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Standard Model of particle interactions is in great shape: it agrees with

all accelerator experiments

The only missing particle - the Higgs boson. It will be searched at the

LHC
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Still, the Standard Model cannot accommodate a number of

cosmological observations and discoveries in neutrino physics, it also

has a number of “fine tuning” problems from theory side.

The strategy

Select the most important problems to solve (may be subjective).

Use Ockham’s razor principle: “Frustra fit per plura quod potest

fieri per pauciora” or ”entities must not be multiplied beyond

necessity”. For particle physics: entities = new hypothetical

particles and new scales different from Fermi and Planck scales.
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SM problems and possible solutions

Hierarchy problem: stability of the Higgs mass against radiative

corrections

Possible solutions:

Compensation of divergent diagrams by new particles at TeV

scale (supersymmetry, composite Higgs boson). Consequence:

new physics at LHC

Heidelberg, 13 and 14 July 2011 – p. 6



SM problems and possible solutions

New symmetry – exact, but spontaneously broken scale

invariance. Higgs mass is kept small in the same way as photon

mass is kept zero by gauge invariance. Consequences: validity of

the SM all the way up to the Planck scale, nothing but the Higgs at

LHC in the mass interval

mmin < mH < mmax

mmin = [126.3+
mt − 171.2

2.1
×4.1− αs − 0.1176

0.002
×1.5] GeV

mmax = [173.5+
mt − 171.2

2.1
×1.1−αs − 0.1176

0.002
×0.3] GeV

theory error in mmin ≃ ±2 GeV. Existence of massless particle

– dilaton, which can play the role of Dark Energy

Zenhausern, M.S Heidelberg, 13 and 14 July 2011 – p. 7



SM problems and possible solutions

The universe is flat, homogeneous and isotropic with high accuracy. It

contained in the past small density fluctuations that lead to structure

formation

Possible solution: inflation.

The inflaton (scalar particle inflating the universe) is

new particle with the mass of the order of 1013 GeV and minimal

coupling to gravity

Alternative

SM Higgs boson with non-minimal coupling to gravity

Bezrukov, M.S
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SM problems and possible solutions

Neutrino masses and oscillations

Possible solutions:

See-saw mechanism: existence of several superheavy

(M ∼ 1010 GeV) neutral leptons. Direct experimental

consequences: none, as the mass is too large to be accessed

Alternative

Existence of new leptonic flavours with masses similar to those of

known quarks and leptons. Experimental consequence:

possibility of direct experimental search
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SM problems and possible solutions

Dark matter

Possible solutions:

WIMPS with masses of the order of 100 GeV and roughly

electroweak cross-sections (e.g. SUSY neutralino).

Consequences: new particles at LHC, success of WIMP searches

Alternative

Super-WIMPS with masses in keV region. Natural possibility: new

neutral leptonic flavour with mass of few keV. Consequences: no

DM candidates at LHC, failure of WIMP searches. Possibility of

search through radiative processes N → νγ which leads to

existence of narrow X-ray line in direction of DM concentrations.
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SM problems and possible solutions

Baryon asymmetry of the Universe

Possible solutions:

Baryogenesis due to new physics above the electroweak scale.

Potential consequences: new particles at LHC (for electroweak

baryogenesis)

Alternative

Baryogenesis due to new neutral leptonic flavours with masses in

the region from 140 MeV up to few GeV. Experimental

consequence: possibility of direct experimental search

Heidelberg, 13 and 14 July 2011 – p. 11



Realisation: νMSM + scale-invariant unimodular gravity

Role of N1 with mass in keV region: dark matter

Role of N2, N3 with mass in 100 MeV – GeV region: “give” masses to

neutrinos and produce baryon asymmetry of the Universe

Role of the Higgs: give masses to quarks, leptons, Z and W and

inflate the Universe.

Role of scale invariance and unimodular gravity: dilaton gives mass to

the Higgs and N1,2,3 and provides dynamical dark energy
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Parameter counting: theνMSM

Most general renormalizable Lagrangian

LνMSM = LSM + N̄Ii∂µγ
µNI − FαI L̄αNIΦ − MI

2
N̄c

INI + h.c.,

Extra coupling constants:

3 Majorana masses of new neutral fermions Ni,

15 new Yukawa couplings in the leptonic sector

(3 Dirac neutrino masses MD = FαIv, 6 mixing angles and 6 CP-

violating phases),

18 new parameters in total. The number of parameters is almost doubled.
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The strategy
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The strategy

None of the parameters of the Standard Model has been found

theoretically - they are all taken from different experiments!
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The strategy

None of the parameters of the Standard Model has been found

theoretically - they are all taken from different experiments!

Since we cannot explain even known parameters of the SM, there

are little chances (at least at present) that we can find νMSM

parameters theoretically

Let us see therefore whether νMSM agrees with particle physics

experiments, and can explain neutrino masses, dark matter, and

baryon asymmetry of the Universe for some choice of parameters

The parameters, found in this way can be used to fix the

experimental strategy for search for new physics
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Neutrino masses and oscillations
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νMSM neutrino masses

If the Dirac neutrino masses MD ∼ Fv ≪ MI (v is the VEV of the

Higgs field) the see-saw formula works,

Mν = −MD

1

MN

[MD]T , MD = Fv, v = 174 GeV

Mν depends on 9 physical parameters which potentially can be

determined experimentally in low energy neutrino experiments.

They are: 3 absolute values of ν masses, 3 mixing angles, 1 Dirac

CP-violating phase and 2 Majorana phases. 4 out of these 9 are not

known.
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Obvious statement: 18 new parameters of the νMSM can fit any

pattern of neutrino masses and oscillations

Another obvious statement: scale of MN cannot be extracted

from low-energy experiments:

multiply MD by x and MN by x2, Mν does not change

(mν ∝ M2
D/MN )

Heidelberg, 13 and 14 July 2011 – p. 17



EW see-saw

Assume that the Majorana masses of N are smaller or of the same

order as the mass of the Higgs boson and find Yukawa couplings from

requirement that one gets correct active neutrino masses:

F ∼
√
matmMN

v
∼ (10−6 − 10−13),

small F will play crucial role for dark matter and baryogenesis.
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Dark matter in the universe

Heidelberg, 13 and 14 July 2011 – p. 19



Problem since 1933, F. Zwicky.

Most of the matter in the universe is

dark

Evidence:

Rotation curves of galaxies

Big Bang nucleosynthesis

Structure formation

CMB anisotropies

Supernovae observations

Non-baryonic dark matter:

ΩDM ≃ 0.22

SM: no particle physics candidate

Heidelberg, 13 and 14 July 2011 – p. 20



νMSM Dark matter

Dodelson, Widrow; Shi, Fuller; Dolgov, Hansen;
Abazajian, Fuller, Patel; Asaka, Laine, M.S.

Yukawa couplings are small →
sterile N can be very stable.

N

ν
ν

ν
Z

Main decay mode: N → 3ν.

Subdominant radiative decay

channel: N → νγ.

For one flavour:

τN1 = 1014 years
(

10 keV

MN

)5
(

10−8

θ2
1

)

θ1 =
mD

MN
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Production via neutrino oscillations

Assumptions (Dodelson, Widrow):

The theory is SM + just one sterile neutrino

The abundance of sterile neutrino at T > 1 GeV is zero

Cosmological production is due to active - sterile neutrino oscillations:

ν

Z

e

e

Ν

Fν

+

_
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Production via neutrino oscillations

Naive estimate: production rate

Γ ∼ σnv, σ ∼ G2
F θ

2T 2, n ∼ T 3

Abundance:
nN

nγ

∼ G2
F θ

2M3
WMPl

Heidelberg, 13 and 14 July 2011 – p. 23



Production via neutrino oscillations

Naive estimate: production rate

Γ ∼ σnv, σ ∼ G2
F θ

2T 2, n ∼ T 3

Abundance:
nN

nγ

∼ G2
F θ

2M3
WMPl

Wrong by many orders of magnitude!
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Correct physics

L. Wolfenstein, Phys. Rev. D17 (1978) 2369;

Phys. Rev. D20 (1979) 2634

A.D. Dolgov, Yad.Fiz. 33 (1981) 1309

S.P. Mikheev, A.Yu. Smirnov, Yad.Fiz. 42 (1985) 1441;

Nuovo Cim. C9 (1986) 17

D. Notzold, G. Raffelt, Nucl.Phys. B307 (1988) 924
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Correct physics

Active-sterile neutrino mixing angle is temperature dependent.

From Dolgov-Hansen:

θ → θM ≃ θ

1 + 2.4(T/200 MeV)6(keV/MI)2

So, Γ ∝ T−7 and not T 5 !

Strong suppression of sterile neutrino production at T > 100 MeV!

Production temperature of sterile neutrinos:

T ∼ 130

(

MI

1 keV

)1/3

MeV

Heidelberg, 13 and 14 July 2011 – p. 25



To find the number of produced sterile neutrinos exactly one must know

The rate of sterile neutrino production

The equation of state of the plasma P = F (T ), which gives the

temperature-time relation in the expanding Universe

Asaka, Laine, M.S.

Computation from first principles of QFT and statistical physics

Heidelberg, 13 and 14 July 2011 – p. 26



Elements of finite temperature
field theory

Master formula for sterile neutrino
DM production

(Blackboard part)

Heidelberg, 13 and 14 July 2011 – p. 27



Initial conditions for Big Bang

Assume: at some temperature T ≫ MW we have:

thermal equilibrium for all SM particles

no singlet fermions present

Why?

Yukawa couplings of singlet fermions are very small: reactions

N ↔ SM particles are out of thermal equilibrium at T ≫ MW .

In the νMSM with non-minimal Higgs coupling the

Higgs ≡ inflaton energy goes to SM particles rather than

singlet fermions. Yukawas are small!

Heidelberg, 13 and 14 July 2011 – p. 28



Statistical physics formulation

Find TrNρ̂(t) where density matrix ρ̂(t) satisfies:

i
dρ̂(t)

dt
= [Ĥ, ρ̂(t)]

Ĥ - total Hamiltonian. Initial condition:

ρ̂(0) = ρ̂SM ⊗ |0〉〈0|

where ρ̂SM = Z−1

SM exp(−βĤSM), β ≡ 1/T , is the equilibrium

MSM density matrix at a temperature T , and |0〉 is the vacuum state

for sterile neutrinos.

Heidelberg, 13 and 14 July 2011 – p. 29



Master formula

DM sterile neutrinos are never in thermal equilibrium

⇓

Kinetic equations are not necessary: one can use perturbation theory

on Yukawa coupling !

Result in the lowest order of perturbation theory:

dNI(x, ~q)

d4x d3~q
=

2nF(q
0)

(2π)32q0

3
∑

α=1

|MD|2αI tr
{

/QaL

[

ραα(−Q)+ραα(Q)
]

aR

}

aL,R =
1

2
(1 ± γ5)
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Spectral function

ραβ(Q) ≡
∫

dt d3~x eiQ·x
〈1

2

{

ν̂α(x), ˆ̄νβ(0)
}〉

ν, lν ν 

W, Z
ν, l

 Z

ν ν 

Real part

ν, l

ν, l
W, ZW, Z

ν, lν ν 

W, ZW, Z

ν, lν ν 

q

q

Imaginary part
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QCD

Challenge: production temperature of sterile neutrinos:

T ∼ 130

(

MI

1 keV

)1/3

MeV

QCD interactions are strong!

The problem can be solved if one knows:

equation of state at temperatures 10 MeV - 1 GeV

real time correlators of vector and axial vector hadronic currents in

this temperature range

Heidelberg, 13 and 14 July 2011 – p. 32



Equation of state

Method: use a gas of hadronic resonances at low temperatures; the

most advanced (up to resummed 4-loop level weak-coupling) results at

high temperatures; and an interpolation thereof at intermediate

temperatures
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Scattering: imaginary part

T ≫ ΛQCD: use quarks

T ≪ ΛQCD: use hadrons

Conservative upper bound on hadronic contribution: use free

quarks at all temperatures

Conservative lower bound on hadronic contribution: put Nc = 0

Phenomenological mean value:

Nc → Nc

hQCD
eff (T )

58
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Lepton asymmetry

Yet another parameter: leptonic asymmetry

∆L =
(nL − n̄L)

(nL + n̄L)

in the QCD epoch

Lepton asymmetry is created in reactions with heavier singlet

fermions of the νMSM, ∆L <∼ 0.2

Constraints from BBN on ∆L are weak
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Non-resonant and resonant production

Dispersional relations for active and sterile neutrinos (from real part)
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Results: non-resonant case
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Dark matter abundance
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Average sterile neutrino momentum
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Results: resonant case
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Transfer of asymmetry to DM

Large fraction of lepton asymmetry is transferred to DM
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Common origin of DM and baryon asymmetry!

Explanation why ΩDM ∼ ΩB? Heidelberg, 13 and 14 July 2011 – p. 41



Dark matter abundance
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Momentum distribution of DM
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Constraints on DM sterile neutrino

Production. N1 are created in the early Universe in reactions

ll̄ → νN1, qq̄ → νN1 etc. We should get correct DM

abundance.

X-rays. N1 decays radiatively, N1 → γν, producing a narrow line

which can be detected. This line has not been seen (yet).

Structure formation. If N1 is too light it may have considerable

free streaming length and erase fluctuations on small scales. This

can be checked by the study of Lyman-α forest spectra of distant

quasars.
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DM: production + X-ray constraints + Lyman-α bounds
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DM: production + X-ray constraints + Lyman-α bounds
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DM: production + X-ray constraints + Lyman- α bounds
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Constraints on the mass of dark matter sterile neutrinos

Tremaine, Gunn; Lin, Faber; Hogan, Dalcanton

Rotational curves of dwarf spheroidal galaxies:

MI > 0.3 keV

Hansen et al, Viel et al

Structure formation and Lyman-α forest data:

M > M0

(

<ps>
<pa>

)

Viel et al: MLyα = 10 keV

Seljak et al: MLyα = 15.4 keV

Conservative limit, Boyarsky et al: MLyα ≃ 1 keV
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Hot, Warm and Cold

Sterile neutrino free streaming length an matter-radiation equality:

λFS ≃ 1 Mpc
(

1 keV

MI

)(〈p/T 〉
3.15

)

The mass inside λFS :

MFS ≃ 3 × 1010M⊙

(

1 keV

MI

)3 (〈p/T 〉
3.15

)3

Hot DM : MFS > 1014M⊙

Warm DM : 105M⊙ < MFS < 1014M⊙

Cold DM : MFS < 105M⊙
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Hot DM Warm DM Cold DM

Ben Moore simulations
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Sterile neutrino DM is not completely dark!

Dolgov, Hansen; Abazajian, Fuller, Tucker

Subdominant radiative decay

channel: N → νγ.

Photon energy:

Eγ =
Ms

2

Radiative decay width:

Γrad =
9αEM G2

F

256 · 4π4
sin2(2θ)M5

s

e
±

W
∓

γ
W

∓

Ns ν

ν
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How to find DM sterile neutrino

Flux from DM decay:

Fdm =
ΓradM

fov
dm

8πD2
L

≈ΓradΩfov

8π
I, I =

∫

line of sight

ρdm(r)dr

(Valid for small redshifts z ≪ 1, and small fields of view Ωfov ≪ 1)

Strategy:

Look for a narrow line against astrophysical background

Maximize the value of integral I

Minimize the X-ray background
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Signal

Amazing fact: the signal (value of I) is roughly the same for many

astrophysical objects - from clusters to dwarf galaxies!

Milky Way halo signal is comparable with that of clusters like

Coma or Virgo

DM flux from Draco or Ursa Minor dSph is 3 times stronger than

that of the Milky Way halo.

Boyarsky, Neronov, Ruchayskiy, MS, Tkachev

Heidelberg, 13 and 14 July 2011 – p. 54



Signal from annihilation Signal from decay

Ben Moore simulations for cold Dark Matter

Heidelberg, 13 and 14 July 2011 – p. 55



Background

Background strongly depends on the astrophysical object!

Clusters of galaxies (e.g. Coma or Virgo) - temperature in KeV

range - strong X-ray emission, atomic lines

Continuum X-ray emission from Milky Way is about 2 orders

weaker than that of a cluster

Dwarf satellites of the MW are really dark, M/L ∼ 100.

Conclusion: look at Milky Way and dwarf satellite galaxies! (Not very

interesting objects for X-ray astronomers...)

Heidelberg, 13 and 14 July 2011 – p. 56



Baryon asymmetry of the
universe
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Problem since 1930, P. Dirac.

Observational evidence: no antimatter

in the Universe. Required (Sakharov):

Baryon number non-conservation

(OK)

CP-violation (OK)

Substantial deviations from ther-

mal equilibrium. Present for Higgs

masses larger than ≃ 73 GeV

(first order electroweak phase

transition).

T

MH

critical point

Higgs phase

symmetric phase

Electroweak theory

〈φ†φ〉 ≪ (250GeV )2

T = 109.2 ± 0.8GeV ,

MH = 72.3 ± 0.7GeV

〈φ†φ〉T=0 ∼ (250GeV )2

SM: Higgs mass > 114 GeV

CP violation present but too small to accommodate observed BAU.
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EW phase transition

Anomalous baryon and lepton
number non-conservation

Master formula for baryon
asymmetry

(Blackboard parts)
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The problem

Find domain of the parameters of the νMSM, where baryon asymmetry

can be consistent with observations, and which fit the neutrino data.

Number of unknown constants is large - 7:

M, ∆MM , ǫ, η, θ13 , φ, α

Whether N2,3 can be found experimentally depends crucially on 2

parameters (Gorbunov, M.S.)

their mass M

strength of their coupling to leptons, parametrised by ǫ

So - fix M , ǫ and the degree of degeneracy ∆MM and extremise the

asymmetry as a function of other unknown parameters. Result:

3-dimensional parameter space. Heidelberg, 13 and 14 July 2011 – p. 60



Baryon asymmetry generation

Akhmedov, Rubakov, Smirnov

Asaka, MS

Idea - sterile neutrino oscillations as a source of baryon asymmetry.

Qualitatively:

Sterile neutrino are created in the early universe and oscillate in a

coherent way with CP-breaking.

The total lepton number gets unevenly distributed between active

and sterile neutrinos.

The lepton number of active left-handed neutrinos is transferred to

baryons due to equilibrium sphaleron processes.
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Kinetics of sterile neutrinos

Asaka,MS

Facts to take into account:

(i) Coherence of sterile neu-

trino interactions → density ma-

trix ρNN rather than concentra-

tions.

(ii) Oscillations, creation and de-

struction of sterile and active

neutrinos.

(iii) Dynamical asymmetries in

active neutrinos and charged

leptons.

L NN

+

LL N

+F F

F F
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Kinetics of sterile neutrinos

Sterile neutrino kinetic equation

i
dρ̃NN

dt
= [HN

int(t), ρ̃NN ] − i

2
{ΓN(t), ρ̃NN − ρ̃eq

NN}

+i
sinφ

8
T U†(t)F †(ρLL − ρeq

LL)FU(t) .

Diagonal part of the active neutrino density matrix:

i
dρLL

dt
= i

sinφ

8
T FU(t)(ρ̃NN − ρ̃eq

NN)U†(t)F †

− i

2
{ΓL(t), ρLL − ρeq

LL} .
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Equilibrium and non-equilibrium

MN = 140 MeV, ǫ = 1
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Always thermal equilibrium for T− < T < T+ and always T− < MW
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Baryogenesis above the electroweak scale

Sphaleron decoupling:

TEW ≃ 130 − 175 GeV for MH ≃ 114 − 200 GeV

Source of thermal non-equilibrium: deviation of N2,3 concentrations

from equilibrium ones.

Relevant deviations from thermal equilibrium are maximal at

T ≃ TEW if T+ < TEW

T ≃ T+ if T+ > TEW
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Perturbative results

Analytic computation (Asaka, M.S), valid for

Singlet fermions are out of thermal equilibrium for all

temperatures above the sphaleron freeze-out, T+ < TEW .

The number of singlet fermion oscillations

Nosc ≃ M∆MM

TEW
× MP

T 2
EW

is large at the electroweak temperature.

The mass difference between two singlet fermions is much larger

than the the mass difference between active neutrinos,

∆MM ≫ 0.04 eV for the normal hierarchy and

∆MM ≫ 8 · 10−4 eV for the inverted hierarchy.
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Value of baryon asymmetry

nB

s
≃ 1.7 · 10−10 δCP

(

10−5

∆M2
32/M

2
3

)
2
3(

M3

10 GeV

)
5
3

.

δCP ∼ 1 is consistent with observed ν oscillations.

Non-trivial requirement: |M2 − M3| ≪ M2,3, i.e. heavier neutrinos

must be degenerate in mass.

Works best (resonance) if

T+ ≃ TEW , Nosc ≃ 1

Perturbation theory does not work in this domain.
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Numerical results
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Asymmetry evolution
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Asymmetry evolution
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Constraints on BAU sterile neutrinos

BAU generation requires out of equilibrium: mixing angle of N2,3

to active neutrinos cannot be too large

Neutrino masses. Mixing angle of N2,3 to active neutrinos cannot

be too small

BBN. Decays of N2,3 must not spoil Big Bang Nucleosynthesis

Experiment. N2,3 have not been seen (yet).
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N2,3: BAU+ BBN + Experiment
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N2,3: BAU + BBN+ Experiment
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N2,3: BAU + BBN + Experiment
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inverted hierarchy.
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Direct experimental tests:
rare decays
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Previous searches at CERN

A. M. Cooper-Sarkar et al. [WA66 Collaboration] “Search For

Heavy Neutrino Decays In The Bebc Beam Dump Experiment”,

1985

J. Dorenbosch et al. [CHARM Collaboration] “A search for decays

of heavy neutrinos in the mass range 0.5-GeV to 2.8-GeV”, 1985

G. Bernardi et al. [PS191 Collaboration], “Search For Neutrino

Decay”, 1986;

“Further Limits On Heavy Neutrino Couplings”, 1988

P. Astier et al. [NOMAD Collaboration], “Search for heavy neutrinos

mixing with tau neutrinos”, 2001

P. Achard et al. [L3 Collaboration], “Search for heavy neutral and

charged leptons in e+e− annihilation at LEP”, 2001
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CERN PS191 experiment, 1988
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Conclusion: M2,3 > 140 MeV
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Experimental signatures 1

Challenge - from baryon asymmetry: θ2 . 5 × 10−7
(

GeV

M

)

Peak from 2-body decay and missing energy signal from 3-body

decays of K,D and B mesons (sensitivity θ2)

Example:

K+ → µ+N, M2
N = (pK − pµ)

2 6= 0

Similar for charm and beauty.

MN < MK : KLOE, NA62, E787

MK < MN < MD: charm and τ factories, CLEO

MN < MB: B-factories (planned luminosity is not enough to

get into cosmologically interesting region)
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Experimental signatures 2

Two charged tracks from a common vertex, decay processes

N → µ+µ−ν, etc. (sensitivity θ4 = θ2 × θ2)

First step: proton beam dump, creation of N in decays of K, D

or B mesons: θ2

Second step: search for decays of N in a near detector, to collect

all Ns: θ2

MN < MK : Any intense source of K-mesons (e.g. from

proton targets of PS.)

MN < MD: SPS or PS2 beam + near detector

MN < MB: Project X (?) + near detector

MN > MB: extremely difficult
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N2,3 production and decays

ν4

ντ

τ4U ||
2

τ4U ||
2

Proton beam, 450 GeV/c

Target

D τ

Steel, earth
shielding

Z

e e+
-

NOMAD detector

s
+_

Type on neutrino mass hierarchy - from branching ratios of N2,3

decays to e, µ, τ .

CP asymmetry can be as large as 1% - from BAU and DM
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Conclusions

New physics, responsible for neutrino
masses and mixings, for dark matter,
and for baryon asymmetry of the
universe may hide itself below the EW
scale
New dedicated experiments in particle
physics and cosmology are needed to
uncover this physics
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Experiments:

Particle physics

decays of BAU singlet fermions N2,3 created in fixed target experiments with the
use of CERN SPS proton beam (or similar), e.g. N2,3 → π+µ−

precision study of kinematics of K, charm and beauty mesons, e.g.
K+

→ µ+N2,3

Astrophysics - Dark matter

X-rays from decays of Dark Matter neutrinos N1 → νγ: X-ray spectrometer in
Space with good energy resolution δE/E ∼ 10

−3
− 10

−4 getting signals from
our Galaxy and its Dwarf satellites
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