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Why QFT ?
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Two “standard” approaches to ν oscillations
Evolution of the lavor eigenstate

|νfl
a 〉 =

∑

i

U∗
ai |νmass

i 〉 ⇒
∑

i

U∗
ai e

−iφi |νmass
i 〉 ,

φi = Eit− pix
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Also, assume L ≈ t (“time-to-space conversion”)

⇒ The standard formula is obtained
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II. Same energy prescription: Assume the emitted neutrino state has a well
defined energy (stationary state) ⇒ ∆E = 0.

∆φ = ∆E · t − ∆p · L ⇒ − ∆p · L

For ultra-relativistic neutrinos pi =
√

E2 −m2
i ≃ E − m2

i

2E ⇒

−∆p ≡ p1 − p2 ≈ ∆m2

2E
;

⇒ The standard formula is obtained

Stand. phase ⇒ (losc) = 4πp
∆m2 ≃ 2.5 m p (MeV)

∆m2 eV2

No “time-to-space conversion” necessary
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Problems with plane waves and stat. states

I. Plane waves: have the same probability throughout the whole
space
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⇒ fixed momentum (σp = 0) means σE = 0 for each νi
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Evgeny Akhmedov SFB day, Heidelberg July 9, 2009 – p. 5



Problems with plane waves and stat. states

I. Plane waves: have the same probability throughout the whole
space

L - dependence: only through “time-to-space conversion”
(dubious at least!) – valid only for pointlike particles

For on-shell free particles: E2

i = p2 + m2

i ⇒ pσp = EσE

⇒ fixed momentum (σp = 0) means σE = 0 for each νi

– no production/deterction coherence

II. Stationary states: no time evolution

“Time-to-space conversion” not necessary

Cannot describe decoherence by wave packet separation

For on-shell free particles σE = 0 means σp = 0 for each νi
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The wave packet approach
In quantum theory free propagating particles are describes by wave packets.
The evolved produced state:

〈~x|νa(t)〉 =
∑

i

U∗
ai

∫

d3p

(2π)3/2
fiS(~p− ~pi) e

i~p~x−iE(p)t |νi〉

The detected state:

〈~x|νb〉 =
∑

i

U∗
bi

∫

d3p

(2π)3/2
fiD(~p− ~pi) e

i~p(~x−~L) |νi〉

The oscillation amplitude:

Aab(L, T ) =
∑

i

U∗
aiUbi

∫

d3x〈νb|~x〉〈~x|νa(T )〉

=
∑

i

U∗
aiUbi

∫

d3pfiD(~p− ~pi)
∗fiS(~p− ~pi)e

−iEi(~p)T+i~p~L
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The wave packet approach – contd.

Neutrino production and detection times usually not measured
⇒ the oscillation probability obtained upon integration over T :

Pab(L) =

∫

dT |Aab(L, T )|2

Must satisfy the unitarity conditions
∑

a

Pab(L) =
∑

b

Pab(L) = 1

Not automatically satisfied for standard normalization of the wave
packets ⇒ the proper normalization has to be imposed
“by hand”.
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The wave packet approach – contd.
Result for Gaussian wave packets:

P (νa → νb ; L) =
∑

i,k

U∗
aiUakUbiU

∗
bk e

−i
∆m2

ik
2E

L

× exp

[

−
[

L

(lcoh)ik

]2

− 2π2ξ2
[

σx

(losc)ik

]2
]

First exponential: loss of coherence due to wave packet separation for
L & lcoh:

lcoh = 2
√

2
σx

∆vg
=

4
√

2E2

∆m2
ik

σx

Second exponential: suppression of oscillations due to averaging when ξσx is
large compared to the oscillation length losc. [ ξ : ∆E ≃ ξ(m2

i /2E) ]

Accounts for possible coherence violation at neutrino production and detection.

Evgeny Akhmedov SFB day, Heidelberg July 9, 2009 – p. 8



The wave packet approach – contd.

Avoids problems of plane-wave and stationary state (“same
momentum” and “same energy”) approaches.

Evgeny Akhmedov SFB day, Heidelberg July 9, 2009 – p. 9



The wave packet approach – contd.

Avoids problems of plane-wave and stationary state (“same
momentum” and “same energy”) approaches.

Accounts for possible decoherence effects due to the wave
packet separation and/or lack of production and detection
coherence.

Evgeny Akhmedov SFB day, Heidelberg July 9, 2009 – p. 9



The wave packet approach – contd.

Avoids problems of plane-wave and stationary state (“same
momentum” and “same energy”) approaches.

Accounts for possible decoherence effects due to the wave
packet separation and/or lack of production and detection
coherence.

Problems:

Evgeny Akhmedov SFB day, Heidelberg July 9, 2009 – p. 9



The wave packet approach – contd.

Avoids problems of plane-wave and stationary state (“same
momentum” and “same energy”) approaches.

Accounts for possible decoherence effects due to the wave
packet separation and/or lack of production and detection
coherence.

Problems:

The shape and width of neutrino wave packets have to be
postulated; the parameter ξ cannot be calculated

Evgeny Akhmedov SFB day, Heidelberg July 9, 2009 – p. 9



The wave packet approach – contd.

Avoids problems of plane-wave and stationary state (“same
momentum” and “same energy”) approaches.

Accounts for possible decoherence effects due to the wave
packet separation and/or lack of production and detection
coherence.

Problems:

The shape and width of neutrino wave packets have to be
postulated; the parameter ξ cannot be calculated

Production and detection processes are not properly taken
into account; neutrinos are assumed to be always on-shell

Evgeny Akhmedov SFB day, Heidelberg July 9, 2009 – p. 9



The wave packet approach – contd.

Avoids problems of plane-wave and stationary state (“same
momentum” and “same energy”) approaches.

Accounts for possible decoherence effects due to the wave
packet separation and/or lack of production and detection
coherence.

Problems:

The shape and width of neutrino wave packets have to be
postulated; the parameter ξ cannot be calculated

Production and detection processes are not properly taken
into account; neutrinos are assumed to be always on-shell

Normalization “by hand” is invoked
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QFT approach

Most rigorous and consistent approach to neutrino
oscillations

Fully takes into account neutrino production and detection
processes

Treats neutrino production, propagation and detection as a
single process

Avoids unjustified assumptions about the neutrino wave
function (“same energy”, “same momentum”), shape and
width of the wave packets, etc.; automatic normalization

Requires knowledge of the wave functions of particles
accompanying neutrino production and detection
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QFT approach – contd.
Neutrino production, propagation and detection described by a single
Feynman diagram:

�

Coordinate-space Feynman rules have to be used

Propagation over macroscopic distances – neutrinos are essentially on the
mass shell.

Described by propagators rather than by wave functions – no questions about
the properties of neutrino w. functions

The rate of the overall prod. - propag. - detect. process calculated. The
oscillation probability is obtained by dividing by the rates of the production and
detection processes
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QFT approach – contd.
The amplitude of the overall process:

iAab =
∑

i

U∗
aiUbi

∫

d4x1

∫

d4x2 M̃iP (x1)SFi(x1 − x2)M̃iD(x2)

Evgeny Akhmedov SFB day, Heidelberg July 9, 2009 – p. 12



QFT approach – contd.
The amplitude of the overall process:

iAab =
∑

i

U∗
aiUbi

∫

d4x1

∫

d4x2 M̃iP (x1)SFi(x1 − x2)M̃iD(x2)

=
∑

i

U∗
aiUbi

∫

d4x1

∫

d4x2 M̃iP (x1)M̃iD(x2)

∫

d4p

(2π)4
e−ip(x2−x1) (p/+mi)

p2 −m2
i + iǫ

Evgeny Akhmedov SFB day, Heidelberg July 9, 2009 – p. 12



QFT approach – contd.
The amplitude of the overall process:

iAab =
∑

i

U∗
aiUbi

∫

d4x1

∫

d4x2 M̃iP (x1)SFi(x1 − x2)M̃iD(x2)

=
∑

i

U∗
aiUbi

∫

d4x1

∫

d4x2 M̃iP (x1)M̃iD(x2)

∫

d4p

(2π)4
e−ip(x2−x1) (p/+mi)

p2 −m2
i + iǫ

Using p/+mi =
∑
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Ψ(p0, ~p)S =

∫

d4x′1 MP (x′1) e
ipx′

1 , Ψ(p0, ~p)D =

∫

d4x′2 MD(x′2) e
−ipx′

2
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QFT calculation – Grimus-Stockinger f-la.
Grimus-Stockinger theorem for ~p - integration of the neutrino propagator
(limit L→ ∞):

∫

d3p
ψ(~p) ei~p~L

A− ~p2 + iǫ

|~L|→∞−−−−−→ −2π2

L
ψ(

√
A

~L
L )ei

√
AL + O(L− 3

2 )

p ⇒ (p0, (p
2
0 −m2

i )
1/2 ~L/L). When is it actually valid?
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QFT calculation – Grimus-Stockinger f-la.
Grimus-Stockinger theorem for ~p - integration of the neutrino propagator
(limit L→ ∞):

∫

d3p
ψ(~p) ei~p~L

A− ~p2 + iǫ

|~L|→∞−−−−−→ −2π2

L
ψ(

√
A

~L
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√
AL + O(L− 3

2 )

p ⇒ (p0, (p
2
0 −m2

i )
1/2 ~L/L). When is it actually valid?

L ≫ p

σ2
p

.

In the opposite limit – no factor 1/L. Reason: no transverse spreading of the
wave packets in this regime; “perfectly collimated beam”.
ttransv ∼ E/σ2

p, tlong. ∼ E3/σ2
pm

2.
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QFT calculation – Grimus-Stockinger f-la.
Grimus-Stockinger theorem for ~p - integration of the neutrino propagator
(limit L→ ∞):

∫

d3p
ψ(~p) ei~p~L

A− ~p2 + iǫ

|~L|→∞−−−−−→ −2π2

L
ψ(

√
A

~L
L )ei

√
AL + O(L− 3

2 )

p ⇒ (p0, (p
2
0 −m2

i )
1/2 ~L/L). When is it actually valid?

L ≫ p

σ2
p

.

In the opposite limit – no factor 1/L. Reason: no transverse spreading of the
wave packets in this regime; “perfectly collimated beam”.
ttransv ∼ E/σ2

p, tlong. ∼ E3/σ2
pm

2.

⇒ explains the strange “plane wave behaviour” found in this limit by
Ioannissian & Pilaftsis (1998) – not clear if can be realized in any
experimental setting.

Evgeny Akhmedov SFB day, Heidelberg July 9, 2009 – p. 13



QFT approach – contd.
First consistent derivation in a (simplified) QFT framework – Kobzarev et al.,
1980. At production: plane-wave charged leptons collide with infinitely heavy
nuclei. At detection: neutrinos collide with infinitely heavy nuclei and charged
leptons (and other nuclei) are produced.
(σp)lept = 0, (σp)nucl → ∞ (nuclei are localized) ⇒ Ψnucl(p) = const.

Ψ(p0, ~p)S ∼ δ(p0 −Ein)δ(p0 −Eout)

The amplitude for process with propagation of νi:

Ai ∼ δ(Ein −Eout)

∫

d3p
ei~p~L

E2
in − ~p2 −m2

i + iǫ
∼ 1

L
δ(Ein −Eout)e

i~pi
~L

Leads to the standard formula for the oscillation probability of relativistic
neutrinos in vacuum:

♦ P (νa → νb;L) =

∣

∣

∣

∣

∑

i Ubi e
−i

∆m2
i1

2E
L U∗

ai

∣

∣

∣

∣

2
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QFT approach

Calculations in a realistic model with Gaussian wave packets:
Giunti et al. 1993, Dolgov et al. 2004, Beuthe, 2003...

Calculation with localized stationary external states: Grimus & Stockinger,
1996; Ioannissian &Pilaftsis (1998); ...

A good review (up to 2003) – M. Beuthe, Phys. Rep. 375 (2003) 105.

QFT calculation for Mössbauer neutrinos): EA, J. Kopp & M. Lindner,
2008.
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QFT calculation for Mössbauer neutrinos
The amplitude for zero linewidths:

iA =

∫

d3x1 dt1

∫

d3x2 dt2 Ψ∗
He,S(~x1)e

+iEHe,S t1 ΨH,S(~x1)e
−iEH,S t1

· Ψ∗
H,D(~x2)e

+iEH,D t2 ΨHe,S(~x2)e
−iEHe,D t2

·
∑

j

Mµ
SMν∗

D |Uej |2
∫

d4p

(2π)4
e−ip0(t2−t1)+i~p(~x2−~x1)

· ūe,Sγµ(1 − γ5)
i(p/+mj)

p2
0 − ~p2 −m2

j + iǫ
γν(1 − γ5)ue,D

Here

Mµ
S,D =

GF cos θc√
2

ψe(R) ūHe (MV δ
µ
0 − gAMAσi δ

µ
i /

√
3)uH κ

1/2
S,D
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QFT calculation – contd.
For Lorentzian energy distributions of external particles:

ρA,B(EA,B) =
γA,B/2π

(EA,B −EA,B,0)2 + γ2
A,B/4

(A = {H,He}, B = {S,D}, EA,B,0 = mA + 1
2ωA,B ) ⇒

Γ ≃ Γ0B0

4πL2
YSYD

∑

j,k

|Uej |2|Uek|2 exp

[

−
(pmin

jk )2

σ2
p

]

exp

[

−
|∆m2

jk|
2σ2

p

]

· 1

2

(

e−L/Lcoh

jk,S + e−L/Lcoh

jk,D

)

exp

[

− i
∆m2

jk

2Ē
L

]

(γS + γD)/2π

(ES,0 −ED,0)2 + (γS+γD)2

4

Lcoh
jk,B – coherence lengths:

Lcoh
jk,B =

4Ē2

γB |∆m2
jk|

=
σx

∆vg
, σx =

2

γB
(B = S,D)

Evgeny Akhmedov SFB day, Heidelberg July 9, 2009 – p. 17



QFT calculation – contd.

Generalized Lamb – Mössbauer (Debye – Waller) factor

exp

[

−
p2

j + p2
k

2σ2
p

]

= exp

[

−
(pmin

jk )2

σ2
p

]

exp

[

−
|∆m2

jk|
2σ2

p

]

First factor ⇒ suppression of emission and absorption, i.e. a generalized
Lamb-Mössbauer factor, second factor ⇒ suppression of oscillations.
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QFT calculation – contd.

Generalized Lamb – Mössbauer (Debye – Waller) factor

exp

[

−
p2

j + p2
k

2σ2
p

]

= exp

[

−
(pmin

jk )2

σ2
p

]

exp

[

−
|∆m2

jk|
2σ2

p

]

First factor ⇒ suppression of emission and absorption, i.e. a generalized
Lamb-Mössbauer factor, second factor ⇒ suppression of oscillations.

|∆m2
jk| . 2σ2

p ⇒ localization condition: Spatial localization σx ∼ 1/σp.
Oscillations would be suppressed only if |∆m2

jk| & 2σ2
p.
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QFT calculation – contd.

Generalized Lamb – Mössbauer (Debye – Waller) factor

exp

[

−
p2

j + p2
k

2σ2
p

]

= exp

[

−
(pmin

jk )2

σ2
p

]

exp

[

−
|∆m2

jk|
2σ2

p

]

First factor ⇒ suppression of emission and absorption, i.e. a generalized
Lamb-Mössbauer factor, second factor ⇒ suppression of oscillations.

|∆m2
jk| . 2σ2

p ⇒ localization condition: Spatial localization σx ∼ 1/σp.
Oscillations would be suppressed only if |∆m2

jk| & 2σ2
p.

In reality: |∆m2
jk|max ≃ 2.5 · 10−3 eV2; σ2

p ∼ (10 keV)2 ⇒
oscillations will not be suppressed.
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Conclusions

For a consistent derivation of the probability of neutrino oscillations one
needs either wave packet (QM) or QFT approach

QFT has an avantage of fully taking into account the neutrino production
and detection processes

Does not treat neutrinos to be always on the mass shell
⇒ allows σP 6= σE

Does not require postulating the shapes and widths of the wave packets

Automatically leads to the correct normalization of Pab(L)

Indispensible for accurate description of transition from coherence to
decoherence regime

Clarifies many subtle issues of the theory of neutrino oscillations

Once used to derive the osc. probability, can be forgotten in most
situations of practical interest
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Backup slides
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Coherence at neutrino production
If by accurate E and p measurements one can tell which mass eigenstate is
emitted, the coherence is lost and oscillations disappear!
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Coherence at neutrino production
If by accurate E and p measurements one can tell which mass eigenstate is
emitted, the coherence is lost and oscillations disappear!

How are the oscillations destroyed? Suppose by measuring momenta and
energies of particles at neutrino production (or detection) we can determine its
energy E and momentum p with uncertainties σE and σp.
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Coherence at neutrino production
If by accurate E and p measurements one can tell which mass eigenstate is
emitted, the coherence is lost and oscillations disappear!

How are the oscillations destroyed? Suppose by measuring momenta and
energies of particles at neutrino production (or detection) we can determine its
energy E and momentum p with uncertainties σE and σp.

Ei =
√

p2
i +m2

i ⇒ σm2 =
[

(2EσE)2 + (2pσp)
2
]1/2
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Coherence at neutrino production
If by accurate E and p measurements one can tell which mass eigenstate is
emitted, the coherence is lost and oscillations disappear!

How are the oscillations destroyed? Suppose by measuring momenta and
energies of particles at neutrino production (or detection) we can determine its
energy E and momentum p with uncertainties σE and σp.

Ei =
√

p2
i +m2

i ⇒ σm2 =
[

(2EσE)2 + (2pσp)
2
]1/2

If σm2 < ∆m2 = |m2
i −m2

k| – one can tell which mass eigenstate is emitted.
σm2 < ∆m2 implies 2pσp < ∆m2, or σp < ∆m2/2p ≃ l−1

osc.
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Coherence at neutrino production
If by accurate E and p measurements one can tell which mass eigenstate is
emitted, the coherence is lost and oscillations disappear!

How are the oscillations destroyed? Suppose by measuring momenta and
energies of particles at neutrino production (or detection) we can determine its
energy E and momentum p with uncertainties σE and σp.

Ei =
√

p2
i +m2

i ⇒ σm2 =
[

(2EσE)2 + (2pσp)
2
]1/2

If σm2 < ∆m2 = |m2
i −m2

k| – one can tell which mass eigenstate is emitted.
σm2 < ∆m2 implies 2pσp < ∆m2, or σp < ∆m2/2p ≃ l−1

osc.
But: To measure p with the accuracy σp one needs to measure the momenta
of particles at production with (at least) the same accuracy ⇒ uncertainty
of their coordinates (and the coordinate of ν production point) will be

σx, prod & σ−1
p ∼ losc
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Coherence at neutrino production
If by accurate E and p measurements one can tell which mass eigenstate is
emitted, the coherence is lost and oscillations disappear!

How are the oscillations destroyed? Suppose by measuring momenta and
energies of particles at neutrino production (or detection) we can determine its
energy E and momentum p with uncertainties σE and σp.

Ei =
√

p2
i +m2

i ⇒ σm2 =
[

(2EσE)2 + (2pσp)
2
]1/2

If σm2 < ∆m2 = |m2
i −m2

k| – one can tell which mass eigenstate is emitted.
σm2 < ∆m2 implies 2pσp < ∆m2, or σp < ∆m2/2p ≃ l−1

osc.
But: To measure p with the accuracy σp one needs to measure the momenta
of particles at production with (at least) the same accuracy ⇒ uncertainty
of their coordinates (and the coordinate of ν production point) will be

σx, prod & σ−1
p ∼ losc

⇒ Localization condition violated ⇒ oscillations washed out (Kayser, 1981)
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Longitudinal vs. transversal w.p. dispersion

Spreading of the wave packets: consequence of the fact that the there is a
spread of momenta inside of the wave packets and of the p-dependence of the
group velocity.

vi
spr ≃ ∂vi

∂pj
σj

p =
1

E
(δij − vivj) =

1

E
[σi

p − vi(~v ~σp)]

This gives

v⊥spr. =
σp

E
, v||spr. =

σp

E
(1 − v2) =

σp

E

m2

E2

ttransv ∼ E/σ2
p, tlong. ∼ E3/σ2

pm
2.
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