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                         Neutrino masses       new physics

in the particle physics Standard Model     are masslessν

are neutral     2 different possible types of neutrino massesν
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not in SM: no      in SMNR not in SM: breaks the L symmetry

masses require new physics beyond the SMν



                         Neutrino masses: Dirac or Majorana?

very important for     mass origin model buildingν

both are possible but theoretically clear preference for

Majorana masses:  if we add      to the SM we can have Dirac 

masses but: 

mν- why      observed so small then? 

- a      is singlet of SM      we expect a Majorana mass

 for          gives a Majorana mass for     tooNR
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                         Unique status of neutrino masses

If we write down the possible low energy interactions between

SM fermions which could be induced by any kind of new physics 

at a heavy scale               :ΛNewPhys

- all interactions are suppressed by 1/Λ2
NewPhys , 1/Λ3

NewPhys , ...

- except one in                : 1/ΛNewPhys Leff !
λαβ

ΛNewPhys
LαLβHH

! masses beyond the SM

 Favorite options: new physics at higher scale M 

Heavy fields manifest in the low energy effective theory (SM)

via higher dimensional operators

Dimension 5 operator:

It’s unique ! very special role of ! masses:

lowest-order effect of higher energy physics
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masses: first BSM effect expected and first seen!                ν
argument for Majorana masses



                         masses can probe new physics up to       GeVν 1016

mναβ ∼
λαβ

ΛNewPhys
v2

if           ,                 requiresmν ∼ 0.1 eVλαβ ∼ 1 ΛNewPhys ∼ 1015−16 GeV

 unique way to probe high scale new physics and GUT in particular

provides a natural explanation for the tinyness of    masses:ν

if               is large,      is small: seesaw mechanismΛNewPhys mν

yet another argument for Majorana masses



Seesaw Models



The 3 basic seesaw models 

i.e. tree level ways to generate the dim 5                 operator
! masses beyond the SM : tree level

Fermionic Singlet 

Seesaw ( or type I)

2 x 2 = 1 + 3

! masses beyond the SM : tree level

Fermionic Triplet 

Seesaw ( or type III)

2 x 2 = 1 + 3

! masses beyond the SM : tree level

2 x 2 = 1 + 3

Scalar Triplet 

Seesaw ( or type II)

Right-handed singlet:
(type-I seesaw)

Scalar triplet:
(type-II seesaw)

Fermion triplet:
(type-III seesaw)
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the seesaw models can fit the data even too easily: can

ν

Can we fit    flavour structure in all seesaw models?

yes: easily

in particular the main features of    data

 2 large mixing angles 2     squared mass differences 

ν

ν

ν

and one small

θ23, θ12

θ13

∆m2
atm

∆m2
sol

∼ 32

!=

leading to a milder hierarchy 

between 2    than for quarks

mν3

mν2

< ∼ 6

larger than for quarks

give any     mass matrix which could be observed



Access to the seesaw parameters from    mass matrix data

Type I or III seesaw model:

Type II seesaw:

 15 parameters in Yukawa matrix
 9 real parameters

 6 phases

 3 masses of the N
18 parameters

    mass matrix data: gives

! masses beyond the SM : tree level

Fermionic Singlet 

Seesaw ( or type I)

2 x 2 = 1 + 3

+

•  

•  

! masses beyond the SM : tree level

2 x 2 = 1 + 3

Scalar Triplet 

Seesaw ( or type II)

ν
mνij = Y T

Nik
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MNk
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mνij = Y∆ij
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v2

ν

mass matrix data

gives full access to

type II flavour structure

ν

access to 9 parameter

combinations of      and

}
YN MN



How could we distinguish experimentally the 3 seesaw models?  

embedding the seesaw models in broader frameworks

combining the    mass matrix data with other data

several possibilities:

L-R model

supersymmetry

model

......
Grand Unified Theories

U(1)B−L

rare lepton processes

cosmology: baryogenesis, ...

colliders: LHC, ...

@ tree level 

in Type III

(not in Type I)

Bounds on Yukawas type III
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Seesaw at colliders

if seesaw states are around TeV ∆++ , ∆0 , ∆+ , ...

∆−− , ∆0∗ , ∆−− , ...

Z0 , γ , W±
q

q̄

>> >

>
>

Σ+ , Σ0 , ...

Σ− , Σ− , ...

                  Type-II and type-III are the most promissing
 because have gauge interactions

•  

can be Drell-Yan pair produced
Z0 , γ , W±

q

q̄
>

>

at LHC up to 
MΣ ∼ 1.5 TeV

M∆ ∼ 1.5 TeV

given the tiny neutrino masses one e.g. expect couplings 
 sufficiently small to lead to observable displaced vertices
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Figure 3: Contour-plot of triplet life-times for mh = 115 GeV.

1. For larger m̃1, one has smaller τN0 ≈ τN± : e.g. τN0 ≈ τN± ≈ 0.3 mm · (M/100 GeV)2 for

m̃1 ≈ (∆m2
atm)1/2 " 0.05 eV.

2. For smaller m̃1 one has τN0 # τN± ∼ 5 cm; N± decays predominantly to N0π± leading

to multiple displaced vertices. Unfortunately the π± produced in the N± decay are too

soft to be detected and the typical track produced by N± seems too short to be well

measured.

Fig.s 4a and b show the distribution in the secondary vertex displacement ∆ for triplets pro-

duced at LHC, after taking into account the time-dilatation effect. We see that the average

displacement perpendicular to the beam axis is 〈∆⊥〉 ≈ 0.9τ , with a minor dependence on M .

In the direction parallel to the beam axis one has 〈∆‖〉 ≈ 2.4τ at M ≈ 250 GeV and 〈∆‖〉 ≈ τ

at M = 1 TeV. Both distributions are very roughly exponentials, dN/d∆ ≈ e−∆/〈∆〉.

Capabilities of LHC detectors (ATLAS, CMS) strongly depend on the unknown flavor com-

position of the lepton coupled to N and on the displacement ∆, because decays would happen

in different parts of the apparatus. For smaller ∆, LHC detectors should allow to reconstruct

the position of the secondary vertex with an uncertainty of about 0.5 mm and 0.1 mm, in the

directions parallel and orthogonal to the beam axis respectively [21]. For larger ∆, the N0 dis-

placement can be ∆⊥ >∼ 50 cm: in such a case LHC detectors could see the muons but not elec-

12

               Chun et al. 03’; Akeroyd, Aoki 05’;  Hektor et al. 07’; 
            Chun, Lee, Park 07’; Garayoa, Schwetz 08’;Fileviez

 Perez et al.08’, 09’;del Aguila et al 09’; ......

Bajc, Senjanovic 06’; Bajc, Nemvesek, 
           Senjanovic 07’; Franceschini, TH, Strumia 08’;  

  Arhrib et al. 09’; del Aguila et al 09, ....’

Franceschini, TH, Strumia 08

     allow to reconstruct the Yukawa coupling 
structure from decay branching ratios



Seesaw at colliders

•  

•  

Type-I seesaw model: the       have no SM gauge interactions       can be producedNR

only through Yukawas               e.g. small if  MNR ∼ TeV

2 possibilities: - inverse seesaw models allow larger Yukawas

production cross section limited by upper

 bounds on Yukawas from µ→ eγ , ...

- extra production interactions

pair production through a Z ′

q

q̄
>

> Z ′ NR

NR

see e.g. del Aguila et al 06’, 09’,
Kersten, Smirnov 07’

see e.g. Abbas et al. 08’;
Fileviez-Perez, Han, Li 09’



seesaw modelsU(1)B−L

the SM accidentally conserved B-L             global U(1)B−L

it is tempting to gauge U(1)B−L

require to introduce the NR

MNR not anymore an ad hoc scale: MNR ∝ vB−L

can justify TeV scale     NR
linking e.g.         to vB−L

susy breaking scale 

If               is ungauged but spontaneously broken: Majoron modelsU(1)B−L

other example of consequence at LHC: invisible Higgs decay to Majorons

Barger, Fileviez-Perez, Spinner 09’;
Fileviez-Perez, Spinner 08’, 09’



Seesaw models with approximately conserved lepton number

rare lepton processes such as             are e.g. expected veryµ→ eγ

suppressed ∝ Y 4
N/Λ4

NewPhys come from dim-6 operator in 1/Λ2
NewPhys

if                 is as low as               they remain e.g. very suppressed butΛNewPhys ∼ 1 TeV

not necessarily:

•  Type II model with a TeV scale scalar triplet: Γ(µ→ eγ) ∝ Y 4
∆/M4

∆

mν = Y∆µ∆v2/M2
∆

2 step mechanism: 

µ∆ = 0 → mν = 0

Y∆ large → µ→ eγ

- we introduce a small L breaking:

- we start from a L conserved situation:

µ∆ != 0 → mν != 0

µ
e

e

e

∆−−

µ→ e e e

....

Γ(µ→ eee) ∝ Y 4
∆/M4

∆
....

Y∆

Y∆



Bounds on Type-II seesaw Yukawa couplings
Scalar triplet seesaw Bounds on cd=6

Scalar triplet seesaw

Combined bounds on cd=6

           Abada, Biggio, Bonnet, Gavela, T.H. ‘07

Barger e tal 82’;
  Pal ’83; Bernabeu 

       et al ’84, ‘86; Bilenky, 
         Petcov’87; Gunion et 
         al ’89, ‘06; Swartz ‘89; 

Mohapatra ’92               

rare processes could 

be seen for 

up to 

M∆

∼ 1000 TeV

µ→ eee



•  Type-I model with TeV scale      : same 2 steps mechanism is possible

Inverse seesaw models (type-I or type-III models)

NR

INVERSE SEESAW texture
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N
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* Toy: 1 light ! 

Mohapatra, Valle, Glez- Garcia
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      Gonzalez-Garcia, Valle ‘89 
.....

           Kersten, Smirnov ’07
                Abada, Biggio, Bonnet, 

     Gavela, T.H. ‘07

- we start from a L conserved situation:

YN

mν = 0
→ µ→ eγlarge

- we introduce a small L breaking:INVERSE SEESAW texture

!
L
            N

1
          N

2
 

!L

N
1

N
2

* Toy: 1 light ! 

Mohapatra, Valle, Glez- Garcia

mν != 0

together with    mass matrix data we could in principle reconstruct the full seesaw modelν

some of these models are of Minimal Flavour type: all flavour structure is in    mass matrixν
Gavela, T.H., Hernandez, Hernandez, 09’

 see S.  Antusch talk



Bounds on Type-I and Type-III seesaw Yukawa couplings
All in all, as of today, 

            for the Singlet-fermion Seesaws:

(NN+-1)!"=

           Abada, Biggio, Bonnet, 
    Gavela, T.H. ‘07

   Antusch, Biggio, Fernandez-
            Martinez, Lopez-Pavon, Gavela ‘06

•  

•  

•  

•  

Type-I seesaw:

Type-III seesaw:

For the Triplet-fermion Seesaws (type III):

(NN+-1)!"=

           Abada, Biggio, Bonnet, 
    Gavela, T.H. ‘07



Flavour symmetries

we can assume flavour symmetries at level of  Yukawa coupling matrices

seesaw models have no flavour symmetries in se

continuous or discrete abelian or non-abelian

A4 S3S4SO(3)f

SU(3)f

U(1)f
Z2 × Z2....

.... ....
....

D3 D4 D5 D5 D6

∆(48) ∆(75)

Z2 Z3 Z4

Froggatt, Nielsen 79’,
Altarelli, Feruglio 04’,
Leontaris et al 04’,

........

King, Ross 01’,
King, Malinski ’06,

de Medeiros Varzielas, King, Ross 05’,
Antusch, King ’07, 

.....

Low, Volkas 03’,
Mohapatra, Rodejohann 03’

......

Pakvasa,Sugarawa 78, Harari, Haut, Weyers 
78’, Wyler 79’,  Ma 91’, 00’, 06’,Lee, 

Mohapatra 94’, Chou, Wu 97’, 
Ma, Rajasekaran 01’,Grimus, Lavoura 03’, 
Babu, Ma, Valle 03’, Altarelli, Feruglio 05’, 
Zee 05’, Keum, Volkas ’06, Chen, Frigerio, 
Ma 04’, Dermisek, Raby 05’,  Caravaglios, 
Morisi 05’Kubo, Mandragon et al 03’, 05’, 
Kobayashi et al 03’, Haba, Yoshioka 05’,

Hagerdorn, Lindner, Mohapatra 06’,
Hagedorn, Lindner, Plentiger 06’, 

.....

 

 see L. Everett talk

T ′



Flavour symmetries

some of these symmetries lead to the interesting tri-bimaximal mixing pattern

1 Introduction

Neutrino physics aims to fully determine all parameters of the neutrino mass matrix [1].
Six out of the 9 physical low energy parameters are contained in the Pontecorvo–Maki–
Nakagawa–Sakata (PMNS) neutrino mixing matrix [2]. It is given in general by U = U †

! Uν ,
where Uν diagonalizes the neutrino mass matrix and U! is associated to the diagonalization
of the charged lepton mass matrix. The PMNS matrix can be parametrized as

U =







c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13






diag(1, eiα, ei(β+δ)) ,

(1)
where we have used the usual notations cij = cos θij , sij = sin θij , δ is the Dirac CP
violation phase, α and β are two possible Majorana CP violation phases [3]. The values
of the currently known mixing parameters are at 3σ [4, 5]:

sin2 θ12 = 0.24 . . . 0.41 ,

|Ue3|2 ≤ 0.044 , (2)

sin2 θ23 = 0.34 . . . 0.68 .

The probably most puzzling aspect of those numbers is that two of the mixing angles are
compatible with two extreme values, namely zero for θ13 and π/4 for θ23. If confirmed by
future data, this will be a strong hint towards the presence of special non–trivial symmetries
in the lepton sector.
Regarding the neutrino masses, we neither do know what the precise value of the lightest
mass state is, nor do we know whether neutrinos are normally or inversely ordered. Instead,
we have some information on the mass squared differences whose ratio is, again at 3σ, given
by [4]

R ≡
∆m2

"

∆m2
A

=
m2

2 − m2
1

|m2
3 − m2

1|
=

(7.1 . . . 8.9) · 10−5

(1.4 . . . 3.3) · 10−3
= 0.0215 . . . 0.0636 . (3)

Many models have been constructed [6] in order to explain the mass and mixing schemes
as implied by the data. A particularly interesting mixing scenario, which is compatible
with all current data, is the so–called tribimaximal scenario [7, 8, 9, 10], defined by the
following PMNS matrix:

U =













√

2
3

√

1
3 0

−
√

1
6

√

1
3

√

1
2

√

1
6 −

√

1
3

√

1
2













. (4)

It corresponds to sin2 θ12 = 1/3, Ue3 = 0 and θ23 = π/4. These numbers are referred to
as “tribimaximal values” in this paper. Many authors have considered this scenario1 from

1Originally, a very similar, but with recent data incompatible form has been proposed already in [11].

2

Altarelli, Feruglio 05’, Babu, He 05’, de Medeiros Varzielas, Ross 06’,

 Ma 05’, 09’, Carr, Frampton 06’, Koide 07’, Bazzochi et al 08’,

Adhikary, Ghosal, Roy 09’, Ciafolini et al 09’

Plentinger, Rodejohann 05’ Pakvasa, Rodejohann, Weiler 08’, ...

θ13 = 0 , θ23 =
π

4
, sin2 θ12 =

1
3

A4 , S4 , SO(3) , SU(3) , ...



Flavour symmetries

and/orand/orand/or

the striking observables for flavour models are:  

and/or

the absolute scale:         , Katrin, ...

θ13

θ23

0ν2β

the mass hierarchy: expts sensitive to matter effects, ...

: how close to maximal?

: how close to 0?

: how large is it?δCP



Supersymmetric seesaw models

to supersymmetrize the seesaw model:    

 Yukawa couplings can induce large                   rates  

- brings new possibilities of seesaw tests even for very high seesaw scale 

- doesn’t alterate the successful features of seesaw models   

µ→ eγ , ...

GUT scale

laboratory scale

no flavour breaking in slepton masses

large flavour breaking in slepton masses

ẽ µ̃
NR

H̃

Br(µ→ eγ) up to ∼ 10−12

 reachable experimentally

combined with    data in principle we could reconstruct the full seesaw lagrangianν
 Davidson, Ibarra 03’

 see e.g. Ellis et al 03’

through their effects on the running of slepton masses

YNYN



                         Grand-Unified-Theories

Majorana    masses requires a new physics scale ν ΛNewPhys

which could be as large as             and give    masses with1016 GeV

Leff !
λαβ

ΛNewPhys
LαLβHH

right order of magnitude for couplings of order unity 

 if                    ΛNewPhys ∼ 1015−16 GeV

ν

cannot be the Planck scale but

is just around the GUT scale
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 Unification of the Coupling Constants
 in  the  SM   and   the  minimal MSSM   
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Figure 5: Evolution of the inverse of the three coupling constants in the Standard Model (left)
and in the supersymmetric extension of the SM (MSSM) (right). Only in the latter case unifica-
tion is obtained. The SUSY particles are assumed to contribute only above the effective SUSY
scale MSUSY of about 1 TeV, which causes a change in the slope in the evolution of couplings.
The thickness of the lines represents the error in the coupling constants [15].

where αGUT = g2
5/4π. The first error originates from the uncertainty in the coupling constant,

while the second one is due to the uncertainty in the mass splittings between the SUSY particles.
The χ2 distributions of MSUSY and MGUT are shown in Fig.6 [15], where

χ2 =
3

∑

i=1

(α−1
i − α−1

GUT )2

σ2
i

. (2.10)
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Figure 6: The χ2 distributions of MSUSY and MGUT
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masses and seesaw fit very well in GUTν

most GUT models predicted    masses prior their discovery

in particular SO(10) GUT

ν

all 15 fermions of a SM generation can be 
put in a single SO(10) representation,      ,16F

νL, l−L , l−R ,

uL1,2,3 , uR1,2,3 ,

dL1,2,3 , dR1,2,3

and the 16th fermion is the      NR

“explains” the particle 
content of the SM and 
its charge quantization 

leads to    massesν



Close relation between tiny    masses and distinction 
between left and right in SM 

ν

why parity is broken in SM and why maximally?

in SO(10) or its left-right subgroup SU(3)c × SU(2)R × SU(2)L × U(1)B−L

parity is restored at high energies and one finds a one to one
relation between the fact that parity is maximally broken in SM
and the fact that    masses are tinyν Mohapatra, Senjanovic 80’

Pati, Salam 75’, Mohapatra, Senjanovic 75’



What    data teach us on GUTν

data point towards particular GUT groups: SO(10) , E6 , (SU(5))ν

ν data has ruled out various pre-1998 GUT models

predicted large    mixing 
angles as for quarks 

ν



What    data teach us on GUTν

“Minimal” SO(10) model: renormalizable model with
only 2 Yukawa flavour structures

from        : 126H Y126Y10 from          : mu = Y10v
u
10 + Y126v

u
126

md = Y10v
d
10 + Y126v

d
126

ml = Y10v
d
10 − 3Y126v

d
126

mD = Y10v
u
10 − 3Y126v

u
126

MN = Y126vR

mν = Y126vL + mT
DM−1

N mD

type-II contribution type-I contribution 
type-I and type-II contributions 
can be disentangled in general
SO(10) models Akhmedov, Frigerio  06’, 07’

close link between the fact that      is measured close to maximal and           unification,....b− τθ23

Babu, Mohapatra 93’
Lee, Mohapatra 95’, Lavoura ’93,

....
                   Bajc, Senjanovic, Vissani 03’, Goh,

             Mohapatra, Ng 03’, Bertolini, 
    Malinski 05’, Bertolini,
   Schwetz, Malinski 06’

But: a detailed fit of fermion masses with RGE equations shows that 
this model cannot fit all masses and give unification at the same time 

need for a more complicated Higgs structure and/or more sources of  Yukawa flavour  

Bertolini, Schwetz, Malinski 06’

Babu, Barr 02’; Dutta, Mimura, Mohapatra 04’; Bertolini, Schwetz, Malinski 06’; Dermisek, Haraba, Raby 06’; Aulakh, Garg 06’; Calibbi, Frigerio et al. 09’,...

10H



Renormalization group equations for neutrinos

full RGE’S have been determined for seesaw models

important for GUT and flavour models:

especially if    are quasi-degenerateν

interesting phenomenons for model building mixing angle magnifi-
   cation through running

especially for      because associated to small θ12 ∆m2
sol

induce deviation from maximal for θ23

will become mandatory at the level of precision of new    dataν

Babu, Leung, Pantaleone 93’;
Chankowski, Plucieniek 93’;

Antusch, Drees, Kersten, Lindner, Ratz 01’;
Casas, Espinosa, Ibarra, Navaro 00’

Chankowski, Pokorski 02’; Lindner 05’;
Antusch, Kersten, Lindner, Ratz, Schmidt  05’;
Hagedorn, Kersten, Lindner 04’; Ellis, Lola 99’;

Chankowski et al. 01’; Balaji et al 00’;
Mohapatra et al.04’; Chun 01’;

Bhattacharyya et al 03’; Joshipura et al03’;
Antusch, Kersten, Lindner, Ratz 03’;

Antusch, Huber, Kersten, Schwetz, Winter 04;
Antusch, Kersten, Ratz 02’;  Antusch, Ratz 02’

GUT scale

laboratory scale

RGE



! masses beyond the SM : tree level

Fermionic Triplet 

Seesaw ( or type III)

T

L

H

++

"

+
"
R "

R
"
R
’ "

R
"
R
’

LEPTOGENESIS:
2 x 2 = 1 + 3

(Hambye, Li, Papucci, Notari, Strumia))

! masses beyond the SM : tree level

Fermionic Singlet 

Seesaw ( or type I)

2 x 2 = 1 + 3

L

H

L

H

++

LEPTOGENESIS:

NR’

NR’
NR
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Figure 1: One-loop diagrams contributing to the asymmetry from the Nk decay.

This asymmetry is given by the interference of the ordinary tree level decay with the 3
diagrams of Fig. 1. The first two diagrams are the ordinary vertex and self-energy diagrams
involving another (virtual) right-handed neutrino and give

εNk
=

1

8π

∑

j

Im[(YNY †
N )2kj]

∑

i |(YN )ki|2
√

xj

[

1 − (1 + xj) log(1 + 1/xj) + 1/(1 − xj)
]

, (5)

where xj = M2
Nj

/M2
Nk

. The third diagram of Fig. 1, which was already displayed without

calculations in Ref. [9] and estimated in Ref. [10] involves a virtual triplet and is a new
contribution. Calculating it we obtain

ε∆
Nk

= −
1

2π

∑

j Im[(YN )ki(YN )kl(Y ∗
∆)ilµ]

∑

i |(YN )ki|2MNk

(

1 −
M2

∆

M2
Nk

log(1 + M2
Nk

/M2
∆)

)

. (6)

Note that the tree level decay width is not affected by the existence of the triplet:

ΓNk
=

1

8π
MNk

∑

i

|(YN )ki|2 . (7)

From the decay of the triplet to two leptons an asymmetry can also be produced. It
is given by the interference of the tree level process with the one-loop vertex diagram,
given in Fig. 2, involving a virtual right-handed neutrino [9]. Note that with one triplet
alone there is no self-energy diagram, and therefore without at least one right-handed
neutrino no asymmetry can be produced. At least two triplets are necessary in order
to produce an asymmetry without right-handed neutrinos, in which case the asymmetry
comes from self-energy diagrams as was shown in Refs. [11, 12] and also used in Ref. [13].
Here we will restrict ourselves to the case where there is only one SU(2)L triplet coupled
to leptons (as it is in general the case in left-right and SO(10) models, both ordinary and
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approximate results that can give us quickly the most important contribu-
tions. We have identified that these are the bottom-sbottom loops and the
charged scalar-charged fermion loops. Then, by expanding in powers of the
small R-Parity breaking parameters εi, we get approximate formulas for the
solar mass scale and mixing angle as we will explain below.

2.4.1. Bottom-sbottom loops

As an example, we give the result from the bottom-sbottom loop [15],

∆Mij = −Ncmb

16π2
2sb̃cb̃h

2
b∆B b̃1b̃2

0

[
ε̃iε̃j

µ2
+ a3b (ε̃iδj3 + ε̃jδi3) |$Λ|

+

(
a2

3 +
aLaR

h2
b

)
δi3δj3|$Λ|2

]
, (22)

where ε̃i are the εi in the basis where the tree level neutrino mass matrix is
diagonal,

ε̃i =
(
V (0)T

ν

)ij
εj , (23)

the ai are functions of the SUSY parameters, and

∆B b̃1b̃2
0 = B0(0,m

2
b ,m

2
b̃1

) − B0(0,m
2
b ,m

2
b̃2

) . (24)

where the B0 are the Passarino–Veltman loop functions [34]. The different
contributions can be understood as coming from different types of insertions
as shown in Fig. 3. In this figure open circles correspond to small R-parity vi-
olating projections, full circles to R-parity conserving projections, and open
circles with a cross inside to mass insertions which flip chirality. With this
understanding one can make a one to one correspondence between Eq. (22)
and Fig. 3.

Fig. 3. Bottom-sbottom loop and different types of insertions.

masses can be induced in the MSSM without any
new field at the price of breaking R-parity

W ! εiL̂iĤu + λijkL̂iL̂j êRk + λ′
ijkL̂iQ̂j d̂Rk

Vsoft ! BS
i L̃iHu

gives one       at tree level from neutrino Higgsino mixing
gives 2      at one loop

mν

mν }tends to give a    hier-
archy larger than data

ν

doesn’t explain the tinyness of    masses in se ν

see e.g. Romao et al 08’



masses from supersymmetry breakingν
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Low-scale leptogenesis and soft supersymmetry breaking

Lotfi Boubekeur(1), Thomas Hambye(2) and Goran Senjanović(3)
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We investigate the possibility of low-scale leptogenesis in the minimal supersymmetric standard
model extended with right-handed (s)neutrinos. We demonstrate that successful leptogenesis can
be easily achieved at a scale as low as ∼ TeV where lepton number and CP violation comes from
soft supersymmetry breaking terms. The scenario is shown to be compatible with neutrino masses
data.

A. Introduction. The experimental observations of
neutrinos oscillations gave overwhelming evidence for
small neutrino masses. The see-saw mechanism [1] can
explain elegantly such small masses from the existence of
right-handed (rhd) neutrinos. Furthermore, in the lepto-
genesis scenario [2], the out-of-equilibrium decay of these
rhd neutrinos can lead to a lepton asymmetry, that is
partly converted to a baryon number through sphalerons,
providing in this way a simple and attractive explanation
of the baryon asymmetry of the universe.

In the standard thermal leptogenesis scenario the mass
of rhd neutrinos must lie above 109 GeV or so [3–8].
(here, we are not considering the case where rhd neutri-
nos are quasi-degenerate [5,8–13]). In supergravity, this
implies the well known gravitino problem [14]. To avoid
this gravitino problem and also, independently of it, in
order to be as close to experiment as possible, it would
be nice to have leptogenesis at the lowest possible scale,
i.e. near the Fermi scale. Low rhd neutrino masses can oc-
cur naturally in realistic supersymmetric theories such as
the minimal Pati-Salam model [15] or if the rhd neutrino
masses themselves come from supersymmetry breaking
[16].

Building such a low energy leptogenesis model is how-
ever difficult for a number of reasons (see [5] for a detailed
discussion). The main reason is that if all L-violating in-
teractions come from the see-saw then the asymmetry is
proportional to Yukawa couplings which to explain the
small neutrino masses have to be tiny, leading to a far
too small asymmetry. We need therefore other sources
of L-violation which do not give rise to see-saw neutrino
masses. The most natural and simple framework leading
to such interactions is low-energy supersymmetry. By
transferring the notion of lepton number to scalar part-
ners, supersymmetry introduces new sources of lepton
number violation through soft supersymmetry breaking
[17]. Being pure scalar, these interactions are less con-
strained by the neutrino masses (since they lead to neu-
trino masses only at one loop, as we will see) and there-
fore allow to get much larger asymmetries at low scale,
leading to successful leptogenesis. This is the central
point of this letter.

B. Soft SUSY breaking terms. Let us consider the R-
conserving MSSM extended by a singlet rhd neutrino for

each generation Ni. The model is described by the usual
SUSY see-saw superpotential

W = WMSSM + YijLiHUNj +
1

2
MiN

2
i , (1)

where we have rotated the Ni’s into the basis where
the rhd neutrino mass matrix is real and diagonal. We
are interested in the situation where the mass of rhd
(s)neutrinos is above but not too far from the scale of
the supersymmetry breaking. Following a bottom-up ap-
proach, we consider the most general soft SUSY break-
ing terms compatible with gauge invariance and R-parity
conservation. The relevant L and CP violating terms in
the Lagrangian are given by

L
Ñ

= (m2

Ñ
)ijÑ∗

i Ñj + BijÑiÑj + AU
ijL̃iHUÑj

+ A′U
ij L̃iHU Ñ∗

j + AD
ij L̃iH∗

DÑj + A′D
ij L̃iH∗

DÑ∗
j + h.c. (2)

The first line of Eq. (2) represents the usual soft masses,
B-term and holomorphic A-terms, generally present in
gravity mediated scenarios. The additional terms are the
so-called non-holomorphic A-terms, and they are highly
suppressed in supergravity. Although they are not essen-
tial for our discussion, we include them for the sake of
completeness.

Note the important role R-parity is playing here. In
general, R-parity is invoked in order to prevent a too
fast proton decay. It also provides a natural dark matter
candidate (LSP). In our case, R-parity makes Eq. (2) the
most general renormalizable, B−L violating superpoten-
tial with this field content. Furthermore, and due to the
presence of a singlet in the model, R-parity prevents the
occurrence of dangerous tadpoles that induce quadratic
divergences. Indeed, if we relax R-parity, we would have
λijkÑiÑjÑ∗

k as a soft term, that would induce a tadpole

for the operator L̃iHU .
It is remarkable that the B − L symmetry leads auto-

matically to R-parity conservation [18]. After the subse-
quent spontaneous breaking of B−L, which leads to non-
vanishing rhd neutrino masses, exact R-parity survives as
a discrete Z2 symmetry. This is true at all energy scales
[19]. In other words, R-parity is inherent in this picture
of the see-saw mechanism and leptogenesis through the
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            in the MSSM with extra      the soft susy breaking terms involving 
     right-handed sneutrinos      bring new sources of L violation:      ÑR

NR

           lead to    masses at one loop

ν

ν

nB/nγ = (6.1+0.3
−0.2)·10−10 [21] we need ε1 ∼ (nL/s)g"/η ∼

2 · 10−10g"/η where g" ∼ 200 is the number of active de-
grees of freedom at the epoch of the decay and where η is
the efficiency factor due to wash out suppressions (with
η = 1 if the asymmetry is not washed-out by any ther-
mal equilibrium processes). For example assuming for
simplicity that only one virtual sneutrino is contributing
significantly to the asymmetry (e.g. N̂2), for η ∼ 1 and
M

N̂2

∼ fewM
N̂1

∼ few TeV, this requires that some of

the µα
2j couplings are at least of order 10−3 M

N̂2

. So the
typical hierarchy needed between the µα

1j and µα
2j cou-

plings is of order 10−4 which is the strongest assumption
we have to make here in order that this mechanism work.
This might seem a large hierarchy, but after all it is of
order the ratio of tau to electron Yukawa couplings.
• In order to avoid that the soft interactions of the

virtual N̂2 could wash out the asymmetry it is necessary
that the potentially dangerous scattering L̃+H ↔ N̂2 ↔
L̃∗ + H∗ be under control. This scattering is not present
in the Boltzmann equation for the N̂1 number density but
rather in the one for the lepton number. For T ∼ M

N̂2

the on-shell contribution to this scattering is quite fast
because with µα

2j ∼ 10−3M
N̂2

and M
N̂2

∼ few TeV we

have Γ
N̂2

# H(T = M
N̂2

). For M
N̂2

∼ fewM
N̂1

this
contribution, even if Boltzmann suppressed, remains fast
down to a temperature of order M

N̂1

or few times less. If

Γ
N̂1

∼ H(T = M
N̂1

) this can induce a sizable wash-out
suppression of the asymmetry. However for Γ

N̂1

a few

times smaller than H(M
N̂1

) the asymmetry will be pro-
duced at smaller temperature when this suppression is
further Boltzmann suppressed and negligible. Similarly
the off-shell contribution to this scattering can have an
effect, especially for low temperatures. However this ef-
fect will be fastly Boltzmann suppressed and negligible at
temperatures below the threshold s0 = (mH + mL̃)2. It
is therefore easy to avoid large wash-out from this scat-
tering as we have checked by considering explicitly the
corresponding Boltzmann equations.

Note that if our scenario is to be embedded into a
theory where B −L is gauged, such as in say Pati-Salam
theory or SO(10), wash-out constraints require that the
corresponding gauge boson mass to be much heavier than
M

N̂1

. This happens naturally if the Yukawa couplings
giving mass to rhd neutrinos are small.

Altogether for example with M
N̂1

∼ 2 TeV, M
N̂2

∼

6 TeV, (µα
1j)

max ∼ 5 · 10−8 M
N̂1

, (µα
2j)

max ∼ 10−3 M
N̂2

,
mH +mL̃ = 700 GeV, one can check that a large enough
asymmetry can be created. It gives ε1 ∼ 10−7, and
from the Boltzmann equations we get nB/nγ ∼ 6 · 10−10

(in agreement with data [21]). The neutrino mass con-
straints can be easily accommodated with this set of val-
ues (see below). There is a large range of parameters
in the parameter space which leads to successful lepto-
genesis. Note however that it appears to be difficult to
generate a large enough asymmetry before the sphalerons

gets out-of-equilibrium around T ∼ 100 − 200 GeV for
M

N̂1

below one TeV and M
N̂2

below 3-4 TeV. Finite tem-
perature effects can change the produced asymmetry by
effects of order unity [7] which we didn’t take into ac-
count here. Note that all constraints can be relaxed by
scaling up all masses.

The impact of our results on the original basis in
Eq. (2) is worth studying in well defined theories of super-
symmetry breaking, and we plan to return to this issue
elsewhere. This requires typically similar hierarchies be-
tween some of the couplings of different generations of
rhd sneutrinos. In addition, their mixings has not to be
larger that ∼ 10−4 in order that the decay rate of the
lightest sneutrino remains sufficiently suppressed. This
implies in particular an alignment of the B terms, i.e.
they should be almost diagonal.

D. Neutrino Masses. In our scenario, neutrinos masses
originate from two sources.

1. See-saw contribution. The first one, which occurs
at tree level, is the usual see-saw given by:

mtree
ν % −Y T M−1Y 〈HU 〉

2 . (10)

In order that this doesn’t induce too large neutrino
masses with rhd neutrino masses of order TeV the
Yukawa couplings have to be tiny, i.e. Y <

∼ 10−7 − 10−6.
As said above, here for simplicity we assume all effects of
Yukawa couplings negligible.

2. Radiative soft contribution. The second source of
neutrino masses is the radiative one-loop contribution of
Fig. 2 coming from the sneutrinos soft term sector (see
also Ref. [16]). The resulting radiative neutrino mass in
the limit m

N̂I
# mν̃i

, mχ is

(mrad
ν )jk %

α

4π

µα
Ij µβ

Ik

M2
N̂I

mχ

m2
ν̃j

− m2
ν̃k

〈φα〉〈φβ〉

×

[
m2

ν̃j

m2
ν̃j

− m2
χ

ln
mν̃j

2

m2
χ

− j → k

]

. (11)

The estimate of the above contribution depends cru-
cially on the masses of rhd sneutrinos m

N̂I
, and for m

N̂I

large enough it is negligible. However we have seen in
the previous section that m

N̂I
can be as low as TeV from

the leptogenesis discussion, and for such value the in-
duced masses turns out to be not negligible. Plugging
in the values of µα

Ij and m
N̂I

(i.e. µα
Ij ∼ 10−3M

N̂2

and
M

N̂2

∼ 6 TeV and a typical value for mν̃i
≈ 500 GeV

νj

×
χ0 νk

×
〈φα〉

×
〈φβ〉

N̂I

ν̃j ν̃k

Fig. 2: Diagram contributing to neutrino masses.
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naturally suppressed    masses

Using the Giudice-Masiero mechanism one can:

 - forbid the seesaw      and      YN MNR

- induce them subsequently from F and D terms giving
MNR ∼MÑR

∼ TeV

YN ∼ 10−8

 - induce L violating soft A and B terms giving rise to 1-loop     mass: ν

the 1-loop contribution to the light neutrino mass matrix becomes

(mloop
ν )ij =

∑

x

χxA2B2
ijv

2 sin2 β

(4π)2
L(M2

L, M2
R, M2

R, M2
L, M2

χx

). (18)

The most important feature of the result Eq.(18) is that the overall scale of the
contribution mloop

ν is naturally of the correct size to account for atmospheric neutrino
oscillations (as is also true of the models of Refs.[8, 10]). To see this explicitly it is useful
to consider the simple case in which all the lhd and rhd sneutrinos and the neutralinos
are approximately equal to a common mass scale, msusy, giving

L ! −
1

12m6
susy

. (19)

which leads to a one-loop contribution of magnitude

mloop
ν ∼ µ ≡

αw

96π

m9
Iv

2

M5m5
susy

! 10−2 eV − 10−1 eV (20)

depending on the precise magnitude of the A and B terms. In addition, in our model,
the flavour structure of this dominant one-loop contribution to the light neutrino mass
matrix is determined directly and entirely by the rhd sneutrino lepton-number violating
B-term, B2

ij, which is in turn generated by the 〈Xij〉A expectation value. Moreover, as
claimed earlier, the one loop result dominates over the tree level see-saw contribution.
It is useful to define the (small) parameter ε as the ratio of magnitudes of the tree-level
see-saw contribution Eq.(12) to the above 1-loop contribution.

It is also interesting to consider the regime in which the rhd sneutrino states are
heavy compared to the neutralino and lhd sneutrino states, r ! x ' 1. In this case the
loop factor is approximated by the expression

L !
(x − r) + x log(r/x)

M6
R(r − x)2

! −
1

2M4
RM ′2

L

. (21)

Taking ML ∼ Mχ ∼ msusy and scaling the A and B terms relative to their natural values,
A2

0 ∼ m2
susy, and B2

0 ∼ m2
susy(msusy/M)1/2 given by Eqs.(9) and (10), leads to

mloop
ν !

m7/2
susyM

2
Z

16π2M4
RM1/2

(

A2

A2
0

) (

B2

B2
0

)

. (22)

Assuming msusy ∼ 300 GeV, and MR ∼ 1 TeV this gives mloop
ν ∼ 0.02 eV(A2/A2

0)(B
2/B2

0)
showing that MR cannot be much heavier than 1 TeV unless the scale of the MSSM
superpartners is uncomfortably high.

In either case the final structure of the light neutrino mass matrix is in total

(mtot
ν )ij = µ(as

X + εaT
XaX)ij . (23)

with the scale set by µ ∼ 0.1 eV − 0.01 eV, and ε in the range ε ∼ 10−2 − 10−4. An
attractive feature of this structure is that it allows us in a simple way to account for
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masses from extra dimensions: large extra dimensionν

Hierarchy problem: why gravity so weak % electroweak force? MPlanck >> vEW

if gravity propagates in 3+1+d dimensions whereas we live in 3 +1 dimensions

bulk νR

SM fields

gravitons

gravity is weak in 3+1 dim.: volume suppression

but is similar to weak force in 3+1+d dim.

fundamental gravity scale: MG ∼ TeV ∼ vEW

if the      propagates in the 3+1+d dim. as graviton: suppression of mνNR

lead to tiny Dirac      e.g.          too small % data in
minimal version but OK in non minimal versions

mν 102−3

interesting phenomenology at TeV scale, effects of     
   Kaluza-Klein      (supernovae,...), large             ,........µ→ eγNR

Arkani-Hamed,Dimopoulos, Dvali 98’

M2
Planck = M2+d

G Vd Vd = (2πR)d

Dienes, Dudas, Gerghetta 99’
Arkani-Hamed, Dimopoulos, Dvali, 

March-Russell 00’
Dvali, Smirnov 99’



masses from extra dimensions: Randall-Sundrum scenarioν

!! Small probability for Small probability for 

graviton to be near graviton to be near 

the the WeakbraneWeakbrane

!! If we live anywhere If we live anywhere 

but the but the GravitybraneGravitybrane, , 

gravity will seem gravity will seem 

weakweak

!! Natural consequence Natural consequence 

of warped geometryof warped geometry

Natural for gravity to be weak!Natural for gravity to be weak!

Precise signatures depend on Precise signatures depend on 

fermionfermion wavefunctionwavefunction profilesprofiles

!! Might expect nontrivial profilesMight expect nontrivial profiles

!! Masses depend on overlap with HiggsMasses depend on overlap with Higgs

!! Expect light fermions localized near Expect light fermions localized near 

Planck/Gravity Planck/Gravity branebrane

!! Top near Top near WeakbraneWeakbrane since itsince it’’s heavys heavy

tR
uL ,dL

Precise signatures depend on Precise signatures depend on 
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!! Might expect nontrivial profilesMight expect nontrivial profiles

!! Masses depend on overlap with HiggsMasses depend on overlap with Higgs

!! Expect light fermions localized near Expect light fermions localized near 

Planck/Gravity Planck/Gravity branebrane

!! Top near Top near WeakbraneWeakbrane since itsince it’’s heavys heavy

tR
uL ,dL

Precise signatures depend on Precise signatures depend on 

fermionfermion wavefunctionwavefunction profilesprofiles

!! Might expect nontrivial profilesMight expect nontrivial profiles

!! Masses depend on overlap with HiggsMasses depend on overlap with Higgs

!! Expect light fermions localized near Expect light fermions localized near 

Planck/Gravity Planck/Gravity branebrane

!! Top near Top near WeakbraneWeakbrane since itsince it’’s heavys heavy

tR
uL ,dL

suppression of gravity on weak brane if there is an extra
curved (warped) dimension with graviton wave function peaked 

on a distant UV Planck brane

νL

gravity brane weak brane

        naturally suppressed       if the wave function 
        of the     is peaked on the UV brane far from 

      the weak brane where sits the Higgs boson
ν

mν

Higgs



mass varying with their environmentν

 73% of universe energy content is due to dark energy

2 coincidences between    and dark energy:

- universe energy densities,      and      , are within 3 orders of magnitudes today

- dark energy scale                         of order    masses

ν

V 1/4 ∼ 10−3 eV ν
ρν ρΛ

idea: the scalar field    responsible for    masses is the dark energy fieldφ ν

φ contributes in 2 ways to universe energy density

V (φ) = V0(φ) + nνmν

   usual scalar 
potential

 contribution 
to       it induces
φ

mν

early universe  (high    density):           large           small              smallν nνmν φ mν

today universe (high    density):           small           large              largerν nνmν φ mν

varying       : -      keeps track of       
-                  because             today 

ρνmν ρΛ

mν ∼ V 1/4 T ∼ mν

(ρν ∼ T 3mν and ρΛ ∼ V )

Fardon, Nelson, Weiner 03’, Peccei 04’



Short conclusion for long talk 

data:

- provides a unique tool to probe beyond standard model physics up

ν

to very high scales

- has and will open the door to a large variety of theoretical works 
related to very fundamental questions


