

Investigation of the neutron background within the EDELWEISS dark matter search

- Introduction/Motivation
- Principle of µ-n counter
- Scintillator stability
- Neutron measurements

MHOLTZ

GEMEINSCHAFT

Outlook

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

EDELWEISS-II principle

Discrimination $\gamma/n > 99.9\%$ for $E_r > 15 \text{keV}$

Simultaneous measurement

- Heat @ 17 mK with Ge/NTD thermometer
- Ionization @ few V/cm with Al electrodes
- Evt by evt identification of the recoil by ratio Q=E_{ionization}/E_{recoil}
 - Q=1 for electronic recoil
 - Q≈0.3 for nuclear recoil

n's as background for direct DM search

EDELWEISS-II background

- \rightarrow Improvement of detector technology;
- → Radiopurity of the materials;
- \rightarrow Passive shielding:

Neutrons:

- **Radioactivity** in the surrounding
 - → Passive shielding: 20cm Pb + 50cm PE shielding
- Muon induced neutrons produced :
 - In the detector material
 - \rightarrow active **µ**-vetoing + Simulations;
 - In the surrounding rock (high-E **n**!)
 - → Simulations:

Need explicit µ-n coincidence measurement!

EDELWEIS-II muon veto system

Coincidences in µ-veto and Ge bolometers

10⁻³

Hits/crystal [1/keV/day]

- > 1 veto module hit
- 15 ms < Δt < 35 ms</p>

	E _{recoil} < 250 keV	E _{recoil} > 250 keV	Expected from Geant4 simulation:
measured events	16	28	~0.03 events/kg.d
expected accidentals	3.7 ± 0.2	2.9 ± 9.2	Measured:
excess coincidences	12.3 ± 4.2	<u>25 1 ± 5.5</u>	0.04 events/kg.d
signal/background	3.3 ± 1.4	8.7 ± 2.4	prelimine

10⁻⁴ 10⁻⁵ 10⁻⁶ total ionization recoil 10⁻⁷ 50 100 150 200 250 Energy deposit in bolometers/hit [keV] Geant 4 simulation of **µ**-induced Ge-hits Forschungszentrum Karlsruhe ELMHOLTZ in der Helmholtz-Gemeinschaft GEMEINSCHAFT

[M. Horn, PhD thesis]

1keV<E_{dep}<250keV

Coincidences in µ-veto and Ge bolometers

Neutron counter (NC) principle

- 1000l of Gd-loaded scintillator
- monitored by 8 LED's
- 2x8 8" PMTs immersed in paraffin
- individual HV supply

- •2x3 2" PMTs for through going μ's
- VME based DAQ
- vapour/leak/temp. sensors
- integrated in existing µ-veto DAQ

Folie 9

HK6	sfb logo??		
	Holger Kluck; 04.03.2009		

Picture gallery of installation (Sept 2008)

Picture gallery of installation (Sept 2008)

HK7

LED monitoring of scintillator: basics

Forschungszentrum Karlsruhe

in der Helmholtz-Gemeinschaft

MHOLTZ

Reference auf LED design/paper Holger Kluck; 03.03.2009 HK7

HK3

LED monitoring of scintillator: basics

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

HK3 time evoltion diagramm überarbeiten, Graph grün färben Holger Kluck; 04.03.2009

Long term behaviour of the transparency

GEMEINSCHAFT

HK9

HK9 time evoltion diagramm überarbeiten, Graph grün färben Holger Kluck; 04.03.2009

Calibration with AmBe source: $n+\gamma$

DAQ time window:

AmBe neutron measurement: secondaries

Forschungszentrum Karlsruhe

in der Helmholtz-Gemeinschaft

LMHOLTZ

AmBe neutron measurement: Δt

Signal run: secondaries

ELMHOLTZ

Signal run: Δt_{sec}

GEMEINSCHAFT

19 | H. Kluck | SFB-TR27 Meeting Heidelberg | July 10, 2009

Coincidence with µ-veto system

Forschungszentrum Karlsruhe

in der Helmholtz-Gemeinschaft

- Coincidence between µ-Veto and neutron counter
- T_{DAQ}=53.4 μs
- ~51 days

(Δ t>200 ns to avoid PMT after-pulses)

TELMHOLTZ

Coincidence with µ-veto system

Forschungszentrum Karlsruhe

in der Helmholtz-Gemeinschaft

- Coincidence between µ-Veto and neutron counter
- T_{DAQ}=53.4 μs
- ~51 days

(Δ t>200 ns to avoid PMT after-pulses)

TELMHOLTZ

Coincidence with µ-veto system: sec.

Coincidence with µ-veto system: Δt_{sec}

Outlook: Upgrade of DAQ electronic

in der Helmholtz-Gemeinschaft

GEMEINSCHAFT

- New timing board (FPGA based) for better synchronization: neutron counter ↔muon veto ↔bolometer
- Minimize DAQ deadtime: QDC → dead time less FADC

Investigate: integration error = f(FADC sampling frequency)

Outlook: MC simulations of µ-n detector

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

GEMEINSCHAFT

Improvement of MC simulations using GEANT4:

- Implementation of the realized neutron counter geometry: \checkmark
- Next step: physics, light propagation

Summary

→First candidates for µ-induced n's seen by the EDELWEISS µ-veto in coincidence with the neutron counter

- Neutron counter is installed and take data since Nov 2008
- Continuously monitoring of scintillator stability
 Stability as expected
- AmBe measurements
 → First neutrons are detected
- Coincidence measurements µ-veto / n counter:
 → First candidates for µ induced n
- Ongoing data taking and analysis
- Upgrade of DAQ electronics
- Improvement of MC simulations with Geant4

This work is in part supported by the German Research Foundation (DFG) through the transregional Collaborative Research Center SFB-TR27 as well as by the EU contract RII3-CT-2004-506222

Muons flux: sea level and underground lab

Simulation of µ-induced events

- <u>DM</u>: n mimic WIMP recoils (~ few keV);
- <u>0νββ</u>:
 - **n** (>MeV) => γ rays (inelast. scatt);
 - **n** (therm.) => γ rays (capture);

DAQ / coinidence scheme

Forschungszentrum Karlsruhe

in der Helmholtz-Gemeinschaft

IELMHOLTZ

Co⁶⁰ decay scheme

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

E

HELMHOLTZ

GEMEINSCHAFT

31 | H. Kluck | SFB-TR27 Meeting Heidelberg | July 10, 2009

Co60 data: energy calibration

32 | H. Kluck | SFB-TR27 Meeting Heidelberg | July 10, 2009

Co60 data: Δtdc for 2 hits within the events

Timing of background events

