Comparison of reactor experiments for θ_{13} measurement

Guillaume MENTION

Thierry LASSERRE

CEA Saclay

GLoBES Workshop Heidelberg January, the 26th 2007

Outline

The point on θ_{13}

Reactor neutrino experiment analysis method

Reactor experiment description

Last limits (90 % C.L.)

Experiments comparison code

Reactor experiments simulation code \rightarrow based on Double Chooz extended one

Pure Matlab[™] code optimized for fast answers specific to reactor simulations

Take into account:

- Identification card of each experiment
- Installation scenarii
- Turn ON/OFF reactors/detectors
- Systematics
 - reactors
 - detectors
 - backgrounds
- backgrounds: accidentals & correlated (cosmogenics, and proton recoils)
- Detailed filling procedure

The method

Sensitivity formula

$$\begin{aligned} \chi^{2} &= \min_{\{\alpha_{i,k}^{D}\}} \sum_{i=1}^{N_{s}} \left[\left(\Delta_{i}^{D} - \sum_{k=1}^{K} \alpha_{i,k}^{D} S_{i,k}^{D} \right)^{2} + \sum_{k=1}^{K} c_{i,k}^{D} \left(\alpha_{i,k}^{D} \right)^{2} \right] \end{aligned}$$
Search for sin²(20₁₃) such that $\Delta \chi^{2} = 2.71$ (1 d.o.f., 90 % C.L.)
 $\Delta \chi_{F}^{2} = \Delta \chi^{2} - \sum_{\substack{D=N,N_{s}\\D=N,N_{s}}} \Delta \chi_{D}^{2} - \Delta \chi_{pulls}^{2}$
Writing the oscillation averaging per energy bin as: $D_{i} = \left\langle \sin^{2} \left(\frac{\Delta m^{2} L}{E} \right) \right\rangle_{[E_{i},E_{i},1]}$
We define the oscillation over spectrum vector: $\vec{A} = \left(\frac{\sum_{i=1}^{N} i}{U_{i}} \right)$
 $\vec{u} = \frac{\vec{A}}{A}$
The systematic vector is defined as: $\vec{S} = \left(\sum_{k=1}^{K} \tilde{\alpha}_{i,k} S_{i,k} \right)$
Then the sensitivity is $\sin^{2}(2\theta_{13}) \simeq \frac{S_{u}}{A} + \sqrt{\frac{\Delta \chi_{F}^{2}}{A^{2}}} - \frac{S^{2} - S_{u}^{2}}{A^{2}}$ where $S_{u} = \vec{S} \cdot \vec{u}$

This approximation is valid as long as near detector stands close to the NPP cores.

Sensitivity formula

The more S is colinear to A, the more the sensitivity degrades

which means

The more the systematics tend to mimick the oscillation signal the less sensitive is the experiment...

Systematics in the χ² Detector – Analysis cuts

Error type	k	$c^{\mathbf{D}}_{\mathbf{i},\mathbf{k}}$	$\mathbf{S_{i,k}^D} \times \mathbf{U_i^D}$	$\alpha^{\mathbf{D}}_{\mathbf{i},\mathbf{k}}$
Absolute normalization	1	$1/N_{\rm d}N_{\rm b}$	$\sigma_{ m abs} N_i^D$	$\alpha_{\rm abs}$
Relative normalization in D_1	2	$\delta_{D,D_1}/N_{\rm b}$	$\sigma_{\rm rel} N_i^{D_1}$	$\alpha_{\rm rel}^{D_1}$
	:	:		:
in $D_{N_{\rm d}}$	$N_{\rm d}$ +1	$\delta_{D,D_{N_{\mathrm{d}}}}/N_{\mathrm{b}}$	$\sigma_{\rm rel} N_i^{D_{N_{\rm d}}}$	$\alpha_{\rm rel}^{D_{N_{\rm d}}}$

$$\sigma_{abs} = 2.0 \%$$

$$\sigma_{rel} = 0.6 \%$$

$$\sigma_{rel} = 0.38 \%$$

$$\sigma_{scl} = 0.5 \%$$

$$\sigma_{scl,rel} = 0.5 \%$$

+

Double Chooz conservative case Daya Bay conservative but optimistic case

Systematics in the χ² *Reactor*

Error type	k	$\mathbf{c_{i,k}^{D}}$	$\mathbf{S_{i,k}^D} \times \mathbf{U_i^D}$	$\alpha^{\mathbf{D}}_{\mathbf{i},\mathbf{k}}$
Absolute normalization	1	$1/N_{\rm d}N_{\rm b}$	$\sigma_{ m abs} N^D_i$	$\alpha_{\rm abs}$
Reactor spectrum shape in bin 1 : in bin N _b	$4N_{\rm d} + N_{\rm p} + 2$ \vdots $4N_{\rm d} + N_{\rm p} + N_{\rm b} + 1$	$\delta_{i,1}/N_{\rm d}$: $\delta_{i,N_{\rm b}}/N_{\rm d}$	$\sigma_{ m shp} N_1^D$ \vdots $\sigma_{ m shp} N_N^D$	$\alpha_{\mathrm{shp},1}$: $\alpha_{\mathrm{shp},N_{\mathrm{b}}}$
$\begin{array}{c} \text{Reactor composition} \\ \text{from} \ ^{235}\text{U} \\ \text{from} \ ^{239}\text{Pu} \\ \text{from} \ ^{238}\text{U} \\ \text{from} \ ^{241}\text{Pu} \end{array}$	$4N_{\rm d} + N_{\rm p} + N_{\rm b} + N_{\rm r} + 2$ $4N_{\rm d} + N_{\rm p} + N_{\rm b} + N_{\rm r} + 3$ $4N_{\rm d} + N_{\rm p} + N_{\rm b} + N_{\rm r} + 4$ $4N_{\rm d} + N_{\rm p} + N_{\rm b} + N_{\rm r} + 5$	$\frac{1/N_{\rm d}N_{\rm b}}{1/N_{\rm d}N_{\rm b}}$ $\frac{1/N_{\rm d}N_{\rm b}}{1/N_{\rm d}N_{\rm b}}$	$\sigma_{^{235}\text{U}}N_{i}^{^{235}\text{U},D} \\ \sigma_{^{239}\text{Pu}}N_{i}^{^{239}\text{Pu},D} \\ \sigma_{^{239}\text{U}}N_{i}^{^{238}\text{U},D} \\ \sigma_{^{238}\text{U}}N_{i}^{^{241}\text{Pu},D} \\ \sigma_{^{241}\text{Pu}}N_{i}^{^{241}\text{Pu},D}$	$lpha_{ m cmp}^{235} U lpha_{ m cmp}^{239} Pu lpha_{ m cmp}^{238} U lpha_{ m cmp}^{238} U lpha_{ m cmp}^{241} Pu lpha_{ m cmp}^{241} Pu$
Spent fuel pools from pool P_1 Not inc from pool P_{N_p}	$\frac{4N_{\rm d} + 2}{2 \text{ luded here}}$ $\frac{4N_{\rm d} + N_{\rm p} + 1}{4N_{\rm d} + N_{\rm p} + 1}$	$1/N_{\rm d}N_{\rm b}$ \vdots $1/N_{\rm d}N_{\rm b}$	$\sigma^{D}_{B_{4}}B^{D}_{4,i}$ \vdots $\sigma^{D}_{B_{4}}B^{D}_{4,i}$	$\begin{array}{c} \alpha_{B_4}^{P_1} \\ \vdots \\ \alpha_{B_4}^{P_{N_{\mathrm{P}}}} \\ \alpha_{B_4}^{P_{N_{\mathrm{P}}}} \end{array}$

$$\sigma_{shp}$$
 = 2.0 %

conservative since uncorr. b2b but a bit higher over the whole spectrum

 σ_{elt} = 5.0 % rough estimate, first guess

Systematics in the χ² Backgrounds

Depends on the overburden and the detector shieldings

Panel view of reactor experiments

site, power, distances, overburden, target masses

	Location	Power (in GW _{th})	Distances (in meters)	Overburden (in mwe)	Target mass (in tons)	Nb of events compared to DC
Double Chooz	France	8.5	280/1050	80/300	8.3	1
Daya Bay	China	11.6/17.4 (2010)	360/500/1750	260/910	2x20/2x20/4x20	6
RENO	Korea	16.4	150/1500	230/675	20	2

1st generation

- Double Chooz
- RENO, Phase I
- Daya Bay, Phase I?

2nd generation

- Daya Bay, Phase II
- Angra, KasKa

Double Chooz

2 cores – 1 site – 8.5 GW_{th}

1 near position, 1 far

- target: 2 x 8.3 t Civil engineering

- 1 near lab ~ Depth 40 m, \emptyset 6 m

- 1 available lab

Statistics (including ε)

- far: ~ 40 evts/day
- near: ~ 460 evts/day

Systematics

- reactor : ~ 0.2%
- detector : ~ 0.5%

Backgrounds

- $\sigma_{_{b2b}}$ at far site: ~ 1%
- $\sigma_{_{b2b}}$ at near site: ~ 0.5%

Planning

- 1. Far detector only
 - <u>2008-2009</u>
- Sensitivity (1.5 ans) ~ <u>0.06</u>
- 2. Far + Near sites
 - available from 2010
 - Sensitivity (3 years) ~ 0.025

Daya Bay

			14 M	100
Far: 80 tons 1,600 m to LA, 2,000 m to D Overburden: 350 m Muon rate: 0.04 Hz/m ²	ΥВ	4		
0% slope		LA: 40 to Baseline: Overburde Muon rate	ns 500 m en: 112 m : 0.73 Hz/m ²	
Mid	0% slop			N.
Baseline: ~ 1,000 m	1-02	56	LingAo	
Overbarden. 200 m				
0% slope		LingAo	ores	
Access portal				
	Ba	B: 40 tons seline: 360	m	
8% slope		erburden: 9	8 m	
en diope				
Daya Ba	y cores			
The second second	Average F. R.	DB	LA1	LA2
	Dn1xyz (DB)	83.1%	11.4%	5.5%
	Dn2xyz (LA)	6.5%	50.6%	42.8%
	Dfxyz (Mid)	22.5%	47.1%	30.4%
	Dfxyz (Far)	24.9%	37.4%	37.7%

4 cores - 2 sites - 11.6 GW., \Rightarrow 6 – 3 in 2011, with 17.4 GW_{th} 2 near positions, 1 mid, 1 far - far: 4 modules of 20 t - near: 2 modules of 20 t each **Civil Engineering** $- \sim 3.4$ km tunnels - 4 laboratories to be build Statistics (including ε) - far: 70 evt/day/mod - mid-site: 200 evts/day/mod - near: 600 evts/day/mod **Mobile modules** ⇒ swapping (Theo.) **Systematics** - reactors : $\sim 0.1\%$ - detectors : ~ 0.38% Backgrounds - B/S @ near sites: ~ 0.5% - B/S @ far site: ~ 0.2% Planning 1. Fast Measurement (Phase I) - DYB+Mid-site, 2008-2009 - Sensitivity (1 year) ~ 0.0352. Complete measurement - DYB+LA+Far, from 2010 - Sensitivity (3 years) < 0.01

$RE_{3}NO$

- 6 cores 1 site 16.4 GW_{th}
- 1 near site, 1 far,

3 "very near" sites

- target: 2 x 20 t
- + target: 3 x ~ 200-300 kg

Civil Engineering

- ~ 700 m tunnels
- 2 laboratories to be build

Statistics (including ε)

- Far: ~ 70 evts/day
- Near: ~ 1,700 evts/day

Systematics

- total: ~ 1%

Overburden

- Far: ~ 700 mwe
- Near: ~ 240 mwe

Planning

- Start construction on beginning of 2007...
- Sensitivity: ~ <u>0.02</u>

Systematic business CHOOZ – Double Chooz – Daya Bay

Error Source	Error Type	Error Description	CHOOZ	DC Aba oluto	DC	DB	DB (No R&D)	DB (Claim)
		Pagator	ADSOIUTE	ADSOIUTE	Relative	ADSOIUTE	Relative	Relative
		Reactor Production Cross Section	1 0 0 %	1 0.0%		1 0 0 %		0 13%
Reactor		Core Powers	0.70%	0.70%		0.70%		0.1370
Reactor		Energy ner Eission	0.60%	0.70%		0.70%		
		Solid Angle/Bary. Displct.	0.0070	0.0070	0.20%	0.0070	0.08%	0.08%
		Detector						
		Detection Cross Section	0.30%	0 10%		0.30%		
Detector	Free H in TG	Volume	0.30%	0.10%	0 20%	0.00%	0.20%	0.02%
20100101		Fiducial Volume	0.20%	0.20%	0.20 /0	0.20 /0	0.20 /0	010270
		Density		0.10%	0.01%		0.01%	0.01%
		H/C (Chemical Composition)	0.80%	0.80%	0.10%	0.20%	0.20%	0.10%
	Electronics	Dead Time	0.25%		0.00%			
Analysis		Analysis						
Analysis	Particle Id							
	Positron	Escape	0.10%					
		Capture	0.00%					
		Identification Cut	0.80%	0.10%	0.10%		0.20%	0.05%
	Neutron	Escape	1.00%				0.01%	0.01%
		Capture (% Gd)	0.85%	0.30%	0.30%		0.01%	0.01%
		Identification Cut	0.40%	0.10%	0.10%		0.10%	0.03%
	Anti-neutrino	Time Cut	0.40%	0.10%	0.10%		0.10%	0.03%
		Distance Cut	0.30%					
		Unicity (neutron multiplicity)	0.50%				0.05%	0.01%
		Efficiency uncert due to bkg						
Total			2.90%	2.31%	0.46%	2.15%	0.39%	0.20%

ALL experiments BL option

Double Chooz

$$\Delta X_{pulls}^{2} = \sum_{k=1}^{K} \sum_{D} \sum_{i=1}^{N} c_{i,k}^{D} (\alpha_{i,k}^{D})^{2}$$

The dominant contribution clearly comes from

- $\sigma_{_{rel}}$ on relative normalization

some impact of

• σ_{scl} on relative energy scale

Average F. R.	DB	LA1
Dn1xyz (DB)	87.9%	12.1%
Dfxyz (Mid)	32.3%	67.7%

The dominant contributions come from

- + $\sigma_{_{elt}}$ on NPP core fuel composition
- σ_{scl} on energy scale
- σ_{shp} on spectrum shape
- σ_{abs} on absolute normalization
- $\sigma_{_{pwr}}$ on NPP core power

Why such an impact of $\sigma_{_{elt}}?$ Does it affect directly the power?

- First method: Add a constraint-weight term to the χ^2

$$\left(\frac{\sum_{l=U5, P9, U8, PI} \alpha_l c_l}{\epsilon_{elt}}\right)^2$$

where c_l are fuel concentration coefficients for each core.

• Second method: Force α_l coefficients to be in the kernel of c_l^* , *i.e.*

$$\sum_{l=U5, P9, U8, PI} \alpha_{l} c_{l} = 0$$

through parameter matrix redefinition

We may at the same time impose $\sum_{i=1}^{N_{bins}} \alpha_{shp,i} N_i = 0 \text{ for shape coef.}$ $\Rightarrow \text{ almost no impact}$

Average F. R.	DB	LA1
Dn1xyz (DB)	87.9%	12.1%
Dfxyz (Mid)	32.3%	67.7%

If we constrain mathematically α_l not to contribute to power uncertainties

The dominant contributions come from

- $\sigma_{_{pwr}}$ on power
- σ_{scl} on energy scale
- $\sigma_{_{abs}}$ on absolute normalization
- σ_{rel} on relative normalization
- $\sigma_{_{shp}}$ on shape

If Daya Bay Phase I starts after 2010-2011, when LA II cores will start

Daya Bay Full

The dominant contributions come from

• $\sigma_{\rm rel}$ on relative normalization

Also some impact from

• $\sigma_{_{pwr}}$ on NPP core power

Average F. R.	DB	LA1	LA2
Dn1xyz (DB)	83.1%	11.4%	5.5%
Dn2xyz (LA)	6.5%	50.6%	42.8%
Dfxyz (Far)	24.9%	37.4%	37.7%

	R1	R2	R3	R4	R5	R6
Near	3%	8%	39%	39%	8%	3%
Far	15%	17%	18%	18%	17%	15%

Constraining α_{i} in order not to alter the power

RENO

If we constrain mathematically α_i not to contribute to power uncertainties

The dominant contributions come from

- σ_{rel} on relative normalization
- + $\sigma_{_{pwr}}$ on NPP core power

Also some impact from

• $\sigma_{_{abs}}$ on absolute normalization

	R1	R2	R3	R4	R5	R6
Near	3%	8%	39%	39%	8%	3%
Far	15%	17%	18%	18%	17%	15%

Summary

Double Chooz is mainly sensitive to

• σ_{rel}

Daya Bay Phase I is sensitive to

- σ_{pwr} , σ_{elt}
- σ_{scl}
- σ_{abs}
- σ_{rel}
- $\sigma_{_{shp}}$

Daya Bay Phase II is sensitive to

- $\sigma_{_{rel}}$
- σ_{pwr} , σ_{elt}

RENO is sensitive to

- σ_{rel}
- σ_{pwr} , σ_{elt}
- σ_{abs}

The near det. plays its full role. The overall sensitivity depends clearly on this systematic

 \Rightarrow

In Daya Bay Phase I, the near dets. do not play their full role, and the overall sensitivity relies on absolute knowledges (σ_{pwr} and/or σ_{elt} , σ_{shp} , σ_{abs}).

In Daya Bay Phase II, the near dets. play mostly their full role, except the site is so widespread, that there remains a sensitivity to the core power/composition uncetainties

In RENO, the single near det. can't see equivalently all the cores. Thus, it remains some sensitivity to the power uncertainties but also to the overall spectra normalization.

Playing on the systematic string

Best constraint

$$\sigma_{rel} = 0.38$$
 %

$$\epsilon_{elt} = 10^{-2}$$

Worst constraint

$$\sigma_{rel} = 0.6 \%$$

 $\sigma_{pwr} = 3.0 \%$
 $\sigma_{abs} = 3.0 \%$

Daya Bay Phase I over time

Global conclusion (an article is in preparation)

- → 3 first generation experiments: Double Chooz, RENO sensitivity ~ 0.02 to 0.03 (depending on sytematics, Δm² value, and backgrounds) and Daya Bay Phase I with sensitivity ~ 0.04 to 0.05 (1 year) ~ 0.03 to 0.035 (3 years)
- A second generation experiment: **Daya Bay** with forseen sensitivity ~ 0.01.
- → To go below 0.01 with reactor experiments seems difficult.

Specific conclusion

First generation

- → Double Chooz: ~ 0.02-0.03
 - → Few reactors, good relative power. Overburden sufficient.
 - → Detector locations => insensitive to fuel composition and power uncertainties of the cores; Full performence of the far detector position (for $\Delta m^2 > 2.5 \ 10^{-3} \ eV^2$) for a 0.02-0.03 sensitivity.
 - → To go below 0.01, one need to go farther...
- → RENO: ~ 0.02-0.03
 - → Good site: overburden/available power.
 - → Core location = disfavorable.
 - → Sensitive to fuel composition and power uncertainties of the cores (even with 3 small detectors of 200-300 kg).
 - \rightarrow => even with 2 x more events than DC, same field of sensitivity as DC.
- → Daya Bay Phase I (?): ~ 0.03-0.05 (1 to 3 years?)
 - → Clearly suffers from the NPP cores spread.
 - Sensitive to a lot of systematics => sensitivity will rely on difficult analyses, estimations of all these
 systematics
 - → 2 x 40 tons is already a large experiment...!

Specific conclusion

Second generation

→ Daya Bay: ~ 0.01

- Very good site for its overburden
- The power appealing is a lure especially for Daya Bay Phase I: the 2 cores of Daya Bay alone (w/o LA I) gives a better sensitivity
- → It remains some impact of the uncertainty on the NPP core powers on the sensitivity