Three-Flavour Effects in Neutrino Oscillations

Evgeny Akhmedov

MPI-K, Heidelberg & Kurchatov Inst., Moscow

Evgeny Akhmedov

GLoBES Workshop, MPI - K Heidelberg

January 24 - 26, 2007 – p. 1/43

3f effects in neutrino oscillations

- General properties of 3f oscill. probabilities
- Analytic solutions
- 3f effects in oscillations of solar, atmospheric, reactor and accelerator neutrinos
- CP and T in ν oscillations in vacuum
- CP and T in ν oscillations in matter
- The problem of U_{e3}

Three neutrino species: ν_e, ν_μ, ν_τ

But until a few years ago most analyses – in 2f framework

Evgeny Akhmedov

• Simplicity (2f: 2 parameters, 3f: 6 parameters)

- Simplicity (2f: 2 parameters, 3f: 6 parameters)
- Hierarchy of Δm^2 : $\Delta m^2_{21} / \Delta m^2_{31} \ll 1$.

- Simplicity (2f: 2 parameters, 3f: 6 parameters)
- Hierarchy of Δm^2 : $\Delta m^2_{21}/\Delta m^2_{31} \ll 1$.
- Smalness of U_{e3}

- Simplicity (2f: 2 parameters, 3f: 6 parameters)
- Hierarchy of Δm^2 : $\Delta m^2_{21} / \Delta m^2_{31} \ll 1$.
- Smalness of U_{e3}

 \Rightarrow Oscillations of solar, atmospheric, reactor, accelerator and SN neutrinos can to first approximation be considered as 2f ones

- Simplicity (2f: 2 parameters, 3f: 6 parameters)
- Hierarchy of Δm^2 : $\Delta m^2_{21} / \Delta m^2_{31} \ll 1$.
- Smalness of U_{e3}

 \Rightarrow Oscillations of solar, atmospheric, reactor, accelerator and SN neutrinos can to first approximation be considered as 2f ones **But**:

♦ 3f effects in P_{ab} up to ~ 10% ⇒ important for precision measurements

- Simplicity (2f: 2 parameters, 3f: 6 parameters)
- Hierarchy of Δm^2 : $\Delta m^2_{21} / \Delta m^2_{31} \ll 1$.
- Smalness of U_{e3}

 \Rightarrow Oscillations of solar, atmospheric, reactor, accelerator and SN neutrinos can to first approximation be considered as 2f ones **But**:

- ♦ 3f effects in P_{ab} up to ~ 10% ⇒ important for precision measurements
- A number of interesting pure 3f effects exist

- Simplicity (2f: 2 parameters, 3f: 6 parameters)
- Hierarchy of Δm^2 : $\Delta m^2_{21}/\Delta m^2_{31} \ll 1$.
- Smalness of U_{e3}

 \Rightarrow Oscillations of solar, atmospheric, reactor, accelerator and SN neutrinos can to first approximation be considered as 2f ones **But**:

- ♦ 3f effects in P_{ab} up to ~ 10% ⇒ important for precision measurements
- A number of interesting pure 3f effects exist These days: 3f analyses a must!

Evgeny Akhmedov

GLoBES Workshop, MPI - K Heidelberg

Two types of 3f effects

I. "Trivial" effects

- Existence of new physical channels in addition to ν_e ↔ ν_µ there are ν_e ↔ ν_τ and ν_µ ↔ ν_τ; mutual influence of channels through unitarity (conservation of probability).
- New "parameter channels" for the same physical channel. E.g.: $\nu_e \leftrightarrow \nu_\mu$ oscill. can be governed by $(\Delta m_{21}^2, \theta_{12})$ and $(\Delta m_{31}^2, \theta_{13})$

Two types of 3f effects – contd.

II. Nontrivial effects

- Fundamental \mathcal{CP} and \mathcal{T}
- Matter-induced \mathcal{T}
- Interference of different "parameter channels" specific contributions to oscillation probabilities
- Matter effects on $\nu_{\mu} \leftrightarrow \nu_{\tau}$ oscillations

Nontrivial 3f effects (except the last one): disappear if at least one mixing angle is 0 or 90°, or at least one $\Delta m_{ij}^2 = 0$

Leptonic mixing

$$\nu_a = U_{ai} \, \nu_i$$

Oscillation probability in vacuum:

$$P(\nu_a \to \nu_b; t) = \left| \sum_i U_{bi} \ e^{-iE_i t} \ U_{ai}^* \right|^2$$

3f mixing matrix ($c_{ij} = \cos \theta_{ij}, s_{ij} = \sin \theta_{ij}$):

$$V = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{\rm CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{\rm CP}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

U =

Leptonic mixing – contd.

Normal hierarchy:

Inverted hierarchy:

Neutrino oscillations in matter

Evolution equation:

$$i\frac{d}{dt}\begin{pmatrix}\nu_e\\\nu_\mu\\\nu_\tau\end{pmatrix} = \begin{bmatrix}U\begin{pmatrix}E_1 & 0 & 0\\0 & E_2 & 0\\0 & 0 & E_3\end{bmatrix}U^{\dagger} + \begin{pmatrix}V(t) & 0 & 0\\0 & 0 & 0\\0 & 0 & 0\end{bmatrix}\begin{bmatrix}\nu_e\\\nu_\mu\\\nu_\tau\end{pmatrix}$$

$$E_i = \sqrt{p^2 + m_i^2} \simeq p + \frac{m_i^2}{2p}; \qquad t \simeq r$$

 $V(t) = [V(\nu_e)]_{CC} = \sqrt{2}G_F N_e(t)$ $[V(\nu_e)]_{NC} = [V(\nu_\mu)]_{NC} = [V(\nu_\tau)]_{NC} - \text{do not contribute}$ $(Modulo \ tiny \ radiative \ corrections)$

Evgeny Akhmedov

GLoBES Workshop, MPI - K Heidelberg

General properties of P_{ab} 3 flavours $\Rightarrow 3 \times 3 = 9$ probabilities

 $P_{ab} = P(\nu_a \to \nu_b),$

plus 9 probabilities for antineutrinos $P_{\bar{a}\bar{b}}$.

General properties of P_{ab} 3 flavours $\Rightarrow 3 \times 3 = 9$ probabilities

$$P_{ab} = P(\nu_a \to \nu_b),$$

plus 9 probabilities for antineutrinos $P_{\bar{a}\bar{b}}$. Unitarity conditions (probability conservation):

$$\sum_{b} P_{ab} = \sum_{a} P_{ab} = 1 \qquad (a, b = e, \mu, \tau)$$

5 indep. conditions \Rightarrow 9-5=4 indep. probabilities left.

Evgeny Akhmedov

General properties of P_{ab} 3 flavours $\Rightarrow 3 \times 3 = 9$ probabilities

$$P_{ab} = P(\nu_a \to \nu_b),$$

plus 9 probabilities for antineutrinos $P_{\bar{a}\bar{b}}$. Unitarity conditions (probability conservation):

$$\sum_{b} P_{ab} = \sum_{a} P_{ab} = 1 \qquad (a, b = e, \mu, \tau)$$

5 indep. conditions \Rightarrow 9-5=4 indep. probabilities left. Additional symmetry: the matrix of matter-induced potentials diag(V(t), 0, 0) commutes with $O_{23} \Rightarrow$ additional relations between probabilities.

Evgeny Akhmedov

 $\tilde{P}_{ab} = P_{ab}(s_{23}^2 \leftrightarrow c_{23}^2, \sin 2\theta_{23} \rightarrow -\sin 2\theta_{23})$ (e.g., $\theta_{23} \rightarrow \theta_{23} + \pi/2$).

$$\tilde{P}_{ab} = P_{ab}(s_{23}^2 \leftrightarrow c_{23}^2, \sin 2\theta_{23} \rightarrow -\sin 2\theta_{23})$$

e.g., $\theta_{23} \rightarrow \theta_{23} + \pi/2$). Then
 $P_{e\tau} = \tilde{P}_{e\mu} \quad P_{\tau\mu} = \tilde{P}_{\mu\tau} \quad P_{\tau\tau} = \tilde{P}_{\mu\mu}$

$$\tilde{P}_{ab} = P_{ab}(s_{23}^2 \leftrightarrow c_{23}^2, \sin 2\theta_{23} \rightarrow -\sin 2\theta_{23})$$

e.g., $\theta_{23} \rightarrow \theta_{23} + \pi/2$). Then
$$P_{e\tau} = \tilde{P}_{e\mu} \quad P_{\tau\mu} = \tilde{P}_{\mu\tau} \quad P_{\tau\tau} = \tilde{P}_{\mu\mu}$$

2 out of 3 conditions are independent \Rightarrow 4-2=2 indep. probabilities (e.g., $P_{e\mu}$ and $P_{\mu\tau}$) \Rightarrow

 $\tilde{P}_{ab} = P_{ab}(s_{23}^2 \leftrightarrow c_{23}^2, \sin 2\theta_{23} \rightarrow -\sin 2\theta_{23})$ (e.g., $\theta_{23} \rightarrow \theta_{23} + \pi/2$). Then $P_{e\tau} = \tilde{P}_{e\mu} \quad P_{\tau\mu} = \tilde{P}_{\mu\tau} \quad P_{\tau\tau} = \tilde{P}_{\mu\mu}$ 2 out of 3 conditions are independent \Rightarrow 4-2=2 indep. probabilities (e.g., $P_{e\mu}$ and $P_{\mu\tau}$) \Rightarrow All 9 neutrino ocillation probabilities can be expressed through just two! (E.A., Johansson, Ohlsson, Lindner & Schwetz, 2004)

 $\tilde{P}_{ab} = P_{ab}(s_{23}^2 \leftrightarrow c_{23}^2, \sin 2\theta_{23} \rightarrow -\sin 2\theta_{23})$ (e.g., $\theta_{23} \rightarrow \theta_{23} + \pi/2$). Then $P_{e\tau} = \tilde{P}_{e\mu}$ $P_{\tau\mu} = \tilde{P}_{\mu\tau}$ $P_{\tau\tau} = \tilde{P}_{\mu\mu}$ 2 out of 3 conditions are independent \Rightarrow 4-2=2 indep. probabilities (e.g., $P_{e\mu}$ and $P_{\mu\tau}$) \Rightarrow • All 9 neutrino ocillation probabilities can be expressed through just two! (E.A., Johansson, Ohlsson, Lindner & Schwetz, 2004)

$$P_{\bar{a}\bar{b}} = P_{ab}(\delta_{\rm CP} \to -\delta_{\rm CP}, V \to -V)$$

 \Rightarrow All 18 ν and $\bar{\nu}$ probab. can be expressed through just two

GLoBES Workshop, MPI - K Heidelberg

General dependence on δ_{CP}

Another use of essentially the same symmetry

 $O_{23} \to O'_{23} = O_{23} \times diag(1, 1, e^{i\delta_{\rm CP}})$

The matrix of matter-induced potentials diag(V(t), 0, 0)commutes with $O'_{23} \Rightarrow$ General dependence of probabilities on δ_{CP} :

$$P_{e\mu} = A_{e\mu} \cos \delta_{\rm CP} + B_{e\mu} \sin \delta_{\rm CP} + C_{e\mu}$$

$$P_{\mu\tau} = A_{\mu\tau} \cos \delta_{\rm CP} + B_{\mu\tau} \sin \delta_{\rm CP} + C_{\mu\tau} + D_{\mu\tau} \cos 2\delta_{\rm CP} + E_{\mu\tau} \sin 2\delta_{\rm CP}$$

(Yokomakura, Kimura & Takamura, 2002)

Evgeny Akhmedov

Analytic solutions

For constant-density matter closed form solutions exist

(Barger, Whisnant, Pakvasa & Phillips, 1980; Zaglauer & Schwartzer, 1988; Ohlsson & Snellman, 1999; Xing, 2000; Kimura, Takamura & Yokomakura, 2002)

But: Expressions rather complicated and not easily tractable For a general $N_e \neq const$ no closed form solutions exist

Approximate analytic solutions desirable!

Approximations based on two small parameters:

(1)
$$\frac{\Delta m_{\odot}^2}{\Delta m_{\text{atm}}^2} = \frac{\Delta m_{21}^2}{\Delta m_{31}^2} \sim 1/30$$

(2) $|U_{e3}| = |\sin \theta_{13}| \lesssim 0.2$ (CHOOZ

 $\Delta m_{21}^2 = 0$ or $U_{13} = 0$ – effective 2f limits

GLoBES Workshop, MPI - K Heidelberg

Analytic solutions – contd.

Matter of constant density – a good first approximation for LBL experiments (neutrinos traverse Earth's mantle). Not very useful for solar, atmospheric and supernova neutrinos

Different approach: matter with arbitrary density profile, reduce the problem to an effective 2f one + easily calculable 3f corrections. Both approaches pursued using

(1) Expansion to 1st order in α = Δm²₂₁/Δm²₃₁, exact dependence on s₁₃ = sin θ₁₃
(2) Expansion to 1st order in s₁₃, exact dependence on α

(3) Expansion to 2nd order in both s_{13} and α

Recent discusion and summary:

E.A., Johansson, Ohlsson, Lindner & Schwetz, 2004

Evgeny Akhmedov

Comparison of different approximations

3f effects in solar ν **oscillations**

What do the solar ν_e oscillate to? From $|U_{e3}| \ll 1$:

 $\nu_3 \simeq s_{23} \, \nu_\mu + c_{23} \, \nu_\tau$

 $\Rightarrow \nu_3 \text{ practically does not participate in } \nu_{\odot} \text{ oscillations.}$ From unitarity of U: solar ν oscillations between

$$\nu_e$$
 and $\nu' = c_{23} \nu_\mu - s_{23} \nu_\tau \implies$

$$P(\nu_e \to \nu_\mu) / P(\nu_e \to \nu_\tau) \simeq c_{23}^2 / s_{23}^2$$

 $\theta_{23} \approx 45^{\circ} \text{ from } \nu_{\text{atm}} \text{ oscillations;} \quad \Rightarrow$

• Solar ν_e oscillate into a superposition of ν_{μ} and ν_{τ} with almost equal weights

(N.B.: The same argument applies to oscillation of reactor $\bar{\nu}_e$'s – KamLAND)

Evgeny Akhmedov

GLoBES Workshop, MPI - K Heidelberg

At low $E \nu_{\mu}$ and ν_{τ} experimentally indistinguishable \Rightarrow all observables depend just on $P(\nu_e \rightarrow \nu_e)$

At low $E \nu_{\mu}$ and ν_{τ} experimentally indistinguishable \Rightarrow all observables depend just on $P(\nu_e \rightarrow \nu_e)$ Averaging over fast oscillations due to large $\Delta m_{\rm atm}^2 = \Delta m_{31}^2$:

$$P(\nu_e \to \nu_e) \simeq c_{13}^4 P_{2ee}(\Delta m_{21}^2, \theta_{12}, V_{\text{eff}}) + s_{13}^4$$

where $V_{\rm eff} = c_{13}^2 \, V$ (Lim, 1987)

At low $E \nu_{\mu}$ and ν_{τ} experimentally indistinguishable \Rightarrow all observables depend just on $P(\nu_e \rightarrow \nu_e)$ Averaging over fast oscillations due to large $\Delta m_{\rm atm}^2 = \Delta m_{31}^2$:

$$P(\nu_e \to \nu_e) \simeq c_{13}^4 P_{2ee}(\Delta m_{21}^2, \theta_{12}, V_{\text{eff}}) + s_{13}^4$$
,

where $V_{\rm eff} = c_{13}^2 V$ (Lim, 1987) $s_{13}^4 \lesssim 10^{-3}$ – negligible. But: c_{13}^4 may differ from 1 by as much as $\sim 5 - 10$ % (E - independent suppression) – with high precision solar data must be taken into account!

At low $E \nu_{\mu}$ and ν_{τ} experimentally indistinguishable \Rightarrow all observables depend just on $P(\nu_e \rightarrow \nu_e)$ Averaging over fast oscillations due to large $\Delta m_{\rm atm}^2 = \Delta m_{31}^2$:

$$P(\nu_e \to \nu_e) \simeq c_{13}^4 P_{2ee}(\Delta m_{21}^2, \theta_{12}, V_{\text{eff}}) + s_{13}^4$$
,

where $V_{\text{eff}} = c_{13}^2 V$ (Lim, 1987) $s_{13}^4 \lesssim 10^{-3}$ – negligible. But: c_{13}^4 may differ from 1 by as much as $\sim 5 - 10 \%$ (*E* - independent suppression) – with high precision solar data must be taken into account! • *From CC exp. data the solar neutrino fluxes* f_B , f_{Be} , ... are

always extracted multiplied by the factor $c_{13}^4 \Rightarrow$ an intrinsic uncertainty due to uncertainty in θ_{13}

At low $E \nu_{\mu}$ and ν_{τ} experimentally indistinguishable \Rightarrow all observables depend just on $P(\nu_e \rightarrow \nu_e)$ Averaging over fast oscillations due to large $\Delta m_{\rm atm}^2 = \Delta m_{31}^2$:

$$P(\nu_e \to \nu_e) \simeq c_{13}^4 P_{2ee}(\Delta m_{21}^2, \theta_{12}, V_{\text{eff}}) + s_{13}^4$$
,

where $V_{\rm eff} = c_{13}^2 V$ (Lim, 1987) $s_{13}^4 \lesssim 10^{-3}$ – negligible. But: c_{13}^4 may differ from 1 by as much as $\sim 5 - 10 \%$ (E - independent suppression) – with high precision solar data must be taken into account!

• From CC exp. data the solar neutrino fluxes f_B , f_{Be} , ... are always extracted multiplied by the factor $c_{13}^4 \Rightarrow$ an intrinsic uncertainty due to uncertainty in θ_{13} **NC expts. free of <u>both</u> astrophysics and \theta_{13} uncertainties!**

Evgeny Akhmedov

Day-Night effect

Earth matter (regeneration) effect on solar ν_e : (Nigt-time signal) \neq (Day-time signal) How does the Day-Night difference of the solar ν_e flux at the detectors depend on θ_{13} ? While $P_D(\nu_e) \propto c_{13}^4$,

 $P_N(\nu_e) - P_D(\nu_e) \propto c_{13}^6$

(Const. density approximation: Blennow, Ohlsson & Snellman, 2004); arbitrary density profile: E.A., Tortola & Valle, 2004)Night-Day asymmetry of the signal:

$$A_{ND} = 2\frac{N-D}{N+D} \propto c_{13}^2$$

Can one learn anything about θ_{13} by measuring A_{ND} ?

Evgeny Akhmedov

At present, exp. errors too large; future experiments (UNO, Hyper-K) can give useful information

Depending on the error and central value of A_{ND} , the upper bound on θ_{13} may be improved or even a lower bound may appear!

CHOOZ:

 $c_{13}^2 > 0.95$
3f effects in atm. ν **oscillations**

Dominant channel ν_μ ↔ ν_τ
 In 2f case – no matter effects (neglecting tiny V_{μτ} caused by rad. corrections). Independent from the sign of Δm²₃₁ (normal vs inverted hierarchy). In 3f case – sensitivity to matter effects, sign of Δm²₃₁ (may be strong!)

3f effects in atm. ν **oscillations**

- Dominant channel ν_μ ↔ ν_τ
 In 2f case no matter effects (neglecting tiny V_{μτ} caused by rad. corrections). Independent from the sign of Δm²₃₁ (normal vs inverted hierarchy). In 3f case sensitivity to matter effects, sign of Δm²₃₁ (may be strong!)
- Subdominant channels ν_e ↔ ν_{μ,τ}
 Contribution to μ like events: subleading, difficult to observe.

3f effects in atm. ν **oscillations**

- Dominant channel ν_μ ↔ ν_τ
 In 2f case no matter effects (neglecting tiny V_{μτ} caused by rad. corrections). Independent from the sign of Δm²₃₁
 (normal vs inverted hierarchy). In 3f case sensitivity to matter effects, sign of Δm²₃₁ (may be strong!)
- Subdominant channels ν_e ↔ ν_{μ,τ}
 Contribution to μ like events: subleading, difficult to observe.

In 2f limits $(\Delta m_{21}^2 \rightarrow 0 \text{ or } \theta_{13} \rightarrow 0)$ – suppression of oscillation effects on e-like events

Matter effects on $\nu_{\mu} \leftrightarrow \nu_{\tau}$ osc.

In 2f approximation: no matter effects on $\nu_{\mu} \leftrightarrow \nu_{\tau}$ oscillations $[V(\nu_{\mu}) = V(\nu_{\tau}) \text{ modulo tiny rad. corrections}].$

Matter effects on $\nu_{\mu} \leftrightarrow \nu_{\tau}$ osc.

In 2f approximation: no matter effects on $\nu_{\mu} \leftrightarrow \nu_{\tau}$ oscillations $[V(\nu_{\mu}) = V(\nu_{\tau}) \text{ modulo tiny rad. corrections}].$ Not true in the full 3f framework! (E.A., 2002; Gandhi et al., 2004)

Matter effects on $\nu_{\mu} \leftrightarrow \nu_{\tau}$ osc.

In 2f approximation: no matter effects on $\nu_{\mu} \leftrightarrow \nu_{\tau}$ oscillations $[V(\nu_{\mu}) = V(\nu_{\tau}) \text{ modulo tiny rad. corrections}].$ Not true in the full 3f framework! (E.A., 2002; Gandhi et al., 2004)

 $\begin{array}{l} P_{\mu\tau} & \mbox{Oscillated flux of atm. } \nu_{\mu} \\ \Delta m^2_{31} = 2.5 \times 10^{-3} \mbox{ eV}^2, \ \sin^2 \theta_{13} = 0.026, \ \theta_{23} = \pi/4, \\ \Delta m^2_{21} = 0, \, L = 9400 \mbox{ km} \end{array}$

Red curves – w/ matter effects, green curves – w/o matter effects on $P_{\mu\tau}$

Evgeny Akhmedov

GLoBES Workshop, MPI - K Heidelberg

January 24 - 26, 2007 – p. 20/43

3f effects in atm. ν osc. – contd.

 $\diamond \quad \Delta m^2_{21} \rightarrow 0$ (E.A., Dighe, Lipari & Smirnov, 1998):

$$\frac{F_e - F_e^0}{F_e^0} = P_2(\Delta m_{31}^2, \,\theta_{13}, V_{\rm CC}) \cdot (r \, s_{23}^2 - 1)$$

♦ $s_{13} \rightarrow 0$ (Peres & Smirnov, 1999):

$$\frac{F_e - F_e^0}{F_e^0} = P_2(\Delta m_{21}^2, \,\theta_{12}, V_{\rm CC}) \cdot (r \, c_{23}^2 - 1)$$

At low energies $r \equiv F_{\mu}^{0}/F_{e}^{0} \simeq 2$; also $s_{23}^{2} \simeq c_{23}^{2} \simeq 1/2 - a$ conspiracy to hide oscillation effects on e-like events! Results from a peculiar flavour composition of the atmospheric ν flux. (Because of $\theta_{23} \simeq 45^{\circ}$, $P_{e\mu} = P_{\mu e}$ is $\simeq P_{e\tau}$; but the original ν_{μ} flux is ~ 2 times larger than ν_{e} flux \Rightarrow compensation of transitions from and to ν_{e} state).

Evgeny Akhmedov

GLoBES Workshop, MPI - K Heidelberg

Breaking the conspiracy – 3f effects in atmospheric neutrino oscillations (Peres & Smirnov, 2002) $\frac{F_e - F_e^0}{F^0} \simeq P_2(\Delta m_{31}^2, \theta_{13}) \cdot (r s_{23}^2 - 1)$

$$e + P_2(\Delta m_{21}^2, \theta_{12}) \cdot (r c_{23}^2 - 1) \\ - 2s_{13} s_{23} c_{23} r \operatorname{Re}(\tilde{A}_{ee}^* \tilde{A}_{\mu e})$$

Interference term not suppressed by the flavour composition of the $\nu_{\rm atm}$ flux; may be (partly) responsible for observed excess of upward-going sub-GeV e-like events

Breaking the conspiracy – 3f effects in atmospheric neutrino oscillations (Peres & Smirnov, 2002)

$$\frac{F_e - F_e^0}{F_e^0} \simeq P_2(\Delta m_{31}^2, \theta_{13}) \cdot (r \, s_{23}^2 - 1) + P_2(\Delta m_{21}^2, \theta_{12}) \cdot (r \, c_{23}^2 - 1) - 2s_{13} \, s_{23} \, c_{23} \, r \, \operatorname{Re}(\tilde{A}_{ee}^* \, \tilde{A}_{\mu e})$$

Interference term not suppressed by the flavour composition of the ν_{atm} flux; may be (partly) responsible for observed excess of upward-going sub-GeV e-like events

Interf. term may not be sufficient to fully explain the excess of low-E e-like events – a hint of $\theta_{23} \neq 45^{\circ}$? (Peres & Smirnov, 2004)

 $\bar{\nu}_e$ survival probability:

$$\diamondsuit P_{\bar{e}\bar{e}} \simeq 1 - \sin^2 2\theta_{13} \cdot \sin^2 \left(\frac{\Delta m_{31}^2}{4E}L\right) - c_{13}^4 \sin^2 2\theta_{12} \cdot \sin^2 \left(\frac{\Delta m_{21}^2}{4E}L\right)$$

 $\bar{\nu}_e$ survival probability:

$$\diamondsuit P_{\bar{e}\bar{e}} \simeq 1 - \sin^2 2\theta_{13} \cdot \sin^2 \left(\frac{\Delta m_{31}^2}{4E}L\right) - c_{13}^4 \sin^2 2\theta_{12} \cdot \sin^2 \left(\frac{\Delta m_{21}^2}{4E}L\right)$$

• CHOOZ, Palo Verde, ... $(L \lesssim 1 \text{ km})$ $\overline{E} \sim 4 \text{ MeV}; \qquad \frac{\Delta m_{31}^2}{4E} L \sim 1; \qquad \frac{\Delta m_{21}^2}{4E} L \ll 1$

 $\bar{\nu}_e$ survival probability:

$$\diamondsuit P_{\bar{e}\bar{e}} \simeq 1 - \sin^2 2\theta_{13} \cdot \sin^2 \left(\frac{\Delta m_{31}^2}{4E}L\right) - c_{13}^4 \sin^2 2\theta_{12} \cdot \sin^2 \left(\frac{\Delta m_{21}^2}{4E}L\right)$$

• CHOOZ, Palo Verde, ... $(L \lesssim 1 \text{ km})$ $\overline{E} \sim 4 \text{ MeV}; \qquad \frac{\Delta m_{31}^2}{4E} L \sim 1; \qquad \frac{\Delta m_{21}^2}{4E} L \ll 1$

One mass scale dominance (2f) approximation:

•
$$P(\bar{\nu}_e \to \bar{\nu}_e; L) = 1 - \sin^2 2\theta_{13} \cdot \sin^2 \left(\frac{\Delta m_{31}^2}{4E} L\right)$$

(Note: Term $\sim \sin^2 2\theta_{12}$ cannot be neglected if $\theta_{13} \leq 0.03$, which is about the reach of currently discussed future reactor experiments.)

Evgeny Akhmedov

GLoBES Workshop, MPI - K Heidelberg

Reactor $\bar{\nu}_e$ **oscillations** – **contd.**

• KamLAND $(\bar{L} \simeq 170 \text{ km})$

$$\frac{\Delta m_{21}^2}{4E} L \gtrsim 1;$$
 $\frac{\Delta m_{31}^2}{4E} L \gg 1$

Averaging over fast oscillations due to $\Delta m_{\rm atm}^2 = \Delta m_{31}^2$:

•
$$P(\bar{\nu}_e \to \bar{\nu}_e) = c_{13}^4 P_{2\bar{e}\bar{e}\bar{e}}(\Delta m_{21}^2, \theta_{12}) + s_{13}^4$$

Can differ from 2f probability by as much as $\sim 10\%$ (energy-independent suppression)

N.B.: Matter effects a few % – can be comparable with effects of $\theta_{13} \neq 0$!

3f effects in LBL experiments

• ν_{μ} disappearance:

3f corrections to probability up to $\sim 10\%$, mainly due to

$$\sin^2(2\theta_{\mu\tau})_{\rm eff} = c_{13}^4 \, \sin^2 2\theta_{23}$$

Matter effects in $\nu_{\mu} \leftrightarrow \nu_{\tau}$ oscillations (typically small); contribution of subdominant $\nu_{\mu} \rightarrow \nu_{e}$ oscillations

3f effects in LBL experiments

• ν_{μ} disappearance:

3f corrections to probability up to $\sim 10\%$, mainly due to

$$\sin^2(2\theta_{\mu\tau})_{\rm eff} = c_{13}^4 \, \sin^2 2\theta_{23}$$

Matter effects in $\nu_{\mu} \leftrightarrow \nu_{\tau}$ oscillations (typically small); contribution of subdominant $\nu_{\mu} \rightarrow \nu_{e}$ oscillations

• $\nu_{\mu}(\nu_{\tau})$ appearance at ν factories; ν_{e} appearance in experiments with superbeams

3f effects in LBL experiments

• ν_{μ} disappearance:

3f corrections to probability up to $\sim 10\%$, mainly due to

$$\sin^2(2\theta_{\mu\tau})_{\rm eff} = c_{13}^4 \, \sin^2 2\theta_{23}$$

Matter effects in $\nu_{\mu} \leftrightarrow \nu_{\tau}$ oscillations (typically small); contribution of subdominant $\nu_{\mu} \rightarrow \nu_{e}$ oscillations

ν_μ(ν_τ) appearance at ν factories; ν_e appearance in experiments with superbeams
 Driven by ν_e ↔ ν_{μ,τ} oscillations. For E ~ 10 GeV and

$$3 \cdot 10^{-3} \lesssim \theta_{13} \lesssim 3 \cdot 10^{-2}$$

- competition between two parameter channels [$(\Delta m_{31}^2, \theta_{13})$ and $(\Delta m_{21}^2, \theta_{12})$] in $P(\nu_e \leftrightarrow \nu_\mu)$

Evgeny Akhmedov

LBL experiments – contd.

- ♦ Unlike in v_{atm}, no suppression of v_e ↔ v_{µ,τ} oscill. effects due to flavour composition of the original flux
- Matter effects in $\nu_{\mu} \leftrightarrow \nu_{\tau}$ oscillations vanish only when <u>both</u> Δm_{21}^2 and U_{e3} vanish
- ♦ Dependence of all P_{ab} on CP-violating phase δ_{CP}
 (both ~ sin δ_{CP} and ~ cos δ_{CP}) comes from interf. terms
 pure 3f effect
- 3f effects especially important for precision measurements
 (*v* factories!)

CP and T in ν osc. in vacuum

 $\nu_a \rightarrow \nu_b$ oscillation probability:

>
$$P(\nu_a, t_0 \to \nu_b; t) = \left| \sum_i U_{bi} e^{-iE_i(t-t_0)} U_{ai}^* \right|^2$$

• CP:
$$\nu_{a,b} \leftrightarrow \bar{\nu}_{a,b} \implies U_{ai} \to U_{ai}^* \quad (\{\delta_{\rm CP}\} \to -\{\delta_{\rm CP}\})$$

• T:
$$t \rightleftharpoons t_0 \iff \nu_a \leftrightarrow \nu_b$$

 $\Rightarrow \quad U_{ai} \to U_{ai}^* \quad (\{\delta_{CP}\} \to -\{\delta_{CP}\})$

T-reversed oscillations ("backwards in time") \Leftrightarrow oscillations between interchanged initial and final flavours

• CP and T – absent in 2f case, pure $N \ge 3f$ effects!

Evgeny Akhmedov

• CPT:
$$\nu_{a,b} \leftrightarrow \bar{\nu}_{a,b}$$
 & $t \stackrel{\rightarrow}{\leftarrow} t_0 \quad (\nu_a \leftrightarrow \nu_b)$
• $P(\nu_a \rightarrow \nu_b) \rightarrow P(\bar{\nu}_b \rightarrow \bar{\nu}_a)$

The standard formula for P_{ab} in vacuum is CPT invariant!

$$CP \Leftrightarrow T$$
 - consequence of CPT

Measures of \mathcal{CP} and \mathcal{T} – probability differences:

$$\Delta P_{ab}^{\rm CP} \equiv P(\nu_a \to \nu_b) - P(\bar{\nu}_a \to \bar{\nu}_b)$$

$$\Delta P_{ab}^{\mathrm{T}} \equiv P(\nu_a \to \nu_b) - P(\nu_b \to \nu_a)$$

From CPT:

$$\diamond \quad \Delta P_{ab}^{\rm CP} = \Delta P_{ab}^{\rm T}; \qquad \qquad \Delta P_{aa}^{\rm CP} = 0$$

One \mathcal{CP} Dirac-type phase δ_{CP} (*NB: Majorana phases do not* affect ν oscillations!) \Rightarrow one \mathcal{CP} and \mathcal{T} observable:

$$\diamond \quad \Delta P_{e\mu}^{\rm CP} = \Delta P_{\mu\tau}^{\rm CP} = \Delta P_{\tau e}^{\rm CP} \equiv \Delta P$$

One CP Dirac-type phase δ_{CP} (*NB: Majorana phases do not* affect ν oscillations!) \Rightarrow one CP and T observable:

$$\Delta P_{e\mu}^{\rm CP} = \Delta P_{\mu\tau}^{\rm CP} = \Delta P_{\tau e}^{\rm CP} \equiv \Delta P$$

 $\Delta P = -4s_{12} c_{12} s_{13} c_{13}^2 s_{23} c_{23} \sin \delta_{\rm CP}$

$$\times \left[\sin\left(\frac{\Delta m_{12}^2}{2E}L\right) + \sin\left(\frac{\Delta m_{23}^2}{2E}L\right) + \sin\left(\frac{\Delta m_{31}^2}{2E}L\right) \right]$$

One CP Dirac-type phase δ_{CP} (*NB: Majorana phases do not affect \nu oscillations!*) \Rightarrow one CP and T observable:

$$\Delta P_{e\mu}^{\rm CP} = \Delta P_{\mu\tau}^{\rm CP} = \Delta P_{\tau e}^{\rm CP} \equiv \Delta P$$

 $\Delta P = -4s_{12}c_{12}s_{13}c_{13}^2s_{23}c_{23}\sin\delta_{\rm CP}$ $\times \left[\sin\left(\frac{\Delta m_{12}^2}{2E}L\right) + \sin\left(\frac{\Delta m_{23}^2}{2E}L\right) + \sin\left(\frac{\Delta m_{31}^2}{2E}L\right)\right]$

Vanishes when

• At least one $\Delta m_{ij}^2 = 0$

One \mathcal{CP} Dirac-type phase δ_{CP} (*NB: Majorana phases do not affect \nu oscillations!*) \Rightarrow one \mathcal{CP} and \mathcal{T} observable:

$$\Delta P_{e\mu}^{\rm CP} = \Delta P_{\mu\tau}^{\rm CP} = \Delta P_{\tau e}^{\rm CP} \equiv \Delta P$$

 $\Delta P = -4s_{12}c_{12}s_{13}c_{13}^2s_{23}c_{23}\sin\delta_{\rm CP}$ $\times \left[\sin\left(\frac{\Delta m_{12}^2}{2E}L\right) + \sin\left(\frac{\Delta m_{23}^2}{2E}L\right) + \sin\left(\frac{\Delta m_{31}^2}{2E}L\right)\right]$

- At least one $\Delta m_{ij}^2 = 0$
- At least one $\theta_{ij} = 0$ or 90°

One CP Dirac-type phase δ_{CP} (*NB: Majorana phases do not affect \nu oscillations!*) \Rightarrow one CP and T observable:

$$\Delta P_{e\mu}^{\rm CP} = \Delta P_{\mu\tau}^{\rm CP} = \Delta P_{\tau e}^{\rm CP} \equiv \Delta P$$

 $\Delta P = -4s_{12}c_{12}s_{13}c_{13}^2s_{23}c_{23}\sin\delta_{\rm CP}$ $\times \left[\sin\left(\frac{\Delta m_{12}^2}{2E}L\right) + \sin\left(\frac{\Delta m_{23}^2}{2E}L\right) + \sin\left(\frac{\Delta m_{31}^2}{2E}L\right)\right]$

- At least one $\Delta m_{ij}^2 = 0$
- At least one $\theta_{ij} = 0$ or 90°
- $\delta_{\rm CP} = 0 \text{ or } 180^{\circ}$

One \mathcal{CP} Dirac-type phase δ_{CP} (*NB: Majorana phases do not affect \nu oscillations!*) \Rightarrow one \mathcal{CP} and \mathcal{T} observable:

$$\Delta P_{e\mu}^{\rm CP} = \Delta P_{\mu\tau}^{\rm CP} = \Delta P_{\tau e}^{\rm CP} \equiv \Delta P$$

 $\Delta P = -4s_{12}c_{12}s_{13}c_{13}^2s_{23}c_{23}\sin\delta_{\rm CP}$ $\times \left[\sin\left(\frac{\Delta m_{12}^2}{2E}L\right) + \sin\left(\frac{\Delta m_{23}^2}{2E}L\right) + \sin\left(\frac{\Delta m_{31}^2}{2E}L\right)\right]$

- At least one $\Delta m_{ij}^2 = 0$
- At least one $\theta_{ij} = 0$ or 90°
- $\delta_{\mathrm{CP}} = 0 \text{ or } 180^{\circ}$
- In the averaging regime

One \mathcal{CP} Dirac-type phase δ_{CP} (*NB: Majorana phases do not affect \nu oscillations!*) \Rightarrow one \mathcal{CP} and \mathcal{T} observable:

$$\Delta P_{e\mu}^{\rm CP} = \Delta P_{\mu\tau}^{\rm CP} = \Delta P_{\tau e}^{\rm CP} \equiv \Delta P$$

 $\Delta P = -4s_{12}c_{12}s_{13}c_{13}^2s_{23}c_{23}\sin\delta_{\rm CP}$ $\times \left[\sin\left(\frac{\Delta m_{12}^2}{2E}L\right) + \sin\left(\frac{\Delta m_{23}^2}{2E}L\right) + \sin\left(\frac{\Delta m_{31}^2}{2E}L\right)\right]$

- At least one $\Delta m_{ij}^2 = 0$
- At least one $\theta_{ij} = 0$ or 90°
- $\delta_{\mathrm{CP}} = 0 \text{ or } 180^{\circ}$
- In the averaging regime
- In the limit $L \to 0$ (as L^3)

One \mathcal{CP} Dirac-type phase δ_{CP} (*NB: Majorana phases do not affect \nu oscillations!*) \Rightarrow one \mathcal{CP} and \mathcal{T} observable:

$$\Delta P_{e\mu}^{\rm CP} = \Delta P_{\mu\tau}^{\rm CP} = \Delta P_{\tau e}^{\rm CP} \equiv \Delta P$$

 $\Delta P = -4s_{12}c_{12}s_{13}c_{13}^2s_{23}c_{23}\sin\delta_{\rm CP}$ $\times \left[\sin\left(\frac{\Delta m_{12}^2}{2E}L\right) + \sin\left(\frac{\Delta m_{23}^2}{2E}L\right) + \sin\left(\frac{\Delta m_{31}^2}{2E}L\right)\right]$

Vanishes when

- At least one $\Delta m_{ij}^2 = 0$
- At least one $\theta_{ij} = 0$ or 90°
- $\delta_{\mathrm{CP}} = 0 \text{ or } 180^{\circ}$
- In the averaging regime
- In the limit $L \to 0$ (as L^3)

Very difficult to observe!

CP and T in ν osc. in matter

• CP: $\nu_{a,b} \leftrightarrow \bar{\nu}_{a,b} \Rightarrow U_{ai} \to U^*_{ai} \quad (\{\delta_{CP}\} \to -\{\delta_{CP}\})$ $V(r) \to -V(r)$

• T: $t \rightleftharpoons t_0$ \Leftrightarrow $\nu_a \leftrightarrow \nu_b$ \Rightarrow $U_{ai} \rightarrow U_{ai}^* \quad (\{\delta_{CP}\} \rightarrow -\{\delta_{CP}\})$ $V(r) \rightarrow \tilde{V}(r)$

$$\tilde{V}(r) = \sqrt{2}G_F\tilde{N}(r)$$

 $\tilde{N}(r)$: corresponds to interchanged positions of ν source and detector. Symmetric density profiles: $\tilde{N}(r) = N(r)$ \diamond *The very presence of matter violates C, CP and CPT!*

 $\Rightarrow Fake (extrinsic) CP which may complicate the study of fundamental (intrinsic) CP$

CP in matter

• Exists even in 2f case (in \geq 3f case exists even when all $\{\delta_{CP}\} = 0$) due to matter effects:

$$P(\nu_a \to \nu_b) \neq P(\bar{\nu}_a \to \bar{\nu}_b)$$

E.g., MSW effect can enhance $\overline{\nu_e} \leftrightarrow \nu_{\mu}$ and suppress $\overline{\nu_e} \leftrightarrow \overline{\nu_{\mu}}$ or vice versa.

• Survival probabilities are not CP-invariant:

$$P(\nu_a \to \nu_a) \neq P(\bar{\nu}_a \to \bar{\nu}_a)$$

To disentangle fundamental \mathcal{CP} from the matter induced one in LBL experiments – need to measure energy dependence of oscillated signal or signal at two baselines – a difficult task

Evgeny Akhmedov

(Difficult) alternatives:

- Low-E LBL experiments (E ~ 0.1 − 1 GeV, L ~ 100 − 1000 km) (Koike & Sato, 1999; Minakata & Nunokawa, 2000, 2001);
- Indirect measurements:

(A) CP-even terms ~ $\cos \delta_{\rm CP}$ (Lipari, 2001) (B) Area of leptonic unitarity triangle (Farzan & Smirnov, 2002; Aguilar-Saavedra & Branco, 2000; Sato, 2000)

CP cannot be studied in SN ν experiments because of experimental indistinguishability of low-energy ν_{μ} and ν_{τ}

T in matter

CPT not conserved in matter $\Rightarrow \mathcal{CP}$ and \mathcal{T} are not directly related!

- Matter does not necessarily induce \mathscr{T} (only asymmetric matter with $\tilde{N}(r) \neq N(r)$ does)
- There is no *X* (either fundamental or matter induced) in
 2f case a consequence of unitarity:

$$P_{ee} + P_{e\mu} = 1$$
$$P_{ee} + P_{\mu e} = 1$$
$$\bigcup$$
$$P_{e\mu} = P_{\mu e}$$

Evgeny Akhmedov

GLoBES Workshop, MPI - K Heidelberg

• In 3f case – only one T-odd probability difference for ν 's (and one for $\overline{\nu}$'s) irrespective of matter density profile – a consequence of unitarity in 3f case (Krastev & Petcov, 1988)

$$\Delta P_{e\mu}^T = \Delta P_{\mu\tau}^T = \Delta P_{\tau e}^T$$

Matter-induced \mathscr{T} :

- An interesting, pure 3f matter effect; absent in symmetric matter (e.g., N(r) = const)
- Does not vanish in the regime of complete averaging
- May fake fundamental \mathcal{T} and complicate its study (extraction of δ_{CP} from experiment)
- Vanishes when either $U_{e3} = 0$ or $\Delta m_{21}^2 = 0$ (2f limits) \Rightarrow doubly suppressed by both these small parameters
- \Rightarrow Perturbation theory can be used to get analytic expressions

General structure of T-odd probability differences:

$$\Delta P_{e\mu}^{T} = \underbrace{\sin \delta_{\rm CP} \cdot Y}_{\text{fundam. } \mathcal{X}} + \underbrace{\cos \delta_{\rm CP} \cdot X}_{\text{matter-ind. } \mathcal{X}}$$

In adiabatic approximation: $X = J_{\text{eff}} \cdot (\text{oscillating terms})$,

$$\diamond \quad J_{\text{eff}} = s_{12} c_{12} s_{13} c_{13}^2 s_{23} c_{23} \frac{\sin(2\theta_1 - 2\theta_2)}{\sin 2\theta_{12}}$$

(E.A., Huber, Lindner & Ohlsson, 2001) Compare with the vacuum Jarlskog invariant:

$$J = s_{12} c_{12} s_{13} c_{13}^2 s_{23} c_{23} \sin \delta_{\rm CP}$$
$$\sin \delta_{\rm CP} \Leftrightarrow \frac{\sin(2\theta_1 - 2\theta_2)}{\sin 2\theta_{12}}$$

Evgeny Akhmedov

To extract fundamental \mathcal{T} need to measure:

$$\Delta P_{ab} \equiv P_{\rm dir}(\nu_a \to \nu_b) - P_{\rm rev}(\nu_b \to \nu_a) \propto \sin \delta_{\rm CP}$$

Even survival probabilities P_{aa} $(a = \mu, \tau)$ can be used! (Fishbane & Kaus, 2000)

$$P_{\rm dir}(\nu_a \to \nu_a) - P_{\rm rev}(\nu_a \to \nu_a) \sim \sin \delta_{\rm CP} \quad (a \neq e)$$

In 3f case P_{ee} does not depend on $\delta_{\rm CP}$ (Kuo & Pantaleone, 1987; Minakata & Watanabe, 1999) — not true if $\nu_{\rm sterile}$ is present!

To extract fundamental \mathscr{T} need to measure:

$$\Delta P_{ab} \equiv P_{dir}(\nu_a \to \nu_b) - P_{rev}(\nu_b \to \nu_a) \propto \sin \delta_{CP}$$

Even survival probabilities P_{aa} $(a = \mu, \tau)$ can be used! (Fishbane & Kaus, 2000)

$$P_{\rm dir}(\nu_a \to \nu_a) - P_{\rm rev}(\nu_a \to \nu_a) \sim \sin \delta_{\rm CP} \quad (a \neq e)$$

In 3f case P_{ee} does not depend on $\delta_{\rm CP}$ (Kuo & Pantaleone, 1987; Minakata & Watanabe, 1999) — not true if $\nu_{\rm sterile}$ is present!

Matter-induced \mathscr{T} in LBL experiments due to imperfect sphericity of the Earth density distribution cannot spoil the determination of δ_{CP} if the error in δ_{CP} is > 1% at 99% C.L. (E.A., Huber, Lindner & Ohlsson, 2001)
To extract fundamental \mathcal{T} need to measure:

$$\Delta P_{ab} \equiv P_{dir}(\nu_a \to \nu_b) - P_{rev}(\nu_b \to \nu_a) \propto \sin \delta_{CP}$$

Even survival probabilities P_{aa} $(a = \mu, \tau)$ can be used! (Fishbane & Kaus, 2000)

$$P_{\rm dir}(\nu_a \to \nu_a) - P_{\rm rev}(\nu_a \to \nu_a) \sim \sin \delta_{\rm CP} \quad (a \neq e)$$

In 3f case P_{ee} does not depend on $\delta_{\rm CP}$ (Kuo & Pantaleone, 1987; Minakata & Watanabe, 1999) – not true if $\nu_{\rm sterile}$ is present!

Matter-induced \mathscr{T} in LBL experiments due to imperfect sphericity of the Earth density distribution cannot spoil the determination of δ_{CP} if the error in δ_{CP} is > 1% at 99% C.L. (E.A., Huber, Lindner & Ohlsson, 2001)

 \Rightarrow No need to interchange positions of ν source and detector!

Experimental study of \mathcal{T}' difficult because of problems with detection of e^{\pm}

Matter-induced \mathcal{T} :

- Negligible effects in terrestrial experiments
- Cannot be observed in supernova ν oscillations due to experimental indistinguishability of low-E ν_{μ} and ν_{τ}
- Can affect the signal from ~GeV neutrinos produced in annihilations of WIMPs inside the Sun (de Gouvêa, 2000)

"CPT in matter"

Is there a relation between CP and T in matter?

For symmetric density profiles (i.e. $\tilde{V}(r) = V(r)$)

$$P(\nu_a \to \nu_b; \, \delta_{\rm CP}, V(r)) = P(\bar{\nu}_b \to \bar{\nu}_a; \, \delta_{\rm CP}, -V(r))$$

(Minakata, Nunokawa & Parke, 2002)

Easy to generalize to the case of an arbitrary density profile:

$$P(\nu_a \to \nu_b; \, \delta_{\rm CP}, V(r)) = P(\bar{\nu}_b \to \bar{\nu}_a; \, \delta_{\rm CP}, -\bar{V}(r))$$

Unlike CPT in vacuum, does not directly relate observables Can be useful for cross-checking theoreticl calculations

Evgeny Akhmedov

Why study U_e3 (A hymn to U_{e3})

- The least known of leptonic mixing parameters
- Discriminates between various neutrino mass models (Barr & Dorsner, 2000; Tanimoto, 2001)
- Unexplained smallness (rel. to $\Delta m_{\odot}^2 / \Delta m_{\rm atm}^2$?)
- The (likely) bottleneck for studying fundamental
 CP and T effects and matter-induced T in neutrino oscillations
- Important for measuring the sign of Δm_{31}^2 in future LBL experiments normal vs inverted ν mass hierarchy

A hymn to U_e3 – contd.

- Governs subdominant oscillations of atmospheric neutrinos in multi-GeV region and interf. term in sub-GeV region
- Governs the Earth matter effects on supernova neutrino oscillations
- The only opportunity to see the "canonical" MSW effect (strong matter enhancement of small mixing)?
- Drives the parametric enhancement of oscillations of core-crossing neutrinos inside the Earth

Conclusions

> Two types of 3f effects – "trivial" (existence of new channels, their inter-dependence through unitarity) and nontrivial (interference of different parameter channels, qualitatively new effects – fundamental CP and T-violation, and matter – induced T violation

- > 3f corrections to probabilities of oscillations of solar, atmospheric, reactor and acceler. neutrinos depend on $|U_{e3}| = |\sin \theta_{13}|$; can reach ~10%
- \diamond Possible interesting 3f effects for SN neutrinos depend significantly on the value U_{e3}

Conclusions – contd.

♦ Manifestations of ≥ 3 flavours in neutrino oscillations:

- Fundamental \mathcal{CP} and \mathcal{T}
- Matter-induced \mathcal{T}
- Matter effects in $\nu_{\mu} \leftrightarrow \nu_{\tau}$ oscillations
- Specific CP and T conserving interference terms in oscillation probabilities
- $\diamond U_{e3}$ plays a very special role