

"Contributions to Neutrino Physics with Penning Traps"

Klaus Blaum

11.11.2009

Principle of Penning traps

Setup and measurement procedure

Neutrino physics with Penning traps

Precision mass measurements

High-accuracy mass measurements allow one to determine the atomic and nuclear binding energies reflecting all forces in the atom/nucleus.

A brief history of mass spectrometry

AX-FLANCE-CEBELL-CE-IAFT

Principle of Penning trap mass spectrometry

q/m

PENNING trap

- Strong homogen.
 magnetic field
- Weak electric 3D quadrupole field

Brown & Gabrielse, Rev. Mod. Phys. 58, 233 (1986)

TOF cyclotron resonance detection

Non-destructive ion detection

Single ion signals

komplexe Elektronik

The TRIGA-TRAP experiment

Max Planck Instituth for Nuclear Physics

Highest sensitivity: Discovery of a new isotope

WELT (24.03.2009):

Physicists from an international collaboration discovered with the ISOLTRAP experiment at ISOLDE/CERN a new isotope of the element radon. It is made of 86 protons and 143 **neurons** and is now the 3176th known isotope in the chart of nuclides.

26.08.2008, 4:24 am

D. Neidherr et al., Phys. Rev. Lett. 102, 112501 (2009)

KATRIN-TRAP

Penning traps as high-precision "rest-gas analyser"

M. Ubieto Díaz et al., Int. J. Mass Spectrom. 288, 1 (2009)

Detection limit

Minimum number of detected ions (helium) ~ 6000 ions.

MAX PLANCK INSTITUTI FOR NUCLEAR PHYSICS

Masses of interest for neutrino physics

Q-value of the decay of ⁷⁶Ge to ⁷⁶Se

MAX PLANCK FOR NUCLE/

INST

MAX-PLANCE CESELL BOHAFT

More interesting candidates

	ββ	
Decay	Q-value	Precision
⁷⁶ Ge – ⁷⁶ Se	2039.006(50)	6E-10
	G. Douysset et al., PRL 86, 4259 (2001)	
¹³⁰ Te – ¹³⁰ Xe	2527.518(13)	1E-10
	M. Redshaw et al., PRL 102, 212502 (2009)	
¹³⁶ Xe – ¹³⁶ Ba	2457.83(37)	3E-09
	M. Redshaw et al., PRL 98, 053003 (2007)	
	ECEC	
¹¹² Sm – ¹¹² Cd	1919.82(16)	1E-09
	S. Rahaman et al., PRL 103, 042	2501 (2009)
¹²⁰ Te – ¹²⁰ Sm	1714.81(1.25)	1E-08
	N. Scielzo et al., PRC 80, 02550	1 (2009)

In principle all Q-values can be improved to $\delta Q < 300 \text{ eV}$, but we need your input concerning the importance.

Determination of the ${}^{3}H \rightarrow {}^{3}He$ Q-value

Important parameter for the determination of the electron neutrino rest mass.

X-PLANCE-CESELLBOHAFT

We aim for: $\delta Q(^{3}T \rightarrow ^{3}He) = 20 \text{ meV}$ $\delta m/m = 7 \cdot 10^{-12}$ Temperature stabilized room: $\Delta T < 0.1 \text{ K}$

Magnetic field stability: $\Delta B/B < 17$ ppt / h

Vibrationally isolated floor: $\Delta x \le 0.1 \ \mu m$

Electron neutrino mass

Typical μ -calorimetric de-excitation spectrum of EC in ¹⁶³Ho

Cryogenic μ-calorimeters (Group of Prof. Enss, KIP, Uni Heidelberg) end point with accuracy ~ 1 eV

ax Planck In or Nuclear

Electron capture – General information

Interesting candidates

Results from ¹⁹⁴Hg - ¹⁹⁴Au

X-PLANCE CEBELL BEHAFT

PENTATRAP – Masses with $\delta m/m = 10^{-11}$

MAX PLANCE CERELL REPART

AAX PLANCK INSTITUT FOR NUCLEAR PHYSICS

Conclusion

Precision Penning trap mass measurements can contribute in various ways to neutrino physics research!

Thanks a lot for the invitation and your attention!

Email: klaus.blaum@mpi-hd.mpg.de WWW: www.mpi-hd.mpg.de/blaum/

