IceCube, Neutrinos & Dark matter

Marek Kowalski University Bonn

LAUNCH09, Heidelberg

34 institutions in 4 continents

Why build IceCube

- Astrophysical questions:
- Origin of the cosmic rays
- Uncovering "invisible" phenomena with neutrinos
- Cosmic ray physics

Particle physics:

- Search for dark matter
- Neutrinos (oscillations,...)
- Quantum gravity (and other BSM physics)
- Magnetic Monopoles

IceCube: A cubic kilometer neutrino detector

IceCube: A cubic kilometer neutrino detector

IceCube: A cubic kilometer neutrino detector

324 m

Eiffeltornet

Detection principle

 Neutrinos interact in or near the detector

- O(km) muon tracks from v_{μ} CC
- O(10 m) cascades from v_e CC, low energy v_τ CC, and v_x NC
- Cherenkov radiation detected by 3D array of optical sensors (OMs)

IceCube

- 5160 DOMs on 86 strings
- 1 km³ instrumented volume
- 160 Ice-Cherenkov tank surface array (IceTop)
- 59 strings deployed to date in 5 construction seasons

Over 2/3 completed!

Digital Optical Module (DOM)

IceCube

Digital Optical Module (DOM)

Each DOM is an autonomous data collection unit

PMT: Hamamatsu, 10'' <u>Dark Noise</u>rate ~ 400 Hz <u>Local Coincidence</u> rate ~ 15 Hz

Digitizers: <u>ATWD</u>: 3 chann

<u>ATWD</u>: 3 channels. Sampling 300MHz, capture 400 ns <u>FADC</u>: sampling 40 MHz, capture 6.4 ms <u>Power consumption</u>: 3W Deadtime < 1%

- Flasher board:
 - 12 controllable LEDs at 0° or 45°

IceCube Deep Core

- Six special strings plus 7 nearest standard IceCube strings
 - 72 m interstring spacing
 - 7 m DOM spacing on string
 - High Q.E. PMTs
 - ~10x higher eff. photocathode density
- Clearest ice below 2100 m
 λ_{atten} ≈ 40-45 m
- Top and outer layers of IceCube used to veto atmospheric muons: Rejection power ≤ 10⁵-10⁶

Launch09

Deep Core Effective Area & Effective Volume

Marek Kowalski

The IceCube Detector

Installation

The IceCube Detector

Atmospheric neutrinos

Quality cuts to select well reconstructed events & zenith angle cut (up-going)

Strings	Year	Livetime	µ rate	V rate
IC9	2006	137 days	80 Hz	1.7 / day
IC22	2007	275 days	550 Hz	28 / day
IC40	2008	~365 days	1000 Hz	110 / day
IC59	2009	~365 days	1500 Hz	160 / day
IC86*	2011	~365 days	1650 Hz	220 / day

Marek Kowalski

IceCube, Neutrinos & Dark Matter

Launch09

The IceCube Detector

Pointing

Searching for Dark Matter with IceCube

Neutralino Searches

Muon flux from the sun

Launch09

Muon flux from the sun

Neutralino Searches

Abbasi et al., PRL, 2009

IceCube, Neutrinos & Dark Matter

Launch09

Neutralino Searches

Spin dependent cross-section

Flux $\propto C_{\rm C} \propto \sigma_{\chi+n}$

From flux to cross-sections:

(assuming capture rate C_C in equilibrium)

90% CL

Launch09

Neutralino Searches

Spin dependent cross-section

 IceCube with Deep Core will probe large region of allowed phase space

Kaluza Klein Dark Matter

From Universal Extra Dimension theories

- 2 free parameters, R and cutoff scale L.
- finite space dimension \rightarrow momentum is quantized
- p = n/R which can be interpreted as mass = n/R

 \rightarrow tower of mass eigenstates.

The lightest is stable \rightarrow candidate for dark matter

Kaluza Klein Dark Matter

Spin dependent cross-section

Abbasi et al., submitted, 2009

Launch09

Marek Kowalski

Neutrino Halo Signatures

Neutrino Halo Signatures

- Look for an excess of events in the onsource region w.r.t. the off-source

 Assume a halo model and neutrino spectrum ⇒ limit on the self annihilaton cross section

Analyses on-going with IC 22-string and IC 40-string configurations. IC+DeepCore will reach the galactic center.

Neutrino Halo Signatures

IC+DeepCore will reach the galactic center.

(Some) Neutrino Physics

Atmospheric Muon Neutrinos

 Based on complete 7-year AMANDA-II data set (3.8 years exposure)

Abbasi et al., Phys. Rev. D 79, 102005 (2009

Marek Kowalski

Search for BSM Physics

Look for non-standard v_{μ} disappearance in AMANDA data

- Violation of Lorentz invariance (VLI)
- Quantum decoherence (QD)

-24

-25

-26

-27

-28

log₁₀ ∆δ

VLI Sensitivity

ceCube-10-yr-sensitivi

90% C.L. allowed

Conclusion

- IceCube construction is on track: 2/3 strings deployed and first Deep Core string operating
- Final results from AMANDA, initial results from IceCube appearing
 - Leading limits on MSSM spin-dependent WIMP crosssections
 - Atmospheric neutrinos and searches for new physics
- Deep Core underway: reduce threshold to ~10 GeV