Why the GSI anomaly cannot be explained by Quantum Beats

Alexander Merle (Alexander.Merle@mpi-hd.mpg.de)

Max–Planck–Institut für Kernphysik Heidelberg

- AM: Why a splitting in the final state cannot explain the GSI-Oscillations, to appear soon
- H. Kienert, J. Kopp, M. Lindner, AM: *The GSI anomaly*, J. Phys. Conf. Ser. **136**, 022049, 2008, arXiv:0808.2389

SFB Tr 27 Meeting, Project C1, Heidelberg, 2009

Outline

Introduction

2 Quantum Beats

- One atom of type I
- One atom of type II
- 5 Two atoms of type II

6 Conclusions

Outline

Introduction

- 2 Quantum Beats
- One atom of type I
- One atom of type II
- 5 Two atoms of type II
- Conclusions

- measurement: lifetime of several H-like ions with respect to EC (electron capture)
- observation: cos-modulation superimposed on the exponential decay law
- $\bullet\,$ oscillation frequency ~7 sec $\Rightarrow\sim10^{-15}\,eV!!!$
- Ivanov, Kienle, Lipkin, et al.: *ν*-oscillations
- Giunti, we, et al.: reason unknown, but no ordinary ν-oscillations
- often mentioned in that context: Quantum Beats

- measurement: lifetime of several H-like ions with respect to EC (electron capture)
- observation: cos-modulation superimposed on the exponential decay law
- oscillation frequency $\sim 7~\text{sec} \Rightarrow \sim 10^{-15}~\text{eV}!!!$
- Ivanov, Kienle, Lipkin, et al.: ν-oscillations
- Giunti, we, et al.: reason unknown, but no ordinary ν-oscillations
- often mentioned in that context: Quantum Beats

- measurement: lifetime of several H-like ions with respect to EC (electron capture)
- observation: cos-modulation superimposed on the exponential decay law
- oscillation frequency \sim 7 sec \Rightarrow \sim 10⁻¹⁵ eV!!!
- Ivanov, Kienle, Lipkin, et al.: ν-oscillations
- Giunti, we, et al.: reason unknown, but no ordinary ν-oscillations
- often mentioned in that context: Quantum Beats

Y. A. Litvinov et al., Phys. Lett. **B664**, 162 (2008), arXiv:0801.2079

- measurement: lifetime of several H-like ions with respect to EC (electron capture)
- observation: cos-modulation superimposed on the exponential decay law
- oscillation frequency \sim 7 sec \Rightarrow \sim 10⁻¹⁵ eV!!!
- Ivanov, Kienle, Lipkin, et al.: ν-oscillations
- Giunti, we, et al.: reason unknown, but no ordinary ν-oscillations
- often mentioned in that context: Quantum Beats

A. Merle (MPIK)

- measurement: lifetime of several H-like ions with respect to EC (electron capture)
- observation: cos-modulation superimposed on the exponential decay law
- oscillation frequency $\sim 7~\text{sec} \Rightarrow \sim 10^{-15}~\text{eV}\text{!!!}$
- Ivanov, Kienle, Lipkin, et al.: ν-oscillations
- Giunti, we, et al.: reason unknown, but no ordinary ν-oscillations
- often mentioned in that context: Quantum Beats

- measurement: lifetime of several H-like ions with respect to EC (electron capture)
- observation: cos-modulation superimposed on the exponential decay law
- oscillation frequency $\sim 7~\text{sec} \Rightarrow \sim 10^{-15}~\text{eV}!!!$
- Ivanov, Kienle, Lipkin, et al.: ν-oscillations
- Giunti, we, et al.: reason unknown, but no ordinary ν-oscillations
- often mentioned in that context: Quantum Beats

- measurement: lifetime of several H-like ions with respect to EC (electron capture)
- observation: cos-modulation superimposed on the exponential decay law
- oscillation frequency $\sim 7~\text{sec} \Rightarrow \sim 10^{-15}~\text{eV}!!!$
- Ivanov, Kienle, Lipkin, et al.: ν-oscillations
- Giunti, we, et al.: reason unknown, but no ordinary v-oscillations
- often mentioned in that context: Quantum Beats

- measurement: lifetime of several H-like ions with respect to EC (electron capture)
- observation: cos-modulation superimposed on the exponential decay law
- oscillation frequency $\sim 7~\text{sec} \Rightarrow \sim 10^{-15}~\text{eV}!!!$
- Ivanov, Kienle, Lipkin, et al.: ν-oscillations
- often mentioned in that context: Quantum Beats

Introduction

2 Quantum Beats

- One atom of type I
- One atom of type II
- 5 Two atoms of type II
- Conclusions

\hookrightarrow This is what you find... But we're interested in something else!

A. Merle (MPIK)

BRAIS UN Â NAST For the Music Industry

Your One Stop Shop

A. Merle (MPIK)

BRAIS J A NAST For the Music Industry

Your One Stop Shop

Type II

A. Merle (MPIK)

QUANTUM BRATS RECORDING STUDIO For the Alusic Industry

Type I

Type II

 \hookrightarrow This is what you find... But we're interested in something else!

A. Merle (MPIK)

- usual setting: superposition of three atomic states
- important: the states |a>, |b>, and |c> correspond to different energy eigenvalues
 - \Rightarrow They are orthogonal!
- this orthogonality is not touched by the uncertainty relation
- BUT: an uncertainty allows for a coherent superposition

• usual setting: superposition of three atomic states

 important: the states |a>, |b>, and |c> correspond to different energy eigenvalues

 \Rightarrow They are orthogonal!

• this orthogonality is not touched by the uncertainty relation

BUT: an uncertainty allows for a coherent superposition

A. Merle (MPIK)

- usual setting: superposition of three atomic states
- important: the states |a>, |b>, and |c> correspond to different energy eigenvalues
 - \Rightarrow They are orthogonal!
- this orthogonality is not touched by the uncertainty relation
- BUT: an uncertainty allows for a coherent superposition

A. Merle (MPIK)

- usual setting: superposition of three atomic states
- important: the states |a>, |b>, and |c> correspond to different energy eigenvalues
 - \Rightarrow They are orthogonal!
- this orthogonality is not touched by the uncertainty relation
- BUT: an uncertainty allows for a coherent superposition

- usual setting: superposition of three atomic states
- important: the states |a>, |b>, and |c> correspond to different energy eigenvalues
 - \Rightarrow They are orthogonal!
- this orthogonality is not touched by the uncertainty relation
- BUT: an uncertainty allows for a coherent superposition

- usual setting: superposition of three atomic states
- important: the states |a>, |b>, and |c> correspond to different energy eigenvalues
 - \Rightarrow They are orthogonal!
- this orthogonality is not touched by the uncertainty relation
 BUT: an uncertainty allows for a coherent superposition

A. Merle (MPIK)

- usual setting: superposition of three atomic states
- important: the states |a>, |b>, and |c> correspond to different energy eigenvalues
 - \Rightarrow They are orthogonal!
- this orthogonality is not touched by the uncertainty relation
- BUT: an uncertainty allows for a coherent superposition

Introduction

2 Quantum Beats

- One atom of type I
 - One atom of type II
 - 5 Two atoms of type II
 - Conclusions

- superposition of $|a\rangle$, $|b\rangle$, and $|c\rangle$
- initially:
 - $$\begin{split} |\Psi(\mathbf{0})\rangle &= \mathcal{A}_0 |a\rangle |0\rangle_{\gamma} + \mathcal{B}_0 |b\rangle |0\rangle_{\gamma} + \mathcal{C}_0 |c\rangle |0\rangle_{\gamma} \\ &\rightarrow \text{with:} \ |\mathcal{A}_0|^2 + |\mathcal{B}_0|^2 + |\mathcal{C}_0|^2 = 1 \end{split}$$
- no photons emitted yet ightarrow vacuum $|0
 angle_{\gamma}$
- time-evolution ⇒ lower state gets populated by photon emission
- corresponding state $|\Psi(t)\rangle$:

 $\mathcal{A}(t)|a\rangle|0\rangle_{\gamma}+\mathcal{B}(t)|b\rangle|0\rangle_{\gamma}+\mathcal{C}(t)|c\rangle|0\rangle_{\gamma}+\mathcal{C}_{1}(t)|c\rangle|1_{ac}\rangle_{\gamma}+\mathcal{C}_{2}(t)|c\rangle|1_{bc}\rangle_{\gamma}$

• superposition of $|a\rangle$, $|b\rangle$, and $|c\rangle$

• initially:

- $$\begin{split} |\Psi(0)\rangle &= \mathcal{A}_0 |a\rangle |0\rangle_{\gamma} + \mathcal{B}_0 |b\rangle |0\rangle_{\gamma} + \mathcal{C}_0 |c\rangle |0\rangle_{\gamma} \\ &\rightarrow \text{with:} \ |\mathcal{A}_0|^2 + |\mathcal{B}_0|^2 + |\mathcal{C}_0|^2 = 1 \end{split}$$
- no photons emitted yet ightarrow vacuum $|0
 angle_{\gamma}$
- time-evolution ⇒ lower state gets populated by photon emission

• corresponding state $|\Psi(t)\rangle$:

 $\mathcal{A}(t)|a\rangle|0\rangle_{\gamma}+\mathcal{B}(t)|b\rangle|0\rangle_{\gamma}+\mathcal{C}(t)|c\rangle|0\rangle_{\gamma}+\mathcal{C}_{1}(t)|c\rangle|1_{ac}\rangle_{\gamma}+\mathcal{C}_{2}(t)|c\rangle|1_{bc}\rangle_{\gamma}$

• superposition of |a
angle, |b
angle, and |c
angle

• initially:

- $$\begin{split} |\Psi(\mathbf{0})\rangle &= \mathcal{A}_0 |a\rangle |0\rangle_\gamma + \mathcal{B}_0 |b\rangle |0\rangle_\gamma + \mathcal{C}_0 |c\rangle |0\rangle_\gamma \\ &\to \text{with:} \ |\mathcal{A}_0|^2 + |\mathcal{B}_0|^2 + |\mathcal{C}_0|^2 = 1 \end{split}$$
- no photons emitted yet ightarrow vacuum $|0
 angle_{\gamma}$
- time-evolution ⇒ lower state gets populated by photon emission

• corresponding state $|\Psi(t)\rangle$:

 $\mathcal{A}(t)|a\rangle|0\rangle_{\gamma}+\mathcal{B}(t)|b\rangle|0\rangle_{\gamma}+\mathcal{C}(t)|c\rangle|0\rangle_{\gamma}+\mathcal{C}_{1}(t)|c\rangle|1_{ac}\rangle_{\gamma}+\mathcal{C}_{2}(t)|c\rangle|1_{bc}\rangle_{\gamma}$

- superposition of |a
 angle, |b
 angle, and |c
 angle
- initially: $|\Psi(0)\rangle = \mathcal{A}_0 |a\rangle |0\rangle_{\gamma} + \mathcal{B}_0 |b\rangle |0\rangle_{\gamma} + \mathcal{C}_0 |c\rangle |0\rangle_{\gamma}$
- no photons emitted yet ightarrow vacuum $|0
 angle_{\gamma}$
- time-evolution ⇒ lower state gets populated by photon emission

• corresponding state $|\Psi(t)\rangle$:

 $\mathcal{A}(t)|a\rangle|0\rangle_{\gamma}+\mathcal{B}(t)|b\rangle|0\rangle_{\gamma}+\mathcal{C}(t)|c\rangle|0\rangle_{\gamma}+\mathcal{C}_{1}(t)|c\rangle|1_{ac}\rangle_{\gamma}+\mathcal{C}_{2}(t)|c\rangle|1_{bc}\rangle_{\gamma}$

- superposition of $|a
 angle,\,|b
 angle,\,$ and |c
 angle
- initially: $|\Psi(0)\rangle = \mathcal{A}_0 |a\rangle |0\rangle_{\gamma} + \mathcal{B}_0 |b\rangle |0\rangle_{\gamma} + \mathcal{C}_0 |c\rangle |0\rangle_{\gamma}$ \rightarrow with: $|\mathcal{A}_0|^2 + |\mathcal{B}_0|^2 + |\mathcal{C}_0|^2 = 1$
- no photons emitted yet ightarrow vacuum $|0
 angle_{\gamma}$
- time-evolution ⇒ lower state gets populated by photon emission

• corresponding state $|\Psi(t)\rangle$:

 $\mathcal{A}(t)|a\rangle|0\rangle_{\gamma}+\mathcal{B}(t)|b\rangle|0\rangle_{\gamma}+\mathcal{C}(t)|c\rangle|0\rangle_{\gamma}+\mathcal{C}_{1}(t)|c\rangle|1_{ac}\rangle_{\gamma}+\mathcal{C}_{2}(t)|c\rangle|1_{bc}\rangle_{\gamma}$

- superposition of |a
 angle, |b
 angle, and |c
 angle
- initially:
 - $$\begin{split} |\Psi(\mathbf{0})\rangle &= \mathcal{A}_0 |a\rangle |0\rangle_\gamma + \mathcal{B}_0 |b\rangle |0\rangle_\gamma + \mathcal{C}_0 |c\rangle |0\rangle_\gamma \\ &\rightarrow \text{with:} \ |\mathcal{A}_0|^2 + |\mathcal{B}_0|^2 + |\mathcal{C}_0|^2 = 1 \end{split}$$
- no photons emitted yet ightarrow vacuum $|0
 angle_{\gamma}$
- time-evolution ⇒ lower state gets populated by photon emission

• corresponding state $|\Psi(t)\rangle$:

 $\mathcal{A}(t)|a\rangle|0\rangle_{\gamma}+\mathcal{B}(t)|b\rangle|0\rangle_{\gamma}+\mathcal{C}(t)|c\rangle|0\rangle_{\gamma}+\mathcal{C}_{1}(t)|c\rangle|1_{ac}\rangle_{\gamma}+\mathcal{C}_{2}(t)|c\rangle|1_{bc}\rangle_{\gamma}$

• 1-photon state: $|1_x\rangle_{\gamma} = a_x^{\dagger}|0\rangle_{\gamma}$, with $[a_{\vec{k},\lambda}, a_{\vec{k}',\lambda'}^{\dagger}] = \delta_{\vec{k},\vec{k}'}\delta_{\lambda,\lambda'}$

• superposition of $|a\rangle$, $|b\rangle$, and $|c\rangle$

• initially:

- $$\begin{split} |\Psi(\mathbf{0})\rangle &= \mathcal{A}_0 |\mathbf{a}\rangle |\mathbf{0}\rangle_{\gamma} + \mathcal{B}_0 |\mathbf{b}\rangle |\mathbf{0}\rangle_{\gamma} + \mathcal{C}_0 |\mathbf{c}\rangle |\mathbf{0}\rangle_{\gamma} \\ \rightarrow \text{ with: } |\mathcal{A}_0|^2 + |\mathcal{B}_0|^2 + |\mathcal{C}_0|^2 = 1 \end{split}$$
- no photons emitted yet ightarrow vacuum $|0
 angle_{\gamma}$
- time-evolution ⇒ lower state gets populated by photon emission

• corresponding state $|\Psi(t)\rangle$:

 $\mathcal{A}(t)|a\rangle|0\rangle_{\gamma}+\mathcal{B}(t)|b\rangle|0\rangle_{\gamma}+\mathcal{C}(t)|c\rangle|0\rangle_{\gamma}+\mathcal{C}_{1}(t)|c\rangle|1_{ac}\rangle_{\gamma}+\mathcal{C}_{2}(t)|c\rangle|1_{bc}\rangle_{\gamma}$

• 1-photon state: $|1_x\rangle_{\gamma} = a_x^{\dagger}|0\rangle_{\gamma}$, with $[a_{\vec{k},\lambda}, a_{\vec{k}',\lambda'}^{\dagger}] = \delta_{\vec{k},\vec{k}'}\delta_{\lambda,\lambda'}$

 $\hookrightarrow \vec{k}$: momentum, λ : polarization

- superposition of |a
 angle, |b
 angle, and |c
 angle
- initially:
 - $$\begin{split} |\Psi(\mathbf{0})\rangle &= \mathcal{A}_0 |a\rangle |0\rangle_{\gamma} + \mathcal{B}_0 |b\rangle |0\rangle_{\gamma} + \mathcal{C}_0 |c\rangle |0\rangle_{\gamma} \\ \rightarrow \text{ with: } |\mathcal{A}_0|^2 + |\mathcal{B}_0|^2 + |\mathcal{C}_0|^2 = 1 \end{split}$$
- no photons emitted yet ightarrow vacuum $|0
 angle_{\gamma}$
- time-evolution ⇒ lower state gets populated by photon emission
- corresponding state $|\Psi(t)\rangle$: $\mathcal{A}(t)|a\rangle|0\rangle_{\gamma}+\mathcal{B}(t)|b\rangle|0\rangle_{\gamma}+\mathcal{C}(t)|c\rangle|0\rangle_{\gamma}+\mathcal{C}_{1}(t)|c\rangle|1_{ac}\rangle_{\gamma}+\mathcal{C}_{2}(t)|c\rangle|1_{bc}\rangle_{\gamma}$
- 1-photon state: $|1_x\rangle_{\gamma} = a_x^{\dagger}|0\rangle_{\gamma}$, with $[a_{\vec{k},\lambda}, a_{\vec{k}',\lambda'}^{\dagger}] = \delta_{\vec{k},\vec{k}'}\delta_{\lambda,\lambda'}$
 - $\rightarrow \vec{k}$: momentum, λ : polarization

- superposition of |a
 angle, |b
 angle, and |c
 angle
- initially:
 - $$\begin{split} |\Psi(\mathbf{0})\rangle &= \mathcal{A}_0 |a\rangle |0\rangle_\gamma + \mathcal{B}_0 |b\rangle |0\rangle_\gamma + \mathcal{C}_0 |c\rangle |0\rangle_\gamma \\ &\rightarrow \text{with:} \ |\mathcal{A}_0|^2 + |\mathcal{B}_0|^2 + |\mathcal{C}_0|^2 = 1 \end{split}$$
- no photons emitted yet ightarrow vacuum $|0
 angle_{\gamma}$
- time-evolution ⇒ lower state gets populated by photon emission
- corresponding state $|\Psi(t)\rangle$:

 $\mathcal{A}(t)|a\rangle|0\rangle_{\gamma} + \mathcal{B}(t)|b\rangle|0\rangle_{\gamma} + \mathcal{C}(t)|c\rangle|0\rangle_{\gamma} + \mathcal{C}_{1}(t)|c\rangle|1_{ac}\rangle_{\gamma} + \mathcal{C}_{2}(t)|c\rangle|1_{bc}\rangle_{\gamma}$

- 1-photon state: $|1_x\rangle_{\gamma} = a_x^{\dagger}|0\rangle_{\gamma}$, with $[a_{\vec{k},\lambda}, a_{\vec{k}',\lambda'}^{\dagger}] = \delta_{\vec{k},\vec{k}'}\delta_{\lambda,\lambda'}$
 - $\hookrightarrow \vec{k}$: momentum, λ : polarization

• electric field operator: $\vec{E}(\vec{x},t) = \sum_{\vec{k},\lambda} \epsilon_{\vec{k},\lambda} \left(a_{\vec{k},\lambda} e^{-ikx} + a_{\vec{k},\lambda}^{\dagger} e^{+ikx} \right)$

• radiated photon intensity:

$$I\propto \langle \Psi(t)|ec{E}^2(ec{0},t)|\Psi(t)
angle$$

• effectively:

$$\vec{E}^{2}(\vec{0},t) = \epsilon_{ac}^{2}(1+2a_{ac}^{\dagger}a_{ac}) + \epsilon_{bc}^{2}(1+2a_{bc}^{\dagger}a_{bc}) + 2\epsilon_{ac}\epsilon_{bc}(a_{ac}^{\dagger}a_{bc}e^{i\Delta t} + a_{bc}^{\dagger}a_{ac}e^{-i\Delta t})$$

• already used: e.g. $_{\gamma}\langle 0|\underbrace{a_{ac}^{\dagger}}_{0\leftarrow}a_{ac}^{\dagger}|...\rangle_{\gamma} = 0$ • photon energy difference: $\Delta = \omega_{ac} - \omega_{bc}$

• electric field operator: $\vec{E}(\vec{x},t) = \sum_{\vec{k},\lambda} \epsilon_{\vec{k},\lambda} \left(a_{\vec{k},\lambda} e^{-ikx} + a_{\vec{k},\lambda}^{\dagger} e^{+ikx} \right)$

• radiated photon intensity:

$$I\propto \langle \Psi(t)|ec{E}^2(ec{0},t)|\Psi(t)
angle$$

• effectively:

$$\vec{E}^{2}(\vec{0},t) = \epsilon_{ac}^{2}(1+2a_{ac}^{\dagger}a_{ac}) + \epsilon_{bc}^{2}(1+2a_{bc}^{\dagger}a_{bc}) + 2\epsilon_{ac}\epsilon_{bc}(a_{ac}^{\dagger}a_{bc}e^{i\Delta t} + a_{bc}^{\dagger}a_{ac}e^{-i\Delta t})$$

• already used: e.g. $_{\gamma}\langle 0|\underbrace{a_{ac}^{\dagger}}_{0\leftarrow}a_{ac}^{\dagger}|...\rangle_{\gamma} = 0$ • photon energy difference: $\Delta = \omega_{ac} - \omega_{bc}$

- electric field operator: $\vec{E}(\vec{x},t) = \sum_{\vec{k},\lambda} \epsilon_{\vec{k},\lambda} \left(a_{\vec{k},\lambda} e^{-ikx} + a_{\vec{k},\lambda}^{\dagger} e^{+ikx} \right)$
- radiated photon intensity:

 $I\propto \langle \Psi(t)|\vec{E}^2(\vec{0},t)|\Psi(t)
angle$

• effectively:

$$\vec{E}^{2}(\vec{0},t) = \epsilon_{ac}^{2}(1+2a_{ac}^{\dagger}a_{ac}) + \epsilon_{bc}^{2}(1+2a_{bc}^{\dagger}a_{bc}) + 2\epsilon_{ac}\epsilon_{bc}(a_{ac}^{\dagger}a_{bc}e^{i\Delta t} + a_{bc}^{\dagger}a_{ac}e^{-i\Delta t})$$

• already used: e.g. $_{\gamma}\langle 0|\underbrace{a_{ac}^{\dagger}}_{0\leftarrow}a_{ac}^{\dagger}|...\rangle_{\gamma} = 0$ • photon energy difference: $\Delta = \omega_{ac} - \omega_{bc}$
- electric field operator: $\vec{E}(\vec{x},t) = \sum_{\vec{k},\lambda} \epsilon_{\vec{k},\lambda} \left(a_{\vec{k},\lambda} e^{-ikx} + a_{\vec{k},\lambda}^{\dagger} e^{+ikx} \right)$
- radiated photon intensity:

$$I\propto \langle \Psi(t)|ec{E}^2(ec{0},t)|\Psi(t)
angle$$

• effectively:

$$egin{aligned} ec{E}^2(ec{0},t) &= \epsilon_{ac}^2(1+2a_{ac}^\dagger a_{ac})+\epsilon_{bc}^2(1+2a_{bc}^\dagger a_{bc})+ \ +2\epsilon_{ac}\epsilon_{bc}(a_{ac}^\dagger a_{bc}e^{i\Delta t}+a_{bc}^\dagger a_{ac}e^{-i\Delta t}) \end{aligned}$$

• already used: e.g.
$$_{\gamma}\langle 0|\underbrace{a_{ac}^{\dagger}}_{0\leftarrow}a_{ac}^{\dagger}|...\rangle_{\gamma}=0$$

• photon energy difference: $\Lambda = \omega_{ac} - \omega_{bc}$

- electric field operator: $\vec{E}(\vec{x},t) = \sum_{\vec{k},\lambda} \epsilon_{\vec{k},\lambda} \left(a_{\vec{k},\lambda} e^{-ikx} + a_{\vec{k},\lambda}^{\dagger} e^{+ikx} \right)$
- radiated photon intensity:

$$I \propto \langle \Psi(t) | ec{E}^2(ec{0},t) | \Psi(t)
angle$$

• effectively:

$$egin{aligned} ec{E}^2(ec{0},t) &= \epsilon_{ac}^2(1+2a_{ac}^\dagger a_{ac})+\epsilon_{bc}^2(1+2a_{bc}^\dagger a_{bc})+ \ +2\epsilon_{ac}\epsilon_{bc}(a_{ac}^\dagger a_{bc}e^{i\Delta t}+a_{bc}^\dagger a_{ac}e^{-i\Delta t}) \end{aligned}$$

- already used: e.g. $_{\gamma}\langle 0|\underbrace{a_{ac}^{\dagger}}_{0\leftarrow}a_{ac}^{\dagger}|...\rangle_{\gamma}=0$
- photon energy difference: $\Delta = \omega_{ac} \omega_{bc}$

- electric field operator: $\vec{E}(\vec{x},t) = \sum_{\vec{k},\lambda} \epsilon_{\vec{k},\lambda} \left(a_{\vec{k},\lambda} e^{-ikx} + a^{\dagger}_{\vec{k},\lambda} e^{+ikx} \right)$
- radiated photon intensity:

$$I\propto \langle \Psi(t)|ec{E}^2(ec{0},t)|\Psi(t)
angle$$

• effectively:

$$egin{aligned} ec{E}^2(ec{0},t) &= \epsilon_{ac}^2(1+2a_{ac}^\dagger a_{ac})+\epsilon_{bc}^2(1+2a_{bc}^\dagger a_{bc})+ \ +2\epsilon_{ac}\epsilon_{bc}(a_{ac}^\dagger a_{bc}e^{i\Delta t}+a_{bc}^\dagger a_{ac}e^{-i\Delta t}) \end{aligned}$$

- already used: e.g. $_{\gamma}\langle 0|\underbrace{a_{ac}^{\dagger}}_{0\leftarrow}a_{ac}^{\dagger}|...\rangle_{\gamma}=0$
- photon energy difference: $\Delta = \omega_{ac} \omega_{bc}$

• there are oscillating terms in the intensity *I*, e.g. $C_1^*(t)C_2(t)e^{i\Delta t}$ oscillates and is proportional to:

$$_{\gamma}\langle 0|a_{ac}a^{\dagger}_{ac}a_{bc}a^{\dagger}_{bc}|0\rangle_{\gamma} = _{\gamma}\langle 0|(1+\underbrace{a^{\dagger}_{ac}}_{0\leftarrow}a_{ac})(1+a^{\dagger}_{bc}\underbrace{a_{bc}}_{\rightarrow 0})|0\rangle_{\gamma} = 1$$

 \Rightarrow Quantum Beats!

• intuitively:

there are oscillating terms in the intensity *I*, e.g. C^{*}₁(t)C₂(t)e^{i∆t} oscillates and is proportional to:

$$_{\gamma}\langle 0|a_{ac}a^{\dagger}_{ac}a_{bc}a^{\dagger}_{bc}|0\rangle_{\gamma} = _{\gamma}\langle 0|(1+\underbrace{a^{\dagger}_{ac}}_{0\leftarrow}a_{ac})(1+a^{\dagger}_{bc}\underbrace{a_{bc}}_{\rightarrow 0})|0\rangle_{\gamma} = 1$$

 \Rightarrow Quantum Beats!

• intuitively:

there are oscillating terms in the intensity *I*, e.g. C^{*}₁(t)C₂(t)e^{i∆t} oscillates and is proportional to:

$$_{\gamma}\langle 0|a_{ac}a^{\dagger}_{ac}a_{bc}a^{\dagger}_{bc}|0\rangle_{\gamma} = _{\gamma}\langle 0|(1+\underbrace{a^{\dagger}_{ac}}_{0\leftarrow}a_{ac})(1+a^{\dagger}_{bc}\underbrace{a_{bc}}_{\rightarrow 0})|0\rangle_{\gamma} = 1$$

\Rightarrow Quantum Beats!

• intuitively:

there are oscillating terms in the intensity *I*, e.g. C^{*}₁(t)C₂(t)e^{i∆t} oscillates and is proportional to:

$$_{\gamma}\langle 0|a_{ac}a^{\dagger}_{ac}a_{bc}a^{\dagger}_{bc}|0\rangle_{\gamma} = _{\gamma}\langle 0|(1+\underbrace{a^{\dagger}_{ac}}_{0\leftarrow}a_{ac})(1+a^{\dagger}_{bc}\underbrace{a_{bc}}_{\rightarrow 0})|0\rangle_{\gamma} = 1$$

 \Rightarrow Quantum Beats!

• intuitively:

- if there is a splitting in the initial state, this can cause oscillations in the decay rate
- HOWEVER: splitting $\sim 10^{-15} \text{ eV} \Rightarrow \text{tiny, not at all explained...}$
- furthermore: preliminary data on β⁺-decays show no oscillatory behavior (lvanov et a., 0905.1904)
 ⇒ if such a splitting were present, it could only be there in the electron energy level, but not in the nucleus

- if there is a splitting in the initial state, this can cause oscillations in the decay rate
- HOWEVER: splitting $\sim 10^{-15} \text{ eV} \Rightarrow \text{tiny, not at all explained...}$
- furthermore: preliminary data on β⁺-decays show no oscillatory behavior (lvanov et a., 0905.1904)
 ⇒ if such a splitting were present, it could only be there in the electron energy level, but not in the nucleus

- if there is a splitting in the initial state, this can cause oscillations in the decay rate
- HOWEVER: splitting $\sim 10^{-15} \text{ eV} \Rightarrow \text{tiny, not at all explained...}$
- furthermore: preliminary data on β⁺-decays show no oscillatory behavior (Ivanov et a., 0905.1904)
 ⇒ if such a splitting were present, it could only be there in the electron energy level, but not in the nucleus

- if there is a splitting in the initial state, this can cause oscillations in the decay rate
- HOWEVER: splitting $\sim 10^{-15}~eV \Rightarrow$ tiny, not at all explained...
- furthermore: preliminary data on β⁺-decays show no oscillatory behavior (lvanov et a., 0905.1904)
 ⇒ if such a splitting were present, it could only be there in the electron energy level, but not in the nucleus

- if there is a splitting in the initial state, this can cause oscillations in the decay rate
- HOWEVER: splitting $\sim 10^{-15}~eV \Rightarrow$ tiny, not at all explained...
- furthermore: preliminary data on β^+ -decays show no oscillatory behavior (lvanov et a., 0905.1904)

 \Rightarrow if such a splitting were present, it could only be there in the electron energy level, but not in the nucleus

- if there is a splitting in the initial state, this can cause oscillations in the decay rate
- HOWEVER: splitting $\sim 10^{-15} \text{ eV} \Rightarrow \text{tiny, not at all explained...}$
- furthermore: preliminary data on β⁺-decays show no oscillatory behavior (Ivanov et a., 0905.1904)
 ⇒ if such a splitting were present, it could only be there in the electron energy level, but not in the nucleus

A. Merle (MPIK)

Introduction

- 2 Quantum Beats
- One atom of type I
- One atom of type II
 - Two atoms of type I
 - 6 Conclusions

- superposition of $|a\rangle$, $|b\rangle$, and $|c\rangle$
- initially: $|\Psi(0)\rangle = \mathcal{A}_0 |a\rangle |0\rangle_{\gamma} + \mathcal{B}_0 |b\rangle |0\rangle_{\gamma} + \mathcal{C}_0 |c\rangle |0\rangle_{\gamma}$ \rightarrow with: $|\mathcal{A}_0|^2 + |\mathcal{B}_0|^2 + |\mathcal{C}_0|^2 = 1$
- no photons emitted yet ightarrow vacuum $|0
 angle_{\gamma}$
- time-evolution ⇒ lower states get populated by photon emission

• corresponding state $|\Psi(t)\rangle$:

• superposition of $|a\rangle$, $|b\rangle$, and $|c\rangle$

• initially:

- $$\begin{split} |\Psi(0)\rangle &= \mathcal{A}_0 |a\rangle |0\rangle_{\gamma} + \mathcal{B}_0 |b\rangle |0\rangle_{\gamma} + \mathcal{C}_0 |c\rangle |0\rangle_{\gamma} \\ &\rightarrow \text{with:} |\mathcal{A}_0|^2 + |\mathcal{B}_0|^2 + |\mathcal{C}_0|^2 = 1 \end{split}$$
- no photons emitted yet ightarrow vacuum $|0
 angle_{\gamma}$
- time-evolution ⇒ lower states get populated by photon emission

• corresponding state $|\Psi(t)\rangle$:

• superposition of $|a\rangle$, $|b\rangle$, and $|c\rangle$

• initially:

- $$\begin{split} |\Psi(0)\rangle &= \mathcal{A}_0 |a\rangle |0\rangle_{\gamma} + \mathcal{B}_0 |b\rangle |0\rangle_{\gamma} + \mathcal{C}_0 |c\rangle |0\rangle_{\gamma} \\ &\rightarrow \text{with:} |\mathcal{A}_0|^2 + |\mathcal{B}_0|^2 + |\mathcal{C}_0|^2 = 1 \end{split}$$
- no photons emitted yet ightarrow vacuum $|0
 angle_{\gamma}$
- time-evolution ⇒ lower states get populated by photon emission

• corresponding state $|\Psi(t)\rangle$:

• superposition of |a
angle, |b
angle, and |c
angle

• initially: $|\Psi(0)\rangle = \mathcal{A}_0 |a\rangle |0\rangle_{\gamma} + \mathcal{B}_0 |b\rangle |0\rangle_{\gamma} + \mathcal{C}_0 |c\rangle |0\rangle_{\gamma}$ \rightarrow with: $|\mathcal{A}_0|^2 + |\mathcal{B}_0|^2 + |\mathcal{C}_0|^2 = 1$

• no photons emitted yet \rightarrow vacuum $|0\rangle_{\gamma}$

 time-evolution ⇒ lower states get populated by photon emission

• corresponding state $|\Psi(t)\rangle$:

superposition of |a⟩, |b⟩, and |c⟩
initially: |Ψ(0)⟩ = A₀|a⟩|0⟩_γ + B₀|b⟩|0⟩_γ + C₀|c⟩|0⟩_γ → with: |A₀|² + |B₀|² + |C₀|² = 1
no photons emitted yet → vacuum |0⟩_γ
time-evolution ⇒ lower states get populated by photon emission

• corresponding state $|\Psi(t)\rangle$:

• superposition of $|a\rangle, |b\rangle,$ and $|c\rangle$

• initially:

- $$\begin{split} |\Psi(\mathbf{0})\rangle &= \mathcal{A}_0 |a\rangle |0\rangle_\gamma + \mathcal{B}_0 |b\rangle |0\rangle_\gamma + \mathcal{C}_0 |c\rangle |0\rangle_\gamma \\ &\rightarrow \text{with:} \ |\mathcal{A}_0|^2 + |\mathcal{B}_0|^2 + |\mathcal{C}_0|^2 = 1 \end{split}$$
- no photons emitted yet ightarrow vacuum $|0
 angle_{\gamma}$
- time-evolution ⇒ lower states get populated by photon emission

• corresponding state $|\Psi(t)\rangle$:

- superposition of $|a\rangle$, $|b\rangle$, and $|c\rangle$ • initially: $|\Psi(0)\rangle = \mathcal{A}_0 |a\rangle |0\rangle_{\gamma} + \mathcal{B}_0 |b\rangle |0\rangle_{\gamma} + \mathcal{C}_0 |c\rangle |0\rangle_{\gamma}$ \rightarrow with: $|\mathcal{A}_0|^2 + |\mathcal{B}_0|^2 + |\mathcal{C}_0|^2 = 1$
- no photons emitted yet ightarrow vacuum $|0
 angle_{\gamma}$
- time-evolution ⇒ lower states get populated by photon emission

corresponding state |Ψ(t)):

now we have:

$$\vec{E}^{2}(\vec{0},t) = \epsilon_{ac}^{2}(1+2a_{ac}^{\dagger}a_{ac}) + \epsilon_{ab}^{2}(1+2a_{ab}^{\dagger}a_{ab}) + +2\epsilon_{ac}\epsilon_{ab}(a_{ac}^{\dagger}a_{ab}e^{i\Delta t} + a_{ab}^{\dagger}a_{ac}e^{-i\Delta t})$$

possibilities:

• 0-photon state with 0-photon state: e.g. $|\mathcal{A}(t)|^2 e^{\pm i\Delta t}$ $\propto {}_{\gamma}\langle 0|a^{\dagger}_{ac} \underbrace{a_{ab}}_{\to 0}|0\rangle_{\gamma} = 0 \text{ or } \propto {}_{\gamma}\langle 0|a^{\dagger}_{ab} \underbrace{a_{ac}}_{\to 0}|0\rangle_{\gamma} = 0$

• 1-photon state with 1-photon state: e.g. $|\mathcal{B}'(t)|^2 e^{\pm i\Delta t}$ $\propto \gamma \langle 1_{ab} | a_{ac}^{\dagger} a_{ab} | 1_{ab} \rangle_{\gamma} = \gamma \langle 0 | a_{ab} \underbrace{a_{ac}^{\dagger}}_{0\leftarrow} a_{ab} a_{ab}^{\dagger} | 0 \rangle_{\gamma} = 0 \text{ or}$ $\propto \gamma \langle 1_{ab} | a_{ab}^{\dagger} a_{ac} | 1_{ab} \rangle_{\gamma} = \gamma \langle 0 | a_{ab} a_{ab}^{\dagger} \underbrace{a_{ac}}_{ab} a_{ab}^{\dagger} | 0 \rangle_{\gamma} = 0$

now we have:

$$\vec{E}^2(\vec{0},t) = \epsilon_{ac}^2(1+2a_{ac}^{\dagger}a_{ac}) + \epsilon_{ab}^2(1+2a_{ab}^{\dagger}a_{ab}) + \\ + 2\epsilon_{ac}\epsilon_{ab}(a_{ac}^{\dagger}a_{ab}e^{i\Delta t} + a_{ab}^{\dagger}a_{ac}e^{-i\Delta t})$$

possibilities:

• 0-photon state with 0-photon state: e.g.
$$|\mathcal{A}(t)|^2 e^{\pm i\Delta t}$$

 $\propto {}_{\gamma}\langle 0|a^{\dagger}_{ac} \underbrace{a_{ab}}_{\to 0}|0\rangle_{\gamma} = 0 \text{ or } \propto {}_{\gamma}\langle 0|a^{\dagger}_{ab} \underbrace{a_{ac}}_{\to 0}|0\rangle_{\gamma} = 0$

• 1-photon state with 1-photon state: e.g. $|\mathcal{B}'(t)|^2 e^{\pm i\Delta t}$ $\propto \sqrt{1_{ab}} |a_{ac}^{\dagger} a_{ab}| 1_{ab} \rangle_{\gamma} = \sqrt{0} |a_{ab} \underbrace{a_{ac}^{\dagger}}_{0\leftarrow} a_{ab} a_{ab}^{\dagger}| 0 \rangle_{\gamma} = 0 \text{ or}$ $\propto \sqrt{1_{ab}} |a_{ab}^{\dagger} a_{ac}| 1_{ab} \rangle_{\gamma} = \sqrt{0} |a_{ab} a_{ab}^{\dagger} \underbrace{a_{ac}}_{ab} a_{ab}^{\dagger}| 0 \rangle_{\gamma} = 0$

now we have:

$$\vec{E}^2(\vec{0},t) = \epsilon_{ac}^2(1+2a_{ac}^{\dagger}a_{ac}) + \epsilon_{ab}^2(1+2a_{ab}^{\dagger}a_{ab}) + \\ + 2\epsilon_{ac}\epsilon_{ab}(a_{ac}^{\dagger}a_{ab}e^{i\Delta t} + a_{ab}^{\dagger}a_{ac}e^{-i\Delta t})$$

possibilities:

• 0-photon state with 0-photon state: e.g.
$$|\mathcal{A}(t)|^2 e^{\pm i\Delta t}$$

 $\propto \sqrt[\gamma]{0|a_{ac}^{\dagger}} \underbrace{a_{ab}}_{\rightarrow 0} |0\rangle_{\gamma} = 0 \text{ or } \propto \sqrt[\gamma]{0|a_{ab}^{\dagger}} \underbrace{a_{ac}}_{\rightarrow 0} |0\rangle_{\gamma} = 0$

• 1-photon state with 1-photon state: e.g. $|\mathcal{B}'(t)|^2 e^{\pm i\Delta t}$ $\propto \gamma \langle 1_{ab} | a_{ac}^{\dagger} a_{ab} | 1_{ab} \rangle_{\gamma} = \gamma \langle 0 | a_{ab} \underbrace{a_{ac}^{\dagger}}_{0\leftarrow} a_{ab} a_{ab}^{\dagger} | 0 \rangle_{\gamma} = 0 \text{ or}$ $\propto \gamma \langle 1_{ab} | a_{ab}^{\dagger} a_{ac} | 1_{ab} \rangle_{\gamma} = \gamma \langle 0 | a_{ab} a_{ab}^{\dagger} \underbrace{a_{ac}}_{\rightarrow 0} a_{ab}^{\dagger} | 0 \rangle_{\gamma} = 0$

now we have:

$$\vec{E}^2(\vec{0},t) = \epsilon_{ac}^2(1+2a_{ac}^{\dagger}a_{ac}) + \epsilon_{ab}^2(1+2a_{ab}^{\dagger}a_{ab}) + \\ + 2\epsilon_{ac}\epsilon_{ab}(a_{ac}^{\dagger}a_{ab}e^{i\Delta t} + a_{ab}^{\dagger}a_{ac}e^{-i\Delta t})$$

possibilities:

• 0-photon state with 0-photon state: e.g. $|\mathcal{A}(t)|^2 e^{\pm i\Delta t}$ $\propto {}_{\gamma}\langle 0|a^{\dagger}_{ac}\underbrace{a_{ab}}_{\to 0}|0\rangle_{\gamma} = 0 \text{ or } \propto {}_{\gamma}\langle 0|a^{\dagger}_{ab}\underbrace{a_{ac}}_{\to 0}|0\rangle_{\gamma} = 0$

• 1-photon state with 1-photon state: e.g. $|\mathcal{B}'(t)|^2 e^{\pm i\Delta t}$ $\propto {}_{\gamma}\langle 1_{ab}|a^{\dagger}_{ac}a_{ab}|1_{ab}\rangle_{\gamma} = {}_{\gamma}\langle 0|a_{ab}\underbrace{a^{\dagger}_{ac}}_{0\leftarrow}a_{ab}a^{\dagger}_{ab}|0\rangle_{\gamma} = 0 \text{ or}$ $\propto {}_{\gamma}\langle 1_{ab}|a^{\dagger}_{ab}a_{ac}|1_{ab}\rangle_{\gamma} = {}_{\gamma}\langle 0|a_{ab}a^{\dagger}_{ab}\underbrace{a_{ac}}_{ab}a^{\dagger}_{ab}|0\rangle_{\gamma} = 0$

now we have:

$$\vec{E}^2(\vec{0},t) = \epsilon_{ac}^2(1+2a_{ac}^{\dagger}a_{ac}) + \epsilon_{ab}^2(1+2a_{ab}^{\dagger}a_{ab}) + 2\epsilon_{ac}\epsilon_{ab}(a_{ac}^{\dagger}a_{ab}e^{i\Delta t} + a_{ab}^{\dagger}a_{ac}e^{-i\Delta t})$$

possibilities:

• 0-photon state with 0-photon state: e.g. $|\mathcal{A}(t)|^2 e^{\pm i\Delta t}$ $\propto {}_{\gamma}\langle 0|a^{\dagger}_{ac}\underbrace{a_{ab}}_{\to 0}|0\rangle_{\gamma} = 0 \text{ or } \propto {}_{\gamma}\langle 0|a^{\dagger}_{ab}\underbrace{a_{ac}}_{\to 0}|0\rangle_{\gamma} = 0$

• 1-photon state with 1-photon state: e.g. $|\mathcal{B}'(t)|^2 e^{\pm i\Delta t}$ $\propto {}_{\gamma}\langle 1_{ab}|a^{\dagger}_{ac}a_{ab}|1_{ab}\rangle_{\gamma} = {}_{\gamma}\langle 0|a_{ab}\underbrace{a^{\dagger}_{ac}}_{0\leftarrow}a_{ab}a^{\dagger}_{ab}|0\rangle_{\gamma} = 0 \text{ or }$ $\propto {}_{\gamma}\langle 1_{ab}|a^{\dagger}_{ab}a_{ac}|1_{ab}\rangle_{\gamma} = {}_{\gamma}\langle 0|a_{ab}a^{\dagger}_{ab}\underbrace{a_{ac}}_{ab}\underbrace{a_{ab}}_{\rightarrow 0}a^{\dagger}_{ab}|0\rangle_{\gamma} = 0$

• 0-photon state with 1-photon state: e.g. $\mathcal{B}(t)^* \mathcal{B}'(t)$

$$\propto {}_{\gamma} \langle 0|1_{ab} \rangle_{\gamma} = {}_{\gamma} \langle 0|\underbrace{a_{ab}^{\dagger}}_{0\leftarrow}|0\rangle_{\gamma} = 0 \text{ or}$$

$$\propto {}_{\gamma} \langle 0|\underbrace{a_{ac}^{\dagger}}_{0\leftarrow} a_{ac}|1_{ab} \rangle_{\gamma} = 0 \text{ or } \propto {}_{\gamma} \langle 0|\underbrace{a_{ab}^{\dagger}}_{0\leftarrow} a_{ab}|1_{ab} \rangle_{\gamma} = 0 \text{ or}$$

$$\propto {}_{\gamma} \langle 0|\underbrace{a_{ac}^{\dagger}}_{0\leftarrow} a_{ab}|1_{ab} \rangle_{\gamma} = 0 \text{ or } \propto {}_{\gamma} \langle 0|\underbrace{a_{ab}^{\dagger}}_{0\leftarrow} a_{ac}|1_{ab} \rangle_{\gamma} = 0.$$

 \Rightarrow No oscillatory terms left! \Rightarrow No Quantum Beats!

Intuitively: By waiting long enough, one could determine the photon's energy by measuring the atomic final state. \Rightarrow No interferences expected!

A. Merle (MPIK)

• 0-photon state with 1-photon state: e.g. $\mathcal{B}(t)^* \mathcal{B}'(t)$

$$\propto {}_{\gamma}\langle 0|1_{ab}\rangle_{\gamma} = {}_{\gamma}\langle 0|\underbrace{a_{ab}^{\dagger}}_{0\leftarrow}|0\rangle_{\gamma} = 0 \text{ or }$$

$$\propto {}_{\gamma}\langle 0|\underbrace{a_{ac}^{\dagger}}_{0\leftarrow}a_{ac}|1_{ab}\rangle_{\gamma} = 0 \text{ or } \propto {}_{\gamma}\langle 0|\underbrace{a_{ab}^{\dagger}}_{0\leftarrow}a_{ab}|1_{ab}\rangle_{\gamma} = 0 \text{ or }$$

$$\propto {}_{\gamma}\langle 0|\underbrace{a_{ac}^{\dagger}}_{0\leftarrow}a_{ab}|1_{ab}\rangle_{\gamma} = 0 \text{ or } \propto {}_{\gamma}\langle 0|\underbrace{a_{ab}^{\dagger}}_{0\leftarrow}a_{ac}|1_{ab}\rangle_{\gamma} = 0.$$

 \Rightarrow No oscillatory terms left! \Rightarrow No Quantum Beats!

Intuitively: By waiting long enough, one could determine the photon's energy by measuring the atomic final state. \Rightarrow No interferences expected!

A. Merle (MPIK)

• 0-photon state with 1-photon state: e.g. $\mathcal{B}(t)^* \mathcal{B}'(t)$

$$\propto {}_{\gamma}\langle 0|1_{ab}\rangle_{\gamma} = {}_{\gamma}\langle 0|\underbrace{a_{ab}^{\dagger}}_{0\leftarrow}|0\rangle_{\gamma} = 0 \text{ or}$$

$$\propto {}_{\gamma}\langle 0|\underbrace{a_{ac}^{\dagger}}_{0\leftarrow}a_{ac}|1_{ab}\rangle_{\gamma} = 0 \text{ or } \propto {}_{\gamma}\langle 0|\underbrace{a_{ab}^{\dagger}}_{0\leftarrow}a_{ab}|1_{ab}\rangle_{\gamma} = 0 \text{ or}$$

$$\propto {}_{\gamma}\langle 0|\underbrace{a_{ac}^{\dagger}}_{0\leftarrow}a_{ab}|1_{ab}\rangle_{\gamma} = 0 \text{ or } \propto {}_{\gamma}\langle 0|\underbrace{a_{ab}^{\dagger}}_{0\leftarrow}a_{ac}|1_{ab}\rangle_{\gamma} = 0.$$

 \Rightarrow No oscillatory terms left! \Rightarrow No Quantum Beats!

Intuitively: By waiting long enough, one could determine the photon's energy by measuring the atomic final state. \Rightarrow No interferences expected!

A. Merle (MPIK)

• 0-photon state with 1-photon state: e.g. $\mathcal{B}(t)^* \mathcal{B}'(t)$

$$\propto {}_{\gamma}\langle 0|1_{ab}\rangle_{\gamma} = {}_{\gamma}\langle 0|\underbrace{a_{ab}^{\dagger}}_{0\leftarrow}|0\rangle_{\gamma} = 0 \text{ or }$$

$$\propto {}_{\gamma}\langle 0|\underbrace{a_{ac}^{\dagger}}_{0\leftarrow}a_{ac}|1_{ab}\rangle_{\gamma} = 0 \text{ or } \propto {}_{\gamma}\langle 0|\underbrace{a_{ab}^{\dagger}}_{0\leftarrow}a_{ab}|1_{ab}\rangle_{\gamma} = 0 \text{ or }$$

$$\propto {}_{\gamma}\langle 0|\underbrace{a_{ac}^{\dagger}}_{0\leftarrow}a_{ab}|1_{ab}\rangle_{\gamma} = 0 \text{ or } \propto {}_{\gamma}\langle 0|\underbrace{a_{ab}^{\dagger}}_{0\leftarrow}a_{ac}|1_{ab}\rangle_{\gamma} = 0.$$

 \Rightarrow No oscillatory terms left! \Rightarrow No Quantum Beats!

Intuitively:

By waiting long enough, one could determine the photon's energy by measuring the atomic final state. \Rightarrow No interferences expected!

A. Merle (MPIK)

- the neutrino is not expected to interact before losing its coherence (estimates: $L_{\rm coh} \lesssim 10^{19}$ m, mean free path $\sim 10^{40}$ m in the Galaxy)
- ones the neutrino interacts, there is no principle problem to determine its mass (e.g., by exploiting the spatial separation of the wave packet components belonging to different mass eigenstates)

 \Rightarrow accordingly, no Quantum Beats are expected

- the neutrino is not expected to interact before losing its coherence (estimates: $L_{\rm coh} \lesssim 10^{19}$ m, mean free path $\sim 10^{40}$ m in the Galaxy)
- ones the neutrino interacts, there is no principle problem to determine its mass (e.g., by exploiting the spatial separation of the wave packet components belonging to different mass eigenstates)
- \Rightarrow accordingly, no Quantum Beats are expected

- the neutrino is not expected to interact before losing its coherence (estimates: $L_{\rm coh} \lesssim 10^{19}$ m, mean free path $\sim 10^{40}$ m in the Galaxy)
- ones the neutrino interacts, there is no principle problem to determine its mass (e.g., by exploiting the spatial separation of the wave packet components belonging to different mass eigenstates)
- \Rightarrow accordingly, no Quantum Beats are expected

- the neutrino is not expected to interact before losing its coherence (estimates: $L_{\rm coh} \lesssim 10^{19}$ m, mean free path $\sim 10^{40}$ m in the Galaxy)
- ones the neutrino interacts, there is no principle problem to determine its mass (e.g., by exploiting the spatial separation of the wave packet components belonging to different mass eigenstates)

 \Rightarrow accordingly, no Quantum Beats are expected

- the neutrino is not expected to interact before losing its coherence (estimates: $L_{\rm coh} \lesssim 10^{19}$ m, mean free path $\sim 10^{40}$ m in the Galaxy)
- ones the neutrino interacts, there is no principle problem to determine its mass (e.g., by exploiting the spatial separation of the wave packet components belonging to different mass eigenstates)
- \Rightarrow accordingly, no Quantum Beats are expected

Introduction

- 2 Quantum Beats
- One atom of type I
- One atom of type II
- 5 Two atoms of type II

6 Conclusions
• if the spatial separation of the two atoms is smaller than the wavelength of the photon, one can write down a combined state:

$$\begin{split} |\Psi(0)\rangle &= \mathcal{A}_{0}|a\rangle_{1}|a\rangle_{2}|0\rangle_{\gamma} + \mathcal{B}_{0}|b\rangle_{1}|b\rangle_{2}|0\rangle_{\gamma} + \mathcal{C}_{0}|c\rangle_{1}|c\rangle_{2}|0\rangle_{\gamma} + \\ &+ \mathcal{D}_{1,0}|a\rangle_{1}|b\rangle_{2}|0\rangle_{\gamma} + \mathcal{D}_{2,0}|b\rangle_{1}|a\rangle_{2}|0\rangle_{\gamma} + \mathcal{E}_{1,0}|a\rangle_{1}|c\rangle_{2}|0\rangle_{\gamma} + \\ &+ \mathcal{E}_{2,0}|c\rangle_{1}|a\rangle_{2}|0\rangle_{\gamma} + \mathcal{F}_{1,0}|b\rangle_{1}|c\rangle_{2}|0\rangle_{\gamma} + \mathcal{F}_{2,0}|c\rangle_{1}|b\rangle_{2}|0\rangle_{\gamma} \end{split}$$

• time evolution $|\Psi(t)\rangle$ (trivial, but lengthy):

$$\begin{split} \mathcal{A}(t)|a\rangle_{1}|a\rangle_{2}|0\rangle_{\gamma} + \mathcal{B}(t)|b\rangle_{1}|b\rangle_{2}|0\rangle_{\gamma} + \mathcal{C}(t)|c\rangle_{1}|c\rangle_{2}|0\rangle_{\gamma} + \\ + \mathcal{D}_{1}(t)|a\rangle_{1}|b\rangle_{2}|0\rangle_{\gamma} + \mathcal{D}_{2}(t)|b\rangle_{1}|a\rangle_{2}|0\rangle_{\gamma} + \mathcal{E}_{1}(t)|a\rangle_{1}|c\rangle_{2}|0\rangle_{\gamma} + \\ + \mathcal{E}_{2}(t)|c\rangle_{1}|a\rangle_{2}|0\rangle_{\gamma} + \mathcal{F}_{1}(t)|b\rangle_{1}|c\rangle_{2}|0\rangle_{\gamma} + \mathcal{F}_{2}(t)|c\rangle_{1}|b\rangle_{2}|0\rangle_{\gamma} + \\ + \mathcal{G}_{1}(t)|b\rangle_{1}|a\rangle_{2}|1_{ab}\rangle_{\gamma} + \mathcal{G}_{2}(t)|a\rangle_{1}|b\rangle_{2}|1_{ab}\rangle_{\gamma} + \\ + \mathcal{H}_{1}(t)|c\rangle_{1}|a\rangle_{2}|1_{ac}\rangle_{\gamma} + \mathcal{H}_{2}(t)|a\rangle_{1}|c\rangle_{2}|1_{ac}\rangle_{\gamma} + \\ + \mathcal{I}_{1}(t)|b\rangle_{1}|b\rangle_{2}|1_{ab}\rangle_{\gamma} + \mathcal{I}_{2}(t)|c\rangle_{1}|c\rangle_{2}|1_{ac}\rangle_{\gamma} + \\ + \mathcal{J}_{1}(t)|b\rangle_{1}|c\rangle_{2}|1_{ab}\rangle_{\gamma} + \mathcal{J}_{2}(t)|c\rangle_{1}|b\rangle_{2}|1_{ab}\rangle_{\gamma} + \\ + \mathcal{H}_{1}(t)|b\rangle_{1}|c\rangle_{2}|1_{ab}\rangle_{\gamma} + \mathcal{H}_{2}(t)|c\rangle_{1}|b\rangle_{2}|1_{ab}\rangle_{\gamma} + \\ + \mathcal{H}_{1}(t)|b\rangle_{1}|c\rangle_{2}|1_{ab}\rangle_{\gamma} + \mathcal{H}_{2}(t)|c\rangle_{1}|b\rangle_{2}|1_{ac}\rangle_{\gamma} \end{split}$$

• if the spatial separation of the two atoms is smaller than the wavelength of the photon, one can write down a combined state:

$$\begin{split} |\Psi(\mathbf{0}\rangle\rangle &= \mathcal{A}_{0}|\boldsymbol{a}\rangle_{1}|\boldsymbol{a}\rangle_{2}|\boldsymbol{0}\rangle_{\gamma} + \mathcal{B}_{0}|\boldsymbol{b}\rangle_{1}|\boldsymbol{b}\rangle_{2}|\boldsymbol{0}\rangle_{\gamma} + \mathcal{C}_{0}|\boldsymbol{c}\rangle_{1}|\boldsymbol{c}\rangle_{2}|\boldsymbol{0}\rangle_{\gamma} + \\ &+ \mathcal{D}_{1,0}|\boldsymbol{a}\rangle_{1}|\boldsymbol{b}\rangle_{2}|\boldsymbol{0}\rangle_{\gamma} + \mathcal{D}_{2,0}|\boldsymbol{b}\rangle_{1}|\boldsymbol{a}\rangle_{2}|\boldsymbol{0}\rangle_{\gamma} + \mathcal{E}_{1,0}|\boldsymbol{a}\rangle_{1}|\boldsymbol{c}\rangle_{2}|\boldsymbol{0}\rangle_{\gamma} + \\ &+ \mathcal{E}_{2,0}|\boldsymbol{c}\rangle_{1}|\boldsymbol{a}\rangle_{2}|\boldsymbol{0}\rangle_{\gamma} + \mathcal{F}_{1,0}|\boldsymbol{b}\rangle_{1}|\boldsymbol{c}\rangle_{2}|\boldsymbol{0}\rangle_{\gamma} + \mathcal{F}_{2,0}|\boldsymbol{c}\rangle_{1}|\boldsymbol{b}\rangle_{2}|\boldsymbol{0}\rangle_{\gamma} \end{split}$$

• time evolution $|\Psi(t)\rangle$ (trivial, but lengthy):

$$\begin{split} \mathcal{A}(t)|a\rangle_{1}|a\rangle_{2}|0\rangle_{\gamma} + \mathcal{B}(t)|b\rangle_{1}|b\rangle_{2}|0\rangle_{\gamma} + \mathcal{C}(t)|c\rangle_{1}|c\rangle_{2}|0\rangle_{\gamma} + \\ + \mathcal{D}_{1}(t)|a\rangle_{1}|b\rangle_{2}|0\rangle_{\gamma} + \mathcal{D}_{2}(t)|b\rangle_{1}|a\rangle_{2}|0\rangle_{\gamma} + \mathcal{E}_{1}(t)|a\rangle_{1}|c\rangle_{2}|0\rangle_{\gamma} + \\ + \mathcal{E}_{2}(t)|c\rangle_{1}|a\rangle_{2}|0\rangle_{\gamma} + \mathcal{F}_{1}(t)|b\rangle_{1}|c\rangle_{2}|0\rangle_{\gamma} + \mathcal{F}_{2}(t)|c\rangle_{1}|b\rangle_{2}|0\rangle_{\gamma} + \\ + \mathcal{G}_{1}(t)|b\rangle_{1}|a\rangle_{2}|1_{ab}\rangle_{\gamma} + \mathcal{G}_{2}(t)|a\rangle_{1}|b\rangle_{2}|1_{ab}\rangle_{\gamma} + \\ + \mathcal{H}_{1}(t)|c\rangle_{1}|a\rangle_{2}|1_{ac}\rangle_{\gamma} + \mathcal{H}_{2}(t)|a\rangle_{1}|c\rangle_{2}|1_{ac}\rangle_{\gamma} + \\ + \mathcal{I}_{1}(t)|b\rangle_{1}|b\rangle_{2}|1_{ab}\rangle_{\gamma} + \mathcal{I}_{2}(t)|c\rangle_{1}|c\rangle_{2}|1_{ac}\rangle_{\gamma} + \\ + \mathcal{J}_{1}(t)|b\rangle_{1}|c\rangle_{2}|1_{ab}\rangle_{\gamma} + \mathcal{J}_{2}(t)|c\rangle_{1}|b\rangle_{2}|1_{ab}\rangle_{\gamma} + \\ + \mathcal{K}_{1}(t)|b\rangle_{1}|c\rangle_{2}|1_{ac}\rangle_{\gamma} + \mathcal{K}_{2}(t)|c\rangle_{1}|b\rangle_{2}|1_{ac}\rangle_{\gamma} \end{split}$$

 if the spatial separation of the two atoms is smaller than the wavelength of the photon, one can write down a combined state:

$$\begin{split} |\Psi(\mathbf{0}\rangle\rangle &= \mathcal{A}_{0}|\boldsymbol{a}\rangle_{1}|\boldsymbol{a}\rangle_{2}|\boldsymbol{0}\rangle_{\gamma} + \mathcal{B}_{0}|\boldsymbol{b}\rangle_{1}|\boldsymbol{b}\rangle_{2}|\boldsymbol{0}\rangle_{\gamma} + \mathcal{C}_{0}|\boldsymbol{c}\rangle_{1}|\boldsymbol{c}\rangle_{2}|\boldsymbol{0}\rangle_{\gamma} + \\ &+ \mathcal{D}_{1,0}|\boldsymbol{a}\rangle_{1}|\boldsymbol{b}\rangle_{2}|\boldsymbol{0}\rangle_{\gamma} + \mathcal{D}_{2,0}|\boldsymbol{b}\rangle_{1}|\boldsymbol{a}\rangle_{2}|\boldsymbol{0}\rangle_{\gamma} + \mathcal{E}_{1,0}|\boldsymbol{a}\rangle_{1}|\boldsymbol{c}\rangle_{2}|\boldsymbol{0}\rangle_{\gamma} + \\ &+ \mathcal{E}_{2,0}|\boldsymbol{c}\rangle_{1}|\boldsymbol{a}\rangle_{2}|\boldsymbol{0}\rangle_{\gamma} + \mathcal{F}_{1,0}|\boldsymbol{b}\rangle_{1}|\boldsymbol{c}\rangle_{2}|\boldsymbol{0}\rangle_{\gamma} + \mathcal{F}_{2,0}|\boldsymbol{c}\rangle_{1}|\boldsymbol{b}\rangle_{2}|\boldsymbol{0}\rangle_{\gamma} \end{split}$$

• time evolution $|\Psi(t)\rangle$ (trivial, but lengthy):

$$\begin{split} \mathcal{A}(t)|a\rangle_{1}|a\rangle_{2}|0\rangle_{\gamma} + \mathcal{B}(t)|b\rangle_{1}|b\rangle_{2}|0\rangle_{\gamma} + \mathcal{C}(t)|c\rangle_{1}|c\rangle_{2}|0\rangle_{\gamma} + \\ + \mathcal{D}_{1}(t)|a\rangle_{1}|b\rangle_{2}|0\rangle_{\gamma} + \mathcal{D}_{2}(t)|b\rangle_{1}|a\rangle_{2}|0\rangle_{\gamma} + \mathcal{E}_{1}(t)|a\rangle_{1}|c\rangle_{2}|0\rangle_{\gamma} + \\ + \mathcal{E}_{2}(t)|c\rangle_{1}|a\rangle_{2}|0\rangle_{\gamma} + \mathcal{F}_{1}(t)|b\rangle_{1}|c\rangle_{2}|0\rangle_{\gamma} + \mathcal{F}_{2}(t)|c\rangle_{1}|b\rangle_{2}|0\rangle_{\gamma} + \\ + \mathcal{G}_{1}(t)|b\rangle_{1}|a\rangle_{2}|1_{ab}\rangle_{\gamma} + \mathcal{G}_{2}(t)|a\rangle_{1}|b\rangle_{2}|1_{ab}\rangle_{\gamma} + \\ + \mathcal{H}_{1}(t)|c\rangle_{1}|a\rangle_{2}|1_{ac}\rangle_{\gamma} + \mathcal{H}_{2}(t)|a\rangle_{1}|c\rangle_{2}|1_{ac}\rangle_{\gamma} + \\ + \mathcal{I}_{1}(t)|b\rangle_{1}|b\rangle_{2}|1_{ab}\rangle_{\gamma} + \mathcal{I}_{2}(t)|c\rangle_{1}|c\rangle_{2}|1_{ac}\rangle_{\gamma} + \\ + \mathcal{J}_{1}(t)|b\rangle_{1}|c\rangle_{2}|1_{ab}\rangle_{\gamma} + \mathcal{J}_{2}(t)|c\rangle_{1}|b\rangle_{2}|1_{ab}\rangle_{\gamma} + \\ + \mathcal{K}_{1}(t)|b\rangle_{1}|c\rangle_{2}|1_{ab}\rangle_{\gamma} + \mathcal{K}_{2}(t)|c\rangle_{1}|b\rangle_{2}|1_{ac}\rangle_{\gamma} \end{split}$$

• there can indeed be oscillatory terms, e.g. $\mathcal{J}_1^* \mathcal{K}_1 e^{-i\Delta t}$, which is proportional to:

$$\gamma \langle 1_{ab} | a_{ab}^{\dagger} a_{ac} | 1_{ac} \rangle_{\gamma} = \gamma \langle 0 | a_{ab} a_{ab}^{\dagger} a_{ac} a_{ac}^{\dagger} | 0 \rangle_{\gamma} =$$
$$= \gamma \langle 0 | (1 + \underbrace{a_{ab}^{\dagger}}_{0 \leftarrow} a_{ab}) (1 + a_{ac}^{\dagger} \underbrace{a_{ac}}_{\rightarrow 0}) | 0 \rangle_{\gamma} = \gamma \langle 0 | 0 \rangle_{\gamma} = 1$$

- intuitively: If the distance of the atoms is less then the photon's wavelength, one cannot determine, which atom has emitted the radiation.
 - \Rightarrow No way to measure the photon's frequency!
 - \Rightarrow Quantum Beats!

 there can indeed be oscillatory terms, e.g. J₁^{*}K₁e^{-i∆t}, which is proportional to:

$${}_{\gamma}\langle 1_{ab}|a^{\dagger}_{ab}a_{ac}|1_{ac}
angle_{\gamma} = {}_{\gamma}\langle 0|a_{ab}a^{\dagger}_{ab}a_{ac}a^{\dagger}_{ac}|0
angle_{\gamma} = {}_{\gamma}\langle 0|(1+\underbrace{a^{\dagger}_{ab}}_{0\leftarrow}a_{ab})(1+a^{\dagger}_{ac}\underbrace{a_{ac}}_{
ightarrow 0})|0
angle_{\gamma} = {}_{\gamma}\langle 0|0
angle_{\gamma} = 1$$

- intuitively: If the distance of the atoms is less then the photon's wavelength, one cannot determine, which atom has emitted the radiation.
 - \Rightarrow No way to measure the photon's frequency!
 - \Rightarrow Quantum Beats!

 there can indeed be oscillatory terms, e.g. J₁^{*}K₁e^{-i∆t}, which is proportional to:

$$_{\gamma}\langle 1_{ab}|a^{\dagger}_{ab}a_{ac}|1_{ac}\rangle_{\gamma} = _{\gamma}\langle 0|a_{ab}a^{\dagger}_{ab}a_{ac}a^{\dagger}_{ac}|0\rangle_{\gamma} =$$

= $_{\gamma}\langle 0|(1+\underbrace{a^{\dagger}_{ab}}_{0\leftarrow}a_{ab})(1+a^{\dagger}_{ac}\underbrace{a_{ac}}_{
ightarrow 0})|0\rangle_{\gamma} = _{\gamma}\langle 0|0\rangle_{\gamma} = 1$

- intuitively: If the distance of the atoms is less then the photon's wavelength, one cannot determine, which atom has emitted the radiation.
 - \Rightarrow No way to measure the photon's frequency!
 - \Rightarrow Quantum Beats!

 there can indeed be oscillatory terms, e.g. J₁^{*}K₁e^{-i∆t}, which is proportional to:

$${}_{\gamma}\langle 1_{ab}|a^{\dagger}_{ab}a_{ac}|1_{ac}
angle_{\gamma} = {}_{\gamma}\langle 0|a_{ab}a^{\dagger}_{ab}a_{ac}a^{\dagger}_{ac}|0
angle_{\gamma} = {}_{\gamma}\langle 0|(1+\underbrace{a^{\dagger}_{ab}}_{0\leftarrow}a_{ab})(1+a^{\dagger}_{ac}\underbrace{a_{ac}}_{
ightarrow 0})|0
angle_{\gamma} = {}_{\gamma}\langle 0|0
angle_{\gamma} = 1$$

- intuitively: If the distance of the atoms is less then the photon's wavelength, one cannot determine, which atom has emitted the radiation.
 - \Rightarrow No way to measure the photon's frequency!

⇒ Quantum Beats!

 there can indeed be oscillatory terms, e.g. J₁^{*}K₁e^{-i∆t}, which is proportional to:

$${}_{\gamma}\langle 1_{ab}|a^{\dagger}_{ab}a_{ac}|1_{ac}
angle_{\gamma} = {}_{\gamma}\langle 0|a_{ab}a^{\dagger}_{ab}a_{ac}a^{\dagger}_{ac}|0
angle_{\gamma} = {}_{\gamma}\langle 0|(1+\underbrace{a^{\dagger}_{ab}}_{0\leftarrow}a_{ab})(1+a^{\dagger}_{ac}\underbrace{a_{ac}}_{
ightarrow 0})|0
angle_{\gamma} = {}_{\gamma}\langle 0|0
angle_{\gamma} = 1$$

- intuitively: If the distance of the atoms is less then the photon's wavelength, one cannot determine, which atom has emitted the radiation.
 - \Rightarrow No way to measure the photon's frequency!
 - \Rightarrow Quantum Beats!

Two atoms of type II \leftrightarrow GSI-oscillations

Relation to the GSI-experiment: atom \rightarrow ion, photon \rightarrow neutrino

- even in runs where there was only one EC-decay, there might have been more ions in the ring → this possibility has to be considered!
- the wavelength has to be replaced by the de Broglie wavelength of the neutrino
- Y. A. Litvinov et al., Phys. Lett. **B664**, 162 (2008), arXiv:0801.2079 \Rightarrow *Q*-value \sim 1 MeV
- then: $E_{\nu} \sim 1 \text{ MeV} \Rightarrow \lambda_{\nu} \approx \frac{2\pi\hbar c}{E_{\nu}c} \sim 10^{-12} \text{ m}$
- M. Steck et al., Phys. Rev. Lett., 77, 3803 \Rightarrow typical separation of the ions in the ring \sim size of the ring \sim 100 m

Two atoms of type II \leftrightarrow GSI-oscillations

Relation to the GSI-experiment: atom \rightarrow ion, photon \rightarrow neutrino

- even in runs where there was only one EC-decay, there might have been more ions in the ring → this possibility has to be considered!
- the wavelength has to be replaced by the de Broglie wavelength of the neutrino
- Y. A. Litvinov et al., Phys. Lett. **B664**, 162 (2008), arXiv:0801.2079 \Rightarrow *Q*-value \sim 1 MeV
- then: $E_{\nu} \sim 1 \text{ MeV} \Rightarrow \lambda_{\nu} \approx \frac{2\pi\hbar c}{E_{\nu}c} \sim 10^{-12} \text{ m}$
- M. Steck et al., Phys. Rev. Lett., 77, 3803 \Rightarrow typical separation of the ions in the ring \sim size of the ring \sim 100 m

- even in runs where there was only one EC-decay, there might have been more ions in the ring → this possibility has to be considered!
- the wavelength has to be replaced by the de Broglie wavelength of the neutrino
- Y. A. Litvinov et al., Phys. Lett. **B664**, 162 (2008), arXiv:0801.2079 \Rightarrow *Q*-value \sim 1 MeV
- then: $E_{\nu} \sim 1 \text{ MeV} \Rightarrow \lambda_{\nu} \approx \frac{2\pi\hbar c}{E_{\nu}c} \sim 10^{-12} \text{ m}$
- M. Steck et al., Phys. Rev. Lett., 77, 3803 \Rightarrow typical separation of the ions in the ring \sim size of the ring \sim 100 m

- even in runs where there was only one EC-decay, there might have been more ions in the ring → this possibility has to be considered!
- the wavelength has to be replaced by the de Broglie wavelength of the neutrino
- Y. A. Litvinov et al., Phys. Lett. **B664**, 162 (2008), arXiv:0801.2079 \Rightarrow *Q*-value \sim 1 MeV
- then: $E_{\nu} \sim 1 \text{ MeV} \Rightarrow \lambda_{\nu} \approx \frac{2\pi\hbar c}{E_{\nu}c} \sim 10^{-12} \text{ m}$
- M. Steck et al., Phys. Rev. Lett., 77, 3803 \Rightarrow typical separation of the ions in the ring \sim size of the ring \sim 100 m

- even in runs where there was only one EC-decay, there might have been more ions in the ring → this possibility has to be considered!
- the wavelength has to be replaced by the de Broglie wavelength of the neutrino
- Y. A. Litvinov et al., Phys. Lett. **B664**, 162 (2008), arXiv:0801.2079 \Rightarrow *Q*-value \sim 1 MeV
- then: $E_{\nu} \sim 1 \text{ MeV} \Rightarrow \lambda_{\nu} \approx \frac{2\pi\hbar c}{E_{\nu}c} \sim 10^{-12} \text{ m}$
- M. Steck et al., Phys. Rev. Lett., 77, 3803 \Rightarrow typical separation of the ions in the ring \sim size of the ring \sim 100 m

- even in runs where there was only one EC-decay, there might have been more ions in the ring → this possibility has to be considered!
- the wavelength has to be replaced by the de Broglie wavelength of the neutrino
- Y. A. Litvinov et al., Phys. Lett. **B664**, 162 (2008), arXiv:0801.2079 \Rightarrow *Q*-value \sim 1 MeV
- then: $E_{\nu} \sim 1 \text{ MeV} \Rightarrow \lambda_{\nu} \approx \frac{2\pi\hbar c}{E_{\nu}c} \sim 10^{-12} \text{ m}$
- M. Steck et al., Phys. Rev. Lett., 77, 3803 \Rightarrow typical separation of the ions in the ring \sim size of the ring \sim 100 m

- even in runs where there was only one EC-decay, there might have been more ions in the ring → this possibility has to be considered!
- the wavelength has to be replaced by the de Broglie wavelength of the neutrino
- Y. A. Litvinov et al., Phys. Lett. **B664**, 162 (2008), arXiv:0801.2079 \Rightarrow *Q*-value \sim 1 MeV
- then: $E_{\nu} \sim 1 \text{ MeV} \Rightarrow \lambda_{\nu} \approx \frac{2\pi\hbar c}{E_{\nu}c} \sim 10^{-12} \text{ m}$
- M. Steck et al., Phys. Rev. Lett., 77, 3803 ⇒ typical separation of the ions in the ring ~ size of the ring ~ 100 m

- even in runs where there was only one EC-decay, there might have been more ions in the ring → this possibility has to be considered!
- the wavelength has to be replaced by the de Broglie wavelength of the neutrino
- Y. A. Litvinov et al., Phys. Lett. **B664**, 162 (2008), arXiv:0801.2079 \Rightarrow *Q*-value \sim 1 MeV
- then: $E_{\nu} \sim 1 \text{ MeV} \Rightarrow \lambda_{\nu} \approx \frac{2\pi\hbar c}{E_{\nu}c} \sim 10^{-12} \text{ m}$
- M. Steck et al., Phys. Rev. Lett., 77, 3803 ⇒ typical separation of the ions in the ring ~ size of the ring ~ 100 m
- \Rightarrow This possibility is excluded for the GSI-experiment!

Introduction

- 2 Quantum Beats
- One atom of type I
- One atom of type II
- Two atoms of type II

- in principle, Quantum Beats seem to be a tempting possibility for an explanation for the GSI anomaly
- a single type I model would work, but has its problems
- a single type II model is claimed to be the solution by some authors, but actually it does not work
- a double type II model might be okay, but the numbers are wrong by orders
- a satisfying explanation is still missing...

• in principle, Quantum Beats seem to be a tempting possibility for an explanation for the GSI anomaly

- a single type I model would work, but has its problems
- a single type II model is claimed to be the solution by some authors, but actually it does not work
- a double type II model might be okay, but the numbers are wrong by orders
- a satisfying explanation is still missing...

- in principle, Quantum Beats seem to be a tempting possibility for an explanation for the GSI anomaly
- a single type I model would work, but has its problems
- a single type II model is claimed to be the solution by some authors, but actually it does not work
- a double type II model might be okay, but the numbers are wrong by orders
- a satisfying explanation is still missing...

- in principle, Quantum Beats seem to be a tempting possibility for an explanation for the GSI anomaly
- a single type I model would work, but has its problems
- a single type II model is claimed to be the solution by some authors, but actually it does not work
- a double type II model might be okay, but the numbers are wrong by orders
- a satisfying explanation is still missing...

- in principle, Quantum Beats seem to be a tempting possibility for an explanation for the GSI anomaly
- a single type I model would work, but has its problems
- a single type II model is claimed to be the solution by some authors, but actually it does not work
- a double type II model might be okay, but the numbers are wrong by orders
- a satisfying explanation is still missing...

- in principle, Quantum Beats seem to be a tempting possibility for an explanation for the GSI anomaly
- a single type I model would work, but has its problems
- a single type II model is claimed to be the solution by some authors, but actually it does not work
- a double type II model might be okay, but the numbers are wrong by orders
- a satisfying explanation is still missing...

- in principle, Quantum Beats seem to be a tempting possibility for an explanation for the GSI anomaly
- a single type I model would work, but has its problems
- a single type II model is claimed to be the solution by some authors, but actually it does not work
- a double type II model might be okay, but the numbers are wrong by orders
- a satisfying explanation is still missing...
- \rightarrow If you have any idea...

- in principle, Quantum Beats seem to be a tempting possibility for an explanation for the GSI anomaly
- a single type I model would work, but has its problems
- a single type II model is claimed to be the solution by some authors, but actually it does not work
- a double type II model might be okay, but the numbers are wrong by orders
- a satisfying explanation is still missing...
- \rightarrow If you have any idea... Phone: +49/6221/516-817 E-Mail: Alexander.Merle@mpi-hd.mpg.de

THANK YOU!!!