Three-Flavour Effects in Neutrino Oscillations

Evgeny Akhmedov
MPI-K, Heidelberg \& Kurchatov Inst., Moscow

3f effects in neutrino oscillations

- General properties of 3f oscill. probabilities
- Analytic solutions
- 3f effects in oscillations of solar, atmospheric, reactor and accelerator neutrinos
- $Q P$ and \mathscr{X} in ν oscillations in vacuum
- $C P$ and \mathscr{T} in ν oscillations in matter
- The problem of $U_{e 3}$

Three neutrino species: $\nu_{e}, \nu_{\mu}, \nu_{\tau}$
But until a few years ago most analyses - in 2 f framework

Three neutrino species: $\nu_{e}, \nu_{\mu}, \nu_{\tau}$

But until a few years ago most analyses - in 2 f framework Reasons:

Three neutrino species: $\nu_{e}, \nu_{\mu}, \nu_{\tau}$

But until a few years ago most analyses - in 2 f framework Reasons:

- Simplicity (2f: 2 parameters, 3f: 6 parameters)

Three neutrino species: $\nu_{e}, \nu_{\mu}, \nu_{\tau}$

 But until a few years ago most analyses - in 2 f framework Reasons:- Simplicity (2f: 2 parameters, 3f: 6 parameters)
- Hierarchy of $\Delta m^{2}: \Delta m_{21}^{2} / \Delta m_{31}^{2} \ll 1$.

Three neutrino species: $\nu_{e}, \nu_{\mu}, \nu_{\tau}$

 But until a few years ago most analyses - in 2 f framework Reasons:- Simplicity (2f: 2 parameters, 3f: 6 parameters)
- Hierarchy of $\Delta m^{2}: \Delta m_{21}^{2} / \Delta m_{31}^{2} \ll 1$.
- Smalness of $U_{e 3}$

Three neutrino species: $\nu_{e}, \nu_{\mu}, \nu_{\tau}$

But until a few years ago most analyses - in 2 f framework Reasons:

- Simplicity (2f: 2 parameters, 3f: 6 parameters)
- Hierarchy of $\Delta m^{2}: \Delta m_{21}^{2} / \Delta m_{31}^{2} \ll 1$.
- Smalness of $U_{e 3}$
\Rightarrow Oscillations of solar, atmospheric, reactor, accelerator and SN neutrinos can to first approximation be considered as 2 f ones

Three neutrino species: $\nu_{e}, \nu_{\mu}, \nu_{\tau}$

But until a few years ago most analyses - in 2 f framework Reasons:

- Simplicity (2f: 2 parameters, 3f: 6 parameters)
- Hierarchy of $\Delta m^{2}: \Delta m_{21}^{2} / \Delta m_{31}^{2} \ll 1$.
- Smalness of $U_{e 3}$
\Rightarrow Oscillations of solar, atmospheric, reactor, accelerator and SN neutrinos can to first approximation be considered as 2 f ones
But:
\diamond 3f effects in $P_{a b}$ up to $\sim 10 \% \Rightarrow$ important for precision measurements

Three neutrino species: $\nu_{e}, \nu_{\mu}, \nu_{\tau}$

But until a few years ago most analyses - in 2 f framework Reasons:

- Simplicity (2f: 2 parameters, 3f: 6 parameters)
- Hierarchy of $\Delta m^{2}: \Delta m_{21}^{2} / \Delta m_{31}^{2} \ll 1$.
- Smalness of $U_{e 3}$
\Rightarrow Oscillations of solar, atmospheric, reactor, accelerator and SN neutrinos can to first approximation be considered as 2 f ones

But:
\diamond 3f effects in $P_{a b}$ up to $\sim 10 \% \Rightarrow$ important for precision measurements
\diamond A number of interesting pure 3f effects exist

Three neutrino species: $\nu_{e}, \nu_{\mu}, \nu_{\tau}$

But until a few years ago most analyses - in 2 f framework Reasons:

- Simplicity (2f: 2 parameters, 3f: 6 parameters)
- Hierarchy of $\Delta m^{2}: \Delta m_{21}^{2} / \Delta m_{31}^{2} \ll 1$.
- Smalness of $U_{e 3}$
\Rightarrow Oscillations of solar, atmospheric, reactor, accelerator and SN neutrinos can to first approximation be considered as 2 f ones
But:
\diamond 3f effects in $P_{a b}$ up to $\sim 10 \% \Rightarrow$ important for precision measurements
\diamond A number of interesting pure 3f effects exist
These days: $3 f$ analyses a must!

Two types of $3 f$ effects

I. "Trivial" effects

- Existence of new physical channels - in addition to $\nu_{e} \leftrightarrow \nu_{\mu}$ there are $\nu_{e} \leftrightarrow \nu_{\tau}$ and $\nu_{\mu} \leftrightarrow \nu_{\tau}$; mutual influence of channels through unitarity (conservation of probability).
- New "parameter channels" for the same physical channel. E.g.: $\quad \nu_{e} \leftrightarrow \nu_{\mu}$ oscill. can be governed by $\left(\Delta m_{21}^{2}, \theta_{12}\right)$ and $\left(\Delta m_{31}^{2}, \theta_{13}\right)$

Two types of $3 f$ effects - contd.

II. Nontrivial effects

- Fundamental $\varnothing P$ and \mathscr{T}
- Matter-induced $\not \subset$
- Interference of different "parameter channels" specifc contributions to oscillation probabilities
- Matter effects on $\nu_{\mu} \leftrightarrow \nu_{\tau}$ oscillations

Nontrivial $3 f$ effects (except the last one): disappear if at least one mixing angle is 0 or 90°, or at least one $\Delta m_{i j}^{2}=0$

Leptonic mixing

$$
\nu_{a}=U_{a i} \nu_{i}
$$

Oscillation probability in vacuum:

$$
P\left(\nu_{a} \rightarrow \nu_{b} ; t\right)=\left|\sum_{i} U_{b i} e^{-i E_{i} t} U_{a i}^{*}\right|^{2}
$$

$$
\begin{aligned}
& \text { 3f mixing matrix }\left(c_{i j}=\cos \theta_{i j}, s_{i j}=\sin \theta_{i j}\right) \\
& U=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{array}\right)\left(\begin{array}{ccc}
c_{13} & 0 & s_{13} e^{-i \delta_{\mathrm{CP}}} \\
0 & 1 & 0 \\
-s_{13} e^{i \delta_{\mathrm{CP}}} & 0 & c_{13}
\end{array}\right)\left(\begin{array}{ccc}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

Leptonic mixing - contd.

$U=\left(\begin{array}{ccc}c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i \delta_{\mathrm{CP}}} \\ -s_{12} c_{23}-c_{12} s_{13} s_{23} e^{i \delta_{\mathrm{CP}}} & c_{12} c_{23}-s_{12} s_{13} s_{23} e^{i \delta_{\mathrm{CP}}} & c_{13} s_{23} \\ s_{12} s_{23}-c_{12} s_{13} c_{23} e^{i \delta_{\mathrm{CP}}} & -c_{12} s_{23}-s_{12} s_{13} c_{23} e^{i \delta_{\mathrm{CP}}} & c_{13} c_{23}\end{array}\right)$

Normal hierarchy:

Inverted hierarchy:

Neutrino oscillations in matter

Evolution equation:

$$
\begin{aligned}
& i \frac{d}{d t}\left(\begin{array}{l}
\nu_{e} \\
\nu_{\mu} \\
\nu_{\tau}
\end{array}\right)= {\left[U\left(\begin{array}{ccc}
E_{1} & 0 & 0 \\
0 & E_{2} & 0 \\
0 & 0 & E_{3}
\end{array}\right) U^{\dagger}+\left(\begin{array}{ccc}
V(t) & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\right]\left(\begin{array}{l}
\nu_{e} \\
\nu_{\mu} \\
\nu_{\tau}
\end{array}\right) } \\
& E_{i}=\sqrt{p^{2}+m_{i}^{2}} \simeq p+\frac{m_{i}^{2}}{2 p} ; \quad t \simeq r \\
& V(t)=\left[V\left(\nu_{e}\right)\right]_{C C}=\sqrt{2} G_{F} N_{e}(t) \\
& {\left[V\left(\nu_{e}\right)\right]_{N C}=} {\left[V\left(\nu_{\mu}\right)\right]_{N C}=\left[V\left(\nu_{\tau}\right)\right]_{N C}-\text { do not contribute } } \\
&(\text { Modulo tiny radiative corrections })
\end{aligned}
$$

General properties of $P_{a b}$

3 flavours $\Rightarrow 3 \times 3=9$ probabilities

$$
P_{a b}=P\left(\nu_{a} \rightarrow \nu_{b}\right),
$$

plus 9 probabilities for antineutrinos $P_{\bar{a} \bar{b}}$.

General properties of $P_{a b}$

3 flavours $\Rightarrow 3 \times 3=9$ probabilities

$$
P_{a b}=P\left(\nu_{a} \rightarrow \nu_{b}\right),
$$

plus 9 probabilities for antineutrinos $P_{\bar{a} \bar{b}}$.
Unitarity conditions (probability conservation):

$$
\sum_{b} P_{a b}=\sum_{a} P_{a b}=1 \quad(a, b=e, \mu, \tau)
$$

5 indep. conditions $\Rightarrow 9-5=4$ indep. probabilities left.

General properties of $P_{a b}$

3 flavours $\Rightarrow 3 \times 3=9$ probabilities

$$
P_{a b}=P\left(\nu_{a} \rightarrow \nu_{b}\right),
$$

plus 9 probabilities for antineutrinos $P_{\bar{a} \bar{b}}$.
Unitarity conditions (probability conservation):

$$
\sum_{b} P_{a b}=\sum_{a} P_{a b}=1 \quad(a, b=e, \mu, \tau)
$$

5 indep. conditions $\Rightarrow 9-5=4$ indep. probabilities left. Additional symmetry: the matrix of matter-induced potentials $\operatorname{diag}(V(t), 0,0)$ commutes with $O_{23} \Rightarrow$ additional relations between probabilities.

Defne

$$
\begin{aligned}
& \quad \tilde{P}_{a b}=P_{a b}\left(s_{23}^{2} \leftrightarrow c_{23}^{2}, \sin 2 \theta_{23} \rightarrow-\sin 2 \theta_{23}\right) \\
& \text { (e.g., } \left.\theta_{23} \rightarrow \theta_{23}+\pi / 2\right) .
\end{aligned}
$$

Defne

$$
\tilde{P}_{a b}=P_{a b}\left(s_{23}^{2} \leftrightarrow c_{23}^{2}, \sin 2 \theta_{23} \rightarrow-\sin 2 \theta_{23}\right)
$$

(e.g., $\theta_{23} \rightarrow \theta_{23}+\pi / 2$). Then

$$
P_{e \tau}=\tilde{P}_{e \mu} \quad P_{\tau \mu}=\tilde{P}_{\mu \tau} \quad P_{\tau \tau}=\tilde{P}_{\mu \mu}
$$

Defne

$$
\tilde{P}_{a b}=P_{a b}\left(s_{23}^{2} \leftrightarrow c_{23}^{2}, \sin 2 \theta_{23} \rightarrow-\sin 2 \theta_{23}\right)
$$

(e.g., $\theta_{23} \rightarrow \theta_{23}+\pi / 2$). Then

$$
P_{e \tau}=\tilde{P}_{e \mu} \quad P_{\tau \mu}=\tilde{P}_{\mu \tau} \quad P_{\tau \tau}=\tilde{P}_{\mu \mu}
$$

2 out of 3 conditions are independent $\Rightarrow 4-2=2$ indep. probabilities (e.g., $P_{e \mu}$ and $P_{\mu \tau}$) \Rightarrow

Defne

$$
\tilde{P}_{a b}=P_{a b}\left(s_{23}^{2} \leftrightarrow c_{23}^{2}, \sin 2 \theta_{23} \rightarrow-\sin 2 \theta_{23}\right)
$$

(e.g., $\theta_{23} \rightarrow \theta_{23}+\pi / 2$). Then

$$
P_{e \tau}=\tilde{P}_{e \mu} \quad P_{\tau \mu}=\tilde{P}_{\mu \tau} \quad P_{\tau \tau}=\tilde{P}_{\mu \mu}
$$

2 out of 3 conditions are independent $\Rightarrow 4-2=2$ indep. probabilities (e.g., $P_{e \mu}$ and $P_{\mu \tau}$) \Rightarrow
\diamond All 9 neutrino ocillation probabilities can be expressed through just two!
(E.A., Johansson, Ohlsson, Lindner \& Schwetz, 2004)

Defne

$$
\tilde{P}_{a b}=P_{a b}\left(s_{23}^{2} \leftrightarrow c_{23}^{2}, \sin 2 \theta_{23} \rightarrow-\sin 2 \theta_{23}\right)
$$

(e.g., $\theta_{23} \rightarrow \theta_{23}+\pi / 2$). Then

$$
P_{e \tau}=\tilde{P}_{e \mu} \quad P_{\tau \mu}=\tilde{P}_{\mu \tau} \quad P_{\tau \tau}=\tilde{P}_{\mu \mu}
$$

2 out of 3 conditions are independent $\Rightarrow 4-2=2$ indep. probabilities (e.g., $P_{e \mu}$ and $P_{\mu \tau}$) \Rightarrow
\diamond All 9 neutrino ocillation probabilities can be expressed through just two!
(E.A., Johansson, Ohlsson, Lindner \& Schwetz, 2004)

$$
P_{\bar{a} \bar{b}}=P_{a b}\left(\delta_{\mathrm{CP}} \rightarrow-\delta_{\mathrm{CP}}, V \rightarrow-V\right)
$$

\Rightarrow All 18ν and $\bar{\nu}$ probab. can be expressed through just two

General dependence on δ_{CP}

Another use of essentially the same symmetry

$$
O_{23} \rightarrow O_{23}^{\prime}=O_{23} \times \operatorname{diag}\left(1,1, e^{i \delta_{\mathrm{CP}}}\right)
$$

The matrix of matter-induced potentials $\operatorname{diag}(V(t), 0,0)$ commutes with $O_{23}^{\prime} \Rightarrow$
General dependence of probabilities on δ_{CP} :

$$
\begin{aligned}
P_{e \mu} & =A_{e \mu} \cos \delta_{\mathrm{CP}}+B_{e \mu} \sin \delta_{\mathrm{CP}}+C_{e \mu} \\
P_{\mu \tau} & =A_{\mu \tau} \cos \delta_{\mathrm{CP}}+B_{\mu \tau} \sin \delta_{\mathrm{CP}}+C_{\mu \tau} \\
& +D_{\mu \tau} \cos 2 \delta_{\mathrm{CP}}+E_{\mu \tau} \sin 2 \delta_{\mathrm{CP}}
\end{aligned}
$$

(Yokomakura, Kimura \& Takamura, 2002)

Analytic solutions

For constant-density matter closed form solutions exist

(Barger, Whisnant, Pakvasa \& Phillips, 1980; Zaglauer \& Schwartzer, 1988; Ohlsson \& Snellman, 1999; Xing, 2000; Kimura, Takamura \& Yokomakura, 2002)

But: Expressions rather complicated and not easily tractable For a general $N_{e} \neq$ const no closed form solutions exist

Approximate analytic solutions desirable!
Approximations based on two small parameters:
(1) $\frac{\Delta m_{\odot}^{2}}{\Delta m_{\mathrm{atm}}^{2}}=\frac{\Delta m_{21}^{2}}{\Delta m_{31}^{2}} \sim 1 / 30$
(2) $\left|U_{e 3}\right|=\left|\sin \theta_{13}\right| \lesssim 0.2(\mathrm{CHOOZ})$
$\Delta m_{21}^{2}=0$ or $U_{13}=0-$ effective 2 f limits

Analytic solutions - contd.

Matter of constant density - a good first approximation for LBL experiments (neutrinos traverse Earth's mantle). Not very useful for solar, atmospheric and supernova neutrinos
Different approach: matter with arbitrary density profile, reduce the problem to an effective $2 f$ one + easily calculable $3 f$ corrections. Both approaches pursued using
(1) Expansion to 1st order in $\alpha=\Delta m_{21}^{2} / \Delta m_{31}^{2}$, exact dependence on $s_{13}=\sin \theta_{13}$
(2) Expansion to 1 st order in s_{13}, exact dependence on α
(3) Expansion to 2 nd order in both s_{13} and α

Recent discusion and summary:
E.A., Johansson, Ohlsson, Lindner \& Schwetz, 2004

Comparison of different approximations

3f effects in solar ν oscillations

What do the solar ν_{e} oscillate to?
From $\left|U_{e 3}\right| \ll 1$:

$$
\nu_{3} \simeq s_{23} \nu_{\mu}+c_{23} \nu_{\tau}
$$

$\Rightarrow \quad \nu_{3}$ practically does not participate in ν_{\odot} oscillations.
From unitarity of U : solar ν oscillations between

$$
\begin{aligned}
& \nu_{e} \quad \text { and } \nu^{\prime}=c_{23} \nu_{\mu}-s_{23} \nu_{\tau} \quad \Rightarrow \\
& P\left(\nu_{e} \rightarrow \nu_{\mu}\right) / P\left(\nu_{e} \rightarrow \nu_{\tau}\right) \simeq c_{23}^{2} / s_{23}^{2}
\end{aligned}
$$

$\theta_{23} \approx 45^{\circ}$ from $\nu_{\text {atm }}$ oscillations; $\quad \Rightarrow$
\diamond Solar ν_{e} oscillate into a superposition of ν_{μ} and ν_{τ} with almost equal weights
(N.B.: The same argument applies to oscillation of reactor $\bar{\nu}_{e}$'s

- KamLAND)

Solar ν_{e} survival probability

At low $E \nu_{\mu}$ and ν_{τ} experimentally indistinguishable \Rightarrow all observables depend just on $P\left(\nu_{e} \rightarrow \nu_{e}\right)$

Solar ν_{e} survival probability

At low $E \nu_{\mu}$ and ν_{τ} experimentally indistinguishable \Rightarrow all observables depend just on $P\left(\nu_{e} \rightarrow \nu_{e}\right)$ Averaging over fast oscillations due to large $\Delta m_{\text {atm }}^{2}=\Delta m_{31}^{2}$:

$$
P\left(\nu_{e} \rightarrow \nu_{e}\right) \simeq c_{13}^{4} P_{2 e e}\left(\Delta m_{21}^{2}, \theta_{12}, V_{\mathrm{eff}}\right)+s_{13}^{4},
$$

where $V_{\text {eff }}=c_{13}^{2} V$ (Lim, 1987)

Solar ν_{e} survival probability

At low $E \nu_{\mu}$ and ν_{τ} experimentally indistinguishable \Rightarrow all observables depend just on $P\left(\nu_{e} \rightarrow \nu_{e}\right)$ Averaging over fast oscillations due to large $\Delta m_{\mathrm{atm}}^{2}=\Delta m_{31}^{2}$:

$$
P\left(\nu_{e} \rightarrow \nu_{e}\right) \simeq c_{13}^{4} P_{2 e e}\left(\Delta m_{21}^{2}, \theta_{12}, V_{\text {eff }}\right)+s_{13}^{4},
$$

where $V_{\text {eff }}=c_{13}^{2} V$ (Lim, 1987)
$s_{13}^{4} \lesssim 10^{-3}-$ negligible. But: c_{13}^{4} may differ from 1 by as much as $\sim 5-10 \%$ (E - independent suppression) - with high precision solar data must be taken into account!

Solar ν_{e} survival probability

At low $E \nu_{\mu}$ and ν_{τ} experimentally indistinguishable \Rightarrow all observables depend just on $P\left(\nu_{e} \rightarrow \nu_{e}\right)$ Averaging over fast oscillations due to large $\Delta m_{\text {atm }}^{2}=\Delta m_{31}^{2}$:

$$
P\left(\nu_{e} \rightarrow \nu_{e}\right) \simeq c_{13}^{4} P_{2 e e}\left(\Delta m_{21}^{2}, \theta_{12}, V_{\mathrm{eff}}\right)+s_{13}^{4}
$$

where $V_{\text {eff }}=c_{13}^{2} V$ (Lim, 1987)
$s_{13}^{4} \lesssim 10^{-3}-$ negligible. But: c_{13}^{4} may differ from 1 by as much as $\sim 5-10 \%$ (E - independent suppression) - with high precision solar data must be taken into account!
\diamond From CC exp. data the solar neutrino fluxes $f_{B}, f_{B e}, \ldots$ are always extracted multiplied by the factor $c_{13}^{4} \Rightarrow$ an intrinsic uncertainty due to uncertainty in θ_{13}

Solar ν_{e} survival probability

At low $E \nu_{\mu}$ and ν_{τ} experimentally indistinguishable \Rightarrow all observables depend just on $P\left(\nu_{e} \rightarrow \nu_{e}\right)$ Averaging over fast oscillations due to large $\Delta m_{\text {atm }}^{2}=\Delta m_{31}^{2}$:

$$
P\left(\nu_{e} \rightarrow \nu_{e}\right) \simeq c_{13}^{4} P_{2 e e}\left(\Delta m_{21}^{2}, \theta_{12}, V_{\text {eff }}\right)+s_{13}^{4},
$$

where $V_{\text {eff }}=c_{13}^{2} V$ (Lim, 1987)
$s_{13}^{4} \lesssim 10^{-3}-$ negligible. But: c_{13}^{4} may differ from 1 by as much as $\sim 5-10 \%$ (E - independent suppression) - with high precision solar data must be taken into account!
\diamond From CC exp. data the solar neutrino fluxes $f_{B}, f_{B e}, \ldots$ are always extracted multiplied by the factor $c_{13}^{4} \Rightarrow$ an intrinsic uncertainty due to uncertainty in θ_{13}
NC expts. free of both astrophysics and θ_{13} uncertainties!

Day-Night effect

Earth matter (regeneration) effect on solar ν_{e} :
(Nigt-time signal) \neq (Day-time signal)
How does the Day-Night difference of the solar ν_{e} flux at the detectors depend on θ_{13} ? While $P_{D}\left(\nu_{e}\right) \propto c_{13}^{4}$,

$$
P_{N}\left(\nu_{e}\right)-P_{D}\left(\nu_{e}\right) \propto c_{13}^{6}
$$

(Const. density approximation: Blennow, Ohlsson \& Snellman, 2004); arbitrary density profile: E.A., Tortola \& Valle, 2004)
Night-Day asymmetry of the signal:

$$
A_{N D}=2 \frac{N-D}{N+D} \propto c_{13}^{2}
$$

Can one learn anything about θ_{13} by measuring $A_{N D}$?

At present, exp. errors too large; future experiments (UNO,
Hyper-K) can give useful information

Depending on the error and central value of $A_{N D}$, the upper bound on θ_{13} may be improved or even a lower bound may appear!

CHOOZ:

$$
c_{13}^{2}>0.95
$$

$3 f$ effects in atm. ν oscillations

- Dominant channel $\nu_{\mu} \leftrightarrow \nu_{\tau}$

In 2 f case - no matter effects (neglecting tiny $V_{\mu \tau}$ caused by rad. corrections). Independent from the sign of Δm_{31}^{2} (normal vs inverted hierarchy). In 3 f case - sensitivity to matter effects, sign of Δm_{31}^{2} (may be strong!)

$3 f$ effects in atm. ν oscillations

- Dominant channel $\nu_{\mu} \leftrightarrow \nu_{\tau}$

In 2 f case - no matter effects (neglecting tiny $V_{\mu \tau}$ caused by rad. corrections). Independent from the sign of Δm_{31}^{2} (normal vs inverted hierarchy). In 3 f case - sensitivity to matter effects, sign of Δm_{31}^{2} (may be strong!)

- Subdominant channels $\nu_{e} \leftrightarrow \nu_{\mu, \tau}$

Contribution to μ - like events: subleading, difficult to observe.

3f effects in atm. ν oscillations

- Dominant channel $\nu_{\mu} \leftrightarrow \nu_{\tau}$

In 2 f case - no matter effects (neglecting tiny $V_{\mu \tau}$ caused by rad. corrections). Independent from the sign of Δm_{31}^{2} (normal vs inverted hierarchy). In 3 f case - sensitivity to matter effects, sign of Δm_{31}^{2} (may be strong!)

- Subdominant channels $\nu_{e} \leftrightarrow \nu_{\mu, \tau}$

Contribution to μ - like events: subleading, difficult to observe.

In 2 f limits ($\Delta m_{21}^{2} \rightarrow 0$ or $\theta_{13} \rightarrow 0$) - suppression of oscillation effects on e-like events

Matter effects on $\nu_{\mu} \leftrightarrow \nu_{\tau}$ osc.

In 2 f approximation: no matter effects on $\nu_{\mu} \leftrightarrow \nu_{\tau}$ oscillations [$V\left(\nu_{\mu}\right)=V\left(\nu_{\tau}\right)$ modulo tiny rad. corrections].

Matter effects on $\nu_{\mu} \leftrightarrow \nu_{\tau}$ osc.

In 2f approximation: no matter effects on $\nu_{\mu} \leftrightarrow \nu_{\tau}$ oscillations [$V\left(\nu_{\mu}\right)=V\left(\nu_{\tau}\right)$ modulo tiny rad. corrections].
Not true in the full 3f framework! (E.A., 2002; Gandhi et al., 2004)

Matter effects on $\nu_{\mu} \leftrightarrow \nu_{\tau}$ osc.

In 2f approximation: no matter effects on $\nu_{\mu} \leftrightarrow \nu_{\tau}$ oscillations [$V\left(\nu_{\mu}\right)=V\left(\nu_{\tau}\right)$ modulo tiny rad. corrections].
Not true in the full 3f framework! (E.A., 2002; Gandhi et al., 2004)

$P_{\mu \tau}$

Oscillated flux of atm. ν_{μ}
$\Delta m_{31}^{2}=2.5 \times 10^{-3} \mathrm{eV}^{2}, \quad \sin ^{2} \theta_{13}=0.026, \quad \theta_{23}=\pi / 4$,
$\Delta m_{21}^{2}=0, L=9400 \mathrm{~km}$
Red curves - w/ matter effects, green curves - w/o matter effects on $P_{\mu \tau}$

3f effects in atm. ν osc. - contd.

$\diamond \Delta m_{21}^{2} \rightarrow 0$ (E.A., Dighe, Lipari \& Smirnov, 1998) :

$$
\frac{F_{e}-F_{e}^{0}}{F_{e}^{0}}=P_{2}\left(\Delta m_{31}^{2}, \theta_{13}, V_{\mathrm{CC}}\right) \cdot\left(r s_{23}^{2}-1\right)
$$

$\diamond s_{13} \longrightarrow 0$ (Peres \& Smirnov, 1999):

$$
\frac{F_{e}-F_{e}^{0}}{F_{e}^{0}}=P_{2}\left(\Delta m_{21}^{2}, \theta_{12}, V_{\mathrm{CC}}\right) \cdot\left(r c_{23}^{2}-1\right)
$$

At low energies $r \equiv F_{\mu}^{0} / F_{e}^{0} \simeq 2$; also $s_{23}^{2} \simeq c_{23}^{2} \simeq 1 / 2-\mathrm{a}$ conspiracy to hide oscillation effects on e-like events! Results from a peculiar flavour composition of the atmospheric ν flux. (Because of $\theta_{23} \simeq 45^{\circ}, P_{e \mu}=P_{\mu e}$ is $\simeq P_{e \tau}$; but the original ν_{μ} flux is ~ 2 times larger than ν_{e} flux \Rightarrow compensation of transitions from and to ν_{e} state).

Breaking the conspiracy - 3f effects in atmospheric neutrino oscillations (Peres \& Sminov, 2002)

$$
\begin{aligned}
\frac{F_{e}-F_{e}^{0}}{F_{e}^{0}} & \simeq P_{2}\left(\Delta m_{31}^{2}, \theta_{13}\right) \cdot\left(r s_{23}^{2}-1\right) \\
& +P_{2}\left(\Delta m_{21}^{2}, \theta_{12}\right) \cdot\left(r c_{23}^{2}-1\right) \\
& -2 s_{13} s_{23} c_{23} r \operatorname{Re}\left(\tilde{A}_{e e}^{*} \tilde{A}_{\mu e}\right)
\end{aligned}
$$

Interference term not suppressed by the flavour composition of the $\nu_{\text {atm }}$ flux; may be (partly) responsible for observed excess of upward-going sub-GeV e-like events

Breaking the conspiracy - 3f effects in atmospheric neutrino oscillations (Peres \& Sminnov, 2002)

$$
\begin{aligned}
\frac{F_{e}-F_{e}^{0}}{F_{e}^{0}} & \simeq P_{2}\left(\Delta m_{31}^{2}, \theta_{13}\right) \cdot\left(r s_{23}^{2}-1\right) \\
& +P_{2}\left(\Delta m_{21}^{2}, \theta_{12}\right) \cdot\left(r c_{23}^{2}-1\right) \\
& -2 s_{13} s_{23} c_{23} r \operatorname{Re}\left(\tilde{A}_{e e}^{*} \tilde{A}_{\mu e}\right)
\end{aligned}
$$

Interference term not suppressed by the flavour composition of the $\nu_{\text {atm }}$ flux; may be (partly) responsible for observed excess of upward-going sub-GeV e-like events

Interf. term may not be sufficient to fully explain the excess of low- E e-like events - a hint of $\theta_{23} \neq 45^{\circ}$? (Peres \& Smirnov, 2004)

Reactor $\bar{\nu}_{e}$ oscillations

$\bar{\nu}_{e}$ survival probability:

$$
P_{\bar{e} \bar{e}} \simeq 1-\sin ^{2} 2 \theta_{13} \cdot \sin ^{2}\left(\frac{\Delta m_{31}^{2}}{4 E} L\right)-c_{13}^{4} \sin ^{2} 2 \theta_{12} \cdot \sin ^{2}\left(\frac{\Delta m_{21}^{2}}{4 E} L\right)
$$

Reactor $\bar{\nu}_{e}$ oscillations

$\bar{\nu}_{e}$ survival probability:

$$
P_{\bar{e} \bar{e}} \simeq 1-\sin ^{2} 2 \theta_{13} \cdot \sin ^{2}\left(\frac{\Delta m_{31}^{2}}{4 E} L\right)-c_{13}^{4} \sin ^{2} 2 \theta_{12} \cdot \sin ^{2}\left(\frac{\Delta m_{21}^{2}}{4 E} L\right)
$$

- CHOOZ, Palo Verde, ... ($L \lesssim 1 \mathrm{~km}$)

$$
\bar{E} \sim 4 \mathrm{MeV} ; \quad \frac{\Delta m_{31}^{2}}{4 E} L \sim 1 ; \quad \frac{\Delta m_{21}^{2}}{4 E} L \ll 1
$$

Reactor $\bar{\nu}_{e}$ oscillations

$\bar{\nu}_{e}$ survival probability:

$$
P_{\bar{e} \bar{e}} \simeq 1-\sin ^{2} 2 \theta_{13} \cdot \sin ^{2}\left(\frac{\Delta m_{31}^{2}}{4 E} L\right)-c_{13}^{4} \sin ^{2} 2 \theta_{12} \cdot \sin ^{2}\left(\frac{\Delta m_{21}^{2}}{4 E} L\right)
$$

- CHOOZ, Palo Verde, ... ($L \lesssim 1$ km)

$$
\bar{E} \sim 4 \mathrm{MeV} ; \quad \frac{\Delta m_{31}^{2}}{4 E} L \sim 1 ; \quad \frac{\Delta m_{21}^{2}}{4 E} L \ll 1
$$

One mass scale dominance (2f) approximation:

$$
\diamond P\left(\bar{\nu}_{e} \rightarrow \bar{\nu}_{e} ; L\right)=1-\sin ^{2} 2 \theta_{13} \cdot \sin ^{2}\left(\frac{\Delta m_{31}^{2}}{4 E} L\right)
$$

(Note: Term $\sim \sin ^{2} 2 \theta_{12}$ cannot be neglected if $\theta_{13} \lesssim 0.03$, which is about the reach of currently discussed future reactor experiments.)

Reactor $\bar{\nu}_{e}$ oscillations - contd.

- KamLAND $(\bar{L} \simeq 170 \mathrm{~km})$

$$
\frac{\Delta m_{21}^{2}}{4 E} L \gtrsim 1 ; \quad \frac{\Delta m_{31}^{2}}{4 E} L \gg 1
$$

Averaging over fast oscillations due to $\Delta m_{\mathrm{atm}}^{2}=\Delta m_{31}^{2}$:

$$
\diamond P\left(\bar{\nu}_{e} \rightarrow \bar{\nu}_{e}\right)=c_{13}^{4} P_{2 \bar{e} \bar{e}}\left(\Delta m_{21}^{2}, \theta_{12}\right)+s_{13}^{4}
$$

Can differ from 2 f probability by as much as $\sim 10 \%$ (energy-independent suppression)
N.B.: Matter effects a few \% - can be comparable with effects of $\theta_{13} \neq 0$!

Reactor $\bar{\nu}_{e}$ oscillations

$3 f$ effects in LBL experiments

- ν_{μ} disappearance:

3 f corrections to probability up to $\sim 10 \%$, mainly due to

$$
\sin ^{2}\left(2 \theta_{\mu \tau}\right)_{\mathrm{eff}}=c_{13}^{4} \sin ^{2} 2 \theta_{23}
$$

Matter effects in $\nu_{\mu} \leftrightarrow \nu_{\tau}$ oscillations (typically small); contribution of subdominant $\nu_{\mu} \rightarrow \nu_{e}$ oscillations

$3 f$ effects in LBL experiments

- ν_{μ} disappearance:

3 f corrections to probability up to $\sim 10 \%$, mainly due to

$$
\sin ^{2}\left(2 \theta_{\mu \tau}\right)_{\mathrm{eff}}=c_{13}^{4} \sin ^{2} 2 \theta_{23}
$$

Matter effects in $\nu_{\mu} \leftrightarrow \nu_{\tau}$ oscillations (typically small); contribution of subdominant $\nu_{\mu} \rightarrow \nu_{e}$ oscillations

- $\nu_{\mu}\left(\nu_{\tau}\right)$ appearance at ν factories; ν_{e} appearance in experiments with superbeams

$3 f$ effects in LBL experiments

- ν_{μ} disappearance:

3 f corrections to probability up to $\sim 10 \%$, mainly due to

$$
\sin ^{2}\left(2 \theta_{\mu \tau}\right)_{\mathrm{eff}}=c_{13}^{4} \sin ^{2} 2 \theta_{23}
$$

Matter effects in $\nu_{\mu} \leftrightarrow \nu_{\tau}$ oscillations (typically small); contribution of subdominant $\nu_{\mu} \rightarrow \nu_{e}$ oscillations

- $\nu_{\mu}\left(\nu_{\tau}\right)$ appearance at ν factories; ν_{e} appearance in experiments with superbeams
Driven by $\nu_{e} \leftrightarrow \nu_{\mu, \tau}$ oscillations. For $E \sim 10 \mathrm{GeV}$ and

$$
3 \cdot 10^{-3} \lesssim \theta_{13} \lesssim 3 \cdot 10^{-2}
$$

- competition between two parameter channels
[$\left(\Delta m_{31}^{2}, \theta_{13}\right)$ and $\left.\left(\Delta m_{21}^{2}, \theta_{12}\right)\right]$ in $P\left(\nu_{e} \leftrightarrow \nu_{\mu}\right)$

LBL experiments - contd.

\diamond Unlike in $\nu_{\text {atm }}$, no suppression of $\nu_{e} \leftrightarrow \nu_{\mu, \tau}$ oscill. effects due to flavour composition of the original flux
\diamond Matter effects in $\nu_{\mu} \leftrightarrow \nu_{\tau}$ oscillations vanish only when both Δm_{21}^{2} and $U_{e 3}$ vanish
\diamond Dependence of all $P_{a b}$ on CP-violating phase δ_{CP} (both $\sim \sin \delta_{\mathrm{CP}}$ and $\sim \cos \delta_{\mathrm{CP}}$) comes from interf. terms

- pure 3f effect
\diamond 3f effects especially important for precision measurements (ν factories!)

$C P$ and T in ν osc. in vacuum

 $\nu_{a} \rightarrow \nu_{b}$ oscillation probability:$$
\diamond P\left(\nu_{a}, t_{0} \rightarrow \nu_{b} ; t\right)=\left|\sum_{i} U_{b i} e^{-i E_{i}\left(t-t_{0}\right)} U_{a i}^{*}\right|^{2}
$$

- CP: $\nu_{a, b} \leftrightarrow \bar{\nu}_{a, b} \quad \Rightarrow \quad U_{a i} \rightarrow U_{a i}^{*} \quad\left(\left\{\delta_{\mathrm{CP}}\right\} \rightarrow-\left\{\delta_{\mathrm{CP}}\right\}\right)$
- T: $\quad t \rightleftarrows t_{0} \quad \Leftrightarrow \quad \nu_{a} \leftrightarrow \nu_{b}$

$$
\Rightarrow \quad U_{a i} \rightarrow U_{a i}^{*} \quad\left(\left\{\delta_{\mathrm{CP}}\right\} \rightarrow-\left\{\delta_{\mathrm{CP}}\right\}\right)
$$

T-reversed oscillations ("backwards in time") \Leftrightarrow oscillations between interchanged initial and final flavours
$\diamond \measuredangle P$ and $\not \subset$ - absent in $2 f$ case, pure $N \geq 3 f$ effects!

- CPT: $\quad \nu_{a, b} \leftrightarrow \bar{\nu}_{a, b} \quad \& \quad t \rightleftarrows t_{0} \quad\left(\nu_{a} \leftrightarrow \nu_{b}\right)$

$$
\diamond P\left(\nu_{a} \rightarrow \nu_{b}\right) \rightarrow P\left(\bar{\nu}_{b} \rightarrow \bar{\nu}_{a}\right)
$$

The standard formula for $P_{a b}$ in vacuum is CPT invariant!

$$
C P \Leftrightarrow \not{X}-\text { consequence of } C P T
$$

Measures of $\mathscr{C P}$ and $\not \subset$ - probability differences:

$$
\begin{gathered}
\Delta P_{a b}^{\mathrm{CP}} \equiv P\left(\nu_{a} \rightarrow \nu_{b}\right)-P\left(\bar{\nu}_{a} \rightarrow \bar{\nu}_{b}\right) \\
\Delta P_{a b}^{\mathrm{T}} \equiv P\left(\nu_{a} \rightarrow \nu_{b}\right)-P\left(\nu_{b} \rightarrow \nu_{a}\right)
\end{gathered}
$$

From CPT:

$$
\diamond \quad \Delta P_{a b}^{\mathrm{CP}}=\Delta P_{a b}^{\mathrm{T}} ; \quad \Delta P_{a a}^{\mathrm{CP}}=0
$$

3f case

One CP Dirac-type phase δ_{CP} (NB: Majorana phases do not affect ν oscillations!) \Rightarrow one $\varnothing \overline{C P}$ and $\not \subset$ observable:

$$
\Delta P_{e \mu}^{\mathrm{CP}}=\Delta P_{\mu \tau}^{\mathrm{CP}}=\Delta P_{\tau e}^{\mathrm{CP}} \equiv \Delta P
$$

3f case

One $\measuredangle P$ Dirac-type phase δ_{CP} (NB: Majorana phases do not affect ν oscillations!) \Rightarrow one $\varnothing P$ and $\not \subset$ observable:

$$
\Delta P_{e \mu}^{\mathrm{CP}}=\Delta P_{\mu \tau}^{\mathrm{CP}}=\Delta P_{\tau e}^{\mathrm{CP}} \equiv \Delta P
$$

$\Delta P=-4 s_{12} c_{12} s_{13} c_{13}^{2} s_{23} c_{23} \sin \delta_{\mathrm{CP}}$

$$
\times\left[\sin \left(\frac{\Delta m_{12}^{2}}{2 E} L\right)+\sin \left(\frac{\Delta m_{23}^{2}}{2 E} L\right)+\sin \left(\frac{\Delta m_{31}^{2}}{2 E} L\right)\right]
$$

3f case

One $\measuredangle P$ Dirac-type phase δ_{CP} (NB: Majorana phases do not affect ν oscillations!) \Rightarrow one $\varnothing \bar{C}$ and $\not \subset$ observable:

$$
\Delta P_{e \mu}^{\mathrm{CP}}=\Delta P_{\mu \tau}^{\mathrm{CP}}=\Delta P_{\tau e}^{\mathrm{CP}} \equiv \Delta P
$$

$\Delta P=-4 s_{12} c_{12} s_{13} c_{13}^{2} s_{23} c_{23} \sin \delta_{\mathrm{CP}}$

$$
\times\left[\sin \left(\frac{\Delta m_{12}^{2}}{2 E} L\right)+\sin \left(\frac{\Delta m_{23}^{2}}{2 E} L\right)+\sin \left(\frac{\Delta m_{31}^{2}}{2 E} L\right)\right]
$$

Vanishes when

- At least one $\Delta m_{i j}^{2}=0$

3f case

One $\varnothing P$ Dirac-type phase δ_{CP} (NB: Majorana phases do not affect ν oscillations!) \Rightarrow one $\varnothing \bar{C}$ and $\not \subset$ observable:

$$
\diamond \Delta P_{e \mu}^{\mathrm{CP}}=\Delta P_{\mu \tau}^{\mathrm{CP}}=\Delta P_{\tau e}^{\mathrm{CP}} \equiv \Delta P
$$

$\Delta P=-4 s_{12} c_{12} s_{13} c_{13}^{2} s_{23} c_{23} \sin \delta_{\mathrm{CP}}$

$$
\times\left[\sin \left(\frac{\Delta m_{12}^{2}}{2 E} L\right)+\sin \left(\frac{\Delta m_{23}^{2}}{2 E} L\right)+\sin \left(\frac{\Delta m_{31}^{2}}{2 E} L\right)\right]
$$

Vanishes when

- At least one $\Delta m_{i j}^{2}=0$
- At least one $\theta_{i j}=0$ or 90°

3f case

One $\varnothing P$ Dirac-type phase δ_{CP} (NB: Majorana phases do not affect ν oscillations!) \Rightarrow one $\varnothing \bar{C}$ and $\not \subset$ observable:

$$
\diamond \Delta P_{e \mu}^{\mathrm{CP}}=\Delta P_{\mu \tau}^{\mathrm{CP}}=\Delta P_{\tau e}^{\mathrm{CP}} \equiv \Delta P
$$

$\Delta P=-4 s_{12} c_{12} s_{13} c_{13}^{2} s_{23} c_{23} \sin \delta_{\mathrm{CP}}$

$$
\times\left[\sin \left(\frac{\Delta m_{12}^{2}}{2 E} L\right)+\sin \left(\frac{\Delta m_{23}^{2}}{2 E} L\right)+\sin \left(\frac{\Delta m_{31}^{2}}{2 E} L\right)\right]
$$

Vanishes when

- At least one $\Delta m_{i j}^{2}=0$
- At least one $\theta_{i j}=0$ or 90°
- $\delta_{\mathrm{CP}}=0$ or 180°

3f case

One $\varnothing P$ Dirac-type phase δ_{CP} (NB: Majorana phases do not affect ν oscillations!) \Rightarrow one $\varnothing \bar{C}$ and $\not \subset$ observable:

$$
\Delta P_{e \mu}^{\mathrm{CP}}=\Delta P_{\mu \tau}^{\mathrm{CP}}=\Delta P_{\tau e}^{\mathrm{CP}} \equiv \Delta P
$$

$\Delta P=-4 s_{12} c_{12} s_{13} c_{13}^{2} s_{23} c_{23} \sin \delta_{\mathrm{CP}}$

$$
\times\left[\sin \left(\frac{\Delta m_{12}^{2}}{2 E} L\right)+\sin \left(\frac{\Delta m_{23}^{2}}{2 E} L\right)+\sin \left(\frac{\Delta m_{31}^{2}}{2 E} L\right)\right]
$$

Vanishes when

- At least one $\Delta m_{i j}^{2}=0$
- At least one $\theta_{i j}=0$ or 90°
- $\delta_{\mathrm{CP}}=0$ or 180°
- In the averaging regime

3f case

One $\measuredangle P$ Dirac-type phase δ_{CP} (NB: Majorana phases do not affect ν oscillations!) \Rightarrow one $\varnothing \bar{C}$ and $\not \subset$ observable:

$$
\Delta P_{e \mu}^{\mathrm{CP}}=\Delta P_{\mu \tau}^{\mathrm{CP}}=\Delta P_{\tau e}^{\mathrm{CP}} \equiv \Delta P
$$

$\Delta P=-4 s_{12} c_{12} s_{13} c_{13}^{2} s_{23} c_{23} \sin \delta_{\mathrm{CP}}$

$$
\times\left[\sin \left(\frac{\Delta m_{12}^{2}}{2 E} L\right)+\sin \left(\frac{\Delta m_{23}^{2}}{2 E} L\right)+\sin \left(\frac{\Delta m_{31}^{2}}{2 E} L\right)\right]
$$

Vanishes when

- At least one $\Delta m_{i j}^{2}=0$
- At least one $\theta_{i j}=0$ or 90°
- $\delta_{\mathrm{CP}}=0$ or 180°
- In the averaging regime
- In the limit $L \rightarrow 0\left(\right.$ as $\left.L^{3}\right)$

3f case

One $\varnothing P$ Dirac-type phase δ_{CP} (NB: Majorana phases do not affect ν oscillations!) \Rightarrow one $\varnothing P$ and $\not \subset$ observable:

$$
\Delta P_{e \mu}^{\mathrm{CP}}=\Delta P_{\mu \tau}^{\mathrm{CP}}=\Delta P_{\tau e}^{\mathrm{CP}} \equiv \Delta P
$$

$\Delta P=-4 s_{12} c_{12} s_{13} c_{13}^{2} s_{23} c_{23} \sin \delta_{\mathrm{CP}}$

$$
\times\left[\sin \left(\frac{\Delta m_{12}^{2}}{2 E} L\right)+\sin \left(\frac{\Delta m_{23}^{2}}{2 E} L\right)+\sin \left(\frac{\Delta m_{31}^{2}}{2 E} L\right)\right]
$$

Vanishes when

- At least one $\Delta m_{i j}^{2}=0$
- At least one $\theta_{i j}=0$ or 90°

Very difficult to

- $\delta_{\mathrm{CP}}=0$ or 180°
- In the averaging regime
- In the limit $L \rightarrow 0\left(\right.$ as $\left.L^{3}\right)$

$C P$ and T in ν osc. in matter

- CP: $\nu_{a, b} \leftrightarrow \bar{\nu}_{a, b} \quad \Rightarrow \quad U_{a i} \rightarrow U_{a i}^{*} \quad\left(\left\{\delta_{\mathrm{CP}}\right\} \rightarrow-\left\{\delta_{\mathrm{CP}}\right\}\right)$

$$
V(r) \rightarrow-V(r)
$$

- T: $\quad t \rightleftarrows t_{0} \quad \Leftrightarrow \quad \nu_{a} \leftrightarrow \nu_{b}$

$$
\begin{aligned}
\Rightarrow \quad & U_{a i} \rightarrow U_{a i}^{*} \quad\left(\left\{\delta_{\mathrm{CP}}\right\} \rightarrow-\left\{\delta_{\mathrm{CP}}\right\}\right) \\
& V(r) \rightarrow \tilde{V}(r)
\end{aligned}
$$

$$
\tilde{V}(r)=\sqrt{2} G_{F} \tilde{N}(r)
$$

$\tilde{N}(r)$: corresponds to interchanged positions of ν source and detector. Symmetric density profiles: $\tilde{N}(r)=N(r)$
\diamond The very presence of matter violates C, CP and CPT!
\Rightarrow Fake (extrinsic) $\measuredangle P$ which may complicate the study of fundamental (intrinsic) $\varnothing P$

CP in matter

- Exists even in 2 f case (in $\geq 3 \mathrm{f}$ case exists even when all $\left\{\delta_{\mathrm{CP}}\right\}=0$) due to matter effects:

$$
P\left(\nu_{a} \rightarrow \nu_{b}\right) \neq P\left(\bar{\nu}_{a} \rightarrow \bar{\nu}_{b}\right)
$$

E.g., MSW effect can enhance $\nu_{e} \leftrightarrow \nu_{\mu}$ and suppress $\bar{\nu}_{e} \leftrightarrow \bar{\nu}_{\mu}$ or vice versa.

- Survival probabilities are not CP-invariant:

$$
P\left(\nu_{a} \rightarrow \nu_{a}\right) \neq P\left(\bar{\nu}_{a} \rightarrow \bar{\nu}_{a}\right)
$$

To disentangle fundamental $\varnothing P$ from the matter induced one in LBL experiments - need to measure energy dependence of oscillated signal or signal at two baselines - a difficult task

(Difficult) alternatives:

- Low- E LBL experiments ($E \sim 0.1-1 \mathrm{GeV}$, $L \sim 100-1000 \mathrm{~km}$) (Koike \& Sato, 1999; Minakata \& Nunokawa, 2000, 2001);
- Indirect measurements:
(A) CP-even terms $\sim \cos \delta_{\mathrm{CP}}$ (Lipari, 2001)
(B) Area of leptonic unitarity triangle (Farzan \& Smirnov, 2002; Aguilar-Saavedra \& Branco, 2000; Sato, 2000)
\varnothing © cannot be studied in $\mathrm{SN} \nu$ experiments because of experimental indistinguishability of low-energy ν_{μ} and ν_{τ}

T in matter

CPT not conserved in matter $\Rightarrow \varnothing \subset$ and $\not T^{1}$ are not directly related!

- Matter does not necessarily induce \mathscr{T} (only asymmetric matter with $\tilde{N}(r) \neq N(r)$ does)
- There is no \mathscr{T} (either fundamental or matter induced) in 2 f case - a consequence of unitarity:

$$
\begin{gathered}
P_{e e}+P_{e \mu}=1 \\
P_{e e}+P_{\mu e}=1 \\
\Downarrow \\
P_{e \mu}=P_{\mu e}
\end{gathered}
$$

- In 3f case - only one T-odd probability difference for ν 's (and one for $\bar{\nu}$'s) irrespective of matter density profile - a consequence of unitarity in 3f case (Krastev \& Petcov, 1988)

$$
\Delta P_{e \mu}^{T}=\Delta P_{\mu \tau}^{T}=\Delta P_{\tau e}^{T}
$$

Matter-induced \mathscr{X} :
\diamond An interesting, pure 3f matter effect; absent in symmetric matter (e.g., $N(r)=$ const)
\diamond Does not vanish in the regime of complete averaging
\diamond May fake fundamental \mathscr{K} and complicate its study (extraction of δ_{CP} from experiment)
\diamond Vanishes when either $U_{e 3}=0$ or $\Delta m_{21}^{2}=0$ (2f limits)
\Rightarrow doubly suppressed by both these small parameters
\Rightarrow Perturbation theory can be used to get analytic expressions

General structure of T-odd probability differences:

$$
\Delta P_{e \mu}^{T}=\underbrace{\sin \delta_{\mathrm{CP}} \cdot Y}_{\text {fundam. } \not \mathscr{}}+\underbrace{\cos \delta_{\mathrm{CP}} \cdot X}_{\text {matter-ind. } \not \mathscr{}}
$$

In adiabatic approximation: $X=J_{\text {eff }} \cdot($ oscillating terms $)$,

$$
J_{\mathrm{eff}}=s_{12} c_{12} s_{13} c_{13}^{2} s_{23} c_{23} \frac{\sin \left(2 \theta_{1}-2 \theta_{2}\right)}{\sin 2 \theta_{12}}
$$

(E.A., Huber, Lindner \& Ohlsson, 2001)

Compare with the vacuum Jarlskog invariant:

$$
\begin{aligned}
J & =s_{12} c_{12} s_{13} c_{13}^{2} s_{23} c_{23} \sin \delta_{\mathrm{CP}} \\
\Rightarrow \quad & \sin \delta_{\mathrm{CP}} \Leftrightarrow \frac{\sin \left(2 \theta_{1}-2 \theta_{2}\right)}{\sin 2 \theta_{12}}
\end{aligned}
$$

To extract fundamental \mathscr{X} need to measure:

$$
\Delta P_{a b} \equiv P_{\mathrm{dir}}\left(\nu_{a} \rightarrow \nu_{b}\right)-P_{\mathrm{rev}}\left(\nu_{b} \rightarrow \nu_{a}\right) \propto \sin \delta_{\mathrm{CP}}
$$

Even survival probabilities $P_{a a}(a=\mu, \tau)$ can be used!
(Fishbane \& Kaus, 2000)

$$
P_{\mathrm{dir}}\left(\nu_{a} \rightarrow \nu_{a}\right)-P_{\mathrm{rev}}\left(\nu_{a} \rightarrow \nu_{a}\right) \sim \sin \delta_{\mathrm{CP}} \quad(a \neq e)
$$

In 3f case $P_{e e}$ does not depend on δ_{CP} (Kuo \& Pantaleone, 1987; Minakata \& Watanabe, 1999) - not true if $\nu_{\text {sterile }}$ is present!

To extract fundamental \mathscr{X} need to measure:

$$
\Delta P_{a b} \equiv P_{\mathrm{dir}}\left(\nu_{a} \rightarrow \nu_{b}\right)-P_{\mathrm{rev}}\left(\nu_{b} \rightarrow \nu_{a}\right) \propto \sin \delta_{\mathrm{CP}}
$$

Even survival probabilities $P_{a a}(a=\mu, \tau)$ can be used!
(Fishbane \& Kaus, 2000)

$$
P_{\mathrm{dir}}\left(\nu_{a} \rightarrow \nu_{a}\right)-P_{\mathrm{rev}}\left(\nu_{a} \rightarrow \nu_{a}\right) \sim \sin \delta_{\mathrm{CP}} \quad(a \neq e)
$$

In 3f case $P_{e e}$ does not depend on δ_{CP} (Kuo \& Pantaleone, 1987; Minakata \& Watanabe, 1999) - not true if $\nu_{\text {sterile }}$ is present!

Matter-induced \mathscr{T} in LBL experiments due to imperfect sphericity of the Earth density distribution cannot spoil the determination of δ_{CP} if the error in δ_{CP} is $>1 \%$ at 99% C.L. (E.A., Huber, Lindner \& Ohlsson, 2001)

To extract fundamental \mathscr{X} need to measure:

$$
\Delta P_{a b} \equiv P_{\mathrm{dir}}\left(\nu_{a} \rightarrow \nu_{b}\right)-P_{\mathrm{rev}}\left(\nu_{b} \rightarrow \nu_{a}\right) \propto \sin \delta_{\mathrm{CP}}
$$

Even survival probabilities $P_{a a}(a=\mu, \tau)$ can be used!
(Fishbane \& Kaus, 2000)

$$
P_{\mathrm{dir}}\left(\nu_{a} \rightarrow \nu_{a}\right)-P_{\mathrm{rev}}\left(\nu_{a} \rightarrow \nu_{a}\right) \sim \sin \delta_{\mathrm{CP}} \quad(a \neq e)
$$

In 3f case $P_{e e}$ does not depend on δ_{CP} (Kuo \& Pantaleone, 1987; Minakata \& Watanabe, 1999) - not true if $\nu_{\text {sterile }}$ is present!

Matter-induced \mathscr{T} in LBL experiments due to imperfect sphericity of the Earth density distribution cannot spoil the determination of δ_{CP} if the error in δ_{CP} is $>1 \%$ at 99% C.L. (E.A., Huber, Lindner \& Ohlsson, 2001)
$\Rightarrow \quad$ No need to interchange positions of ν source and detector!

Experimental study of \mathscr{T} diffcult because of problems with detection of $e^{ \pm}$

Matter-induced \mathscr{X} :

\diamond Negligible effects in terrestrial experiments
\diamond Cannot be observed in supernova ν oscillations due to experimental indistinguishability of low- E ν_{μ} and ν_{τ}
\diamond Can affect the signal from $\sim \mathrm{GeV}$ neutrinos produced in annihilations of WIMPs inside the Sun (de Gouvêa, 2000)

"CPT in matter"

Is there a relation between $\varnothing P$ and \mathscr{X} in matter?
For symmetric density profiles (i.e. $\tilde{V}(r)=V(r))$

$$
P\left(\nu_{a} \rightarrow \nu_{b} ; \delta_{\mathrm{CP}}, V(r)\right)=P\left(\bar{\nu}_{b} \rightarrow \bar{\nu}_{a} ; \delta_{\mathrm{CP}},-V(r)\right)
$$

(Minakata, Nunokawa \& Parke, 2002)

Easy to generalize to the case of an arbitrary density profile:

$$
P\left(\nu_{a} \rightarrow \nu_{b} ; \delta_{\mathrm{CP}}, V(r)\right)=P\left(\bar{\nu}_{b} \rightarrow \bar{\nu}_{a} ; \delta_{\mathrm{CP}},-\tilde{V}(r)\right)
$$

Unlike CPT in vacuum, does not directly relate observables
Can be useful for cross-checking theoreticl calculations

Why study U_e3 (A hymn to $U_{e 3}$)

- The least known of leptonic mixing parameters
- Discriminates between various neutrino mass models (Barr \& Dorsner, 2000; Tanimoto, 2001)
- Unexplained smallness (rel. to $\Delta m_{\odot}^{2} / \Delta m_{\mathrm{atm}}^{2}$?)
- The (likely) bottleneck for studying fundamental $C P$ and X^{\prime} effects and matter-induced \mathscr{T} in neutrino oscillations
- Important for measuring the sign of Δm_{31}^{2} in future LBL experiments - normal vs inverted ν mass hierarchy

A hymn to U_e3 - contd.

- Governs subdominant oscillations of atmospheric neutrinos in multi-GeV region and interf. term in sub-GeV region
- Governs the Earth matter effects on supernova neutrino oscillations
- The only opportunity to see the "canonical" MSW effect (strong matter enhancement of small mixing)?
- Drives the parametric enhancement of oscillations of core-crossing neutrinos inside the Earth

Conclusions

\diamond Two types of 3f effects - "trivial" (existence of new channels, their inter-dependence through unitarity) and nontrivial (interference of different parameter channels, qualitatively new effects fundamental CP and T-violation, and matter induced T violation
\diamond 3f corrections to probabilities of oscillations of solar, atmospheric, reactor and acceler. neutrinos depend on $\left|U_{e 3}\right|=\left|\sin \theta_{13}\right| ;$ can reach $\sim 10 \%$

Possible interesting 3f effects for SN neutrinos depend signifcantly on the value $U_{e 3}$

Conclusions - contd.

\diamond Manifestations of ≥ 3 flavours in neutrino oscillations:

- Fundamental $\varnothing P$ and \mathscr{T}
- Matter-induced $\not \subset$
- Matter effects in $\nu_{\mu} \leftrightarrow \nu_{\tau}$ oscillations
- Specifi CP and T conserving interference terms in oscillation probabilities
$U_{e 3}$ plays a very special role

