Flavor Symmetries: Models and Implications

Lisa L. Everett
U.Wisconsin, Madison

Introduction/Motivation

Neutrino Oscillations:

$$
\mathcal{P}_{\nu_{\alpha} \rightarrow \nu_{\beta}}(L)=\sum_{i j} \mathcal{U}_{i \alpha} \mathcal{U}_{i \beta}^{*} \mathcal{U}_{j \alpha}^{*} \mathcal{U}_{j \beta} e^{-\frac{i \Delta m_{i,}^{2} L}{2 E}}
$$

massive neutrinos observable lepton mixing

First particle physics evidence for physics beyond SM!

$$
\text { SM flavor puzzle } \longrightarrow \nu \text { SM flavor puzzle }
$$

Ultimate goal: satisfactory and credible flavor theory (very difficult!)

The Data: Neutrino Masses

Homestake, Kam, SuperK,KamLAND,SNO, SuperK, MINOS,miniBOONE,...

$$
\Delta m_{i j}^{2} \equiv m_{i}^{2}-m_{j}^{2} \quad \text { Assume: } 3 \text { neutrino mixing }
$$

Solar: $\quad \Delta m_{\odot}^{2}=\left|\Delta m_{12}^{2}\right|=7.65_{-0.20}^{+0.23} \times 10^{-5} \mathrm{eV}^{2}$
(best fit $\pm 1 \sigma$)
Atmospheric: $\quad \Delta m_{31}^{2}= \pm 2.4_{-0.11}^{+0.12} \times 10^{-3} \mathrm{eV}^{2}$

Cosmology (WMAP):

$$
\sum_{i} m_{i}<0.7 \mathrm{eV}
$$

The Data: Lepton Mixing

Homestake, Kam, SuperK,KamLAND,SNO, SuperK, Palo Verde, CHOOZ, MINOS...

$$
\begin{aligned}
& \mathcal{U}_{\mathrm{MNSP}}=\mathcal{R}_{1}\left(\theta_{\oplus}\right) \mathcal{R}_{2}\left(\theta_{13}, \delta_{\mathrm{MNSP}}\right) \mathcal{R}_{3}\left(\theta_{\odot}\right) \mathcal{P} \quad \\
& \left.\left\lvert\, \begin{array}{ccc}
\cos \theta_{\odot} & \sin \theta_{\odot} & \epsilon \\
-\operatorname{\mathcal {U}_{\mathrm {MNSP}}} \left\lvert\, \simeq\left(\begin{array}{ccc}
\epsilon \text { Maki, Nakagawa, Sakata } \\
\text { Pontecorvo }
\end{array}\right.\right. \\
-\cos \theta_{\oplus} \sin \theta_{\odot} & \cos \theta_{\oplus} \cos \theta_{\odot} & \sin \theta_{\oplus} \\
\sin \theta_{\oplus} \sin \theta_{\odot} & -\sin \theta_{\oplus} \cos \theta_{\odot} & \cos \theta_{\oplus}
\end{array}\right.\right)
\end{aligned}
$$

Solar: $\quad \theta_{\odot}=\theta_{12}=33.4^{\circ} \pm 1.4^{\circ}$
Atmospheric: $\quad \theta_{\oplus}=\theta_{23}=45.0^{\circ}{ }_{-3.4}^{+4.0} \quad$ (best fit $\pm 1 \sigma$)
Reactor: $\quad \epsilon=\sin \theta_{13}, \quad \theta_{13}=5.7^{\circ}{ }_{-5.7}^{+3.5}$
2 large angles, I small angle (no constraints on CP violation)

Compare: Quark Mixing

Cabibbo; Kobayashi, Maskawa

$$
\mathcal{U}_{\mathrm{CKM}}=\mathcal{R}_{1}\left(\theta_{23}^{\mathrm{CKM}}\right) \mathcal{R}_{2}\left(\theta_{13}^{\mathrm{CKM}}, \delta_{\mathrm{CKM}}\right) \mathcal{R}_{3}\left(\theta_{12}^{\mathrm{CKM}}\right)
$$

Mixing Angles: $\theta_{12}^{\mathrm{CKM}}=13.0^{\circ} \pm 0.1^{\circ} \longleftrightarrow$ Cabibbo angle θ_{c}

$$
\begin{aligned}
& \theta_{23}^{\mathrm{CKM}}=2.4^{\circ} \pm 0.1^{\circ} \\
& \theta_{13}^{\mathrm{CKM}}=0.2^{\circ} \pm 0.1^{\circ}
\end{aligned}
$$

CP violation: $\quad J \equiv \operatorname{Im}\left(\mathcal{U}_{\alpha i} \mathcal{U}_{\beta j} \mathcal{U}_{\beta i}^{*} \mathcal{U}_{\alpha j}^{*}\right)$
Jarlskog

$$
\begin{aligned}
& J_{\mathrm{CP}}^{(\mathrm{CKM})} \simeq \sin 2 \theta_{12}^{\mathrm{CKM}} \sin 2 \theta_{23}^{\mathrm{CKM}} \sin 2 \theta_{13}^{\mathrm{CKM}} \sin \delta_{\mathrm{CKM}} \\
& J \sim 10^{-5} \quad \delta_{\mathrm{CKM}}=60^{\circ} \pm 14^{\circ}
\end{aligned}
$$

3 small angles, I large phase

A paradigm shift

Strikingly different flavor patterns for quarks and leptons!

- Mass scales, hierarchies of neutral and charged fermions:

Step I for theory: suppressing neutrino mass scale

- Mixing Angles: quarks small, leptons 2 large, Ismall

Step 2 for theory: understanding lepton mixing pattern

Step I: Origin of Neutrino Mass Scale

Charged Fermions: Dirac mass terms

$$
Y_{i j} H \cdot \bar{\psi}_{L i} \psi_{R j}
$$

parametrized by Yukawa couplings

Neutrinos: beyond physics of Yukawas!
Assuming SM Higgs sector:
$-\mathcal{L}_{\nu}=Y_{\nu i j} \bar{L}_{L i} H \nu_{R j}+\frac{\lambda_{i j}}{\Lambda}\left(L_{L i} H\right)\left(L_{L j} H\right)+\frac{1}{2}\left(M_{i j} \bar{\nu}_{R i}\left(\nu_{R j}\right)^{c}+h . c.\right)$

Majorana masses:

Prototype:Type I seesaw

$\mathcal{M}_{\nu}=\left(\begin{array}{cc}0 & m \\ m & M\end{array}\right) \quad \begin{aligned} & m \sim \mathcal{O}(100 \mathrm{GeV}) \\ & M \gg m\end{aligned}$
but many other possibilities...
Type II seesaw (Higgs triplets), Type III seesaw (triplet fermions), double seesaw, higher-dimensional operators, supersymmetry +R-parity violation,...

Dirac masses: issue: Yukawa suppression $Y_{\nu} \sim 10^{-12}$ options: extra dimensions, flavor symmetries, supersymmetry breaking effects,...

Note: in both cases, many mechanisms exploit SM singlet nature of ν_{R}

Step 2: Origin of Large Lepton Mixings

Standard paradigm: spontaneously broken flavor symmetry

$$
Y_{i j} H \cdot \bar{\psi}_{L i} \psi_{R j} \longrightarrow\left(\frac{\varphi_{k}}{M}\right)^{n_{i j}} H \cdot \bar{\psi}_{L i} \psi_{R j} \text { Froggatt, Nielsen }
$$

Recall for quarks:

- hierarchical masses, small mixings: continuous family symmetries
- CKM matrix: small angles and/or alignment

$$
\mathcal{U}_{\mathrm{CKM}}=\mathcal{U}_{u} \mathcal{U}_{d}^{\dagger} \sim 1+\mathcal{O}(\lambda) \quad \lambda \sim \frac{\varphi}{M}
$$

Wolfenstein parametrization: $\quad \lambda \equiv \sin \theta_{c}=0.22$
suggests Cabibbo angle may be a useful flavor expansion parameter

Flavor Model Building in the $\nu \mathrm{SM}$

- Main issue: what is $\mathcal{U}_{\text {MNSP }}$ in limit of exact symmetry? for the leptons, large angles suggest

$$
\begin{aligned}
& \mathcal{U}_{\mathrm{MNSP}}= \mathcal{U}_{e} \mathcal{U}_{\nu}^{\dagger} \sim \underset{\uparrow}{\sim} \underset{\text { "bare" mixing angles }}{\mathcal{W}}+\underset{\uparrow}{\text { flavor expansion }} \\
&\left(\theta_{12}^{0}, \theta_{13}^{0}, \theta_{23}^{0}\right) \\
& \text { parameter }
\end{aligned}
$$

- useful, and motivated in unified/string scenarios, to take

$$
\lambda^{\prime}=\lambda \equiv \sin \theta_{c}
$$

ideas of "Cabibbo haze" and quark-lepton complementarity

Aside: Lepton Mixing Angles are "non-generic"

Classify scenarios by the form of $\mathcal{U}_{\text {MNSP }}$ in symmetry limit note: lepton mixing angle pattern has the most challenges ($\mathrm{w} / 3$ families)

- 3 small angles $\longrightarrow \sim$ diagonal \mathcal{M}_{ν}
- 1 large, 2 small $\longrightarrow \sim \operatorname{Rank} \mathcal{M}_{\nu}<3$
- 3 large angles \longrightarrow "anarchical" \mathcal{M}_{ν}
- 2 large, 1 small \longrightarrow fine-tuning, non-Abelian Issues: size of θ_{13}, origin of non-maximal θ_{12}
large angles may suggest discrete non-Abelian family symmetries!

$$
\mathcal{U}_{\mathrm{MNSP}}=\mathcal{U}_{e} \mathcal{U}_{\nu}^{\dagger} \sim \mathcal{W}+\mathcal{O}\left(\lambda^{\prime}\right)
$$

Classify models by form of $\mathcal{W}\left(\theta_{12}^{0}, \theta_{13}^{0}, \theta_{23}^{0}\right)$:

- In general: $\theta_{23}^{0}=45^{\circ} \quad \theta_{13}^{0}=0^{\circ} \quad$ (reasonable)
- More variety in choice of bare solar angle θ_{12}^{0} :
- "bi-maximal" mixing
- "tri-bimaximal" mixing
- "golden ratio" mixing
(quark-lepton complementarity)
Harrison, Perkins, Scott (HPS)
$\phi=(1+\sqrt{5}) / 2$
or other options...

Scenario I. Bi-maximal Mixing

"bare" solar angle $\quad \theta_{12}^{0}=45^{\circ} \quad \tan \theta_{12}^{0}=1$

$$
\mathcal{U}_{\mathrm{MNSP}}^{(\mathrm{BM})}=\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\
\frac{1}{2} & \frac{1}{2} & -\frac{1}{\sqrt{2}} \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}}
\end{array}\right)
$$

Requires large perturbations:

$$
\theta_{12}=\theta_{12}^{0}+\mathcal{O}(\lambda) \sim \frac{\pi}{4}-\theta_{c}
$$

"quark-lepton complementarity"

Raidal; Minakata, Smirnov; Frampton, Mohapatra; Xing; Ferrandis, Pakvasa; King; L.E., Ramond; Plentinger, Lindner; Dighe, Rodejohann, many, many others...

Bimaximal mixing scenarios:

useful framework for exploring Cabibbo effects in quark+lepton sectors

$$
\begin{aligned}
\frac{m_{u}}{m_{t}} & \sim \lambda^{8} & \frac{m_{d}}{m_{b}} & \sim \lambda^{4} \\
\frac{m_{c}}{m_{t}} & \sim \lambda^{4} & \frac{m_{e}}{m_{\tau}} & \sim \lambda^{5} \\
\frac{m_{b}}{m_{b}} & \sim \lambda^{2} & \frac{m_{\mu}}{m_{\tau}} \sim \lambda^{2} & \sqrt{\frac{\Delta m_{\odot}^{2}}{\Delta m_{\oplus}^{2}}} \sim \lambda \\
& \sim 1 & \frac{m_{b}}{m_{t}} & \sim \lambda^{3} \\
\theta_{12}^{\mathrm{CKM}} & \sim \lambda & \theta_{23}^{\mathrm{CKM}} \sim \lambda^{2} & \theta_{13}^{\mathrm{CKM}} \sim \lambda^{3}
\end{aligned}
$$

but implementation in full grand unified theories: very challenging
recent work in context of discrete non-Abelian family symmetries Altarelli, Feruglio, and Merlo, '09,...

Scenario II.Tri-bimaximal (HPS) Mixing

"bare" solar angle $\quad \tan \theta_{12}^{0}=\frac{1}{\sqrt{2}} \quad \theta_{12}^{0}=35.26^{\circ}$ Harrison, Perkins, Scott '02

$$
\mathcal{U}_{\mathrm{MNSP}}^{(\mathrm{HPS})}=\left(\begin{array}{ccc}
\sqrt{\frac{2}{3}} & -\frac{1}{\sqrt{3}} & 0 \\
\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}
\end{array}\right)
$$

Does not require large perturbations! $\quad \theta_{12}=\theta_{12}^{0}+\mathcal{O}\left(\lambda^{2}\right)$ amusing note: MNSP looks like Clebsch-Gordan coeffs Meshkov; Zee,...

Naturally obtained from discrete non-Abelian symmetries (subgroups of $S O(3), S U(3)$)

A Few Examples: \mathcal{A}_{4}
(tetrahedron)
\mathcal{S}_{4} (cube)
\mathcal{T}^{\prime}
$\Delta\left(3 n^{2}\right)$ \mathcal{A}_{5} (icosahedron)

Ma and collaborators (earliest in ' 01), Altarelli, Feruglio, Babu and He, Valle, Hirsch et al., King et al., many, many others...

Ma; Hagedorn, Lindner, Mohapatra; Cai, Yu; Zhang,... Aranda, Carone, Lebed; Chen, Mahanthappa,... Luhn, Nasri, Ramond; Ma; King, Ross,...
L.E., Stuart

Most popular scenario! many models, elegant results issues: incorporating quarks, "vacuum alignment" of flavon fields

Scenario III. Golden Ratio Mixing

Idea: solar angle related to "golden ratio"

$$
\phi=(1+\sqrt{5}) / 2
$$

Two proposed scenarios:

- $\quad \tan \theta_{12}=\frac{1}{\phi} \quad \theta_{12}=31.72^{\circ}$
L.E., Stuart '08, + work in progress
icosahedral flavor symmetry $\mathcal{I}\left(\mathcal{A}_{5}\right)$
- $\quad \cos \theta_{12}=\frac{\phi}{2} \quad \theta_{12}=36^{\circ} \quad \begin{gathered}\text { Adulpravitchai, Blum, } \\ \text { Rodejohann 00 }\end{gathered}$
dihedral flavor symmetry \mathcal{D}_{10}

Scenario III: $\tan \theta_{12}=\frac{1}{\phi}$

Ramond et al.,'03 (footnote), Kajiyama, Raidal, Strumia '07 $\quad \mathcal{Z}_{2} \times \mathcal{Z}_{2}$
L.E. and Stuart, '08 and continuing... \mathcal{A}_{5}

$$
\mathcal{U}_{\mathrm{MNSP}}^{(\mathrm{GR} 1)}=\left(\begin{array}{ccc}
\sqrt{\frac{\phi}{\sqrt{5}}} & -\sqrt{\frac{1}{\sqrt{5} \phi}} & 0 \\
\frac{1}{\sqrt{2}} \sqrt{\frac{1}{\sqrt{5} \phi}} & \frac{1}{\sqrt{2}} \sqrt{\frac{\phi}{\sqrt{5}}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} \sqrt{\frac{1}{\sqrt{5} \phi}} & \frac{1}{\sqrt{2}} \sqrt{\frac{\phi}{\sqrt{5}}} & \frac{1}{\sqrt{2}}
\end{array}\right)
$$

$\mathcal{A}_{5} \quad$ isomorphic to icosahedral group, $\mathcal{I} \quad \mathcal{A}_{5} \simeq \mathcal{I}$

The (Rotational) Icosahedral Group, I ~ A5

Properties of the icosahedron:

$$
\begin{array}{cl}
20 \text { faces } & \text { (equilateral triangles) } \\
30 \text { edges } & (3 \text { sides/triangle, } 2 \text { triangles/edge) } \\
12 \text { vertices } & (3 \text { vertices/triangle, } 5 \text { vertices/edge })
\end{array}
$$

Group elements:
Rotations which take vertices to vertices, i.e., by $0, \frac{2 \pi}{5}, \frac{4 \pi}{5}, \frac{2 \pi}{3}, \pi$
Rotation by each angle forms a conjugacy class:

$$
e, 12 C_{5}, 12 C_{5}^{2}, 20 C_{3}, 15 C_{2} \quad \text { (Schoenflies: } C_{n}^{k}=\frac{2 \pi k}{n} \text { rotation) }
$$

order=number of elements:

$$
1+12+12+15+20=60
$$

The (Rotational) Icosahedral Group, I ~ A5

Theorem: group order = sum of squares of irred. reps

$$
\begin{array}{r}
1+12+12+15+20=60=1^{2}+3^{2}+3^{2}+4^{2}+5^{2} . \\
\text { (two triplets!) }
\end{array}
$$

Conjugacy classes: characterized by trace (character)

Character Table

\mathcal{I}	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{3}^{\prime}$	$\mathbf{4}$	$\mathbf{5}$
e	1	3	3	4	5
$12 C_{5}$	1	ϕ	$1-\phi$	-1	0
$12 C_{5}^{2}$	1	$1-\phi$	ϕ	-1	0
$20 C_{3}$	1	0	0	1	-1
$15 C_{2}$	1	-1	-1	0	1

The (Rotational) Icosahedral Group, I ~ A5

From character table, deduce tensor product decomposition:

$$
\begin{gathered}
\hline 3 \otimes 3=1 \oplus 3 \oplus 5 \\
3^{\prime} \otimes 3^{\prime}=1 \oplus 3^{\prime} \oplus 5 \\
3 \otimes 3^{\prime}=4 \oplus 5 \\
3 \otimes 4=3^{\prime} \oplus 4 \oplus 5 \\
3^{\prime} \otimes 4=3 \oplus 4 \oplus 5 \\
3 \otimes 5=3 \oplus 3^{\prime} \oplus 4 \oplus 5 \\
3^{\prime} \otimes 5=3 \oplus 3^{\prime} \oplus 4 \oplus 5 \\
4 \otimes 4=1 \oplus 3 \oplus 3^{\prime} \oplus 4 \oplus 5 \\
4 \otimes 5=3 \oplus 3^{\prime} \oplus 4 \oplus 5 \oplus 5 \\
5 \otimes 5=1 \oplus 3 \oplus 3^{\prime} \oplus 4 \oplus 4 \oplus 5 \oplus 5
\end{gathered}
$$

Not enough for flavor model building. Need explicit representations! I not a crystallographic point group, so there was work to be done...

Lepton Flavor Model Building with A5

Mass terms: $\quad-\mathcal{L}_{m}=\frac{a_{i j}}{M} L_{i} H L_{j} H+Y_{i j}^{(e)} L_{i} \bar{e}_{j} H$

Charge assignments: $\quad L \rightarrow 3, \bar{e} \rightarrow 3^{\prime}$

$$
L L: 3 \otimes 3=1 \oplus \not \mathcal{X} \oplus 5, \quad L \bar{e}: 3 \otimes 3^{\prime}=4 \oplus 5
$$

Leading order: charged leptons massless, neutrinos degenerate...
Fix it at higher order with flavon sector:

$$
\begin{gathered}
\xi \rightarrow 5 \\
L L
\end{gathered} \begin{gathered}
\psi \rightarrow 5, \chi \rightarrow 4 \\
L \bar{e} \\
-\mathcal{L}_{\text {mass }}=\frac{\alpha_{i j k}}{M^{2}} L_{i} H L_{j} H \xi_{k}+\frac{\beta_{i j k}}{M} L_{i} \bar{e}_{j} H \psi_{k}+\frac{\gamma_{i j l}}{M} L_{i} \bar{e}_{j} H \chi_{l}
\end{gathered}
$$

Lepton Flavor Model Building with A5 (continued)

Explicit toy example with assumed flavon vevs:
specific "golden prediction" for solar mixing angle, plus
neutrinoless double beta decay:

$$
m_{\beta \beta}=\frac{m_{1} \phi}{\sqrt{5}}+\frac{m_{2}}{\phi \sqrt{5}} .
$$

neutrino masses (normal hierarchy)
hierarchical charged lepton masses

In progress: dynamics of flavon sector, quark flavor mixing....
Rich and virtually unexplored model building territory!

Scenario III: $\cos \theta_{12}=\frac{\phi}{2}$

Rodejohann '08, Adulpravitchai, Blum, and Rodejohann, '09 \mathcal{D}_{10}

$$
\mathcal{U}_{\mathrm{MNSP}}^{(\mathrm{GR} 2)}=\left(\begin{array}{ccc}
\frac{\phi}{2} & -\frac{1}{2} \sqrt{\frac{\sqrt{5}}{\phi}} & 0 \\
\frac{1}{2} \sqrt{\frac{5}{2 \phi}} & \frac{\phi}{2 \sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{2} \sqrt{\frac{5}{2 \phi}} & \frac{\phi}{2 \sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right)
$$

complete flavor theory based on dihedral symmetry
(solar angle prediction based on exterior angle of decagon)

Conclusions/Outlook

- The ν flavor puzzle is intriguing and very rich:
- Many options for neutrino mass scale suppression, each with implications for particle/astroparticle physics
- Many theoretically motivated mixing patterns: Bi-maximal, tri-bimaximal, mixing,"golden ratio,"...
- Themes: Dirac v. Majorana? role of family symmetries? quark-lepton unification?
- Data will of course continue to be crucial!
- May provide our best window to ultrahigh scale physics!

