

The Reactor Antineutrino Anomaly

Sebastian Lindemann

PhD Student Seminar on Sterile Neutrinos, November 2012

1 Fission reactors

A clean antineutrino-source Fuel composition

2 Reference antineutrino spectra

Ab initio calculation Conversion of beta spectra New antineutrino spectra

3 Short baseline experiments

1 Fission reactors A clean antineutrino-source Fuel composition

2 Reference antineutrino spectra

Ab initio calculation Conversion of beta spectra New antineutrino spectra

3 Short baseline experiments

Fission reactors

- Most common nuclear fuels: ²³⁵U, ²³⁹Pu
- Fission threshold 7-8 MeV (6 MeV through binding of neutron, 1-2 MeV through neutron pairing)
- About 200 MeV per fission \rightarrow GW thermal power
- Binary fission products centered at 95 \pm 15 and 135 \pm 15
- 1-3 neutrons produced per fission \rightarrow chain reaction
- About 9 MeV to antineutrinos

Fission reactors – a clean $\bar{\nu}_{e}$ -source

Fission of U or Pu isotopes

- followed by \sim 6 β^- decays of fission products
- pure $\bar{\nu}_e$ flux at MeV scale
- about 200 MeV / fission $\rightarrow 2 \cdot 10^{20} \, \bar{\nu_e} \, / \, GW_{th}$

1 Fission reactors A clean antineutrino-source Fuel composition

2 Reference antineutrino spectra

Ab initio calculation Conversion of beta spectra New antineutrino spectra

3 Short baseline experiments

Time development of fuel composition

Breeding of ²³⁹Pu

 $\stackrel{238}{_{92}}\mathrm{U} + \stackrel{1}{_{0}}\mathrm{n} \rightarrow \stackrel{239}{_{92}}\mathrm{U} \xrightarrow[]{23.5 \mathrm{\,min}} \stackrel{\beta^-}{_{93}} \stackrel{238}{_{93}}\mathrm{Np} \xrightarrow[]{2.3 \mathrm{\,days}} \stackrel{\beta^-}{_{94}} \stackrel{239}{_{94}}\mathrm{Pu} \xrightarrow[]{\alpha} \stackrel{\alpha}{_{2.4 \cdot 10^4 \mathrm{\,years}}} \stackrel{\alpha}{_{2.4 \cdot 10^4 \mathrm{\,years}}}$

Energy spectrum

IBD - inverse beta decay

• $\bar{\nu}_e + p \rightarrow e^+ + n$

•
$$E_{\text{prompt}} = E_{\bar{\nu}_e} - (M_n - M_p) + m_e$$

1 Fission reactors

A clean antineutrino-source Fuel composition

2 Reference antineutrino spectra Ab initio calculation

Conversion of beta spectra New antineutrino spectra

3 Short baseline experiments

Ab initio calculations

Total β spectrum

$$\begin{split} S_{\text{tot}}(E) &= \sum_{k=235 \cup, 238 \cup, 239 \text{Pu}, 2^{241}\text{Pu}} \alpha_k \times S_k(E) \\ S_k(E) &= \sum_{\textit{fp}=1}^{N_{\textit{fp}}} \mathcal{A}_{\textit{fp}}(t) \times S_{\textit{fp}}(E) \\ S_{\textit{fp}}(E) &= \sum_{b=1}^{N_b} BR_{\textit{fp}}^b \times S_{\textit{fp}}^b(Z_{\textit{fp}}, A_{\textit{fp}}, E_{\textit{0}\textit{fp}}^b, E) \\ S_{\textit{fp}}^{b,F} &= \underbrace{K_{\textit{fp}}^b}_{\text{Norm.}} \times \underbrace{\mathcal{F}(Z_{\textit{fp}}, A_{\textit{fp}}, E)}_{\text{Fermi function}} \times \underbrace{\mathcal{P}E(E - E_{\textit{0}\textit{fp}}^b)^2}_{\text{Phase space}} \times \underbrace{C_{\textit{fp}}^b(E)}_{\text{Shape factor}} \\ S_{\textit{fp}}^b &= S_{\textit{fp}}^{b,F} \times \underbrace{L_0(Z_{\textit{fp}}, E) \times C(Z_{\textit{fp}}, E)}_{\text{finit size}} \times \underbrace{Sc(Z_{\textit{fp}}, E)}_{\text{Screening}} \times \underbrace{G_\beta(Z_{\textit{fp}}, E)}_{\text{QED}} \times \underbrace{(1 + \delta_{\text{WM}}E)}_{\text{weak magn.}} \end{split}$$

Corresponding $\bar{\nu}_e$ spectrum: Replace electron energy *E* by antineutrino energy

$$E_{\nu} = E^b_{0fp} - E$$

Binary fission products

Ab initio calculations

Complete simulation of core evolution

Fuel loading, geometry, n-capture and fission physics

 \rightarrow fission product inventory

Description of all β -decays

- Nuclear databases
- Fermi-theory + corrections
- Nuclear models

 β and ν total spectra from some 10⁴ branches have to be summed up.

1 Fission reactors

A clean antineutrino-source Fuel composition

2 Reference antineutrino spectra

Ab initio calculation Conversion of beta spectra New antineutrino spectra

3 Short baseline experiments

Conversion of β^- spectra to $\bar{\nu}_{e}$ spectra

- Start from total β^- spectrum
- Break down total spectrum in single β^- branches
 - \rightarrow fit spectrum with 30 virtual branches (Schreckenbach approach)

- Convert each virtual β^- branch to a $\bar{\nu}_e$ branch
- Sum up individual $\bar{\nu}_e$ branches

ILL β^- reference spectra

Conversion of total β^- spectra

Total β spectra of fissile isotopes measured at ILL in the 80's

 \rightarrow accurate reference electron spectra

Conversion to antineutrinos

- Use of virtual β -branches
- Fermi-theory + corrections
- Control of approximations

Reference ν spectra per isotope to be combined with prediction of fission rates.

Old ILL antineutrino reference spectra

1 Fission reactors

A clean antineutrino-source Fuel composition

2 Reference antineutrino spectra

Ab initio calculation Conversion of beta spectra New antineutrino spectra

3 Short baseline experiments

Reevaluation of total $\bar{\nu}_{e}$ spectra

Comparison to ILL β^- data

Ratio of e- Prediction/ Reference ILL data

T. A. Mueller et al., Phys. Rev. C83,054615 (2011)

- ILL electron data anchor point
- Fit of residual: five effective branches are fitted to the remaining 10% → Suppresses error of full ab initio approach
- "true" distribution of all known βbranches describes >90% of ILL e⁻ data → reduces sensitivity to virtual branches approximations

Reevaluation of total $\bar{\nu}_{e}$ spectra

Comparison to old spectra

Reevaluation of total $\bar{\nu}_{e}$ spectra

Where does the difference come from?

E <4 MeV

Effective linear correction of Coulomb and weak magnetism terms replaced by correction at β -branch level:

E >4 MeV

Mean fit of nuclear charge doesn't reflect accurately enough the true distribution of nuclear charges:

Error budget of new conversion approach

Treatment of weak magnetism neglects nuclear structure:

- Dominant shape uncertainty, 100% error assumed.
- Uncertainty underestimated?

Ab initio approach for antineutrino spectrum of ²³⁸U

(*) http://www.nea.fr/tools/abstract/detail/nea-1845.

1 Fission reactors

A clean antineutrino-source Fuel composition

2 Reference antineutrino spectra

Ab initio calculation Conversion of beta spectra New antineutrino spectra

3 Short baseline experiments

An IBD detector example: Double Chooz

Reevaluation using updated cross-sections per fission What comes next?

Working principle of IBD detectors for reactor antineutrinos

© Imag'In IRFU

Location

- $\bar{\nu}_e$ source: two 4.25 GW_{th} reactors
- DC far detector @ 1050 m from cores
- rock overburden: 300 m.w.e.

Detection via inverse beta decay (IBD)

• $\bar{\nu}_e + p \rightarrow e^+ + n$

•
$$E_{\text{prompt}} = E_{\bar{\nu}_e} - (\underbrace{M_n - M_p}_{= \Lambda}) + m_e$$

$$ightarrow E_{ar{
u}_{
m e}} = E_{
m prompt} + 0.78\,
m MeV$$

Coincidence signal

- prompt γ -signal from positron annihilation
- delayed \sim 8 MeV $\gamma\text{-signal}$ from neutron capture on H or Gd

$$ightarrow t_{e^+n} \sim$$
 30 $\mu {
m s}$

1 Fission reactors

A clean antineutrino-source Fuel composition

2 Reference antineutrino spectra

Ab initio calculation Conversion of beta spectra New antineutrino spectra

3 Short baseline experiments

Event rate at a detector and mean cross-section per fission

$$\begin{split} \mathcal{N}_{\nu}^{\mathsf{pred}}(s^{-1}) &= \frac{1}{4\pi L^2} \mathcal{N}_{\rho} \frac{P_{\mathsf{th}}}{\langle \mathcal{E}_f \rangle} \sigma_f^{\mathsf{pred}} \\ \sigma_f^{\mathsf{pred}} &= \int_0^{\infty} \mathcal{S}_{\mathsf{tot}}(\mathcal{E}_{\nu}) \sigma_{\mathsf{V-A}}(\mathcal{E}_{\nu}) d\mathcal{E}_{\nu} = \sum_k f_k \sigma_{f,k}^{\mathsf{pred}} \end{split}$$

V-A cross section

• $\sigma_{\text{V-A}}(E_e) = \kappa p_e E_e (1 + \delta_{\text{rec}} + \delta_{\text{wm}} + \delta_{\text{rad}})$ • $\kappa \sim \frac{1}{\tau_e}$

•
$$E_{\bar{\nu}_e} = E_e + \Delta + \frac{E_e(E_e + \Delta)}{M} + \frac{1}{2} \frac{(\Delta^2 - m_e^2)}{M}$$

Mean cross-section per fission

Effects responsible for increased σ_{f}^{pred}

- $\bar{\nu}_e$ -flux: ²³⁵U + 3.7%, ²³⁹Pu + 4.2%, ²⁴¹Pu + 4.7%, ²³⁸U + 9.8%
- Neutron lifetime (τ_n) decrease by a few percent
- · Off-equilibrium effects included

Updated cross-sections

	old [450]	Saclay/Huber 462 472
$\sigma_{f,^{235}U}^{pred}$	6.39±1.9%	6.69±2.11%
$\sigma_{f_{1}^{239}Pu}^{pred}$	4.19±2.4%	4.40±2.45%
$\sigma_{f,^{238}U}^{pred}$	9.21±10%	10.10±8.15%
$\sigma_{f,^{241}Pu}^{pred}$	5.73±2.1%	6.03±2.15%

Values in units of 10^{-43} cm² / fission

19 measuremens @ L < 100m

Reevaluation

result	Det. type	τ_n (s)	²³⁵ U	²³⁹ Pu	²³⁸ U	$^{241}\mathrm{Pu}$	old	new	err(%)	corr(%)	L(m)
Bugey-4	³ He+H ₂ O	888.7	0.538	0.328	0.078	0.056	0.987	0.926	3.0	3.0	15
ROVNO91	³ He+H ₂ O	888.6	0.614	0.274	0.074	0.038	0.985	0.924	3.9	3.0	18
Bugey-3-I	⁶ Li-LS	889	0.538	0.328	0.078	0.056	0.988	0.930	4.8	4.8	15
Bugey-3-II	⁶ Li-LS	889	0.538	0.328	0.078	0.056	0.994	0.936	4.9	4.8	40
Bugey-3-III	⁶ Li-LS	889	0.538	0.328	0.078	0.056	0.915	0.861	14.1	4.8	95
Goesgen-I	³ He+LS	897	0.620	0.274	0.074	0.042	1.018	0.949	6.5	6.0	38
Goesgen-II	³ He+LS	897	0.584	0.298	0.068	0.050	1.045	0.975	6.5	6.0	45
Goesgen-II	³ He+LS	897	0.543	0.329	0.070	0.058	0.975	0.909	7.6	6.0	65
ILL	³ He+LS	889	$\simeq 1$	_	_	_	0.832	0.7882	9.5	6.0	9
Krasn. I	³ He+PE	899	$\simeq 1$	_	_	_	1.013	0.920	5.8	4.9	33
Krasn. II	³ He+PE	899	$\simeq 1$	_	_	_	1.031	0.937	20.3	4.9	92
Krasn. III	³ He+PE	899	$\simeq 1$	_	_	—	0.989	0.931	4.9	4.9	57
SRP I	Gd-LS	887	$\simeq 1$	_	_	_	0.987	0.936	3.7	3.7	18
SRP II	Gd-LS	887	$\simeq 1$	_	—	—	1.055	1.001	3.8	3.7	24
ROVNO88-1I	³ He+PE	898.8	0.607	0.277	0.074	0.042	0.969	0.901	6.9	6.9	18
ROVNO88-2I	³ He+PE	898.8	0.603	0.276	0.076	0.045	1.001	0.932	6.9	6.9	18
ROVNO88-1S	Gd-LS	898.8	0.606	0.277	0.074	0.043	1.026	0.955	7.8	7.2	18
ROVNO88-2S	Gd-LS	898.8	0.557	0.313	0.076	0.054	1.013	0.943	7.8	7.2	25
ROVNO88-3S	Gd-LS	898.8	0.606	0.274	0.074	0.046	0.990	0.922	7.2	7.2	18

Correlation matrix

- Global 2% correlated norm error of ILL β-spectra
- Block correlations come from identical detector, technology or v source

Reevaluation

- Experimental errors and $\bar{\nu}_e$ spectra errors added in quadrature
- Average ratio including possible correlations is 0.927 ± 0.023

4th neutrino hypothesis - rate only analysis

Best fit:

- $\Delta m_{\text{new},\text{R}}^2 = 0.5 \,\text{eV}^2$
- $sin^2(2\theta_{new,R} \sim 0.14$
- No-oscillation analysis excluded at 99.8%

1 Fission reactors

A clean antineutrino-source Fuel composition

2 Reference antineutrino spectra

Ab initio calculation Conversion of beta spectra New antineutrino spectra

3 Short baseline experiments

Reactor Antineutrino Anomaly

Nucifer @ Osiris-Saclay

- Designed for non-proliferation studies
- Osiris reactor: 70 $\text{MW}_{\text{th}},$ core size of 57 \times 57 \times 60 cm
- Nucifer target: 0.85 m³ of Gd-LS
- Baseline distribution L = 7.0 \pm 3 m

 $\rightarrow eV^2$ Oscillations are not washed out!

Reactor Antineutrino Anomaly

Figure 120. Expected distortion of neutrino spectrum in Nucifer with a new oscillation controlled by $\Delta m_{new}^2 = 2.3$ and $\theta_{new} = 0.17$

Figure 121. Discovery potential of Nucifer compared to Reactor Antineutrino Anomaly

Appendix

References I found useful putting together this:

- K. N. Abazajian et al., arXiv:1204.5379 (2012)
- Talk D. Lhuillier @ Neutrino 2012
- Mueller et al., Phys. Rev. C83, 054615 (2011)
- Huber, Phys. Rev. C84, 024617 (2011)
- Mention et al., Phys. Rev. D83, 073006, (2011)
- Y. Abe et al., Phys. Rev. Lett. 108. 131801 (2012)