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1 Problems with Big Bang Cosmology

1.1 Horizon Problem

Assuming a radiation- or matter-dominated evolution down to a = 0 (Big Bang singularity),
one finds that the light cones of many points we observe in the CMB do not intersect. There
are almost a million “patches” of the sky that could not have been in causal contact with
each other, yet share a surprisingly similar temperature (Fig. 1).
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Figure 1: Conformal diagram of Big Bang cosmology. The observed CMB originated from the surface
of last-scattering (recombination). The two yellow events are causally disconnected.

1.2 Flatness Problem

Why is our universe so flat, i.e. Ω(a) so close to unity? Formally we have

|1− Ω(a)| ∼ 1
(aH)2

∼ a1+3w , (1)

which diverges for matter dominated (MD) (w = 0) or radiation dominated (RD) (w = 1/3)
evolution, so Ω(a) is driven away from flatness. This suggests fine-tuned initial conditions
for Ω.
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2 Solution via Inflation

Since MD and RD work against us, look for a qualitatively different solution to the Friedmann
equations that takes over in the early universe. Already know how a cosmological constant
Λ behaves:

a(t) ∼ eHt , H ∼ √ρΛ/MPl , (2)

with equation of state w = −1. This solves the flatness problem (1), since |1−Ω(a)| ∼ e−2Ht

gets driven to zero as we go forward in time. If inflation goes on for long enough, we can
compensate an arbitrary initial Ω. Since horizon and flatness are linked, we are in principle
done, for completeness sake we will however explicitly discuss the horizon problem. To that
effect, we look at some comoving scale λ (e.g. the distance between two “stars”), which of
course is independent of time (or a). To be in causal contact, the two points need to exchange
photons, so we will compare λ to the comoving distance a light-ray can travel in the time a
to a+ δ. In the beginning of inflation (at ai), this is

d(ai) =

ai(1+δ)∫
ai

da
1

Ha2
=

1
Hai

− 1
Hai(1 + δ)

≈ δ

Hai
, (3)

whereas at the end of inflation (at af � ai), this distance gets reduced to

d(af ) ≈ δ

Haf
. (4)

So the “horizon” shrinks by a factor d(af )/d(ai) = ai/af � 1, which (as we will see later) is
typically of order e−60 (see Refs. [1, 2]). That means two points that were in causal contact
at the beginning of inflation do not necessarily see each other as inflation ends, at which
point the usual RD evolution takes over and the horizon starts to grow again.1

So, during inflation, a scale k might transition from inside to outside the horizon (“horizon
exit”) and enter it only much later during the RD or MD era. This means the scales that
enter our horizon now could have been in causal contact before or during inflation, allowing
the whole CMB to be at the same temperature (as long as inflation goes on for long enough).
This is depicted in Fig. 2.

2.1 Conditions for Inflation

The deSitter solution a ∼ eHt is not the sole inflationary model, from Eq. (1) we see that an
equation of state with 1+3w < 0 solves the flatness problem (and also the horizon problem).
This can be expressed in numerous ways:

w < −1
3
,

d2a(t)
dt2

> 0 ,
d
dt

(
1
aH

)
< 0 . (5)

1One can also argument with physical distances just by multiplying the comoving distances by the scale
factor. In this point of view, the distance between the two points grows exponentially during inflation,
while the horizon is constant.
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In analogy to the deSitter case, we define the number of e-folds N via

a(t) ∼ exp
(∫

dt H
)

= e−N(t) , (6)

i.e. dN = −Hdt = −d ln a. This sign convention counts the number of e-folds till the end of
inflation [3], so N(tf ) = 0 and N(ti) ∼ 60. This allows us to define yet another inflationary
condition:

ε ≡ − Ḣ

H2
=

d lnH
dN

!
< 1 . (7)
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Figure 2: Solution of the horizon problem: Scales (here density fluctuations) exit the horizon during
inflation and re-enter it much later during the RD or MD era (from Ref. [4]).

2.2 How much Inflation is enough?

We will now briefly derive a bound on the number of e-folds N . Discussions based on different
methods (e.g. entropy conservation) can be found in the first four references, we will only
give a simplified argument.

To solve the horizon problem, the largest scales observed today λ(t0) ≈ 1/H0 should be
within the horizon at the beginning of inflation, i.e.

1
a0H0

<
1

aiHi
, (8)

which can be rewritten as

1
H0

af
a0

ai
af

<
1
Hi

, (9)

where ai/af = exp(−N). Since the temperature of photons drops with T ∼ 1/a, we can
express af/a0 = T0/Tf through the CMB temperature today T0 and the temperature after
reheating Tf . Solving for N , we find

N > ln (T0/H0) + ln (Hi/Tf ) ≈ 67 + ln (Hi/Tf ) . (10)

The limits on N are always dependent on the energy scale of inflation, one typically assumes
(motivated for example by GUT and actually constrained through the tensor/scalar ratio)
Hi ∼ 1015 GeV. The reheating temperature depends typically on the decay rate of the
inflaton, but is of similar order Tf ∼ 108 − 1012 GeV, so the second term in Eq. (10) will be
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of order O(10).

2.3 End of Inflation

We have yet to specify how inflation comes to an end, allowing for the RD and MD universe
we observe. Taking the deSitter solution a ∼ e−Ht with H ∼ √ρΛ/MPl, we see that we need
a cosmological “constant” that goes to zero as time goes on. The simplest guess would be to
replace the constant ρΛ with the potential energy density V (φ) of some field φ that goes to
zero at af : V (φ(af )) = 0. To introduce such a field, one has to take the kinetic energy into
account as well, leading to the classical inflaton field.

3 The Inflaton Field

A scalar field φ, minimally coupled to gravity has the action2

S =
∫

d4x
√
−g
[

1
2
R+

1
2
gµν∂µφ∂νφ− V (φ)

]
, (11)

leading to the energy-momentum tensor of a perfect fluid with

wφ =
pφ
ρφ

=
1
2 φ̇

2 − V
1
2 φ̇

2 + V
, (12)

which can take either sign and value, depending on φ̇2 and V (φ). Inflation requires wφ <
−1/3, so the potential has to dominate over the kinetic energy at early times. Ignoring the
position-dependence of φ, we get the dynamics:

φ̈+ 3Hφ̇+
∂V

∂φ
= 0 , H2 =

1
3

(
1
2
φ̇2 + V

)
. (13)

This gives the slow-roll parameter ε = 1
2
φ̇2

H2 and for φ̇2 � V we obtain the desired quasi
deSitter solution H ≈

√
V (φ). If V changes only slowly, this gives inflation, stopping as the

kinetic energy catches up and the condition wφ < −1/3 is violated.
We define a second slow-roll parameter that is connected to the duration of inflation:

η ≡ − φ̈

Hφ̇
= ε− 1

2ε
dε
dN

, (14)

a small |η| � 1 just ensures long inflation.
More convenient are slow-roll parameters that only depend on the form of the potential

εV ≡
1
2

(
V,φ
V

)2

, ηV ≡
V,φφ
V

, (15)

slow-roll conditions are again εV , |ηV | � 1, and we have in the slow-roll regime the connection
to the old parameters ε ≈ εV and η ≈ ηV − εV . Inflation ends when ε(φf ) ≈ 1, the number

2We set the reduced Planck mass MPl = 1/
√

8πG to one from here on out.
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of e-folds between φ and φf is

N(φ) = −
∫

dt H = −
∫

dφ
H

φ̇
≈ −

φf∫
φ

dφ
V

V,φ
. (16)

The fluctuations in the CMB are created roughly 40 − 60 e-folds before inflation ended,
implicitly giving the field value φCMB via

φCMB∫
φf

dφ
V

V,φ
≈ 40− 60 . (17)

3.1 What is left to do?

Reheating How does the energy of the inflaton gets converted into radiation at the end of
inflation, i.e. how does φ couple to the standard model? Highly model dependent, we will
not get into it (see for example Ref. [5]).

Potential We have to choose a potential V and see if long-enough inflation is possible and
how the parameters of the potential can be constrained by cosmology. Suitable potentials
are

• Small field inflation: V ∼ (1− (φ/µ)p) (Fig. 3 (left)) or Coleman-Weinberg-type: V ∼
φ4 lnφ

• Large field inflation (chaotic inflation): V ∼ φp (Fig. 3 (right))

• Natural inflation: V ∼ 1 + cos(φ/f) (inflaton =̂ axion)

• Hybrid inflation: models with a non-zero potential-value at the minimum, e.g. V ∼
(φ2 + µ2)2 (see Refs. [6, 7])

Figure 3: Small field (left) and large field (right) potentials for inflation (from Ref. [3]).

3.2 Case Study: V ∼ φ2

Since the large field potential is not obviously a solution (how is it slow-roll?), we will
consider it as a simple example and explicitly derive the conditions for inflation. Taking
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V (φ) = 1
2m

2φ2, we obtain the slow-roll parameter

εV (φ) = ηV (φ) =
2
φ2

, (18)

so starting with high field values (larger than MPl!) gives indeed inflation, which ends as
φ→

√
2. So the number of e-folds is

N(φ) ≈ −

φf =
√

2∫
φ

dφ
V

V,φ
=

1
4
φ2 − 1

2
, (19)

so for CMB we need field values φCMB ≈ 2
√

40− 60 ≈ 13 − 16. Constraints on m2 come
from the power spectrum (next lecture).

4 Conclusion

A sufficiently long period of accelerated expansion can solve the horizon- and the flatness-
problem, i.e. replace fine-tuned initial conditions by a quite general dynamical process. The
actual realization of the inflaton is highly model dependent, even for a single inflaton field
there are a lot of valid possible potentials. Allowing for more fields or a composite inflaton
further expands the landscape.

In the next talks we will see that inflation is falsifiable; it makes model-dependent pre-
dictions about e.g. density fluctuations. Even though inflation is designed to explain the
smoothness of the CMB, it also sheds light on the small inhomogeneities (as a proper quan-
tum mechanical treatment of the inflaton shows).
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