Future options for neutrino oscillations

Patrick Huber

Virginia Tech

LAUNCH 09: Neutrinos and Beyond Conference on Neutrinos and Dark Matter in Particle, Astroparticle and Nuclear Physics 9-12 November 2009 Max-Planck-Institut fr Kernphysik, Heidelberg

Outline

- Neutrino oscillation
- Need for new facilities
- Superbeam
- Beta beam
- Neutrino factory
- Summary

What we want to learn

In the context of long baseline neutrino experiments

- $\sin^2 2\theta_{13}$
- δ_{CP}
- mass hierarchy

• $\theta_{23} = \pi/4, \, \theta_{23} < \pi/4 \text{ or } \theta_{23} > \pi/4?$

It is very difficult to rank those measurements in their relative importance, with exception of $\sin^2 2\theta_{13}$ since its size has practical implications beyond theory.

Given the current state of the theory of neutrinos we can not say with confidence that any one quantity is more fundamental than any other.

CP violation

Like in the quark sector mixing can cause CP violation

$$P(\nu_{\alpha} \to \nu_{\beta}) - P(\bar{\nu}_{\alpha} \to \bar{\nu}_{\beta}) \neq 0$$

The size of this effect is proportional to

$$J_{CP} = \frac{1}{8}\cos\theta_{13}\sin 2\theta_{13}\sin 2\theta_{23}\sin 2\theta_{12}\sin \delta$$

The experimentally most suitable transition to study CP violation is $\nu_e \leftrightarrow \nu_\mu$, which is only available in beam experiments.

Matter effects

The charged current interaction of ν_e with the electrons creates a potential for ν_e

 $A = \pm 2\sqrt{2}G_F \cdot E \cdot n_e$

where + is for ν and - for $\bar{\nu}$. This potential gives rise to an additional phase for ν_e and thus changes the oscillation probability. This has two consequences

$$P(\nu_{\alpha} \to \nu_{\beta}) - P(\bar{\nu}_{\alpha} \to \bar{\nu}_{\beta}) \neq 0$$

even if $\delta = 0$, since the potential distinguishes neutrinos from anti-neutrinos.

Matter effects

The second consequence of the matter potential is that there can be a resonant conversion – the MSW effect. The condition for the resonance is

$$\Delta m^2 \simeq A \quad \Leftrightarrow \quad E_{\rm res}^{\rm Earth} = 6 - 8 \,{\rm GeV}$$

Obviously the occurrence of this resonance depends on the signs of both sides in this equation. Thus oscillation becomes sensitive to the mass ordering

	u	$ar{ u}$
$\Delta m^2 > 0$	MSW	-
$\Delta m^2 < 0$	-	MSW

$P_{\mu e}$ Two-neutrino limit – $\Delta m_{21}^2 = 0$

 $\approx \sin^2 2\theta_{13}$

 $\sin^2 \theta_{23}$

$$P_{\mu e}$$
Small quantities $-\alpha := \Delta m_{21}^2 / \Delta m_{31}^2$ and $\sin 2\theta_{13}$

$$\approx \frac{\sin^2 2\theta_{13}}{\sin^2 \theta_{23}} \frac{\sin^2(\hat{A}-1)\Delta}{(\hat{A}-1)^2}$$

$$\pm \alpha \sin 2\theta_{13} \sin \delta \sin 2\theta_{12} \sin 2\theta_{23} \frac{\sin(\Delta) \sin(\hat{A}\Delta) \sin((1-\hat{A})\Delta)}{\hat{A}(1-\hat{A})}$$

$$+ \alpha \sin 2\theta_{13} \cos \delta \sin 2\theta_{12} \sin 2\theta_{23} \frac{\cos(\Delta) \sin(\hat{A}\Delta) \sin((1-\hat{A})\Delta)}{\hat{A}(1-\hat{A})}$$

$$+ \frac{\delta^2}{\cos^2 \theta_{23} \sin^2 2\theta_{12}} \frac{\sin^2(\hat{A}\Delta)}{\hat{A}^2}$$

P. Huber – Virginia Tech – p. 7

 $/\Delta m_{31}^2$ and $\sin 2\theta_{13}$

 $\frac{\sin^2((\hat{A}-1)\Delta)}{(\hat{A}-1)^2}$

 $\hat{A}(1-\hat{A})$

 $\hat{A}(1-\hat{A})$

 $\sin^2(\hat{A}\Delta)$

 \hat{A}^2

 $(\Delta)\sin(\hat{A}\Delta)\sin((1-\hat{A})\Delta)$

Eight-fold degeneracy

By measuring only two numbers n_{ν} and $n_{\bar{\nu}}$, the following solutions remain

- intrinsic ambiguity for fixed α
- Disappearance determines only $|\Delta m_{31}^2| \Rightarrow T_s := \Delta m_{31}^2 \to -\Delta m_{31}^2$
- Disappearance determines only $\sin^2 2\theta_{23} \Rightarrow T_t := \theta_{23} \to \pi/2 \theta_{23}$
- Both transformations $\mathcal{T}_{st} := \mathcal{T}_s \oplus \mathcal{T}_t$

For studies of CP violation the sign ambiguity T_s poses the most severe problems.

Magic baseline $\sin \hat{A}\Delta = 0 \Leftrightarrow \sqrt{2}G_f n_e L = 2\pi$ $\frac{\sin^2((\hat{A}-1)\Delta)}{(\hat{A}-1)^2}$ $\sin^2 2\theta_{13}$ $\sin^2\theta_{23}$ $\sin(\Delta)\sin(\hat{A}\Delta)\sin(((1-\hat{A})\Delta))$ $\alpha \sin 2\theta_{13}$ $\sin \delta \sin 2\theta_{12} \sin 2\theta_{23}$ $\hat{A}(1-\hat{A})$ $\cos(\Delta)\sin(\hat{A}\Delta)\sin((1-\hat{A})\Delta)$ $\cos \delta \sin 2\theta_{12} \sin 2\theta_{23}$ $\alpha \sin 2\theta_{13}$ $\hat{A}(1-\hat{A})$ $\cos^2\theta_{23}\sin^22\theta_{12}\frac{\sin^2(A\Delta)}{\hat{\lambda}^2}$ α^2

Magic baseline For $L \simeq 7500$ km, we have $\sin \hat{A}\Delta = 0$

 $\approx \sin^2 2\theta_{13}$

 $\sin^2 \theta_{23}$

Magic baseline restores effective two-flavor oscillation, while maintaining full sensitivity to mass hierarchy.

At the same time the 1st oscillation maximum of Δm_{31}^2 is close to the MSW resonance energy \rightarrow large enhancement of $P_{\mu e}$

Consequences for experiments

- need to measure 2 out of $P(\nu_{\mu} \rightarrow \nu_{e})$, $P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})$, $P(\nu_{e} \rightarrow \nu_{\mu})$ and $P(\bar{\nu}_{e} \rightarrow \bar{\nu}_{\mu})$
- need more than 1 energy and 1 baseline
- matter resonance at $6 8 \,\mathrm{GeV}$
- matter effects sizable for $L > 1000 \,\mathrm{km}$
- magic baseline allows for a clean measurement of the mass hierarchy

CP fraction

- reduces 2D plot to 3 points
- allows unbiased comparison
- allows risk assessment
- CPF = 1, worst case guaranteed sensitivity
- CPF =0, best case

ar inter. **chwetz**

Beam upgrades

- T2K: 2015 2016: 0.75 MW 1.66 MW linear Talk by K. Hasegawa, NNN 2008
- NOvA: 03/2018-03/2019: 0.7 MW 2.33 MW linear, Project X Project X: resource loaded schedule

Optimal sensitivities

PH, M. Lindner, T. Schwetz, W. Winter, arXiv:0907.1896.

Knowledge in 2025 without new facilities at $3\,\sigma$ CL

- $\theta_{23} = \pi/4$ for maximal mixing $45^{\circ} \pm 4^{\circ}$
- size of θ_{13} if $\sin^2 2\theta_{13} > 0.01$
- mass hierarchy if $\sin^2 2\theta_{13} > 0.04$ for at most 30% of all CP phases
- CP violation in leptons if $\sin^2 2\theta_{13} > 0.02$ for at most 20% of all CP phases

Even for the largest currently allowed θ_{13} more than 70% of parameter space are not accessible.

Superbeams

Superbeams

Neutrino beam from π -decay

They are called 'super'

- beam power $\sim 1 \,\mathrm{MW}$
- detectors mass $\sim 100 \, \mathrm{kt}$
- running time of the experiment ~ 10 years
- price

Setups

- T2KK beam from JAERI, P = 4 MW, two water Cherenkov detectors at L = 295 km and L = 1050 km with a fiducial mass of 270 kt, off-axis
- WBB-WC beam from FNAL, P = 1.1 MW, one water Cherenkov detector at L = 1300 km with a fiducial mass of 300 kt, on-axis
- WBB-LAr same as WBB-WC, but with 100 kt liquid Argon instead

Note, WBB-XXX with lower luminosity (20kt/100kt @ 0.7MW) is now called Long Baseline Neutrino Experiment (LBNE).

Exposure

Everyone has different assumptions about

- seconds in a year
- number of years
- detector size
- beam power (or pot)

Therefore we introduce the concept of exposure

detector mass [Mt] × target power [MW] × running time [10⁷ s].

CP violation

figure adapted from Barger, PH, Marfatia, Winter, Phys.Rev. D76 (2007) 053005. Huber – Virginia Tech – p. 20

Mass hierarchy

figure adapted from Barger, PH, Marfatia, Winter, Phys.Rev. D76 (2007) 053005. Huber – Virginia Tech – p. 21

Alternatives?

1stmaximumatlonger L \rightarrow \rightarrow higher E_{ν} :-- WBB-WC-

2nd maximum \rightarrow second detector: - NO ν A* - T2KK Beta beam

B-beams

P. Huber – Virginia Tech – p. 24

Candidate ions

	A/Z	half life [s]	Q value [MeV]	production rate
⁶ He	3.0	0.8	3.5	OK
⁸ Li	2.7	0.8	13.0	OK?
¹⁸ Ne	1.8	1.7	3.4	unsolved
$^{8}\mathrm{B}$	1.6	0.8	13.9	OK?

For a beam peak energy of 1 GeV, Lorentz boosts of $\gamma \sim 150$ (⁸Li and ⁸B) or of $\gamma \sim 570$ (⁶He and ¹⁸Ne) are required.

Detector choice depends on neutrino energy: water Cerenkov and liquid Argon for low energy, iron calorimeter for high energy

Lorentz boost

⁶ He is the most difficult isotope since $A/Z = 3$.							
size of storage ring							
γ	rigidity	dipole field					
	[Tm]	[m]	[T]				
		B=5 T & f=36%	L=7 km				
100	938	4916	3.1				
150	1404	6421	4.7				
200	1867	7917	6.2				
350	3277	12474	10.9				
500	4678	17000	15.6				

Optimized beta beam

In view of the difficulties associated with large values of γ , an optimized, 2 baseline, four isotope setup has been proposed:

- upgraded CERN SPS as accelerator
- He/Ne at $\gamma = 350$ aimed at 500kt water Cerenkov, baseline 650km
- Li/B at $\gamma = 656/390$ aimed at 50kt iron detector, baseline 7000km
- 2.5 years running for each isotope
- shortened decay ring, 8.3 T dipole field, 3-4km long and dips 700m below ground,

Choubey, Coloma, Donini, Fernandez-Martinez, arXiv:0907.2379

Challenges

- isotope production
- acceleration sufficiently high neutrino energies
- radioactive beams activation of equipment
- storage ring high ion densities, size
- no ν_{μ} disappearance, thus no θ_{23} measurement

Neutrino factory

Neutrino Factory

This requires a detector which can distinguish μ^+ from $\mu^- \Rightarrow$ magnetic field of around 1T

- above 3 GeV iron calorimeter like MINOS
- below 3 GeV magnetized, totally active, fine grained scintillator

Challenges

- muon production (MERIT)
- muon cooling (MICE, MuCool)
- muon acceleration (EMMA)

All these step are necessary for a muon collider, too. Active R&D effort, which will yield a reference design report by 2012.

International Design Study for a Neutrino Factory (IDS-NF): www.ids-nf.org

IDS-NF baseline

•
$$E_{\mu} = 25 \,\mathrm{GeV}$$

- 10²¹ useful muon decays per year
- 2 baselines: 4000 and 7500 km
- 2 mag. iron detector with $m_f = 50 \,\mathrm{kt}$
- 10 kt OPERA-like detector at 4000km

Summary

$\sin^2 2\theta_{13}$ discovery at 3σ CL

CP violation at 3σ CL

Mass hierarchy at 3σ CL

Three technologies

- Superbeams for large $\sin^2 2\theta_{13} > 0.01$, require true MW beams and Mt detectors
- Beta beams large experiments, with somewhat limited physics: no ν_{μ} disappearance, difficulties with mass hierarchy
- Neutrino factories the ultimate tool, technologically moderately more difficult, can be built in steps (low energy option), gateway to muon collider

Summary

- New facilities are indispensable to fully exploit the discovery of neutrino oscillation
- CP violation is never easy to measure even for the largest values of θ_{13}
- Mass hierarchy needs long baseline and multi-GeV beams

All options require a considerable, $> 10^9 \in$, and sustained, > 10 years, effort!