GLoBES workshop

On the interpretation of sensitivity limits of future experiments

Thomas Schwetz

CERN

based on hep-ph/0612223

T. Schwetz, GLoBES workshop, Heidelberg, 25/01/2007 - p.

Outline

- Introduction Remarks on the "standard" way to compute sensitivities
- Generalized definition of sensitivities
- The sensitivity to θ_{13} Monte Carlo simulation of D-Chooz and T2K
- Sensitivity to CP violation at the example of T2HK
- Summary

Calculation of event rates for given experiment:

 $N_i(\boldsymbol{\theta}) = \Phi \cdot \boldsymbol{\sigma} \cdot \boldsymbol{R} \cdot \boldsymbol{\epsilon} \cdot \boldsymbol{P}(\boldsymbol{\theta})$

- Φ : neutrino flux
- σ : detection cross section
- R: energy resoltion
- ϵ : efficiencies

 $P(\boldsymbol{\theta})$: 3-flavour osc. prob., $\boldsymbol{\theta} = (\Delta m_{21}^2, \Delta m_{31}^2, \theta_{12}, \theta_{23}, \theta_{13}, \delta)$

Calculation of event rates for given experiment:

 $N_i(\boldsymbol{\theta}) = \Phi \cdot \boldsymbol{\sigma} \cdot \boldsymbol{R} \cdot \boldsymbol{\epsilon} \cdot \boldsymbol{P}(\boldsymbol{\theta})$

- Φ : neutrino flux
- σ : detection cross section
- R: energy resoltion
- ϵ : efficiencies

 $P(\boldsymbol{\theta})$: 3-flavour osc. prob., $\boldsymbol{\theta} = (\Delta m_{21}^2, \Delta m_{31}^2, \theta_{12}, \theta_{23}, \theta_{13}, \delta)$

assume "true values" $\hat{\theta}$ and calculate "data" for these true values: $\hat{N}_i = N_i(\hat{\theta})$ $\chi^2(\theta; \hat{\theta}) \rightarrow \text{allowed regions for } \theta$

Example: Sensitivity to θ_{13} at 3σ :

Looking for the value of $\theta_{13}^{\text{true}}$, for which $\theta_{13} = 0$ can be excluded at 3σ :

$$\chi^2(\theta_{13}=0;\hat{\theta}_{13}=\theta_{13}^{\text{true}})=9$$

Example: Sensitivity to θ_{13} at 3σ :

Looking for the value of $\theta_{13}^{\text{true}}$, for which $\theta_{13} = 0$ can be excluded at 3σ :

$$\chi^2(\theta_{13}=0;\hat{\theta}_{13}=\theta_{13}^{\text{true}})=9$$

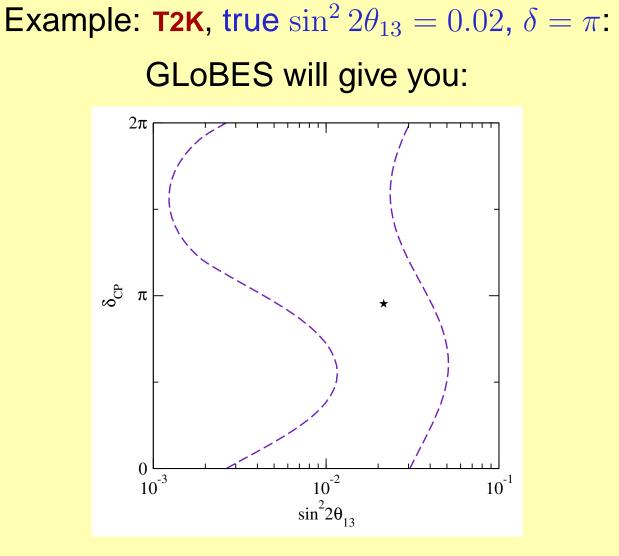
This can be done conveniently with GLoBES, but ...

What is the precise statistical meaning of such sensitivities?

What is the precise statistical meaning of such sensitivities?

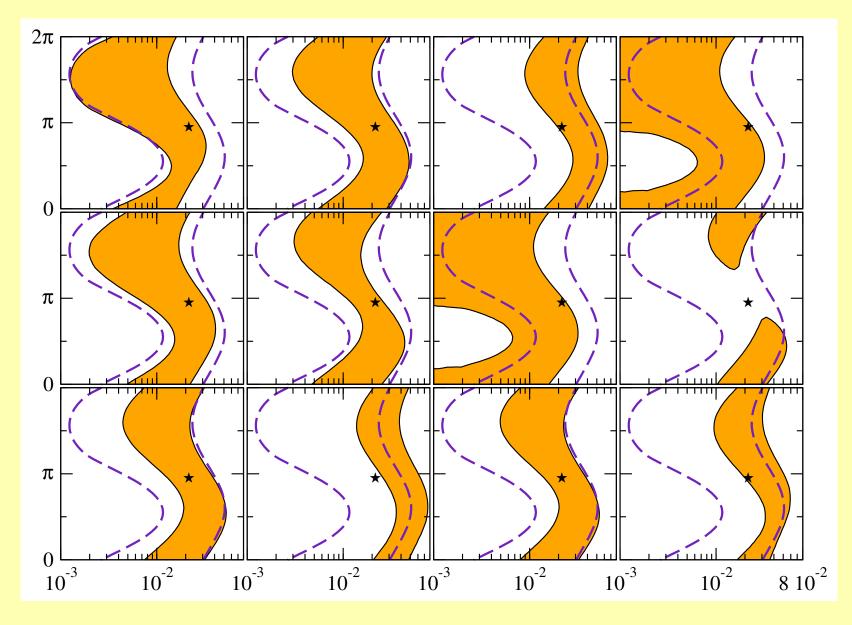
- Statistical fluctuations are not taken into account, $\chi^2 = 0$ at the best fit point \equiv true values
- Gaussian approximation for calculating allowed regions, e.g., $\Delta\chi^2 = 9$ for a 3σ intervall

The impact of statistical fluctuations



→ Sensitivity of an "average" experiment

The impact of statistical fluctuations



The correct question to ask should be:

The correct question to ask should be:

- have to quote two numbers, α (CL) and $P_{\rm disc}$
- at fi xed θ_{13}^{true} , decreasing α (incr. the CL) decreases P_{disc} at fi xed α (fi xed CL), decreasing θ_{13}^{true} decreases P_{disc}

The correct question to ask should be:

- have to quote two numbers, α (CL) and $P_{\rm disc}$
- at fi xed θ_{13}^{true} , decreasing α (incr. the CL) decreases P_{disc} at fi xed α (fi xed CL), decreasing θ_{13}^{true} decreases P_{disc}
- the implicit assumption for the "standard" sensitivity is that using data without fluctuations describes an "average" experiment, which should correspond to $P_{\rm disc} = 50\%$.

The correct question to ask should be:

- have to quote two numbers, α (CL) and $P_{\rm disc}$
- at fi xed θ_{13}^{true} , decreasing α (incr. the CL) decreases P_{disc} at fi xed α (fi xed CL), decreasing θ_{13}^{true} decreases P_{disc}
- the implicit assumption for the "standard" sensitivity is that using data without fluctuations describes an "average" experiment, which should correspond to $P_{\rm disc} = 50\%$.
- "Good" sensitivity means high CL and high P_{disc} .

Example: Measurement of a Gaussian variable:

• Assume x is a Gaussian variable, which can be measured in an experiment with Standard Deviation σ .

Example: Measurement of a Gaussian variable:

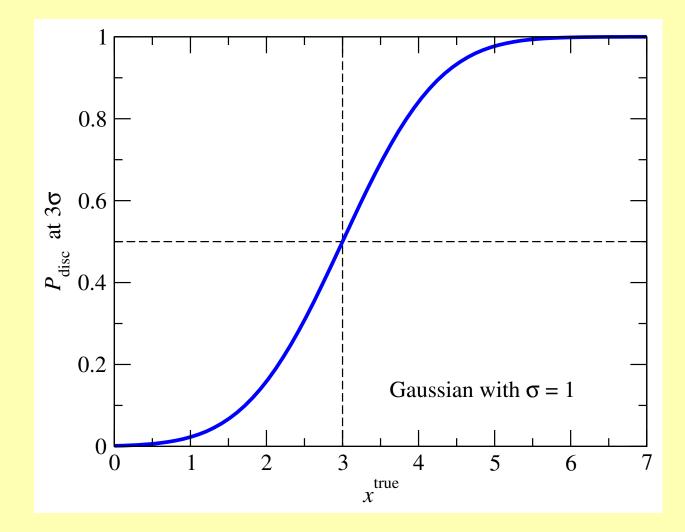
- Assume x is a Gaussian variable, which can be measured in an experiment with Standard Deviation σ .
- Let us denote the result of the experiment by x^{obs}.
 Then, x > 0 is discovered at 3σ if x^{obs} > 3σ.

Example: Measurement of a Gaussian variable:

- Assume x is a Gaussian variable, which can be measured in an experiment with Standard Deviation σ .
- Let us denote the result of the experiment by x^{obs} . Then, x > 0 is discovered at 3σ if $x^{obs} > 3\sigma$.
- As a function of the true value x^{true} the probability to discover x > 0 at 3σ is given by

$$P_{\text{disc}} = P\left[x^{\text{obs}} \ge 3\sigma \mid x^{\text{true}}\right] = \int_{3\sigma}^{\infty} dx \, G(x; \, x^{\text{true}}, \sigma)$$
$$= \frac{1}{2} \left[1 - \operatorname{erf}\left(\frac{3\sigma - x^{\text{true}}}{\sqrt{2}\sigma}\right)\right]$$

Example: Measurement of a Gaussian variable:



Remark on hypothesis testing

"Statistics language":

In testing a hypothesis H_0 we can make two kinds of errors:

- Error of type 1: reject H_0 although it is true
- Error of type 2: accept H_0 although it is false

Remark on hypothesis testing

"Statistics language":

In testing a hypothesis H_0 we can make two kinds of errors:

- Error of type 1: reject H_0 although it is true
- Error of type 2: accept H_0 although it is false

In our case: H_0 : $\theta_{13} = 0$

- Type 1: "discover" non-zero θ_{13} although the true value is 0.
- Type 2: accept $\theta_{13} = 0$ although the true value is non-zero.

Remark on hypothesis testing

"Statistics language":

In testing a hypothesis H_0 we can make two kinds of errors:

- Error of type 1: reject H_0 although it is true
- Error of type 2: accept H_0 although it is false

In our case: H_0 : $\theta_{13} = 0$

- Type 1: "discover" non-zero θ_{13} although the true value is 0.
- Type 2: accept $\theta_{13} = 0$ although the true value is non-zero.

The probability to make an error of type 1 is α per definition of a $100(1 - \alpha)\%$ CL intervall

The probability to make an error of type 2 is $(1 - P_{disc})$

Thanks to Toshihiko Ota for pointing this out to me!

To answer this question in realistic situations it is necessary to perform a Monte Carlo simulation, i.e., simulate many artificial data sets for a given experiment, including statistical fluctuations:

Calculate prediction $N_i(\hat{\theta})$ for some "true values" $\hat{\theta}$. The "data" D_i , which go into the χ^2 are obtained by throwing a Poisson variable with mean $N_i(\hat{\theta})$. To answer this question in realistic situations it is necessary to perform a Monte Carlo simulation, i.e., simulate many artificial data sets for a given experiment, including statistical fluctuations:

Calculate prediction $N_i(\hat{\theta})$ for some "true values" $\hat{\theta}$. The "data" D_i , which go into the χ^2 are obtained by throwing a Poisson variable with mean $N_i(\hat{\theta})$.

Unfortunately, GLoBES is too slow for this task.

Wrote a speed optimized code for D-Chooz, T2K, and T2HK, cross-checked the "standard sensitivities" with GLoBES.

Generalized sensitivity to θ_{13} for D-Chooz and T2K

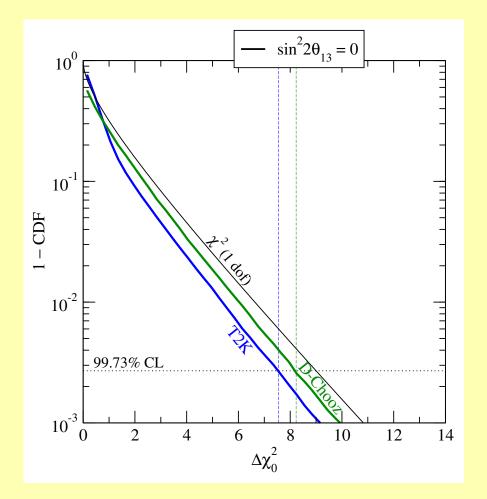
First, define a criterion to "discover" $\theta_{13} > 0$:

$$\chi^2(\theta_{13}=0) - \chi^2_{\min} \equiv \Delta \chi^2 > \lambda(\alpha)$$

Calculation of $\lambda(\alpha)$:

- Set $\theta_{13}^{\text{true}} = 0$, simulate many experiments, and calculate for each experiment $\Delta \chi^2$.
- Determine the value $\lambda(\alpha)$ by requiring that a fraction α of all experiments has $\Delta \chi^2 > \lambda(\alpha)$.

Calculation of $\lambda(\alpha)$ for $\alpha = 0.0027$:



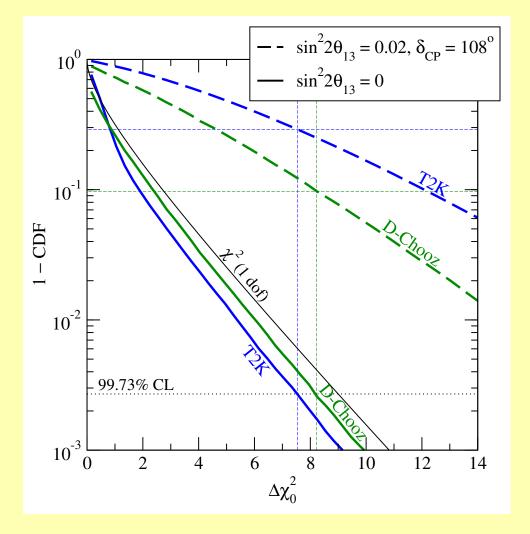
$$\lambda(\alpha)_{\rm T2K} = 7.55$$

 $\lambda(\alpha)_{\rm DC} = 8.23$
 $\lambda(\alpha)_{\rm Gauss} = 9$

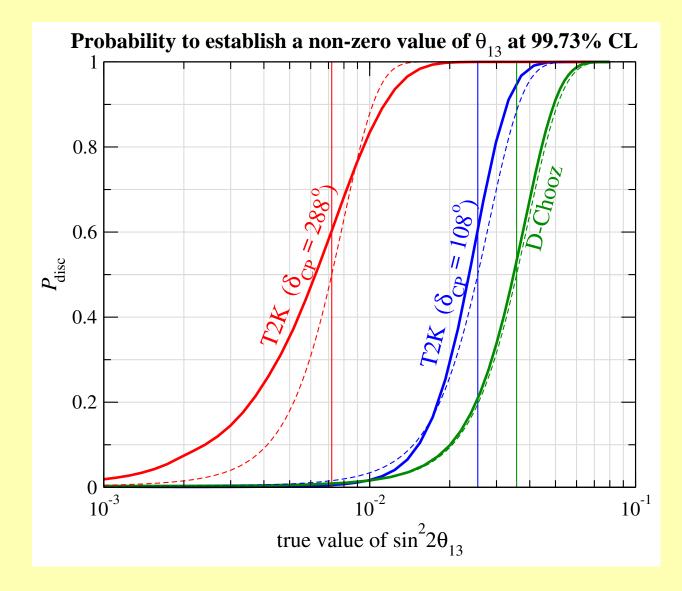
Second, calculation of P_{disc} :

- Set $\theta_{13}^{\text{true}} > 0$, simulate many experiments, and calculate for each experiment $\Delta \chi^2$.
- P_{disc} for the $100(1 \alpha)\%$ CL is given by the fraction of experiments which have $\Delta \chi^2 > \lambda(\alpha)$.
- Repeat this for each value of $\theta_{13}^{\text{true}}$.

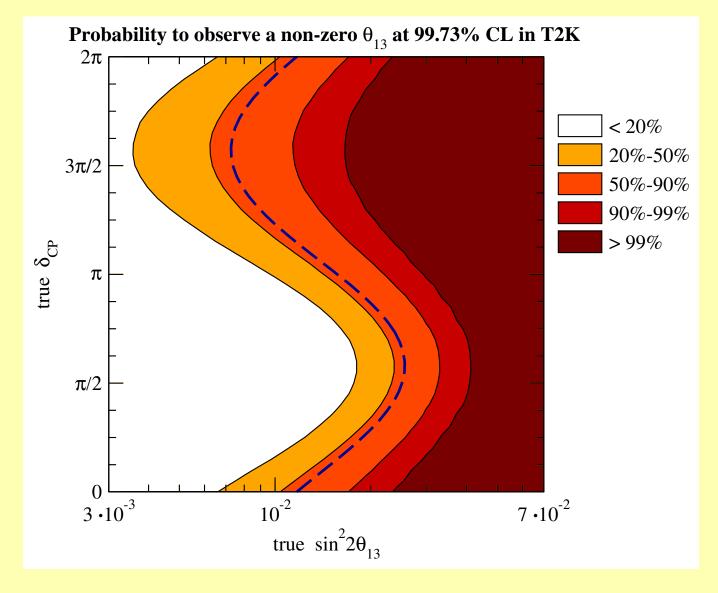
Calculation of P_{disc} at a given true value of θ_{13} :



 $P_{\rm disc}({\rm T2K}) = 29\%$ $P_{\rm disc}({\rm DC}) = 9.7\%$



dashed: Gaussian approximation



dashed: "standard sensitivity"

Side-remark:

For this plot

$41 \times 41 \times 10^5 \approx 1.7 \times 10^8$

fits have been performed \Rightarrow

Total calculation time:

$$T \simeq 2 \,\mathrm{days} \times \left(\frac{\mathrm{time \ for \ one \ } \chi^2 \ \mathrm{minimisation}}{10^{-3} \,\mathrm{sec}}\right)$$

Generalized sensitivity to CPV for T2HK

Generalized sensitivity to CPV for T2HK

For given values of $\theta_{13}^{\text{true}}$ and δ^{true} , what is the probability P_{disc} that CPV can be established at the $100(1 - \alpha)\%$ CL?

"Standard" sensitivity to CPV at 3σ : Scan true values $\hat{\theta}_{13}$ and $\hat{\delta}$, and check whether $\chi^2(\theta_{13}, \delta_{CPC}; \hat{\theta}_{13}, \hat{\delta}) > 9$ with $\delta_{CPC} = 0, \pi$ "Standard" sensitivity to CPV at 3σ : Scan true values $\hat{\theta}_{13}$ and $\hat{\delta}$, and check whether $\chi^2(\theta_{13}, \delta_{CPC}; \hat{\theta}_{13}, \hat{\delta}) > 9$ with $\delta_{CPC} = 0, \pi$

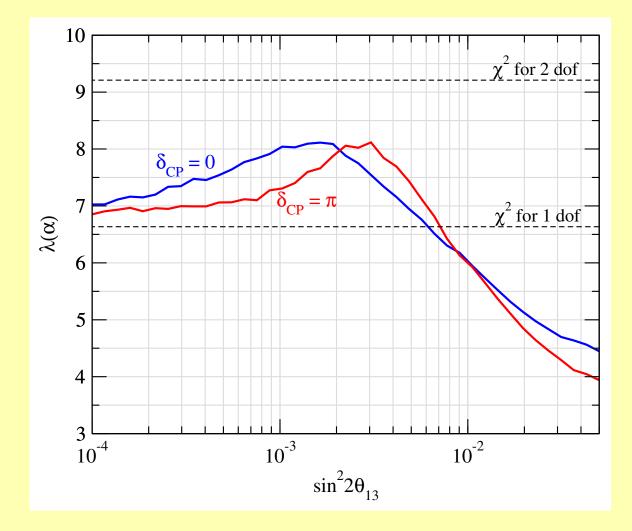
Now:

$$\chi^2(\theta_{13}, \delta_{\rm CPC}) - \chi^2_{\rm min} > \lambda(\alpha; \theta_{13}, \delta_{\rm CPC})$$

The cut-value λ depends on the parameter values!

Sensitivity to CPV

$\lambda(\alpha; \theta_{13}, \delta_{CPC})$ for the 99% CL ($\alpha = 0.01$) for T2HK:



Calculation of P_{disc} :

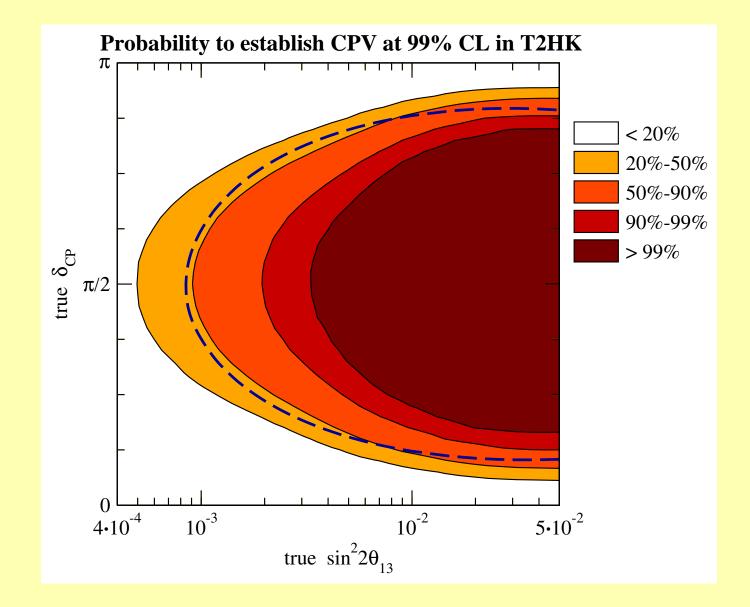
- Fix $\theta_{13}^{\text{true}}, \delta^{\text{true}}$ and simulate many experiments.
- P_{disc} for the $100(1 \alpha)\%$ CL is given by the fraction of experiments for which

$$\chi^2(\theta_{13}, \delta_{\text{CPC}}) - \chi^2_{\min} > \lambda(\alpha; \theta_{13}, \delta_{\text{CPC}})$$

for all values of θ_{13} .

• Repeat this for each point in the θ_{13}^{true} , δ^{true} -plane.

Sensitivity to CPV



dashed: "standard" sensitivity

 To estimate the sensitivity of future experiments to a given true value of a parameter one should quote two numbers: the CL at which we want to make the discovery, and the probability P_{disc} that we actually will make this discovery.

- To estimate the sensitivity of future experiments to a given true value of a parameter one should quote two numbers: the CL at which we want to make the discovery, and the probability P_{disc} that we actually will make this discovery.
- For DC, T2K, and T2HK I have checked by explicit MC simulation that "standard sensitivities" correspond roughly to an "average" experiment with $P_{\rm disc} \approx 50\%$.

- To estimate the sensitivity of future experiments to a given true value of a parameter one should quote two numbers: the CL at which we want to make the discovery, and the probability P_{disc} that we actually will make this discovery.
- For DC, T2K, and T2HK I have checked by explicit MC simulation that "standard sensitivities" correspond roughly to an "average" experiment with $P_{\rm disc} \approx 50\%$.
- It is OK to use GLoBES! ;-))

However, one has to be aware of the correct interpretation of the "standard sensitivities": The regions with high P_{disc} can be much smaller!