decay	experimental upper bound
$\mu \to e\gamma$	$1.2 \cdot 10^{-11}$
$\mu^- \rightarrow e^- e^+ e^-$	$1.0 \cdot 10^{-12}$
$\mu \mathrm{Ti} \to e \mathrm{Ti}$	$4.3 \cdot 10^{-12}$
$\tau \to e\gamma$	$1.1 \cdot 10^{-7}$
$ au o \mu \gamma$	$4.5 \cdot 10^{-8}$
$\tau^- \rightarrow e^- e^+ e^-$	$2.0 \cdot 10^{-7}$
$\tau^- \to \mu^- \mu^+ \mu^-$	$1.9 \cdot 10^{-7}$
$\tau^- \to e^- \mu^+ \mu^-$	$2.0 \cdot 10^{-7}$
$\tau^- \rightarrow \mu^- e^+ e^-$	$1.9 \cdot 10^{-7}$
$\tau^- \to \mu^- e^+ \mu^-$	$1.3 \cdot 10^{-7}$
$\tau^- \rightarrow e^- \mu^+ e^-$	$1.1 \cdot 10^{-7}$
$ au o \mu \pi$	$4.1 \cdot 10^{-7}$
$\tau \to e\pi$	$1.9 \cdot 10^{-7}$
$ au ightarrow \mu\eta$	$1.5 \cdot 10^{-7}$
$\tau \to e\eta$	$2.4 \cdot 10^{-7}$
$ au ightarrow \mu \eta'$	$4.7 \cdot 10^{-7}$
$\tau \to e \eta'$	$1.0\cdot 10^{-6}$
$\pi^0 \to \mu^- e^+$	$3.4 \cdot 10^{-9}$
$K_L \to \mu e$	$4.7 \cdot 10^{-12}$
$K_L \to \pi^0 \mu e$	$6.2\cdot10^{-9}$
$B_d \to \mu e$	$1.7 \cdot 10^{-7}$
$B_s \to \mu e$	$6.1 \cdot 10^{-6}$
$B_d \to \tau e$	$1.1 \cdot 10^{-4}$
$B_d \to \tau \mu$	$3.8 \cdot 10^{-5}$
$Z \to \mu \gamma$	$1.5 \cdot 10^{-5}$

Upper bounds on LFV decay branching ratios. Most part of the table can be found in hep-ph/0702136 together with the reference to the experiments.

Place	Year	$\Delta E_e/E_e$	$\Delta E_{\gamma}/E_{\gamma}$	$\Delta t_{e\gamma}$	$\Delta heta_{e\gamma}$	Upper limit
SIN	1977	8.7 %	9.3~%	1.4 ns	F	$< 1.0 \times 10^{-9}$
TRIUMF	1977	10 %	8.7 %	6.7 ns	1	$< 3.6 imes 10^{-9}$
LANL	1979	8.8 %	8 %	1.9 ns	37 mrad	$< 1.7 \times 10^{-10}$
LANL	1986	8 %	8 %	1.8 ns	87 mrad	$< 4.9 \times 10^{-11}$
LANL	1999	$1.2~\%^{*}$	$4.5 \%^{*}$	1.6 ns	17 mrad	$< 1.2 \times 10^{-11}$
PSI	≈ 2007	0.8 %	4.0 %	0.15 ns	19 mrad	$< 1 \times 10^{-13}$

Figure 1: Resolutions of the various experiments. Taken from P. Cei, Lepton flavor violation: Present and future experiments, Nucl. Phys. Proc. Suppl. 154:62-79,2006.

Figure 4. Layout of the MEG experiment.

<u>1</u>

Table 2

A summary of the level of background from various sources, calculated for a sensitivity of 5 events for $R_{\mu e} = 10^{-16}$.

Source	Events
μ decay in orbit	0.29
Radiative μ capture	<< 0.05
μ decay in flight	< 0.003
μ decay in flight	0.004
Radiative π capture	0.007
Radiative π capture	0.014
π decay in flight	<< 0.001
Beam electrons	< 0.002
Cosmic ray induced	0.004
Total background	0.37

Figure 1. The SINDRUM II spectrometer.

Figure 8. Layout of the PRISM experiment.

Figure 2: Angular distribution of e^+ in radiative μ decay with finite detector resolution ($\Delta E_{e^+} \ll \Delta E_{\gamma}$) [solid line]. The angular distribution of $\mu^+ \to e_L^+ \gamma$ is shown as dotted line and of $\mu^+ \to e_R^+ \gamma$ in dashed line. The angle θ is between the μ^+ spin direction and the e^+ direction. Taken from hep-ph/9604296.

Figure 3: Invariant mass reconstruction from $\tau \to \mu \mu \mu$ in CMS. τs originate from W decays, the SM background is the darker dashed area. Taken from hep-ex/0505030.

Figure 4: Experimental limits for branching fractions of LFV processes involving muons as a function of time. Taken from P. Cei, Lepton flavor violation: Present and future experiments, Nucl.Phys.Proc.Suppl.154:62-79,2006.

Figure 5: Experimental limit for branching ratio of LFV process $\tau \to \mu \gamma$ as a function of time and some theoretical predictions. Taken from hep-ex/0702017.

Figure 6: Experimental limit for branching ratio of LFV process $\tau \to e\gamma$ as a function of time and some theoretical predictions. Taken from hep-ex/0702017.

Literature on Experiments measuring LFVs

- T.S. Kosmas et al., Lepton Flavor Non-Conservation, Prog. Part. Nucl. Phys., 33, 397 pp., (1994): quite old, but still good paper which explains the basics of LFV experiments.
- papers/ talks whose topic is a certain experiment:
 - 1. A.v.d. Schaaf, *SINDRUM II*, J. Phys. G: Nucl. Part. Phys. **29**, 1503 pp., (2003): as the title says: contains a short description of the SINDRUM II experiment and a figure of the experimental setup.
 - 2. M. L. Brooks et al., New Limit for the Family-Number Non-Conserving Decay $\mu^+ \rightarrow e^+\gamma$, hep-ex/9905013: contains results and a more detailed description of the MEGA experiment.
 - 3. W. Molzon, The MECO Experiment to Search for $\mu^- N \to e^- N$ with 10^{-17} Sensitivity, Nucl. Phys. B (Proc. Suppl.) **111**, 188 pp., (2002): description of the MECO experiment; although it has never been built, the description of its setup shows the main features needed to perform a $(\mu - e)$ conversion experiment.
 - 4. A. Baldini, Status of the MEG experiment, presented at Neutrino Factories and Superbeams: 5th International Workshop: some short description of the MEG experiment together with a figure of the experimental setup.
 - 5. Y. Kuno, *PRISM/PRIME*, Nucl. Phys. B (Proc. Suppl.) **149**, 376 pp., (2005): a short description of the PRISM/PRIME experiment and its new features compared to other existing/proposed (μe) conversion experiments.
- Y. Kuno, Y. Okada, $\mu \to e\gamma$ Search with Polarized Muons, hep-ph/9604296: treats the idea of a measurement with polarized μ s together with the theoretical as well as the experimental advantages, points out the necessities which have to be fulfilled in order to perform such an experiment.
- M. Aoki, Lepton Flavor Violation Experimental, Nucl. Phys. B (Proc. Suppl.) 143, 64 pp., (2005): short overview over μ LFV decays, explains the principles of these measurements, mainly concentrating on the experiments MEG, MECO and PRISM/PRIME.
- F. Cei, Lepton Flavour Violation: present and future Experiments, Nucl. Phys. B (Proc. Suppl.) 154, 62 pp., (2006): good overview over the principles of experiments as well as the experiments MEG, MECO and PRISM/PRIME, furthermore also some comments on $\mu \rightarrow 3e$ as well as τ LFV decays and their principles of measurement. This paper contains some nice plots which I used in my talk.
- T. Mori, Lepton Flavor Violating Decays Review and Outlook, hep-ex/0605116: treats the same topics as the paper mentioned before, shows also some figures of the machines and some simulation of the MEG experiment.
- S. Banerjee, Searches for the lepton flavor violating decays τ[±] → l[±]γ, τ[±] → l[±]P⁰ (where l⁻ = e⁻, μ⁻ and P⁰ = π⁰, η, η') at B-Factories: Status and Combinations, hep-ex/0702017: short overview over the Belle and BaBar experimental results and the principles of measurement, first paper which tries to perform a combined analysis of the Belle and BaBar data.

- N.G. Unel, Lepton Flavor Violation at LHC, hep-ex/0505030: treats LFV τ decays at the LHC, shows results of the simulations of the ATLAS and CMS group, gives furthermore some results for LFVs involving non-SM particles (SUSY, 2HDM).
- L. Calibbi et al., Lepton Flavour Violation from SUSY-GUTs: Where do we stand for MEG, PRISM/PRIME and a Super Flavour factory, hep-ph/0605139: a theory paper which contains an elaborated analysis of a SUSY SO(10) model with a detailed comparison to the experimental upper bounds expected for the upcoming experiments.