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de Lapparent, Geller, Huchra (1986)
Smithsonian Astronomical Observatory

1100 galaxies in a wedge,
6 degrees wide and 110 degrees long

The first slice in the CfA redshift survey



Sloan Digital Sky Survey (SDSS) telescope at Apache Point, New Mexico

Image Credit: Fermilab Visual Services



The SDSS galaxy 
redshift survey has so 
far provided the most 
comprehensive 
observations of 
cosmic large-scale 
structure



Current galaxy redshift surveys map the Universe with
several hundred thousand galaxies

 



The initial conditions for cosmic structure formation are directly observable
 

THE MICROWAVE SKY 

WMAP Science Team (2003, 2006, 2008, 2010)



The most important cosmological parameters are well constrained
WMAP-5 CONSTRAINTS, INLCUDING TYPE-IA AND BAO DATA

Constraints on dark energy equation of state: 
(95% CF, 
assuming a 
constant w)Komatsu et al. (2008)

Minimal, 6-parameter ΛCDM model is a great fit



~ 13 billion 
years



'Millennium' simulation
Springel et al. (2005)

CDM

10.077.696.000 particles
m=8.6 x 108  M⊙/h



Simulated and 
observed large-
scale structure 
in the galaxy 
distribution
 

MOCK PIE 
DIAGRAMS 
COMPARED TO 
SDSS, 2DFGRS, 
AND CFA-2 

Springel et al. (2006)



Commonly employed mathematical measures of clustering
 

THE TWO-POINT FUNCTION AND THE POWER SPECTRUM

The two-point function gives the excess probability relative to a Poisson distribution to find 
another point at distance r around a given point:

With many points, can also define a density field, and discuss the density contrast field:

The clustering can also be conveniently analyzed in Fourier space.

Power spectrum:

Auto-correlation function and power spectrum contain the 
same information:

A Gaussian random field is fully 
described by the power spectrum.

Important cosmological question: Did the universe really start 
from a Gaussian field, or did higher-order correlations exist?



The two-point correlation function of galaxies is a very good power law
 

GALAXY TWO-POINT FUNCTION COMPARED WITH THE 2dFGRS



The galaxy distribution is in general biased with respect to the mass 
distribution
 

GALAXY AND MASS CLUSTERING AT DIFFERENT EPOCHS

evolves little in time evolves strongly in time



The large-scale clustering 
pattern of halos and 
galaxies is already 
imprinted on the initial 
conditions
 

TIME EVOLUTION OF THE MATTER 
AND GALAXY DISTRIBUTION



(figure from Max Tegmark)

If the initial fluctuations are a Gaussian random field, we only need to know 
the power spectrum and the cosmological parameters to describe the ICs
 

DIFFERENT PROBES OF THE MASS POWER SPECTRUM



The Ly- forest traces the distribution of neutral hydrogen in the cosmic web
 

ILLUSTRATION OF A QUASAR ABSORPTION SPECTRUM

Lyman series:  n=1
n'=2() =122 nm

hydrogen spectral series:



The baryonic 
wiggles remain 
visible in the 
galaxy distribution 
down to low 
redshift and may 
serve as a 
"standard ruler" to 
constrain dark 
energy
 

DARK MATTER AND 
GALAXY POWER 
SPECTRA FROM THE 
MILLENNIUM 
SIMULATION IN THE 
REGION OF THE 
WIGGLES

Springel et al. (2005)



Higher-order probes for large-scale structure
 

THE SEARCH FOR DIFFERENCES FROM THE GAUSSIAN PREDICTION

3-point correlation functions, bi-spectrum

Void probability distribution function

Minkowski functionals and other morphological measures

Geometric measures for filamentary, planarity, etc.

Percolation statisics

Fractal dimension estimators

Genus statistics

calculation via the 
Gauss-Bonnet theorem:

Example: Topology of large-scale with the genus statistics

definition of the genus:

torus



The genus of isodensity contours can reveal non-Gaussian 
structure in density fields

Isodensity surface in a slightly non-linear 
LCDM density field

Isodensity surface in a Gaussian density 
field with identical power spectrum

Identical power spectrum but different genus



So far, genus results have 
generally been found to 
be consistent with the 
Gaussian expectation

Isodensity contours for the 1.2-Jy 
galaxy redshift survey

Genus measurement for SDSS galaxies 
compared to expectation for a Gaussian field



Non-linear models for 
structure formation:

Top-hat collapse



The evolution of a spherical overdensity in an infinite background can 
be followed analytically
 

THE TOP-HAT COLLAPSE MODEL

Consider a spherically symmetric, slightly overdense 
perturbation in a critical-density universe

Evolution in linear theory:

According to Birkhoff's theorem, the spherical perturbation evolves independently of the 
outside. Since it is slightly overdense, it behaves like a closed universe.

Cyclic evolution of a closed 
universe in parametric form:



At early times, the non-linear evolution of the top-hat can be matched to 
the solution of linear perturbation theory
 

MATCHING LINEAR AND NON-LINEAR THEORY

For small times/angles, a series expansion can be used to eliminate the parameter . This 
results in:

This allows to read-off the first order growth rate of the density contrast in the top-hat 
evolution:

Comparison with the corresponding linear 
theory growth rate allows a determination of 
the constants B and A:

We now know the exact non-linear time evolution of 
the top-hat perturbation.



When the density contrast 
reaches about unity in linear 
theory, the top-hat 
perturbation goes non-linear 
and collapses
 

TIME EVOLUTION OF THE TOP-HAT 
PERTURBATION IN LINEAR AND 
NON-LINEAR THEORY

linear theory

non-linear 
evolution

4.44

1.06

1.686



turn-around

collapse



virialization

virialized
object

Virial overdensity:

At half the turnaround radius, the virial 
theorem is fulfilled:

 = 3  / 2 



Press-Schechter 
formalism



Using the excursion set approach, a simple model for the abundance 
of halos of a given mass can be derived
THE PRESS-SCHECHTER FORMALISM

Filtering of the density fluctuations with a top-hat results in a field 
that is smoothed on a certain “mass scale”:

Press-Schechter's conjecture: The fraction of mass in objects larger 
than M is given by the probability that a point exceeds the critical linear 
density contrast for top-hat collapse.

This can be rewritten as:

Only half of the mass is 
accounted for – unless 
one puts in a fudge factor 
equal to 2...



In Press-Schechter, all mass is assumed to be bound to halos
THE PRESS-SCHECHTER FORMULA

The fraction of mass in objects larger than M is determined by (M) alone:

For a given mean density of the universe, this immediately gives the number density if objects of a 
certain mass:

The multiplicity function measures the fraction of mass bound to halos per unit log in mass:



The standard equations of linear growth combined with the Press-
Schechter formula allow a prediction of the halo mass function at all 
times, and for all CDM cosmologies
REQUIRED LINEAR THEORY RELATIONS

Growing mode solution in linear theory:

Growth factor:

Power spectrum evolution:

Variance 2(M) can be 
computed at all times



The evolution of the halo mass function is arguably the most 
fundamental tracer of nonlinear structure growth
HALO MASS FUNCTION OF THE MILLENNIUM COSMOLOGY



The Sheth & Tormen mass function provides a significantly better 
description than Press & Schechter
 

MASS MULTIPLICITY FUNCTION

(First halo with 23 particles at z=18.24)



The change in the normalization strongly delays the formation of halos in 
the exponential tail of the mass function
CHANGES IN THE MASS FUNCTION DUE TO THE SMALLER σ8

σ8   = 0.90

σ8   = 0.74



The WMAP3 cosmology leads 
to a substantial revision of the 
evolution of the cosmological 
halo mass function
RELATIVE CHANGE IN THE 
ABUNDANCE OF HALOS AT Z=0

Ωm   = 0.25

ΩΛ   = 0.75

n    = 1.00

σ8   = 0.90

h    = 0.73

Ωb  = 0.045

Ωm   = 0.24

ΩΛ   = 0.76

n    = 0.95

σ8   = 0.74

h    = 0.73

Ωb  = 0.042



Models for internal halo 
structure: self-similar infall, 

isothermal spheres,
NFW-profile



The evolution of a point-mass perturbation in a critical density 
background universe can be treated analytically
BERTSCHINGERS SELF-SIMILAR SOLUTION

Self-similar ansatz for a scale-free collapse solution:

For a point-mass perturbation, the perturbation is a power-law as a function of radius:

Bertschinger has shown that the density profile in the virialized region will then be a 
power-law as well:

Close to the slope of an 
isothermal sphere



Truncated isothermal spheres are often used as a simple model for a 
halo in approximate dynamical equilibrium
TRUNCATED ISOTHERMAL SPHERES

Let's truncate at the virial overdensity:

Note: It is a convention to 
increase the assumed virial 
overdensity from ~178 to 200.

Useful relations between sizes of halos:



N-body 
simulations find a 
universal profile 
that is not a 
power-law
THE NFW-PROFILE



Small-scale
dark matter structure







Zooming in on 
dark matter halos 
reveals a huge 
abundance of 
dark matter 
substructure
DARK MATTER 
DISTRIBUTION IN A   
MILKY WAY SIZED 
HALO AT DIFFERENT 
RESOLUTION



The Milky Way

200 Billion stars within 50000 lightyears



Satellite galaxies in the Milky Way



The differential subhalo mass function converges quite well to a power-law
RESULTS FROM A RESOLUTION STUDY OF AQUARIUS HALO AQ-A

 = -1.90



 = -1.90

The subcritical slope of the differential subhalo mass function implies that 
the total mass in substructures converges at the faint end
THE DIFFERENTIAL SUBHALO MASS FUNCTION



The cumulative mass fraction in resolved substructures reaches about 
12-13%, we expect up to ~18% down to the thermal limit
 

FRACTION OF MASS IN SUBSTRUCTURES AS A FUNCTION OF MASS LIMIT

thermal limit



The radial distribution of 
substructures is strongly 
antibiased relative to all dark 
matter, and independent of 
subhalo mass
 

RADIAL SUBSTRUCTURE 
DISTRIBUTION IN Aq-A-1

Most subhalos are at large radii, 
subhalos are more effectively 
destroyed near the centre

Subhalos are far from the Sun

see also Diemand et al. (2007, 2008)



The local mass fraction in substructures is a strong function of radius
 

MASS FRACTION IN SUBSTRUCTURES AS A FUNCTION OF RADIUS IN HALO AQ-A

Solar circle



The dark matter 
distribution at the 
Solar circle is 
surprisingly smooth
 

THE DENSITY PDF AT THE 
POSITION OF THE SUN

Essentially all of 
the scatter is due 
to particle 
sampling noise.

In fact, the 
residual intrinsic 
rms scatter is 
only 4% around 
the smooth model



Dark matter
annihilation predictions



Particle physics Astrophysics

Dark matter could be self-annihilating, in which case the presence of 
subhalos should boost the expected flux
THE ANNIHILATION SIGNAL DUE TO SUBSTRUCTURES

Annihilation flux:

Luminosity of a halo with maximum circular velocity Vc(rmax)= Vmax:

NFW-Profile:

Einasto-Profile:

α = -1.4 Profile:

Moore-Profile:



The annihilation luminosity from main halo and subhalos has a 
very different radial distribution
 

THE RELATIVE DISTRIBUTION OF MASS, MAIN HALO, AND SUBHALO LUMINOSITY

main halo 
luminosity

mass

subhalo 
luminosity

Lower mass limits of 
105 M⊙
106 M⊙
107 M⊙
108 M⊙



Surface brightness profile of 
a typical subhalo with
Vmax=10 km/s at different 
distances from the galactic 
center
 

SURFACE BRIGHTNESS PROFILE OF 
DIFFERENT SUBHALO COMPONENTS

The sub-sub component appears as a 
(extended) “disk” on the sky

The central surface brightness of the 
smooth component actually increases with 
smaller distance (because the 
concentration increases)



The dark matter annihilation flux is boosted significantly by dark matter 
substructures
EXTRAPOLATED ALL-SKY MAP OF THE DM ANNIHILATION FLUX FROM THE MILKY WAY

Aq-A-2 

L  ∝ ρ2 dV



Dark matter annihilation can be best discovered with an optimal filter 
against a bright background
 

THE SIGNAL-TO-NOISE FOR DETECTION WITH AN OPTIMAL FILTER

background noise

signal

Main halo's smooth component:

Subhalo's smooth component:

Sub-substructure of a subhalo:

The background dominates, then:

S/N ~ F / θ

S/N ~ L /  rh d

The optimal filter 
is proportional to 
the signal



main subhalos

known 
satellites

sub-subhalosS/N for detecting 
subhalos in units of 
that for the main halo

30 highest S/N objects, 
assuming the use of 
optimal filters

Highest S/N subhalos have 1% of S/N of main halo
Highest S/N subhalos have 10 times S/N of known satellites
Substructure of subhalos has no influence on detectability

Detectability of different annihilation emission components in 
the Milky Way
 



But what about 
other nearby 
structures, like 
galaxy clusters?

High resolution 
“Phoenix” project

Gao et al. (2011)



The nearest massive galaxy clusters are attractive targets for 
annihilation detection
 

COMPARISON OF SIGNAL-TO-NOISE FOR DETECTION OF NEARBY SOURCES



The Millennium-II simulation can be used to 
construct full backwards lightcones of the 
expected gamma-ray annihilation background
 

SIMULATION BOX STACKING AND EXTRAPOLATION OF HALO 
PROPERTIES

Zavala, Springel & Boylan-Kolchin (2010)



Thin redshift slices of the gamma-ray background reveal cosmic 
large-scale structure
 

A PARTIAL MAP AT ENERGY 10 GEV NEAR Z~0



In the complete coadded map, individual structures vanish in the 
high background level except for very near halos
 

THE FULL BACKGROUND MAP OUT TO REDSHIFT  Z = 10



The full-sky maps can be used to extract direct predictions for the 
properties of the background
 

ENERGY SPECTRUM OF THE BACKGROUND



Residual structure in 
energy space



The velocity 
distribution of dark 
matter at the Sun's 
position shows 
residual structure
 

DISTRIBUTION OF VELOCITY 
COMPONENTS AND VELOCITY 
MODULUS

Vogelsberger et al. (2009)



Wiggles in the distribution of the modulus of the velocity point to 
residual structure in energy space
 

DISTRIBUTION OF THE VELOCITY MODULUS



The wiggles are 
the same in well-
separated boxes 
at the same radial 
distance, and are 
reproduced in 
simulations of 
different resolution
 

DISTRIBUTION OF THE 
VELOCITY MODULUS IN 
DIFFERENT WELL-
SEPARATED BOXES



The velocity wiggles are generic and reflect the formation history 
of the halo
 

VELOCITY MODULUS IN THE SIX AQUARIUS HALOS



The non-Gaussian features in the velocity distribution imply ~10% 
corrections in the count rates of WIMP recoil searches
 

IMPACT ON THE COUNT RATES FOR TYPICAL DIRECT DETECTION EXPERIMENTS

(averaged over 1 yr)
annual modulation



If dark matter consists of axions, their energy spectrum can be 
accurately measured – this would be dark matter astronomy!
 

PREDICTED CAVITY POWER AS A FUNCTION OF FREQUENCY

The non-Gaussian bumps and wiggles are in principle measureable and provide 
information about the formation history of the Miky Way



The satellite 
abundance issue



Taken at face value, the number of luminous satellites in the Milky Way is 
much smaller than the number of dark matter lumps
 

THE SATELLITE PROBLEM

Moore et al. (1999)



Relatively dense massive subhalos are predicted that apparently cannot 
host any of the luminuous satellites of the Milky Way   
 

THE PUZZLING DARKNESS OF SOME OF THE LARGE DARK MATTER SATELLITES 

Boylan-Kolchin, Bullock & Kaplinghat (2011)



Warm dark matter models also reduce the 
number of Milky Way satellites substantially – 
for 1 keV there are still enough 
 

SATELLITE ABUNDANCE AS A FUNCTION OF DM PARTICLE MASS   

Maccio & Fontanot  (2010)



Basics of collisionless 
simulations



Simulations are the theoretical tool of choice for 
calculations in the non-linear regime.

They connect the (simple) cosmological initial conditions 
with the (complex) present-day universe.

Predictions from N-body simulations:
Abundance of objects (as a function of mass and time)
Their spatial distribution
Internal structure of halos (e.g. density profiles, spin)
Mean formation epochs
Merger rates
Detailed dark matter distribution on large and fairly small scales
Galaxy formation models
Gravitational lensing
Baryonic acoustic oscillations in the matter distribution
Integrated Sachs-Wolfe effect
Dark matter annihilation rate
Morphology of large-scale structure (“cosmic web”)
....

Why are cosmological simulations of structure formation 
useful for studying the dark universe?
 



The N-body approach to collisionless dynamics
 

BASIC MONTE-CARLO IDEA

Poisson-Vlasov System

Collisionless 
Boltzmann equation

need large N 
N-body System

½



Several questions come up when we try to use the 
N-body approach for collisionless simulations

How do we compute the gravitational forces 
efficiently and accurately?

How do we integrate the orbital equations in time?

How do we generate appropriate initial conditions?

How do we parallelize the simulation?

Note: The naïve 
computation of the 
forces is an N2 - task.½



Initial conditions 
generation



In special cases, the distribution function for static solutions of the CBE 
can be constructed analytically
 

An integral of motion is constant along orbits, i.e.: 

Then I is a solution of the CBE.

Jeans theorem: Steady-state solutions of the CBE only depend on 
integrals of motion.

For a spherical mass distribution, a DF that only depends on energy can be 
constructed with Eddington's formula.

Hernquist halo:

where:

Example:



Construction of compound disk galaxies that are in dynamical equilibrium
 

STRUCTURAL PROPERTIES OF MODEL GALAXIES

Dark halo (Hernquist profile matched to NFW halo)
Stellar disk (exponential)
Stellar bulge
Gaseous disk (exponential)
Central supermassive black hole

Components:

One approach: Compute the 
exact gravitational potential 
for the axisymmetric mass 
distribution and solve the 
Jeans equations

M=1012 h -1M⊙



The first step in constructing an isolated galaxy model is the specification 
of the density structure of all mass components
 

DENSITY DISTRIBUTIONS OF DARK MATTER AND STARS IN BULGE AND DISK

Dark matter:

Hernquist or NFW profile

Stars in the disk:

“Isothermal sheet” with exponential profile

dark matter profile

Stars in the bulge:

Gas in the disk:

Vertical structure given by hydrostatic equilibrium.
Depends on the equation of state of the gas.

Disk scale length h 
determined by spin 
parameter of halo.

Bulge scale length b 
can be set to a 
fraction of the disk 
scale-length  h.



Solving the Jeans equations allows the construction of dynamically 
stable disk galaxy models
 

MOMENT EQUATIONS FOR THE VELOCITY STRUCTURE

We assume that the velocity distribution function of dark matter and stars can be 
approximated everywhere by a triaxial Gaussian.

Further, we assume axisymmetry, and that the distribution function depends only on E and Lz 

Then cross-moments vanish:

The radial and vertical moments are given by:

The azimuthal dispersion fulfills a separate equation:

Circular 
velocity:

A remaining freedom lies in the azimuthal streaming           , which is not determined by the above 
assumptions. For the dark matter, it can be set to zero, or to a value corresponding to a prescribed spin.

Note: For the stellar disk, we instead use 
the epicycle theory to relate radial and 
vertical dispersions.





The famous merger 
hypothesis conjectures 
that tidal features around 
galaxies occur in 
collisions which ultimately 
produce spheroidals
 

TOOMRE & TOOMRE (1972  !)

Restricted three-body 
simulations

A model for the interaction of M51 
and NGC 5195



More important than particle number is physical insight and intuition
 

DAVIS, EFSTATHIOU, FRENK & WHITE (1985  !)

323 particles – the first generation of CDM  simulations



In modern simulations, the same dark matter autocorrelation function is 
measured, but more accurately
 

DARK MATTER TWO-POINT FUNCTION

1010 particles



The initial conditions for cosmic structure formation are 
directly observable
 

THE MICROWAVE SKY 

WMAP Science Team (2003, 2006, 2008)



(figure from Max Tegmark)

If the initial fluctuations are a Gaussian random field, we only need to know 
the power spectrum and the cosmological parameters to describe the ICs
 

DIFFERENT PROBES OF THE MASS POWER SPECTRUM



The linear theory power spectrum can 
be computed accurately
 

THE LINEAR POWER SPECTRUM

Logarithmic slope

n = 0.92
n = 1.0

Power spectrum

wiggles



To determine the power spectrum amplitude, we normalize the 
spectrum to observations of clustering (usually galaxy clusters)
 

FILTERED DENSITY FIELD AND THE NORMALIZATION OF THE POWER SPECTRUM

Extrapolate back to the starting redshift with the growth factor D(z)
This depends on cosmology.

Observational input: 

The filtered density field:

Close to the critical slope, halos on very different mass scales form nearly simultaneously
The multiplicity function of halos becomes essentially flat

Aside: 

fluctuation spectrum of initial conditions fully specified.



To create a realization of the perturbation spectrum, a model for an 
unperturbed density field is needed
 

GLASS OR CARTESIAN GRID

glassgrid

For CDM, the initial velocity dispersion is negligibly small.

But there is a mean streaming velocity, which we need to imprint in initial conditions.



Using the Zeldovich approximation, density fluctuations are 
converted to displacements of the unperturbed particle load
 

SETTING INITIAL DISPLACEMENTS AND VELOCITIES

Particle displacements:

Resulting density 
contrast:

Density change
due to displacements:

For small displacements:

During linear growth:

Particle velocities:
Note: Particles move on 
straight lines in the 
Zeldovich approximation.

Displacement field:

Fourier realization:



One can assign random amplitudes and phases for individual 
modes in Fourier space
 

GENERATING THE FLUCTUATIONS IN K-SPACE

kx

ky

L

Simulation box

For each mode, draw a random 
phase, and an amplitude from a 
Rayleigh distribution.

sampled with 
N2 points



Calculating
gravitational forces



N2 complexity
½

Direct summation calculates the gravitational field exactly
 

FORCE ACCURACY IN COLLISIONLESS SIMULATIONS

Are approximate force calculations sufficient?

Direct summation approch:

Yes, provided the force errors are random and small enough.

Since the N-body force field is noisy anyway, small random 
errors will only insignificantly reduce the relaxation time.

Systematic errors in the force, or error correlations are 
however very problematic.



Cosmological N-body simulations have grown rapidly in size over the 
last three decades
 

"N" AS A FUNCTION OF TIME

Computers double 
their speed every 
18 months 
(Moore's law)

N-body 
simulations have 
doubled their size 
every 16-17 
months

Recently, growth 
has accelerated 
further. 
The Millennium Run 
should have become 
possible in 2010 – 
we it was done in 
2004.
It took ~350000 CPU 
hours, about a month 
on 512 cores.

1 month with 
direct summation

10 million years with
direct summation



The particle mesh (PM) 
force calculation



Poisson's equation can be solved in real-space by a 
convolution of the density field with a Green's function.

The particle-mesh method

In Fourier-space, the convolution becomes a simple multiplication!

Example for
vacuum boundaries:

Solve the potential in these steps:

(1)  FFT forward of the density field
(2)  Multiplication with the Green's function
(3)  FFT backwards to obtain potential

The four steps of the PM algorithm
(a)  Density assignment
(b)  Computation of the potential
(c)  Determination of the force field
(d)  Assignment of forces to particles



Density assignment
set of discrete 
mesh centres

h

Give particles a “shape” S(x). Then to each mesh cell, we assign the fraction of mass that falls 
into this cell. The overlap for a cell is given by:

The assignment function is hence the convolution:

where

The density on the mesh is then a sum over the contributions of each particle as given by the 
assignment function:

Density assignment



Name Shape function S(x) # of cells 
involved

Properties of force

NGP
Nearest grid point

CIC
Clouds in cells

TSC
Triangular shaped 
clouds

piecewise constant 
in cells

piecewise linear, 
continuous

continuous first 
derivative

Note: For interpolation of the grid to obtain the forces, the same assignment function needs to be 
used to ensure momentum conservation. (In the CIC case, this is identical to tri-linear interpolation.)

Commenly used particle shape functions and 
assignment schemes



Finite differencing of the potential to get the force field

Approximate the force field                               with 
finite differencing

2nd order accurate scheme:

4th order accurate scheme:

Interpolating the mesh-forces to the particle locations

The interpolation kernel needs to be the same one used for mass-assignment to 
ensure force anti-symmetry.



Advantages and disadvantages of the PM-scheme

Pros: SPEED and simplicity

Cons: ● Spatial force resolution 
limited to mesh size.

● Force errors somewhat 
anisotropic on the scale 
of the cell size

serious problem:

cosmological simulations cluster 
strongly and have a very large 
dynamic range

cannot make the PM-mesh fine 
enough and resolve internal 
structure of halos as well as large 
cosmological scales

we need a method to increase the dynamic range available 
in the force calculation



Particle-Particle PM schemes (P3M)

Idea: Supplement the PM force with a direct summation short-range force at the 
scale of the mesh cells. The particles in cells are linked together by a chaining list.

Offers much higher dynamic range, but becomes slow when clustering sets in.

In AP3M, mesh-refinements are placed on clustered regions

Can avoid clustering slow-down, 
but has higher complexity and 
ambiguities in mesh placement

Codes that use AP3M: HYDRA         (Couchman)



Iterative Poisson solvers can determine the potential 
directly on a (hierarchical grid)

Idea: Start with a trial potential and then iteratively relax the solution by updating 
with a finite difference approximation to the Laplacian.

This updating eliminates errors on the scale of a few grid cells rapidly, but 
longer-range fluctuations die out much more slowly.

In multigrid methods, a hierarchy of meshes is used to speed up convergence, 
resulting in a fast method that allows for locally varying resolution.

Examples for codes that use a real-space 
Poisson solver: MLAPM   (Knebe )

ART         (Kravtsov)

On adaptive meshes, sometimes a combination of Fourier techniques and 
real-space solvers is used.



TREE algorithms



Idea: Group distant particles together, 
and use their multipole expansion.

Only ~ log(N) force terms per particle.

Tree algorithms approximate the force on a point with a 
multipole expansion
 

HIERARCHICAL TREE ALGORITHMS

 



Tree algorithms
Oct-tree in two dimensions

level 0

level 1

level 2

level 3

Idea: Use hierarchical multipole expansion 
to account for distant particle groups

r

s

center-of-mass

origin

We expand:

for

and obtain:

the dipole term vanishes 
when summed over all 
particles in the group





The multipole moments are computed for each 
node of the tree

Monpole moment:

Quadrupole tensor:

Resulting potential/force approximation:

For a single force evaluation, not N single-particle forces need to be computed, 
but only of order log(N) multipoles, depending on the opening angle.

● The tree algorithm has no intrinsic restrictions for its dynamic range
● force accuracy can be conveniently adjusted to desired level
● the speed does depend only very weakly on clustering state
● geometrically flexible, allowing arbitrary geometries



The fast multipole method (FFM) generalizes the tree 
algorithm and expands the field symmetrically for each pair 
of interacting cells

Two interacting cells:

● Very fast
● Manifest momentum conservation

Dehnen (2002)

● Doesn't work well with individual timesteps
● Difficult to parallelize for distributed memory machines

But:



TreePM force
calculation algorithm



Particularly at high redshift, it is expensive to obtain accurate forces  
with the tree-algorithm
THE TREE-PM FORCE SPLIT

Idea: Split the potential (of a single particle) in Fourier space into a long-range and a short-range 
part, and compute them separately with PM and TREE algorithms, respectively.

Periodic peculiar 
potential

Poisson equation
in Fourier space:

Solve with PM-method
● CIC mass assignment
● FFT
● multiply with kernel
● FFT backwards
● Compute force with 4-point 

finite difference operator
● Interpolate forces to particle 

positions

Solve in real space with TREE

FFT to real space



In the TreePM algorithm, the tree has to be walked only locally
PERFORMANCE GAIN DUE TO LOCAL TREE WALK

~ 5 rs

● Accurate and fast long-range force
● No force anisotropy
● Speed is largely insensitive to clustering (as for 

tree algorithm)
● No Ewald correction necessary for periodic 

boundary conditions

Using zero-padding and a different 
Greens-Function, the long-range force 
can also be computed for vaccuum 
boundaries using the FFT. 
(Implemented in Gadget-2)

Advantages of TreePM include:



Modelling the galaxy 
distribution



How do we get from the 
structure in the dark 
matter to the large-scale 
distribution of galaxies ?



Semi-analytic models are currently the most powerful 
technique to study galaxy formation
 

MOST IMPORTANT INPUT PHYSICS

Semi-analytic 
machinery

Tully-Fisher 
relation

Galaxy 
colors

Star formation 
history

Luminosity 
function

Galaxy 
morphologies

Morphology 
density 
relation

Evolution to 
high redshift

Clustering 
properties

Radiative gas 
cooling

Morphological 
evolution

Dark matter 
merging 

history tree  

Feedback

Metal 
enrichment

Spectrophotometric 
evolution

Star formation

P
re

di
c t

io
ns

In
pu

t p
hy

si
c s

Hierarchical growth of dark 
matter halos

Radiative cooling of gas within 
halos (dissipation)

Star formation and associated 
feedback processes

Spectrophotometric modeling of 
stellar populations

understood with high accuracy

in princible well within reach of current simu-
lations, yet plagued with numerical difficulties

highly uncertain physics, numerically 
extremely difficult

some uncertainties, but no/small 
coupling to gas dynamics



Analysis of many simulation 
outputs allows a measurement 
of the hierarchical build up of 
dark matter halos
 

FOLLOWING DARK MATTER IN TIME

Merger tree of a  cluster
(only progenitors above a 
minimum mass are shown) 



Springel, White, 
Kauffmann, 
Tormen (2000)

Halos formed in 
high-resolution 
simulations of 
cold dark matter 
show rich 
substructure
  

SUBHALOS IN A RICH 
CLUSTER 

~ 20 million 
particles within 
virial radius of 
cluster



Springel, White, 
Kauffmann, 
Tormen (2000)

Even in the 
central regions, 
substructures 
can still be found
  

SUBHALOS AROUND A 
CLUSTER CENTRE

~ 20 million 
particles within 
virial radius of 
cluster



Finding dark matter 
satellites in simulations 
is a non-trivial task
 

AN ALGORITHMIC TECHNIQUES 
FOR SUBHALO IDENTIFICATION

Subhalo finding 

(1) Estimate local DM density 
field

(2) Find locally overdense 
regions with topological 
method

(3) Subject each substructure 
candidate to a gravitational 
unbinding procedure

SUBFIND



Halos formed in high-
resolution simulations 
of cold dark matter 
show rich 
substructure
 

SUBHALOS IN THE S2 
CLUSTER IDENTIFIED WITH 
SUBFIND

495 subhalos (S2)



Tracking the fate of 
satellite galaxies in 
simulations is 
computationally and 
`logistically' complicated
 

A SKETCH OF A SUBHALO 
MERGING TREE

Merging tree of subhalos

How do we manage to compute 
this for a simulation with more 
than 1010 particles, and more than 
20 million halos?



The semi-analytic 
merger-tree in the 
Millennium Run 
connects about 800 
million subhalos
SCHEMATIC MERGER TREE 

Time

FirstProgenitor
NextProgenitor

Legend: Descendant

FirstHaloInFOFGroup
NextHaloInFOFGroup

Halo

FOF Group

Merger tree organization in the Millennium Run

The trees are stored as 
self-contained objects, 
which are the input to the 
semi-analytic code

Each tree corresponds to 
a FOF halo at z=0 (not 
always exactly)

The collection of all trees 
(a whole forest of them) 
describes all the 
structures/galaxies in the 
simulated universe



A family of postprocessing codes is applied to the Millennium simulation 
to produce the tree-files fed to the semi-analytic code
 

CODE MACHINERY
L-Gadget2

Actual simulation code

L-BaseTree
finds descendant of each

 subhalo

L-SubFind
finds dark matter substructure

and determines halo properties

L-HaloTrees
constructs self-contained
 trees for all halos at z=0

L-TreeAddIDTab
produces table with all

 particle IDs that at one point
 were a most-bound particle

L-TreeAddPosTab
find coordinates and velocities

 of these particle IDs at all output
 times and stores them in table

L-TreeMakeUniqueIDs
 determines unique

numbering scheme for halos

L-Galaxies
for a given tree, 

constructs galaxy population

L-GenIC
generates initial conditions

L-HsmlFind
finds distance to

 n-th nearest neighbour
for all particles

L-Picture
computes adaptively

 smoothed density field
for arbitrarily inclined slice

snapshot filesFOF groups

IC files

subhalos catlogues

descendant pointers

tree files

galaxy catalogues

auxialiary tree data

empty auxialiary tree data

new halo IDs

hsml files

density slices

~20 TB, ~200000 files
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