial antineutrino flux is present

Antineutrinos help to bridge long waiting points via (n,p) reactions

 $ar{
u}_e + p
ightarrow e^+ + n; \quad n + {}^{64}\text{Ge}
ightarrow {}^{64}\text{Ga} + p; \quad {}^{64}\text{Ga} + p
ightarrow {}^{65}\text{Ge}; \dots$

C. Fröhlich, G. Martinez-Pinedo, et al., PRL 96 (2006) 142502

 Y_e : electron-to-nucleon ratio

the larger Y_e , the more protons exist and can be transformed into neutrons by antineutrino capture

R-process nucleosynthesis

courtesy: K-L. Kratz

Karlheinz Langanke (GSI & TU Darmstadt &

ichos, Heidelberg, November 5, 2005

< A

Which nuclear ingredients are needed?

Karlheinz Langanke (GSI & TU Darmstadt &

/ 42

Neutrinos from supernovae

Karlheinz Langanke (GSI & TU Darmstadt &

Neutrino nucleosynthesis

A. Heger et al, PLB 606 (2005) 258

Product	Parent	Reaction
¹¹ B	¹² C	$(\nu, \nu' n), (\nu, \nu' p)$
¹⁹ F	²⁰ Ne	$(\nu, \nu' n), (\nu, \nu' p)$
¹³⁸ La	¹³⁸ Ba	(ν_{e}, e^{-})
	¹³⁹ La	$(\nu, \nu' n)$
¹⁸⁰ Ta	¹⁸⁰ Hf	(ν_e, e^-)
	¹⁸¹ Ta	$(\nu, \nu' n)$

- ¹¹B and ¹⁹F are produced by neutral-current reactions induced by ν_{μ} and ν_{τ} neutrinos and anti-neutrinos
- $\bar{\nu_e}$ neutrinos observed from SN1987a
- ¹³⁸La and ¹⁸⁰Ta are produced by charged-current reactions induced by ν_e neutrinos on ¹³⁸Ba and ¹⁸⁰Hf
- In summary, one has a sensitivity to ALL different neutrino spectra

However, neutrino cross sections based on theoretical models (RPA)

Measurement of GT strength for ¹³⁸Ba and ¹⁸⁰Hf

RCNP Osaka/ Darmstadt (A. Byelikov *et al.*)

Charged current: $(Z, A) + \nu_e \rightarrow (Z + 1, A) + e^-$

$$\sigma_{i,f}(E_{\nu}) = \frac{G_V^2}{\pi} p_e E_e F(Z+1, E_e)[B(F) + B(GT)]$$

Neutral current: $(Z, A) + \nu \rightarrow (Z, A)^* + \nu$

$$\sigma_{i,f}(\boldsymbol{E}_{\nu}) = \frac{\boldsymbol{G}_{F}}{\pi}(\boldsymbol{E}_{\nu} - \boldsymbol{w})^{2}\boldsymbol{B}(\boldsymbol{G}\boldsymbol{T}_{0})$$

with $w = E_f - E_i$

In general, multipoles beyond allowed transitions are necessary. See Donelly and Peccei, Phys. Repts. **50**, 1 (1979).

General considerations: Which multipoles?

Multipole operators O_λ

$$- \sim \left(\frac{qR}{\hbar c}\right)^{\lambda} ; q \approx E_{\nu}$$

- successively higher rank with increasing E_{ν}
- Collective nuclear excitations:
 - $[H, O_{\lambda}] \neq 0 \rightarrow$ strength is fragmented
 - centroid $E_{coll}^{\lambda} \sim \lambda \hbar \omega \sim \lambda \frac{41}{A^{1/3}} \mathrm{MeV}$
- Phase space:
 - $\sim p_{lep} E_{lep} \rightarrow \text{high } E_{lep}$ preferred
 - average nuclear excitation $\bar{\omega}$ lags behind with increasing E_{ν}
 - if $E_{\nu} >> \bar{\omega}$, σ sensitive to total strength

Remarks about response: Which models?

- B

Shell Model versus RPA.

The RPA considers only (1p-1h) correlations; it is well suited to describe the centroid of giant resonances

Inelastic electron scattering: RPA description of response

Systematics of Fermi and Gamow-Teller centroids

ios, neidelberg, November 3, 200

How well do we know charged-current cross sections?

RPA vs simple Gaussian: ~ factor 2 (Surmann+Engel)

What about other multipoles?

for neutrino spectrum with T = 4 MeV

Influence of higher multipoles

Spectrum for muon decay: $\mu^+ \rightarrow e^+ + \nu_e + \bar{\nu}_{\mu}$

Influence of higher multipoles

⁵⁶Fe(ν_e , e^-)⁵⁶Co measured by KARMEN collaboration: $\sigma_{exp} = 2.56 \pm 1.08(stat) \pm 0.43(syst) \times 10^{-40} cm^2$ $\sigma_{th} = 2.38 \times 10^{-40} cm^2$

E. Kolbe, G. Martinez-Pinedo, Phys. Rev. C60 (1999) 052801

Karlheinz Langanke (GSI & TU Darmstadt &

Neutrino-nucleus reactions

Typical supernova neutrino spectra

Multipole decomposition

kinematics similar to capture of antineutrinos with a few 10 MeV

N.T. Zinner et al., RPA calculations, Phys. Rev. C

Determining inelastic neutrino-nucleus cross sections

INELASTIC NEUTRINO SCATTERING ON NUCLEI

Karlheinz Langanke (GSI & TU Darmstadt &

nenos, neidelberg, November 5, 2005

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Neutrino cross sections from electron scattering

- high-precision SDalinac data
- Iarge-scale shell model

- neutrino cross sections from
 (e, e') data
- validation of shell model
- G.Martinez-Pinedo, P. v. Neumann-Cosel, A. Richter

Tables for neutrino-nucleus cross sections

Fuller-Meyer: parametrized Gamow-Teller model (Gaussian),
 (ν_e, e⁻)

G.M. Fuller and B.S. Meyer, Astr. J. 453 (1995) 792: G. McLaughlin and G.M. Fuller, Astr. J. 455 (1995) 202

- Borzov+Goriely: Fermi liquid theory, (ν_e, e⁻)
 I. Borzov and S. Goriely, Phys. Rev. C62 (2000)035501
- Langanke-Kolbe: RPA, neutronrich nuclei, (ν_e, e⁻), (ν, ν')
 K. Langanke and E. Kolbe, ADNDT 79 (2001) 293; 82 (2002) 191
- Juodagalvis: diagonalization shell model + RPA, (ν, ν'), finite T A. Juodagalvis, K. Langanke, G. Martinez-Pinedo, W.R. Hix, D.J. Dean and J.M. Sampaio, Nucl. Phys. A747 (2005) 87

4 (1) × 4 (2) × 4 (2) × 4 (2) ×

Inelastic neutrino-nucleus cross sections

- large-scale shell model (allowed transitions), finite-T effects
- random phase approximation (forbidden transitions)
- A. Juodagalvis, W.R. Hix, G. Martinez-Pinedo, J.M. Sampaio

Future: measurement of neutrino-nucleus cross sections?

Idea: dedicated neutrino detector at the European Spallation Source G. Martinez-Pinedo

(Sketch of proposed Orland detector in Oak Ridge)

Karlheinz Langanke (GSI & TU Darmstadt &

Improved nuclear ingredients for supernova simulations

- Electron capture rates on nuclei change collapse trajectory
- Neutrino-nucleus cross sections have impact on neutrino-burst signal
- Neutrino-nucleosynthesis might serve as neutrino thermometer

Explosive nucleosynthesis in supernova

- Consistent treatment of supernova dynamics coupled with a nuclear network.
- Essential neutrino reactions in the shock heated region

 $u_e + n \rightleftharpoons p + e^ \bar{\nu}_e + p \rightleftharpoons n + e^+$

Y_e evolution of a mass element

Comparison with observations.

Carla Fröhlich et al., astro-ph/0410208

Effect of neutrinos on nucleosynthesis.

G. Martínez-Pinedo, C. Fröhlich

- Without neutrinos flow stops at 64 Ge ($t_{1/2} = 64$ s)
- With neutrinos:

 $\bar{\nu}_e + p \rightarrow e^+ + n; \quad n + {}^{64}\text{Ge} \rightarrow {}^{64}\text{Ga} + p; \quad {}^{64}\text{Ga} + p \rightarrow {}^{65}\text{Ge}; \dots$