Development of Cryogenic Detectors for the Observation of Coherent Neutrino Nucleus Scattering Teilprojekt A5

Achim Gütlein

TU-München

SFB/TR 27 meeting - Heidelberg 2009

Table of Contents

Introduction

- Cross section
- Physical potential of CNNS
- Expected spectra
- 2 Cryogenic Detectors for CNNS
 - Working principle
 - Methods for the improvement of the energy threshold
 - Background suppression

3 Conclusion and Outlook

2 / 25

CNNS - A neutral current process

- Neutral current process \Rightarrow CNNS independent of ν -flavor
- For low transferred momenta: Z⁰ wave length comparable to radius of nuclei

3 / 25

 $\Rightarrow~\nu$ scatters coherently off all nucleons

CNNS - Cross Section

$$\frac{d\sigma(E_{\nu},\cos\theta)}{d\cos\theta} = \frac{G_F^2}{8\pi} \left[Z \left(4\sin^2\theta_W - 1 \right) + N \right]^2 E_{\nu}^2 (1 + \cos\theta)$$
$$\sigma_{tot} = \frac{G_F^2}{4\pi} \left[Z \left(4\sin^2\theta_W - 1 \right) + N \right]^2 E_{\nu}^2$$

with neutrino energy E_{ν} , scattering angle θ , Fermi constant G_F , Weinberg angle θ_W , proton number Z and neutron number N.

$$\sin^2 heta_W=0.23 \Rightarrow \sigma_{tot}\sim rac{G_F^2}{4\pi}N^2E_
u^2$$

But recoil energy $E_{rec} \propto \frac{1}{N+Z}$.

 \rightarrow Higher neutron number $N \rightarrow$ higher cross section σ_{tot} but also lower recoil energy E_{rec}

Physical potential of CNNS

Standard model predicts CNNS

- $\rightarrow\,$ Observation of CNNS is a test for standard model
- $\rightarrow\,$ Investigation of non-standard neutral current interactions

Precise measurement of CNNS cross section

- $\rightarrow\,$ Weinberg-angle at low energies
- $\rightarrow\,$ effective radius of weak charge of neutrino

$$sin^2 heta_W
ightarrow sin^2 heta_W \cdot \left(1 - rac{2}{3} M_W^2 \left\langle r_
u^2
ight
angle
ight)$$

Expected spectrum for solar neutrinos

• Neutral current interaction \Rightarrow oscillation independent measurement of solar neutrino flux!

 \rightarrow LOW COUNT rate \sim 1.1 ton Achim Gütlein (TU-München) Coheren

Coherent Neutrino Nucleus Scattering

Solar ν : background for direct dark matter search?

- \bullet Detectors for direct dark matter search can distinguish between $\gamma{\rm 's}$ and WIMPs.
- But they can not distinguish between $\nu{\rm 's}$ and WIMPS
- \Rightarrow solar ν 's background for WIMP search?

Target	Threshold	ν - count rate
Ge	10 keV	$\sim 3.0\cdot 10^{-8}$ ton $^{-1}$ year $^{-1}$
$CaWO_4$	10 keV	${\sim}1.1~{ m ton}^{-1}$ year $^{-1}$
Xe	5 keV	${\sim}3.8~{ m ton}^{-1}~{ m year}^{-1}$

- $\rightarrow\,$ No background for Ge
 - For CaWO₄: ν scatters off Oxygen; WIMP scatters off Tungsten
- $\rightarrow\,$ If CaWO4-detectors can distinguish between O-recoils and W-recoils
- $\Rightarrow~$ No background for CaWO4; however important for thresholds < 4~keV
- $\rightarrow~$ But background for Xe

Expected spectrum for reactor neutrinos

$$\rightarrow$$
 reactor neutrinos (flux $10^{13} \frac{1}{\text{cm}^2 \text{s}}$)

- Small recoil energies (<2 keV) \Rightarrow detectors with low energy threshold (\approx 0.5 keV) needed
- \bullet Low event rates \Rightarrow good background suppression needed

Achim Gütlein (TU-München)

Coherent Neutrino Nucleus Scattering

SFB/TR 27 meeting 10 / 25

Achim Gütlein (TU-München)

Coherent Neutrino Nucleus Scattering

Achim Gütlein (TU-München)

Coherent Neutrino Nucleus Scattering

Achim Gütlein (TU-München)

Coherent Neutrino Nucleus Scattering

SFB/TR 27 meeting 16 / 25

Sample detector

- 3.2 g Ge cube as absorber
- Ir/Au Film as TES
- $\rightarrow~$ Energy threshold of ${\sim}1~\text{keV}$
- \Rightarrow Energy threshold should be decreased!

Neganov-Trofimov-Luke effect

- Enegy deposition leads in semiconductors to production of phonons and electron-hole-pairs
- Electrons and holes are drifted to electrodes due to applied electric field
- Electrons are producing additional phonons
- \Rightarrow Amplification of phonon signal
- \rightarrow Better signal-to-noise ratio

Phonon collectors

- For a low energy threshold, a high signal-to-noise ratio is needed
- $\rightarrow\,$ High phonon collection efficiency
- \rightarrow TES covers large surface
 - Problem: large TES has a large heat capacity
- \Rightarrow Large heat capacity of TES decreases signal-to-noise ratio
- \rightarrow Solution: phonon collectors
 - A phonon collector is an Al-structure connected to the TES
- $\rightarrow\,$ Al is superconducting at mK-temperartures \Rightarrow no heat capacity
 - Phonons produce quasi particles in AI; quasi particles diffuse into TES
- \Rightarrow Small heat capacity and large covered surface

Background sources

Energies of neutrino events are below 2 keV

 \Rightarrow Events with higher energy deposition are background

Remaining background sources:

- Neutrons
- Compton events with small energy deposition (\rightarrow forward scattering)
- Surface radioactivity
- Low energetic γ 's ($E_{\gamma} < 2$ keV)

Neutrons

- $\bullet\,$ Thermal Neutrons (E \sim 25 meV) are far below energy threshold
- $\bullet\,$ Fast neutrons (E \sim 10 keV) leading to similar events as ν 's

Neutron shielding:

Compton events, Surface radioactivity

Potential of a detector array to reject Compton scattering events and surface radioactivity

Detection of Compton scattering

Detection of surface radioactivity

Low energetic γ 's

- γ 's with energies below 2 keV are absorbed within \sim 1 mm.
- $\nu \, {\rm 's}$ can scatter off any nucleus in the target
- $\Rightarrow\,$ Surface events for $\gamma{'}{\rm s},$ but bulk events for $\nu{'}{\rm s}$

Background suppression

Low energetic γ 's

 \rightarrow surface events can be detected via pulse shape analysis due to longer decay times of events in glued substrates.

Conclusion and Outlook

Conclusion

Cryogenic detectors have a high potential to observe CNNS for the first time, due to \ldots

- low energy threshold (\rightarrow sapphire crystal with 260 g and 0.5 keV energy threshold)
- different absorber materials (→ multi target experiment)
- background suppression

Outlook

- Investigations on low energetic background and its suppression (measurements and simulations)
- Development of cryogenic detectors with low energy threshold (\sim 0.1 keV) and a mass of \sim 100 g