
Supersymmetric Grand Unified Theories

1 The Standard Model (SM)

1.1 Gauge Group and Particle Content

The Standard Model of particle physics has been tested experimentally in many
ways and to high precision during the last decades and turned out to pro-
vide a good description of physics at energies below ∼ 100 GeV. Its gauge
group is SU(3) × SU(2)L × U(1)Y which is spontaneously broken down to
SU(3) × U(1)EM , as described in the Higgs mechanism. Before the symme-
try breaking, the model contains 12 massless gauge bosons in the corresponding
adjoint representations of the gauge group, three generations of 15 massless
fermions and a complex Higgs scalar, whose representations are listed in the
table below. 1

field l ec q uc dc Φ
SU(2) 2 1 2 1 1 2
SU(3) 1 1 3 3̄ 3̄ 1
U(1) -1 +2 +1/3 -4/3 +2/3 -1

The Higgs mechanism gives masses to three of the four gauge bosons of SU(2)×
U(1), the remaining massless gauge boson is the photon. The fermions also
acquire a mass upon electroweak-symmetry breaking, except for the neutrino,
which remains massless.

1.2 Why go beyond the SM?

There are several hints that make us believe we have not found the ultimate
theory yet. Some are rather obvious, while others require deeper understanding
of the features of quantum field theories:

• Gravitation: Only three of the four known forces in the universe are
described in the SM. The theory of gravity is general relativity (GR). It
can be neglected at the energy scale of today’s experiments in particle
physics but if we want to find a theory of everything, then there should
be one model for all of the four forces

• Gauge coupling unification: Using the renormalization group equa-
tions (RGEs) for the SM to develop the running of the three gauge cou-
plings, one finds that they meet at an energy ∼ 1016 GeV. This indicates
the possible existence of a higher gauge symmetry at high energies, where
the three couplings are unified into one.

1In terms of the generator Q of electromagnetic U(1) and the third isospin generator T3,
the hypercharge is given by Y = 2(Q− T3).
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• Hierarchy problem: The mass of the W -boson has been experimentally
determined to be of the order of 80 GeV. Since it acquires its mass via the
Higgs mechanism, mW is proportional to the Higgs mass. But the latter
receives radiative corrections that are quadratically divergent. These di-
vergencies have to be cancelled “by hand” in every order in perturbation
theory, a procedure referred to as fine tuning. Such “accidental” cancel-
lations seem a bit miraculous and give rise to the question whether there
might be another reason for the stability of the weak scale.

• Mass and mixing parameters: The Standard Model contains a lot of
free parameters, e.g. the masses of quarks and leptons and their weak mix-
ing angles. There are correlations between them, that could be explained
by additional symmetries, which might also reduce the disturbingly large
number of free parameters in the SM. Family symmetries, providing cer-
tain possibilities for the form of the PMNS matrix, are not under consid-
eration here, but grand unification will lead to relations among fermion
masses.

2 The Minimal Supersymmetric Standard Model
(MSSM)

Imposing supersymmetry (SUSY), the gauge fields become components of vector-
superfields and the fermionic fields as well as the Higgs become components of
chiral superfields. In addition, the other components of the superfields, called
gauginos, squarks, sleptons and Higgsinos, appear in the lagrangian. Also, a
second Higgs field (accompanied by its superpartner) has to be introduced, in
order to give masses to leptons and d-type quarks as well as u-type quarks, 2

and to keep the model anomaly free.
Supersymmetry solves part of the hierarchy problem mentioned above. Accord-
ing to the non-renormalization theorem, the radiative corrections to the Higgs
mass occurring in the SM will be cancelled by analogous diagrams with super-
partners running in the loops. Therefore, if the bare Higgs mass is of the order
of 150 GeV, there will be no divergent corrections pushing it up to the scale
of a momentum cut-off. SUSY does not explain why the weak scale is at its
experimentally determined value, but it does explain why it stays there.
Furthermore, supersymmetry predicts the masses of particles to be the same as
those of their superpartners. Since we have not observed any of these super-
partners at the energy scales of the SM particle masses, supersymmetry has to
be broken. In order not to spoil the achievement of the renormalization theo-
rem, the terms in the lagrangian breaking supersymmetry have to be soft, i.e.
their mass dimension has to be positive. In most of the models found in the
literature, the breaking of SUSY occurs “after” the breaking of the higher gauge
symmetry, i.e. at a lower energy scale.
An interesting aspect of some SUSY models is the possibility to obtain a neg-
ative squared Higgs mass, necessary for spontaneous symmetry breaking. The

2This is because the superpotential has to be holomorphic in the scalar field and therefore
cannot contain its complex conjugate.
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bare squared Higgs mass is assumed to be positive, but then pushed into the
negative regime by radiative corrections.3

If one writes down all renormalizable terms allowed by Lorentz and gauge in-
variance as well as supersymmetry, there will be operators leading to proton
decay. One can forbid these operators to show up in the lagrangian by imposing
an additional symmetry, called R-parity, defined as R = (−1)3(B−L)+2S .
The other open problems stated above are not solved by SUSY. In addition,
there arise several new aspects that need an explanation, e.g. the origin of the
soft-breaking terms and the conservation of R-parity. Grand Unified Theories
(GUTs) try to find answers to these open questions.

3 Group Theory

Grand Unification means embedding the SM gauge group into a larger symmetry
group, breaking down the symmetry via the Higgs mechanism and obtaining an
effective theory at low energies, that contains relics of the structure of the higher
symmetry. The mathematical tool for understanding these structures and their
backtracking is group theory. Here, only some of the most important aspects
for GUT model building are shortly presented.

3.1 Representations

A representation of the group G is a map from G into the group of all invertible,
n-dimensional matrices GL(n),

R : G −→ GL(n)
g 7−→ R(g), (1)

with the properties

R(g ◦ h) = R(g) ·R(h)
R(e) = 1, (2)

where e is the identity element in G and 1 is the identity matrix.
A representation is called reducible, if there is an invariant subspace, i.e. if P is
the projection operator on that subspace, then ∀g ∈ G

PR(g)P = R(g)P (3)

A representation is irreducible if it is not reducible. Irreducible representations
are important in physics because they allow for mixing of all components of a
field transforming in a specific representation of a symmetry group.

3.2 Decomposition of Representations and Tensor Prod-
ucts

With the technique of Young Tableaux, it is possible to decompose a represen-
tation into representations of a subgroup. For example, consider decomposition

3This is not in contradiction with the non-renormalization theorem, because soft-breaking
terms are not protected from receiving radiative corrections.

3



of the 5 and 10 of SU(5) under the SM group,

5̄ = (3̄,1,+2/3)⊕ (1,2,−1),
10 = (1,1,+2)⊕ (3̄,1,−4/3)⊕ (3,2,+1/3). (4)

In the same manner, a tensor product of two representations of the group under
consideration can be decomposed into representations of this group, e.g. for the
5 and 5̄ of SU(5)

5× 5̄ = 1 + 24. (5)

4 Gauge Coupling Unification

The three gauge couplings of the Standard Model, α1 of U(1)Y , α2 of SU(2)L
and α3 of SU(3)C do not take on a constant value for all energies, but run with
the scale according to there beta functions, which in one-loop approximation
read

dαi
d(lnµ)

= − 1
2π
biα

2
i (i = 1, 2, 3) (6)

where

bi = 3C2(Gi)− TRNψ. (7)

Here, C2(Gi) =
∑
a(T adja )2 is the quadratic Casimir of the group Gi, with

T adja being the generators in the adjoint representation, and TRδab = Tr(TaTb),
with Ta in the representation R. Nψ is the number of chiral superfields in
the representation R contained in the model. Note that C2(SU(N)) = N and
C2(U(1)) = 0.
Assuming that the three couplings take on the same value αU at an energy scale
MU , their values at the weak scale MZ are obtained from the beta-functions 4:

α−1
i (MZ) = α−1

U +
bi
2π

ln
(
MU

MZ

)
(8)

For the MSSM, the values for bi are b1 = −33/5, b2 = −1 and b3 = 3, leading
to a consistency equation,

∆α ≡ 5α−1
1 (MZ)− 12α−1

2 (MZ) + 7α−1
3 (MZ) = 0. (9)

The experimental values at MZ yield ∆α = −1±2, allowing for coupling unifica-
tion (at least at one loop-order). The unification scale is found to be MU ≈ 1016

GeV, and αU ≈ 1/24, see fig.1.

4Here it is assumed, that there are no intermediate scales between MZ and MU , where
new particles might appear in the spectrum.
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Figure 1: Running of the gauge couplings in the MSSM

5 GUT Model Building

5.1 Steps of Model Building

The building of a SUSY GUT requires several steps, which are listed one by
one below. In the subsequent chapters, examples of SUSY GUT models will be
given, following each of these steps.

a) Choose a symmetry group G containing the SM gauge group SU(3) ×
SU(2)L × U(1)Y as a subgroup. This could either be one single group,
e.g. SU(5), SO(10) or E6, or a product of several groups, such as SU(3)×
SU(3) or SU(4)× SU(2)L × SU(2)R, where the latter is often referred to
as Pati-Salam group.

b) Specify the particle content of the model. For fermions and Higgs bosons
(and, of course, their superpartners) irreducible representations of the
gauge group are chosen, while the gauge bosons transform in the adjoint.
If the particles of the MSSM do not fit into one representation, they have to
be split into several ones or new particles have to be added. A new particle
that is welcome in many cases, is the right-handed neutrino, because its
existence enlargens the symmetry in the sense that all fermions now appear
in a left- and right-handed version. In many cases, there is the need
for more than two Higgs fields, in order to break the GUT symmetry
and the electroweak symmetry as well as give masses to fermions and
gauge bosons, compatible with their experimental values. Furthermore,
assigning fermions to certain representations, one has to make sure that
the model contains no gauge anomalies.

c) Write down kinetic terms for fermions, Higgses and gauge bosons (and
their superpartners, respectively). The covariant derivative (in the case
for one single gauge group) reads Dµ = ∂µ− igAaµT a, where g is the gauge
coupling, Aaµ are the vector gauge bosons and T a are the generators of the
gauge group (a = 1, . . . ,dimLie(G)).

d) Write down the superpotential W for the scalar fields and the Yukawa
interactions, keeping in mind that all terms should be renormalizable,
Lorentz- and gauge invariant. The superpotential is responsible for break-
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ing the gauge symmetry down to that of the SM and the Yukawa terms
will give mass to fermions after symmetry breakdown.

e) Determine the minimum of the scalar potential by imposing F-term flat-
ness (Fi = ∂W/∂Φi = 0, where Φi are the scalar fields appearing in W ).
The F-term has to vanish, if one assumes that SUSY is still present at
energies below the GUT-scale. This is a great simplification in calculation
provided by SUSY, in non-supersymmetric theories finding the vacuum
expectation value (VEV) of the Higgs fields is much more elaborate.

f) Calculate masses and couplings at the weak scale using the RGEs of the
theory. Relations between parameters obtained from the theory will be
valid at the GUT scale. In order to obtain relations at the weak scale,
the running of parameters has to be taken into account. The form of
the RGEs is determined by the particle content of the theory. If there
are intermediate energy scales where new particles appear, the RGEs will
change at these scales. In approximation, this change is often assumed to
take place “suddenly”, i.e. a theta-function is used.

5.2 Achievements and Problems

Grand unified theories, consisting of only one single gauge group, explain the
unification of gauge couplings. In supersymmetric versions, the couplings match
at ∼ 1016 GeV within the present experimental errors for the initial values at
the weak scale. Furthermore, quarks and leptons are unified being part of the
same irreducible representation of the gauge group. This leads to predictions for
relations among their masses. Another achievement is the possibility to include
the right-handed neutrino in the theory and write down a Majorana mass term,
e.g. in SO(10), where the right-handed neutrino can obtain a large Majorana
mass upon breaking of left-right symmetry. In these kind of models, the see-
saw mechanism can be applied, which explains the smallness of (left-handed)
neutrino masses, allowing for a Dirac mass of the order of the weak scale.

Gravity has not been addressed yet. It is a difficult task to combine it with
quantum field theory. There are several possibilities to include a spin 2 particle
in the model, which can be identified as a graviton, e.g. if one considers lo-
cal supersymmetry transformations. String theory might provide an adequate
framework, but shall not be discussed here.

Even though they propose answers to most of the tasks mentioned in chap-
ter 1, grand unified theories give rise to new questions. One of them is the
so-called doublet-triplet splitting of the Higgs boson. The Higgs field introduced
in a representation of the GUT group contains color triplet and electroweak
doublet components. 5 In order to break down also the electroweak symmetry
of the standard model at a lower energy scale, one has to decouple the triplet
components from the low-energy theory by giving them a large mass, while the
doublet components should remain light. This leads to a new fine-tuning prob-
lem. A way out of this is provided by introducing an extra dimension, which is
compactified into an orbifold.

5This can be seen by using the branching rules for decomposing the representation.
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Figure 2: proton decay channels in SUSY models

Another severe problem is the occurence of proton decay, due to the introduc-
tion of new gauge bosons. The life-time of the proton provides one of the most
reliable tests of grand unified theories. If the model predicts the life-time to be
less than ∼ 1030 years, it is ruled out by experiment. In non-supersymmetric
theories, effective operators (induced by the existence of additional gauge bosons
at high energies) are at least of mass dimension d = 6, see fig.2. The dominat-
ing decay amplitude is p→ e+π0. In contrast, SUSY models allow for effective
d = 5 operators, i.e. two fermionic components interacting with two bosonic
components of chiral superfields. The bosons then decay into their fermionic
superpartners via wino exchange. In this case, the dominating decay mode is
p→ K+ν̄µ.

6 SUSY SU(5)

The smallest single gauge group that contains the SM as a subgroup is SU(5).
SU(5) is the group of all five-dimensional unitary matrices with determinant
one. Its generators are traceless and hermitian (5 × 5) matrices which can be
chosen as follows: Take the 10 matrices with one i above the diagonal, one −i
below and zeros everywhere else. Take the 10 matrices with one 1 above the
diagonal, one 1 below and zeros everywhere else. Eventually, take the matrices
with n ones on the diagonal, followed by a single −n (there are four of these,
n = 1, ..., 4). These are the 24 generators of SU(5). For SU(N) in general,
there are N2 − 1 generators.

6.1 Particle Content

The chiral superfields of the MSSM fit into (three copies of) two representations
of SU(5), 5̄ and 10 in the following way:
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ψ5̄ =


dc1
dc2
dc3
e−

ν


L

ψ10 =


0 uc3 −uc2 u1 d1

−uc3 0 uc1 u2 d2

uc2 −uc1 0 u3 d3

−u1 −u2 u3 0 e+

−d1 −d2 −d3 −e+ 0


L

(10)

The representations are denoted with an index L, pointing out that all the fields
are left-handed. The right-handed fields of the SM have been charge conjugated
(denoted by an upper index c) in order to put them together with the left-
handed fields in a left-handed representation. The right-handed neutrino does
not appear in these representations and has to be included as an extra singlet
under SU(5). Taking a closer look at the assignment of particles to the repre-
sentations, one observes that the 5̄ contains the charge conjugate d-quark, the
electron and the neutrino, while the 10 comprises the u-quark and its charge
conjugate, the d-quark and the charge conjugate electron.
In the Higgs sector, a scalar field Φ in the 24 can be utilized to break the SU(5)
down to the SM gauge symmetry and give large masses (∼ 1016GeV) to the
gauge bosons of SU(5)/SM . Furthermore, two superfields Hu and Hd in the
5 and 5̄ are included into the model, which will give masses to fermions via
Yukawa couplings.
Furthermore, there are the 24 gauge bosons, 12 thereof belonging to the SM
gauge group. The remaining 12 gauge bosons acquire a mass upon SU(5) sym-
metry breaking. They affect the effective low energy theory in the form of higher
dimensional operators, inducing, for example, proton decay.

6.2 The Superpotential

Following the steps of GUT model building, the next issue to tackle is the the-
ory’s superpotential. It is mostly denoted by W and it can be shown that, in
order to preserve supersymmetry, it must be holomorphic in the scalar compo-
nents of chiral superfields. As mentioned before, this is one of the reason for
introducing a second Higgs doublet in the MSSM.
For SUSY SU(5), the superpotential is

W = Wh +WY +WSB . (11)

In the following, the three terms are discussed one by one.
Wh is called the hidden sector and consists of soft-terms, that break supersym-
metry. WY contains the Yukawa couplings,

WY = yabu ψ
a
10ψ

b
10Hu + yabd ψ

a
10ψ

b
5̄Hd, (12)

with yu and yd being (3×3) yukawa coupling matrices. Recalling the distribution
of SM particles among the two representations, one sees that the first Yukawa
term gives mass to the u-quark, while the d-quark and the electron receive their
masses from the second term. The neutrino remains massless, unless the right-
handed neutrino is included into the model as an extra singlet. If there was such
an extra singlet νR, one could add a term ψ5̄νRHu, yielding a Dirac mass for
the neutrino. Since νR is a gauge singlet, it can even get an explicit Majorana
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mass term MRν̄RνR, providing the background for the see-saw mechanism.
WSB is responsible for symmetry breaking,

WSB = zTrΦ + xTrΦ2 + yTrΦ3 + λHuΦHd +MHuHd. (13)

Note that, although Φ is traceless 6, the term zTrΦ appears in the superpotential
as a lagrange multiplier. Minimizing the potential, the trace will be constrained
to vanish. SUSY requires vanishing of the F-terms:

0 = Tr

(
∂W

∂φij

)
(14)

where

∂W

∂φij
= zδji + 2xΦij + 3yΦikΦkj . (15)

Therefore F-term flatness, together with the constraint TrΦ = 0, yields the
relation

z = −3
5
yTrΦ2. (16)

Now there are three solutions to the equation Tr
(
∂W/∂φij

)
= 0, one of them

corresponding to unbroken SU(5), another one corresponding SU(4) × U(1)
as residual symmetry, and the last one corresponding to the Standard Model
SU(3)× SU(2)× U(1). The latter is obtained by the VEV

〈Φij〉 =


4x
3y

4x
3y

4x
3y

− 2x
y

− 2x
y

 . (17)

The MSSM Higgs doublets are contained in Hu and Hd and have to be separated
from the triplets by finetuning the parameters x, y and M , to ensure the doublet
masses remain light.

6.3 Fermion masses

The unification of quarks and leptons into the same representations of SU(5)
leads to relations among their masses. From WY it is obvious that the d-quark
and the electron receive the same mass, since they share the same Yukawa cou-
pling matrix. Of course, this equality is only valid at the GUT scale. If the
experimentally determined values for the masses at the weak scale are taken as
initial values of the RGEs, one finds for the masses at the GUT scale approx-
imately md ≈ 3me. This shows that the SU(5) prediction md = me is a little
too strict. Another result extracted from this model is the scale independent
relation me

mµ
= md

ms
, which is also in conflict with the experimental values.

6The 24 of SU(5) is written as a hermitian (5 × 5) matrix with vanishing trace.
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7 SUSY SO(10)

SO(10) is the group of all orthogonal ten-dimensional matrices with determinant
one. Its generators are antisymmetric, hermitian (10× 10) matrices which can
be chosen to be the 45 matrices with one i above the diagonal, one −i below and
zeros everywhere else. For SO(N) in general, there are N(N − 1)/2 generators.
An important difference between SO(10) and SU(5) is the rank of their Lie
algebras. While the Lie algebra of SO(10) contains 5 commuting generators,
that of SU(5) has only 4, i.e. it has the same rank as the Lie algebra of the
Standard Model gauge group. Since the rank of SO(10) is higher than that
of the SM, there are different ways to break down the symmetry. Specifically,
there are different possible intermediate symmetries of rank 5, e.g. SU(5)×U(1),
SU(4)× SU(2)L × SU(2)R or SU(3)× SU(2)L × SU(2)R × U(1).

7.1 Spinors

SO(10) is very attractive as a GUT group since all chiral superfields of the
MSSM, together with the right-handed neutrino, fit into (three copies of) its
16 spinor representation. An elegant way to represent spinors in SO(2N) is to
express them in SU(N) basis. This is possible because SU(N) is a subgroup of
SO(2N). To see how this is done, consider N operators χi, χ

†
i , obeying

{χi, χ†j} = δij

{χi, χj} = 0

{χ†i , χ
†
j} = 0. (18)

The SO(2N) Clifford algebra consists of 2N gamma matrices,

Γ2i =
1√
2

(
χi + χ†i

)
Γ2i−1 =

i√
2

(
χi − χ†i

)
, (19)

fulfilling
{Γµ,Γν} = δµν1. (20)

Explicitly, for N = 5, the spinor representation now may be obtained by defining

|ψ〉 = |0〉ψ0 + χ†i |0〉ψi +
1
2
χ†iχ

†
j |0〉ψij +

1
12
εijklmχ†kχ

†
lχ
†
m |0〉 ψ̄ij

+
1
24
εijklmχ†jχ

†
kχ
†
lχ
†
m |0〉 ψ̄i + χ†1χ

†
2χ
†
3χ
†
4χ
†
5 |0〉 ψ̄0, (21)

or in vector notation

ψ =


ψ0

ψi
ψij
ψ̄ij
ψ̄i
ψ̄0

 ∼


1
5
10
1̄0
5̄
1̄

 of SU(5). (22)
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The chirality operator in SO(2N) is defined as

1
2

(1± Γ0), where Γ0 ≡ iNΓ1Γ2 · · ·ΓN , (23)

providing the possibility to define chiral fields,

ψ± =
1
2

(1± Γ0)ψ,

ψ+ =


ψ0

ψi
ψij
0

 , ψ− =


0
ψ̄ij
ψ̄i
ψ̄0

 . (24)

7.2 Particle Content

The fact that all MSSM chiral superfields fit into the 16 spinor of SO(10) can
be seen by simple counting: There are 3 up- and 3 down quarks (one for each
color), 1 charged and 1 neutral lepton, adding up to 8 fields. Multiplication
by two, accounting for the charge conjugates, yields 16. In the SU(5) basis
introduced in the previous section, the way in which the particles appear in the
representation becomes clear. ψ̄i, corresponding to 5̄, and ψij , corresponding to
10, contain the fields as in SU(5), the singlet ψ0 is the right-handed neutrino.
Via the branching rule for the 16, this translates into SM language,

16 = (3, 2, 1/3)qL ⊕ (1, 2,−1)lL ⊕ (3̄, 1,−4/3)ucL ⊕ (3̄, 1, 2/3)dL
⊕(1, 1, 0)νcL ⊕ (1, 1, 2)ecL . (25)

The Higgs sector is much more elaborate than in SU(5). There are many pos-
sibilities to choose representations for Higgs fields, yielding various predictions
for fermion masses. Of course, one wants to keep the number of free param-
eters in the model as low as possible to obtain high predictivity, but since all
fermions are combined in one representation, a small number of Higgs fields usu-
ally results in mass relations that are too restrictive and not compatible with
the experimental values.

The minimal scenario that has been discussed extensively in the literature is
the SO(10) gauge symmetry breaking via a Higgs field in the 210 representation
down either to the Pati-Salam group SU(4) × SU(2)L × SU(2)R, to SU(3) ×
SU(2)L × SU(2)R × U(1)B−L or to SU(3) × SU(2)L × U(1)R × U(1)B−L .
The next stage of symmetry breaking occurs due to two Higgses in the 126
and 126, after what the remaining gauge group is that of the Standard Model.
The electroweak symmetry breaking is then induced by a linear combination of
doublet components of the 210, 126 and 126 as well as another Higgs in the
10 representation (see fig.3 ). Apparently, the doublet-triplet splitting becomes
an involved task. In fact, this is the model with the minimal Higgs content.
On the other hand, an advantage of this model is the automatic conservation
of R-parity down to low energies. This is due to the fact, that the 126 breaks
B−L symmetry in such a way, that B−L always changes by two units, leaving
R = (−1)3(B−L)+2S invariant.
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Figure 3: SO(10) breaking chains in the minimal model

7.3 Fermion Masses

The superpotential of the theory, as in SU(5), contains Yukawa terms, interac-
tions of Higgs fields and SUSY soft-breaking terms. The requirement of F-term
flatness, i.e. preserving SUSY below the GUT scale, yields the minimum of
the scalar potential and thus the VEVs of the Higgs fields, whose electroweak
doublet components give masses to the fermions. All Dirac masses are obtained
from linear combinations of the VEVs of components of the 10 and the 126,
while the Majorana mass for the right-handed neutrino is provided by a linear
combination of 10 and 126. The VEVs giving mass to d-quarks and charged
leptons point in the same direction, and, in case of a dominating 126 component,
it is possible to obtain the relation

md = 3me (26)

at the GUT scale, which is in good agreement with the experimental values
at the electroweak scale. Here, the 3 in front of the charged lepton mass is a
Clebsch-Gordan coefficient, a remnant of the decomposition of the 16 into color
triplets and singlets.

8 Conclusion and Outlook

Supersymmetric grand unified theories provide numerous possible answers to
questions posed by the Standard Model. They explain gauge coupling unifica-
tion and can be useful in obtaining relations between fermion masses. Super-
symmetry solves (at least part of) the hierarchy problem and leads to models
with particle content symmetric in fermionic and bosonic degrees of freedom.
On the other hand, SUSY GUT models give rise to new challenges, such as the
doublet-triplet splitting in the Higgs sector or avoiding large proton decay am-
plitudes. Also the number of free parameters has not been reduced remarkably
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compared to the Standard Model. The SO(10) model with the minimal Higgs
content introduced in the last section has 23 real parameters, while the SM with
additional massive (Majorana) neutrinos contains 27. Besides, gravity is not yet
included in the theory and neither have family symmetries been addressed.
Solving the problems associated to SUSY GUTs is a new challenge and has
been pursuited in the recent years. Additional symmetry groups (discrete and
continuous) have been introduced to accommodate family symmetries. In su-
pergravity, local SUSY invariance leads to the appearance of a spin 2 particle,
which can be identified as the graviton. Furthermore, extra dimensions have
been considered in order to achieve the doublet-triplet splitting or explain the
hierarchy between the weak and the Planck scale. But all these models are ac-
companied by new open questions and we are still far from finding the ultimate
theory.
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