

bmb+**f** - Förderschwerpunkt

Astroteilchenphysik

Großgeräte der physikalischen Grundlagenforschung

Simulation of electron incident on silicon for KATRIN

Tag des SFB/TR 27 MPI-K Heidelberg 10.07.2009

SFB/TR27 – A2 "Improved Detection of Low-energy electrons"

www.kit.edu

Outline

Motivation

- Detector response
- Simulations and Comparisons
- Summary and Outlook

KATRIN – experimental setup

- The detector response describes the measured or expected detector observables to an incident monoenergetic particle as function of
 - Particle type
 - Incident energy
 - Angle of incidence
 - Arrival time
 - In case of KATRIN this depends on:
 - Insensitive detector areas (deadlayer)
 - Electro-magnetic configuration
 - Intrinsic noise (leakage current, fano noise,...)
 - Electronic noise (Preamps, ...)
 - Detailed geometry

Detector response

Detector Response – Why?

The low energy part of the tritium b-spectrum carries information on source properties

> **COMPARE EXISTING SIMULATIONS:** Geant4, PENELOPE2008, custom MC, ...

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Universität Karlsruhe (TH) Forschungsuniversität · gegründet 1825

Electrons vs. X-rays – the problem

Geant4

- High Energy Physics origin (CERN)
- Has two low-energy extensions
 - PENELOPE2001
 - LowEnergy Package
- Large parts of the KATRIN global simulations are done in G4
 - Detector background by Michelle Leber (CENPA)
 - New em-field tracking classes by TJ Corona (MIT)
 - Complete FPD model already exists
 - **.**..
- Complex geometries, many physics processes and materials
- Secondary production

LowEnergy Package generally produced "better" results. All plots shown are G4 LE Package and the physics list recommended by the G4 LE group.

Monte Carlo Recipe for custom MC

- Use full event-by-event simulations
- Ingredients (use best quality availabe):
 - Inelastic collision cross sections
 - Elastic collision cross sections
- If not sufficient for KATRIN add:
 - Delta-rays
 - Auger electrons
 - Fluorescence
 - Bremsstrahlung
 - Phonon scattering
 - Surface escape process
 - Charge carrier motion (for E<3/2 E_g)
 - Signal generation
 - Front-end electronics
 - Electronic Noise

Challenging at these energies! General purpose codes might not be good enough.

Cross Sections used by custom MC

Elastic Cross Sections

- Calculated with ELSEPA Code
 - (F. Salvat et al. Comp. Phys. Com. 165 (2005) 157–190)
- Derived by relativistic partial-wave calculations of elastic scattering by a local central interaction potential V(r)
- **Included in NIST Database**

Cross Sections used by custom MC

Inelastic Cross Sections

- Calculated by Hans Bichsel (Rev. Mod. Phys. 60 (1988) 3)
- Derived by Bethe-Fano Theory

🛑 Energy loss in silicon

- Deadlayer effects
- Incident angles
- Electro-magnetic design
- Backscattering/Comparison to experiment

- Incident angles
- Electro-magnetic design
- Backscattering/Comparison to experiment

Energy loss in sensitive volume – deadlayer effect

Energy loss in sensitive volume

Energy loss in sensitive Volume - Zoom

Electrons stopped in Si – E < 150 eV

Deadlayer effects

- Incident angles
- Electro-magnetic design
- Backscattering/Comparison to experiment

Energy loss in sensitive Volume – $\Theta_0 = 60^\circ$

Pascal Renschler – IEKP 21

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Universität Karlsruhe (TH) Forschungsuniversität • gegründet 1825

- Deadlayer effects
- Incident angles
- Electro-magnetic design
- Backscattering/Comparison to experiment

Backscattering – re-entries

Backscattering – re-entries

Deadlayer effects

- Incident angles
- Electro-magnetic design
- Backscattering/Comparison to experiment

Backscattering – Experiments – DC Joy database

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Backscattered energy - Experiment

Backscattered energy - Experiment

Summary + Outlook

- FPD system introduces unique questions

 Systematics on m_v, calibration, double-counts, ...

 Geant4 is not suitable for our problem

 E. Poon et al. Phys. Med. Biol. 50 (2005) 681–694
 E. Poon et al. Med. Phys. 32 (2005) 6 1696-1711
 ...

 KESS (c++ MC) evaluated vs. Data and simulations

 good agreement E > 1keV
 - Atomic relaxation and Delta-ray production ~60% finished
- PENELOPE2008 Simulations show same trend as KESS below 1 keV

Fin

Thank you!

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Universität Karlsruhe (TH) Forschungsuniversität • gegründet 1825